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Model for decoherence of entangled beauty
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In the context of the entangleBP§° state produced at thé(4S) resonance, we consider a modification of
the usual quantum-mechanical time evolution with a dissipative term, which contains only one parameter
denoted by\ and respects complete positivity. In this way a decoherence effect is introduced in the time
evolution of the t\No-particIeBOEO state, which becomes stronger with increasing distance between the two
particles. While our model of time evolution has decoherence for the two-particle system, we assume that, after
the decay of one of the twB mesons, the resulting one-particle state obeys the purely quantum-mechanical
time evolution. From the data on dilepton events we derive an upper bound Wfe also show how is
related to the so-called “decoherence parametg&r’which parametrizes decoherence in neutral flavored
meson-antimeson systems.
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[. INTRODUCTION mechanical interference term by-¥ [19], where({ is called
decoherence parameter, is a basis-dependent concept and
There is increasing interest in recent years in using parworks very well as a measure for interpolating continuously
ticle physics phenomena for the study of possible deviationsetween pure QMJ=0) and total decoherencé£1). The
from quantum mechanic€QM). Efforts have concentrated latter case corresponds to spontaneous factorization, also

on two types of phenomena: oscillations, suctkdsk® [1] ~ called Furry's hypothesi§20]. By investigating certain ob-
and neutrino oscillation§2], and quantum entanglement, Servables, the authors of Ref@1-25 could show that the

where particularly suitable systems are the entangl&d®  entangled<°k® andB°B® systems are far from total deco-
and B°B° states[3] which are produced ie* e~ collisions herence, at least whehis introduced in relation to the basis

at the resonance® and Y (4S), respectively. These states of mass eigenstates, so that local realistic theories are highly
become macroscopically extended objects before they decaylikely. In other words, the presence of the interference
Thus in both types of phenomena macroscopic distanceS'™ is well established in agreement with Qfée also Ref.
are involved. Furthermore, entangled systems are—du 6])’,Wh'Ch means that there |s.quqntum interference  of
to Einstein-Podolsky-RoserEPR)Bell correlations[4]—  Massive particles over macroscopic distances.
important objects to clearly test QM against local realistic N this paper we want to present a model of dissipation for

. — entangled systems of two particles. In contrast to the prevail-
theories. Whereas entangled systems KR&® have a rather 9 y P P

I tandi d bl tion in th M literat ing concept in the literature, where dissipation is introduced
[%?g;z an r:ng. an fvenetrg € pOﬁll '?n n the Q th eralure i the one-particle level and transferred to the two-particle

, the pnysics of neutrino osciiialions 1S a rather recenyy q| through the tensor product structure of the Hilbert
testing ground for QM; this development has been booste

) ticular. by th l-established at heri pace of state¢see, e.g., Refl12]), we assume the usual
N particuar, by the now wetl-established aimospheric neuEqu::mtum—mechr:mical time evolution for the one-particle
trino anomaly, but also solar neutrinos and neutrinos in th

| X di din thi text States. Thereby we have in mind that entangled two-particle
earlytl:]mverse are |scusset Itn IS con%l( ' decoh ?ystems become decoherent when they move apart over mac-

N this paper we concentrate on possible decoherence € oscopic distances, whereas for a one-particle system QM is
fects which might arise due to some fundamental modifica-

tion of QM or due to the interaction of the system with its Z%Irl?t?odrlﬂigé Osu:hilssép;]zztilt\i/gnteorfrn C:)nmthlztho:;i:S%%tlme
“environment,” whatever this may be. In the latter case, the y P P X

idea of the influence of quantum gravif,7}—quantum For reasons given below, we consider the entangleg’
fluctuations in the space-time structure at the Planck mas®/stem with negativeC parity. By using the experimental
scale—is especially attractive nowadays. Possible effects ofalue of the ratioR of the number of like-sign dilepton
the environment have been investigated intensively in th@vents over opposite-sign dilepton events, we can derive a

