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Model for decoherence of entangled beauty
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~Received 15 January 2001; published 16 July 2001!

In the context of the entangledB0B̄0 state produced at theY(4S) resonance, we consider a modification of
the usual quantum-mechanical time evolution with a dissipative term, which contains only one parameter
denoted byl and respects complete positivity. In this way a decoherence effect is introduced in the time

evolution of the two-particleB0B̄0 state, which becomes stronger with increasing distance between the two
particles. While our model of time evolution has decoherence for the two-particle system, we assume that, after
the decay of one of the twoB mesons, the resulting one-particle state obeys the purely quantum-mechanical
time evolution. From the data on dilepton events we derive an upper bound onl. We also show howl is
related to the so-called ‘‘decoherence parameter’’z, which parametrizes decoherence in neutral flavored
meson-antimeson systems.

DOI: 10.1103/PhysRevD.64.056004 PACS number~s!: 03.65.Ud, 13.20.2v, 14.40.Nd
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I. INTRODUCTION

There is increasing interest in recent years in using p
ticle physics phenomena for the study of possible deviati
from quantum mechanics~QM!. Efforts have concentrate

on two types of phenomena: oscillations, such asK0-K̄0 @1#
and neutrino oscillations@2#, and quantum entanglemen

where particularly suitable systems are the entangledK0K̄0

andB0B̄0 states@3# which are produced ine1e2 collisions
at the resonancesF and Y(4S), respectively. These state
become macroscopically extended objects before they de
Thus in both types of phenomena macroscopic distan
are involved. Furthermore, entangled systems are—
to Einstein-Podolsky-Rosen-~EPR-!Bell correlations@4#—
important objects to clearly test QM against local realis

theories. Whereas entangled systems likeK0K̄0 have a rather
long-standing and venerable position in the QM literatu
@5#, the physics of neutrino oscillations is a rather rec
testing ground for QM; this development has been boos
in particular, by the now well-established atmospheric n
trino anomaly, but also solar neutrinos and neutrinos in
early universe are discussed in this context.

In this paper we concentrate on possible decoherence
fects which might arise due to some fundamental modifi
tion of QM or due to the interaction of the system with
‘‘environment,’’ whatever this may be. In the latter case, t
idea of the influence of quantum gravity@6,7#—quantum
fluctuations in the space-time structure at the Planck m
scale—is especially attractive nowadays. Possible effect
the environment have been investigated intensively in
K0K̄0 system in Refs.@1# and@8–14#. But also other models
of decoherence, like those found in Refs.@15–18#, may serve
as a working hypothesis. Our model, which we will propo
in this paper, has some remote similarity with the mod
mentioned here, but ours will be tailored to the situation
two particles moving apart in their center of mass system

In the past, a measure of decoherence for entangled
tems has been introduced on pure phenomenological gro
in order to determine quantitatively deviations from pu
QM. This simple procedure of multiplying the quantum
0556-2821/2001/64~5!/056004~5!/$20.00 64 0560
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mechanical interference term by 12z @19#, wherez is called
decoherence parameter, is a basis-dependent concep
works very well as a measure for interpolating continuou
between pure QM (z50) and total decoherence (z51). The
latter case corresponds to spontaneous factorization,
called Furry’s hypothesis@20#. By investigating certain ob-
servables, the authors of Refs.@21–25# could show that the

entangledK0K̄0 and B0B̄0 systems are far from total deco
herence, at least whenz is introduced in relation to the basi
of mass eigenstates, so that local realistic theories are hi
unlikely. In other words, the presence of the interferen
term is well established in agreement with QM~see also Ref.
@26#!, which means that there is quantum interference
massive particles over macroscopic distances.

In this paper we want to present a model of dissipation
entangled systems of two particles. In contrast to the prev
ing concept in the literature, where dissipation is introduc
at the one-particle level and transferred to the two-part
level through the tensor product structure of the Hilb
space of states~see, e.g., Ref.@12#!, we assume the usua
quantum-mechanical time evolution for the one-parti
states. Thereby we have in mind that entangled two-part
systems become decoherent when they move apart over
roscopic distances, whereas for a one-particle system Q
not modified. Our dissipative term in the two-particle tim
evolution obeys the condition of complete positivity@27#.