KOK? system in Refs[1] and[8—14]. But also other models bounq on the strengt_h of the dissipative term. Considering
of decoherence, like those found in Réfs5—18, may serve the time-integrated dilepton event rates, our model repro-
as a working hypothesis. Our model, which we will proposeduces precisely the corresponding calculations with the phe-
in this paper, has some remote similarity with the modelgromenological decoherence parameterssociated with the
mentioned here, but ours will be tailored to the situation ofBy-B_ basis. As a result, we obtain a remarkably simple
two particles moving apart in their center of mass system. formula which relates the dissipative strength to the decoher-

In the past, a measure of decoherence for entangled sysnce parametef. In the context of the observabie we also
tems has been introduced on pure phenomenological groundsmpare our model of two-particle decoherence with the
in order to determine quantitatively deviations from purecase where the analogous dissipative term is introduced al-
QM. This simple procedure of multiplying the quantum- ready at the one-particle level.
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Il. MODEL Let us for a moment dwell on the motivation for our
o — . ) model of decoherence. To this end we start with the more
Before considering th&™B" system, let us first discuss gangrg settingA; = y\;P; (j=1,2 and \;>0) with P,
our model of decoherence in a two-dimensional Hllbert:|pj><pj|, where the normalized vectotg;) are linearly

2 i :
space of statel = C*. We allow for a non-Hermitian Hamil- i, qenendent and in general different from the eigenvectors of
tonianH, in order to include the possibility of incorporating o Hamiltonian. Note that we also allow 64| o) # 0. In
particle decay in the We_isskopf-Wigne_r approximat[aﬁ]__ any case, one can use formyR5) to obtain a completely
We denote the normalized energy eigenstates|dy (] positive dissipative term in the time evoluti@@.3), but in

=1,2) and have therefore general one will not obtain the form @[ p] given by Eq.
i (2.4). For the time being we want to assume tlt=H

Hle))=\jle;) with \j=m;— 5T, 2y #0 holds _and t_haiH is nondegenerate in o_rd_gr. to avoid

2 trivial considerations. Now we have two possibilities: 1. The

iy .. _system{|p1),|p,)} is the system of eigenvectors kf i.e., it
wherem; andI’; are real and the latter quantities are positive;g equivalent to the orthonormal systéte; ), e,)}: 2. {|py),

|trr: ?ddition. Furthermore, we make the crucial assumptioer2>} is not equivalent to the system of eigenvectorsiofn

a the first case one can show that the fai2m) of D[ p] with
(e1]€,)=0 2.2 N=(N1+A,)/2 is obtained and that

despite the non-Hermiticity dfl. Including decoherence, the case >[H,Pj]=0 for j=12:

time evolution of the density matrix has the form .
y Mt imp(t)=P1p(0)P1+ Pyp(0)P, (2.9

I
t—oe

d
P e iHp+ipHT=D[p]. 2.3 _ _ _ _
dt holds. Furthermore, density matricBs, or linear combina-
o ) tions thereof, are constant solutions of the time evolution
Our model of decoherence consists in assuming that equation. In the second case, at least one of the velgigrs

is not an eigenvector dfl and one can prove that
D[p]=N(P1pP,+P,pPy), where P;=|e;)(e [P2) 9 P

case 223j=1 or 2 with [H,P;]#0: limp(t)=31,
t—ow

and\ is a positive constant. Such a term is also employed, 2.9
for instance, in the context of neutrinos in the early universe
(see, e.g., Ref29)). It can readily be checked that the de- independent 0p(0). Wewill see in the following—when we

coherence term in Eq2.4) is of the Lindblad typd?27]: apply our model to th®%B° system—that the first case is
1 closer to our physical intuitiorisee also last paragraph of
D[p]= > 2,: A,TAJ'PJFPEJ_: AJ-TAj _Ej: AijT, this section. The two cases have been described in Refs.