For reasons given below, we consider the entangledB0B̄0

system with negativeC parity. By using the experimenta
value of the ratioR of the number of like-sign dilepton
events over opposite-sign dilepton events, we can deriv
bound on the strength of the dissipative term. Consider
the time-integrated dilepton event rates, our model rep
duces precisely the corresponding calculations with the p
nomenological decoherence parameterz associated with the
BH-BL basis. As a result, we obtain a remarkably simp
formula which relates the dissipative strength to the decoh
ence parameterz. In the context of the observableR, we also
compare our model of two-particle decoherence with
case where the analogous dissipative term is introduced
ready at the one-particle level.
©2001 The American Physical Society04-1
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II. MODEL

Before considering theB0B̄0 system, let us first discus
our model of decoherence in a two-dimensional Hilb
space of statesH5C2. We allow for a non-Hermitian Hamil-
tonianH, in order to include the possibility of incorporatin
particle decay in the Weisskopf-Wigner approximation@28#.
We denote the normalized energy eigenstates byuej& ( j
51,2) and have therefore

Huej&5l j uej& with l j5mj2
i

2
G j , ~2.1!

wheremj andG j are real and the latter quantities are posit
in addition. Furthermore, we make the crucial assumpt
that

^e1ue2&50 ~2.2!

despite the non-Hermiticity ofH. Including decoherence, th
time evolution of the density matrixr has the form

dr

dt
52 iHr1 irH†2D@r#. ~2.3!

Our model of decoherence consists in assuming that

D@r#5l~P1rP21P2rP1!, where Pj5uej&^ej u
~2.4!

andl is a positive constant. Such a term is also employ
for instance, in the context of neutrinos in the early unive
~see, e.g., Ref.@29#!. It can readily be checked that the d
coherence term in Eq.~2.4! is of the Lindblad type@27#:

D@r#5
1

2 S (
j

Aj
†Ajr1r(

j
Aj

†Aj D 2(
j

AjrAj
† ,

~2.5!

if we make the identificationAj5AlPj . Thus the term~2.4!
generates a completely positive map; moreover, sincePj

†

5Pj and @Pj ,H#50, the decoherence term would increa
the ‘‘von Neumann entropy’’ and conserve energy in the c
of a Hermitian Hamiltonian~see Ref.@30# and references
therein!. However, what is more important in our discussi
is the fact that with the choice~2.4! the equations for the
components ofr decouple. Indeed, with

r5 (
j ,k51

2

r jkuej&^eku, ~2.6!

wherer jk5rk j* , and with the time evolution~2.3!, we obtain

r11~ t !5r11~0!exp~2G1t !,

r22~ t !5r22~0!exp~2G2t !, ~2.7!

r12~ t !5r12~0!exp$2@ i ~m12m2!

1~G11G2!/21l#t%.
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t

n

,
e

e

Let us for a moment dwell on the motivation for ou
model of decoherence. To this end we start with the m
general settingAj5Al j Pj ( j 51,2 and l j.0) with Pj
5upj&^pj u, where the normalized vectorsupj& are linearly
independent and in general different from the eigenvector
the Hamiltonian. Note that we also allow for^p1up2&Þ0. In
any case, one can use formula~2.5! to obtain a completely
positive dissipative term in the time evolution~2.3!, but in
general one will not obtain the form ofD@r# given by Eq.
~2.4!. For the time being we want to assume thatH†5H
Þ0 holds and thatH is nondegenerate in order to avo
trivial considerations. Now we have two possibilities: 1. T
system$up1&,up2&% is the system of eigenvectors ofH, i.e., it
is equivalent to the orthonormal system$ue1&,ue2&%; 2. $up1&,
up2&% is not equivalent to the system of eigenvectors ofH. In
the first case one can show that the form~2.4! of D@r# with
l5(l11l2)/2 is obtained and that

case 1⇔@H,Pj #50 for j 51,2:

lim
t→`

r~ t !5P1r~0!P11P2r~0!P2 ~2.8!

holds. Furthermore, density matricesPj , or linear combina-
tions thereof, are constant solutions of the time evolut
equation. In the second case, at least one of the vectorsup1&,
up2& is not an eigenvector ofH and one can prove that

case 2⇔' j 51 or 2 with @H,Pj #Þ0: lim
t→`

r~ t !5 1
2 1,

~2.9!

independent ofr(0). Wewill see in the following—when we
apply our model to theB0B̄0 system—that the first case i
closer to our physical intuition~see also last paragraph o
this section!. The two cases have been described in Re
@31# and @32# in the context of one-particle decoherence
neutrino oscillations. Note that case 1 is used in Ref.@2# ~see
also Ref.@30#!, whereas case 2 is considered, e.g., in R
@33# in the same context. If we allow forH†ÞH, the picture
we have developed here gets blurred because then there
competition between particle decay, i.e., limt→` Tr r(t)50,
and the effect of decoherence. We nevertheless stick to
first case. Note that identifying the orthonormal system giv
by Pj ( j 51,2) with the system of eigenvectors ofH is not
only motivated by the considerations above but also by s
plicity; as we have seen in Eq.~2.7! we have decoupled time
evolutions as a consequence. We want to stress, howe
that in the case ofCP violation, which is particularly impor-
tant for theK0K̄0 system, it might be useful to allow fo
small deviations from̂e1ue2&50, and thus for small devia
tions of the eigenvectors of the Hamiltonian from the orth
normal system$up1&,up2&%.

Returning from general considerations, we now apply o
model of decoherence to the case of the two-particleB0B̄0

state, generated by the decay of theY(4S) resonance~for the
formalism used in theB0B̄0 system see, e.g., Ref.@34#!. We
conceive t as the eigentime ofB0 and B̄0 and make the
identification
4-2
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MODEL FOR DECOHERENCE OF ENTANGLED BEAUTY PHYSICAL REVIEW D64 056004
ue1&5uBH ^ BL& and ue2&5uBL ^ BH&, ~2.10!

where the heavy and the light neutralB states are defined vi

uBH&5puB0&1quB̄0& and uBL&5puB0&2quB̄0&,
~2.11!

which have eigenvalues

lH5mH2
i

2
GH and lL5mL2

i

2
GL , ~2.12!

respectively, of the effective one-particle HamiltonianH1.
For the two-particle system, we transfer, as usual, the o
particle Hamiltonian to the tensor product of the one-parti
Hilbert spaces by usingH5H1^ 111^ H1. We imagine that
the first factor in the tensor product corresponds to partic
moving to the left, whereas the second factor in the ten
product corresponds to right-moving particles. We assu
CP conservation inB0-B̄0 mixing, which is a good approxi-
mation@34,35# and corresponds toup/qu51. In this case we
have^BHuBL&50 and thereforêe1ue2&50. In the following
we will set p5q51/A2. At the Y(4S) resonance, att50,
the entangled state

uc&5
1

A2
~ ue1&2ue2&) ~2.13!

is produced, which is equivalent to the density matrix

r~0!5
1

2
~ ue1&^e1u1ue2&^e2u2ue1&^e2u2ue2&^e1u!.

~2.14!

With the time evolution~2.7!, the initial condition~2.14! and
taking into account that in the case of the vectors~2.10! we
have l15l25mH1mL2 iG with G[(GH1GL)/2, we ob-
tain the time evolution

r~ t !5
1

2
e22Gt$ue1&^e1u1ue2&^e2u

2e2lt~ ue1&^e2u1ue2&^e1u!%. ~2.15!

Note that the factor exp(2lt) in the density matrix~2.15!
introduces decoherence as a consequence of theD term in
the time evolution~2.3!. In other words, fort.0 andl.0,
the density matrix~2.15! does not correspond to a pure sta
anymore.

Having chosen the energy eigenstates~2.10! for the con-
struction of the projectorsPj , our model complies with cas
1 ~2.8!. In this case, we would have no decoherence
r(0)5P1 or P2, though such initial conditions might b
unrealistic. This agrees with our intention because in th
cases we have no entanglement over macroscopic dista
and no reason for modifying the quantum-mechanical ti
evolution. Note that using the projector states~2.10! confines
our Hilbert space of states to a two-dimensional one. Us
projector states which are nontrivial orthogonal linear co
binations of the states~2.10! would lead to case 2~2.9!, still
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with a two-dimensional Hilbert space. However, using p
jector states which arenot linear combinations of the state
~2.10!, like, e.g.,uB0

^ B̄0&, uB̄0
^ B0&, entails not only a time

evolution into the full four-dimensional Hilbert space o
states, includinguBH ^ BH& and uBL ^ BL&, but also opens up
the possibility for more involved schemes of decoheren
than given by our simple model.