[31] and[32] in the context of one-particle decoherence in

(2.9 neutrino oscillations. Note that case 1 is used in R&f(see
_ ) o also Ref.[30]), whereas case 2 is considered, e.g., in Ref.
if we make the identificatiom;= \\P;. Thus the term2.4)  [33]in the same context. If we allow fdi T# H, the picture
generates a completely positive map; moreover, silﬁf:e we have developed here gets blurred because then there is a
=P; and[P;,H]=0, the decoherence term would increasecompetition between particle decay, i.e., Jim Trp(t)=0,
the “von Neumann entropy” and conserve energy in the cas@nd the effect of decoherence. We nevertheless stick to the
of a Hermitian Hamiltonian(see Ref.[30] and references first case. Note that identifying the orthonormal system given
therein. However, what is more important in our discussion py P; (j=1,2) with the system of eigenvectors Kfis not
is the fact that with the choic€.4) the equations for the only motivated by the considerations above but also by sim-
components op decouple. Indeed, with plicity; as we have seen in E.7) we have decoupled time
evolutions as a consequence. We want to stress, however,
that in the case of P violation, which is particularly impor-
tant for the K°K® system, it might be useful to allow for
small deviations fron{e;|e,)=0, and thus for small devia-
wherepjk=p’k‘j , and with the time evolutio2.3), we obtain  tions of the eigenvectors of the Hamiltonian from the ortho-

normal systerd|p;),|p,)}.

2
p= > pileed, (2.6)
j,k=1

p11(t) = p1a(0)exp(—I'1t), Returning from general considerations, we now apply our
model of decoherence to the case of the two-par&iB°
p2At) = p2a(0)exp —I'2t), 27 state, generated by the decay of he4S) resonancéfor the

formalism used in th®&°B° system see, e.g., RdB4]). We

t)= 0)exp{ —[i(m;—m —
p1At) =p1A O)exp ~[i(my —m;) conceivet as the eigentime oB° and B® and make the
+(Ty+T )2+ N\ ]t} identification
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le;)=[By®B,) and |e;)=|B ®By), (2.10

where the heavy and the light neutBaktates are defined via

|By)=p|B%)+q|B°) and IBL>=plB°>—QI§°>,(

which have eigenvalues

i i
2 2’

)\H:mH_ 2 (212

FH and )\L=m|_—

respectively, of the effective one-particle Hamiltoniki.

PHYSICAL REVIEW B4 056004

with a two-dimensional Hilbert space. However, using pro-
jector states which armot linear combinations of the states
(2.10, like, e.g.,|B°®B?), |B°®B?), entails not only a time
evolution into the full four-dimensional Hilbert space of
states, includingB,®By) and|B_ ®B, ), but also opens up
the possibility for more involved schemes of decoherence
than given by our simple model.

IIl. MEASUREMENT

In order to obtain information on the paramekerwhich
modifies the time evolution in thB°B° system, we adopt the

For the two-particle system, we transfer, as usual, the ondollowing philosophy. We start at=0 with the density ma-
particle Hamiltonian to the tensor product of the one-particletrix (2.14 for a B°BY state with negative€ parity. This two-

Hilbert spaces by using=H;® 1+ 1®H,. We imagine that
the first factor in the tensor product corresponds to particle

particle density matrix follows the time evolutidgd.15 and
sindergoes thereby some decoherence. We imagine a mea-

moving to the left, whereas the second factor in the tensosurement of thé8 quantum number of the left-moving par-
product corresponds to right-moving particles. We assumécle at timet; and of the right-moving particle at timg .

CP conservation irB%-B® mixing, which is a good approxi-
mation[34,35 and corresponds tgp/q|=1. In this case we
have(By|B_)=0 and thereforée,|e,)=0. In the following
we will setp=q=1/\/2. At the Y (4S) resonance, at=0,
the entangled state

1
|l//>zﬁ(|91>_|ez>) (213

is produced, which is equivalent to the density matrix

1
P(O):§(|91><91|+|ez><ez|—|91><92|_|ez><91|)-
(2.19

With the time evolution2.7), the initial condition(2.14) and
taking into account that in the case of the vect@40 we
have N\;=A,=my+m_ —il" with T'=(T"y+T")/2, we ob-
tain the time evolution

1
p(t)= §e_zrt{|el><el| +lex) (e

—e M(ler) (el + e (e} (2.19

Note that the factor exp{(At) in the density matrix(2.15
introduces decoherence as a consequence oDtterm in
the time evolution(2.3). In other words, fot>0 and\>0,
the density matrix2.15 does not correspond to a pure state
anymore.