III. MEASUREMENT

In order to obtain information on the parameterl, which
modifies the time evolution in theB0B̄0 system, we adopt the
following philosophy. We start att50 with the density ma-
trix ~2.14! for a B0B̄0 state with negativeC parity. This two-
particle density matrix follows the time evolution~2.15! and
undergoes thereby some decoherence. We imagine a
surement of theB quantum number of the left-moving pa
ticle at time t l and of the right-moving particle at timet r .
For times min(tl ,tr),t,max(tl ,tr) we have a one-particle
state which we assume to evolve exactly according to Q
with the time evolution given byH1.

In a mathematical language, we do the following. Assu
ing for definitenesst l,t r , at t5t l we calculate the trace

Trl$~ un&^nu ^ 1!r~ t l !%[r r~ t l ;t5t l !, ~3.1!

where Trl means the trace evaluated only in the space of
left-moving particles;r(t l) is given by Eq.~2.15!, evaluated
at t5t l ; moreover, we have definedu1&5uB0& and u2&
5uB̄0&, and n51,2. Consequently,r r(t l ;t5t l) is a one-
particle density matrix for the right-moving ones. Fort
.t l , it is denoted byr r(t l ;t) and follows the one-particle
time evolution. Att5t r , where we measure theB quantum
number of the right-moving particles, we finally have (n8
51,2)

N~n,t l ;n8,t r !5Tr $un8&^n8ur r~ t l ;t r !%. ~3.2!

Using all the above formalism and allowing also fort l
.t r , we arrive at

N~n,t l ;n8,t r !

5
1

2
e2G(t l1tr )$u^nuBH&u2u^n8uBL&u2e2DG(t l2tr )/2

1u^nuBL&u2u^n8uBH&u2eDG(t l2tr )/2

2e2lmin(t l ,tr )~^nuBH&^nuBL&* ^n8uBL&

3^n8uBH&* e2 iDm(t l2tr )1^nuBL&^nuBH&* ^n8uBH&

3^n8uBL&* eiDm(t l2tr )!%. ~3.3!

In this equation we have used the notationDG5GH2GL and
Dm5mH2mL . For the sake of clarity, we have retained t
scalar productŝ nuBH,L& and ^n8uBH,L&. According to our
assumption ofCP conservation inB0-B̄0 mixing, we will
replace them by their values61/A2. It is easy to check tha
for l50 one obtains the usual expressions found in the
erature. Note that fort l5t r andn5n8 we have
4-3
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N~n,t l ;n,t l !5
1

4
e22Gt l~12e2lt l !, ~3.4!

which is different from zero, in contrast to the standa
quantum-mechanical case.

IV. DILEPTONIC DECAYS
In practice, measurement of theB quantum number of

neutral mesons in the entangledB0B̄0 state proceeds via fla
vor tagging when the mesons decay. Assuming the validit
the DB5DQ rule, in inclusive semileptonic decaysl 1 tags
B0 and l 2 tags B̄0 ( l 5e or m). In the following we will
concentrate on dilepton events@36#. Denoting the inclusive
semileptonic decay rate byG l , the numbers of dilepton
events from the decay ofuc& ~2.13! are then given by the
integrals

N115G l
2E

0

`

dtlE
0

`

dtr N~1,t l ;1,t r !,

N225G l
2E

0

`

dtlE
0

`

dtr N~2,t l ;2,t r !,

N125N215G l
2E

0

`

dtlE
0

`

dtr N~1,t l ;2,t r !.

~4.1!

Defining x5Dm/G andy5DG/2G and calculating these in
tegrals leads to the result

N115N225
G l

2

4G2 H 1

12y2
2

1

11x2
@12z~L!#J ,

~4.2!

N125N215
G l

2

4G2 H 1

12y2
1

1

11x2
@12z~L!#J ,

~4.3!

where the functionz(L) is given by the simple expression

z~L!5
L

21L
with L5

l

G
. ~4.4!

It is interesting to note thatx does not enter intoz.
Equations~4.2! and ~4.3! reproduce the results of Refs

@22# and@23#, where the ‘‘decoherence parameter’’z @19# is
introduced phenomenologically in the observable

R5
N111N22

N121N21
, ~4.5!

by multiplying the interference terms inN11 , etc., with
(12z). In the model presented here,z is expressed by the
parameterl @see Eq.~4.4!#, the strength of the dissipativ
term in the modified time evolution~2.3!. It has been dis-
cussed in the literature that the above phenomenological
cedure of introducing a parameterz depends on the basi
chosen inB0-B̄0 space@20,22–24,37#. In the present model i
is thez associated with theBH-BL basis.

Let us perform a numerical estimate ofz andL along the
lines presented in Ref.@21#. To this end we useR ~4.5!,
which has been measured by the ARGUS@38# and CLEO
05600
f

o-

@39# Collaborations. Combining both measurements, we
tain the valueRexp50.18960.044 @21#. As far asx is con-
cerned, we use the valuexexp50.74060.031 obtained by
combining the data from all CERNe1e2 collider LEP ex-
periments@35#. With the approximationy50 in Eqs.~4.2!
and~4.3! @35,40# and using the law of propagation of error
from Rexp and xexp we derive the following numerical esti
mates:

z520.0660.10 and L520.1160.18. ~4.6!

The Belle Collaboration has published data on the correla
semileptonic decay rate as a function of the differencet l
2t r @41#. Of course, these data could also be used to pu
limit on l, if we integrateN(n,t l ;n8,t r), Eq. ~3.3!, over t l
1t r . However, we do not have enough information to p
form such a fit.

Let us now compare our model, where decoherence
implemented at the two-particle level, with the case wh
we have the analogous time evolution~2.3! at the one-
particle level@12,13#. We use the same structure of theD
term as given by Eq.~2.4!, but now with ue1&5uBH& and
ue2&5uBL&, instead of Eq.~2.10!. We denote the strength o
the dissipative term byj, in order to distinguish it froml in
the case of two-particle decoherence. Evidently, we have
same time evolution~2.7! at the one-particle level, withl
replaced byj. Following the steps to derive Eq.~3.3!, we
obtain the same formula, except that exp@2l min(tl ,tr)# is
replaced by exp@2j(tl1tr)#. Eventually, we arrive atN11

andN12 given by Eqs.~4.2! and~4.3!, respectively, wherez
is now given by1

z~J,x!5
~11J!221

~11J!21x2
with J5

j

G
. ~4.7!

Thus the two models of decoherence cannot be distinguis
on the basis of the time-integrated dilepton event rates,
only on the basis the time-dependent event rates. A num
cal estimate analogous to the one performed forL leads to
the resultJ520.0460.07.

V. SUMMARY

In this paper we have considered a model of decohere
applicable in the center of mass system of two particles. O
model reflects the idea that, when the two particles mo
apart and eventually become macroscopically separa
some ‘‘forces’’ might be operative which de-entangle t
quantum-mechanical state as a function of the distance.
dissipative term which we have added to the quantu
mechanical time evolution could be an effective term ori
nating in some modification of QM; it could as well be bas
on some effective quantum-mechanical description of an
teraction of the two-particle system with an unknown en

1Note that the result forR with z given by Eq.~4.7! agrees with
the result forR in first order in J of Ref. @12#, if the general
Lindblad term in this paper is specialized to energy conservatio
4-4
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ronment. Our dissipative term respects complete positiv
which—we believe—is a useful physical guiding princip
for modifications of the quantum-mechanical time evolutio
In compliance with our idea, we assume that, after one of
particles has decayed, the other one follows the quant
mechanical time evolution. We have applied our model in
case of the entangledB0B̄0 state with negativeC parity,
where we have used the data on theB lifetime, theBH-BL
mass difference measured by observing the time evolutio
single neutralB mesons, and the ratio of like-sign ove
opposite-sign dilepton event rates for the purpose of estim
ing the strengthl of the dissipative term. In the case o
time-integrated dilepton events, our simple model leads
result which is also obtained by the phenomenological in
duction of a ‘‘decoherence parameter’’z in the quantum-
ki

ic

ne

5
s
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mechanical interference terms of the quantitiesN11 , N12 ,
etc. In the dissipative termD@r# we employ the statesuBH
^ BL& and uBL ^ BH&; this, eventually, modifies the interfer
ence terms ofN11 , N12 , etc., with thez associated with
the BH-BL basis@22,23#. Note that we have neglectedCP

violation in B0-B̄0 mixing, which is a good approximation in
this system. Transferring our model of decoherence to
K0K̄0 system is not straightforward, because it requires u
takeCP violation and the nonorthogonality of theKS andKL
states into account. Work on this is in progress.
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