Having chosen the energy eigenstat240 for the con-
struction of the projector®;, our model complies with case

1 (2.8). In this case, we would have no decoherence if

p(0)=P; or P,, though such initial conditions might be
unrealistic. This agrees with our intention because in thes
cases we have no entanglement over macroscopic distan

For times minf t)<t<maxg t) we have a one-particle
state which we assume to evolve exactly according to QM,
with the time evolution given by;.

In a mathematical language, we do the following. Assum-
ing for definitenes$,<t,, att=t; we calculate the trace

Tr{([n)(n|@D)p(t)}=p((t;;t=1)), (3.7

where Ty means the trace evaluated only in the space of the
left-moving particlesp(t)) is given by Eq.(2.15, evaluated
at t=t,; moreover, we have definefl)=|B° and |2)
=|B%, and n=1,2. Consequentlyp,(t,;t=t;) is a one-
particle density matrix for the right-moving ones. For
>t,, it is denoted byp,(t;;t) and follows the one-particle
time evolution. Att=t,, where we measure tH& quantum
number of the right-moving particles, we finally have’(
=1,2)

N(natl;n,ytr):Tr{|n,><n,|Pr(tl;tr)}- (3.2

Using all the above formalism and allowing also fipr
>t,, we arrive at

N(n,t, ;n’ t,)
1
=5 TTI(n[By (' By)[Pe AT

+(n|BL)|2(n’|By) |2 (=t
— @~ Amin( 'tr)(<”|BH><n|BL>*(n’|B,_)

X(n'|By)*e AMt~t) 4 (n|B, }(n|By)*(n’|By)
X<n!|BL>*eiAm(t|*tr))}. (33)

In this equation we have used the notatioh=1"y,—1I'_ and
&=my—m_ . For the sake of clarity, we have retained the

and no reason for modifying the quantum-mechanical timescalar productgn|By, ) and(n’|By; ). According to our

evolution. Note that using the projector stat2<l0 confines

assumption ofCP conservation inB°-B® mixing, we will

our Hilbert space of states to a two-dimensional one. Usingeplace them by their values 1/{2. It is easy to check that
projector states which are nontrivial orthogonal linear comfor A =0 one obtains the usual expressions found in the lit-

binations of the state@.10 would lead to case 22.9), still

erature. Note that fotr;=t, andn=n’ we have
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1
N(n,t,;n,t)= Ze‘2nl(1—e"“'), (3.9

which is different from zero, in contrast to the standard

guantum-mechanical case.

IV. DILEPTONIC DECAYS
In practice, measurement of thH& quantum number of

neutral mesons in the entangIB(":lg0 state proceeds via fla-
vor tagging when the mesons decay. Assuming the validity of

the AB=AQ rule, in inclusive semileptonic decay$ tags

BY and |~ tagsB® (I=e or u). In the following we will
concentrate on dilepton ever|t36]. Denoting the inclusive
semileptonic decay rate by, the numbers of dilepton
events from the decay df}) (2.13 are then given by the
integrals

N++=F|2J d'qJ dt, N(1t;1t,),
0 0
N__=F|2f0 dt.fo dt, N(24,:21t,),

N+,:N,+:F|2J’ dt,f dt, N(Lt,;2t,).
0 0
4.1

Definingx=Am/I" andy=AT'/2I" and calculating these in-

tegrals leads to the result

N++:N,,=F—|2 ¢t [1-2(A) ]y,
472 | 1-y? 1+x2
(4.2
2
N+_=N_+=F—I : + ! [1-4(A)]
ar2(1-y? 1+x? ’
4.3

where the functiorf(A) is given by the simple expression

A ] N
{(AN)=— with A=

STA T 4.9

It is interesting to note that does not enter intd.

Equations(4.2) and (4.3) reproduce the results of Refs.

[22] and[23], where the “decoherence parameter{19] is
introduced phenomenologically in the observable

N, ,+N__

NN (4.9

by multiplying the interference terms iN, ., etc., with

PHYSICAL REVIEW D 64 056004

[39] Collaborations. Combining both measurements, we ob-
tain the valueRg,,=0.189+0.044[21]. As far asx is con-
cerned, we use the value,,=0.740+0.031 obtained by
combining the data from all CERM* e~ collider LEP ex-
periments[35]. With the approximatiory=0 in Egs.(4.2)
and(4.3) [35,40 and using the law of propagation of errors,
from Ry, and Xe,, we derive the following numerical esti-
mates:

{=-0.06£0.10 and A=-0.11+0.18. (4.6

The Belle Collaboration has published data on the correlated
semileptonic decay rate as a function of the difference
—1t, [41]. Of course, these data could also be used to put a
limit on A, if we integrateN(n,t;;n’,t,), Eq. (3.3), overt,

+t,. However, we do not have enough information to per-
form such a fit.

Let us now compare our model, where decoherence is
implemented at the two-particle level, with the case where
we have the analogous time evoluti¢@.3) at the one-
particle level[12,13. We use the same structure of tbe
term as given by Eq(2.4), but now with |e;)=|By) and
le;)=|B,), instead of Eq(2.10. We denote the strength of
the dissipative term by, in order to distinguish it from\ in
the case of two-particle decoherence. Evidently, we have the
same time evolution2.7) at the one-particle level, with
replaced byé. Following the steps to derive E@3.3), we
obtain the same formula, except that exp min(t .t)] is
replaced by exp-&(t+t,)]. Eventually, we arrive aiN, .
andN, _ given by Eqgs(4.2) and(4.3), respectively, wheré
is now given by

(5. X) W11
EX)=———— WiI
(1+E)%+x?

5
T 4.7

I

Thus the two models of decoherence cannot be distinguished
on the basis of the time-integrated dilepton event rates, but
only on the basis the time-dependent event rates. A numeri-
cal estimate analogous to the one performed/Xoleads to

the resultE = —0.04+0.07.

V. SUMMARY

In this paper we have considered a model of decoherence
applicable in the center of mass system of two particles. Our
model reflects the idea that, when the two particles move
apart and eventually become macroscopically separated,
some “forces” might be operative which de-entangle the
gquantum-mechanical state as a function of the distance. The

(1—-9). In the model presented herg,is expressed by the dissipative term which we have added to the quantum-
parameten [see Eq.(4.4)], the strength of the dissipative mechanical time evolution could be an effective term origi-
term in the modified time evolutiof2.3). It has been dis- nating in some modification of QM; it could as well be based
cussed in the literature that the above phenomenological pr@n some effective quantum-mechanical description of an in-

cedure of introducing a parametérdepends on the basis teraction of the two-particle system with an unknown envi-
chosen irB%-B° spacd 20,22—-24,37. In the present model it
is the { associated with th8,-B, basis.

Let us perform a numerical estimate p&ndA along the INote that the result foR with ¢ given by Eq.(4.7) agrees with

lines presented in Ref21]. To this end we usdR (4.5,
which has been measured by the ARG[BEB] and CLEO

the result forR in first order in E of Ref. [12], if the general
Lindblad term in this paper is specialized to energy conservation.
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ronment. Our dissipative term respects complete positivitymechanical interference terms of the quantities, , N, _,
which—we believe—is a useful physical guiding principle etc. In the dissipative ter®[p] we employ the stateiBy

for modifications of the quantum-mechanical time evolution.® B, ) and |B_ ® By); this, eventually, modifies the interfer-

In compliance with our idea, we assume that, after one of thence terms ofN, ., N, _, etc., with the/ associated with
particles has decayed, the other one follows the quantunthe B,-B, basis[22,23. Note that we have neglecteZiP
mechanical time evolution. We have applied our model in the;p|ation in B°-B® mixing, which is a good approximation in
case of the entangleB°B° state with negativeC parity,  this system. Transferring our model of decoherence to the

where we have used the data on Bdifetime, theBy-B, KOO system is not straightforward, because it requires us to

mass difference measured by observing the time evolution hkeC P violation and the nonorthogonality of thes andK
single neutralB mesons, and the ratio of like-sign over giates into account. Work on this is in progress.

opposite-sign dilepton event rates for the purpose of estimat-
ing the strengthh of the dissipative term. In the case of

time-integrated dilepton events, our simple model leads to a
result which is also obtained by the phenomenological intro-
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