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We critically examine a version of the top mode standard model recently cast in extra dimensions by
Arkani-Hamed, Cheng, Dobrescu, and Hall, based on(ithproved ladder Schwinger-DysofSD) equation
for the D- (= 6,8-) dimensional gauge theories. We find that the bulk QCD cannot have larger coupling beyond
the nontrivial ultraviole{UV) fixed point, the existence of which is supported by a recent lattice analysis. The
coupling strength at the fixed point is evaluated by using the one-loop renormalization group equation. It is
then found that, in a version with only the third familas well as the gauge bosonkving in the
D-dimensional bulk, the criticaldimensionlesscoupling for dynamical chiral symmetry breaking to occur is
larger than the UV fixed point of the bulk QCD coupling idr=6, while smaller forD =8. We further find
that the improved ladder SD equationbndimensions has an approximate scale invariance due to the running
of the coupling and hence has an essential-singularity scaling of the “conformal phase transition,” similar to
Miransky scaling in the four-dimensional ladder SD equation with a nonrunning coupling. This essential-
singularity scaling can resolve the fine-tuning even when the c(i&ifing scale”) is large. Such a theory has
a large anomalous dimensiaonR,=D/2—1 and is expected to be free from the flavor-changing-neutral-current
problem as in walking technicolor fd» =4. Furthermore, the induced bulk Yukawa coupling becomes finite
even at infinite cutoff limit(in the formal senge similar to the renormalizability of the gauged Nambu-Jona-
Lasinio model. Comments are made on the use of the “effective” coupling, which includes finite renormal-
ization effects, instead of th€S running coupling in the improved ladder SD equation.
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[. INTRODUCTION out the problem of the axion. MTY further gave a concrete
formulation based on théimproved ladder Schwinger-
The top quark condensate proposed by Miransky, TanaPyson(SD) equation for the QCD plus the four-fermion in-
bashi, and YamawakiMTY) [1,2] and by Namby3] inde-  teraction (1.1, the gauged Nambu-—Jona-LasinitNJL)
pendently is a natural idea to account for the large mass aghodel, and found that when
the top quark(t) on the weak-scale order in contrast with
other quarks and leptons. The Higgs boson in the standard 0t>Gerit > Op (1.2

model(SM) emerges as & bound state and hence is closely S
connected with the top quark itself. Thus the model may benly the top quark can condense, giving rise to the large top

called the “top mode standard mod@MSM)” [2]. mass, while the bottom quark is kept massless, whgrgis
Actually, MTY introduced explicit four-fermion interac- the critical coupling of the SD equation. As to the value of
tions[1,2] the top mass, MTY substituted the solution of {ireproved
ladder SD equation into the Pagels-Stoka® formula[4]
A2 o o for F,=250 GeV and predicteth,=250 GeV for the cut-
Lay=——=[0(#tr)?+ gp( L bR)? off near the Planck scald.,2].
NcA? The model was further formulated in an elegant fashion

@)k i T i T by Bardeen, Hill, and LindnetBHL) [5] in the SM lan-
+09e e (Y yp)(Pyp)tHel, (1.1 guage, based on the renormalization-group equaRBE)
and the compositeness condition. This essentially incorpo-
with i(j,k,I)=t,b for top and bottom quarks, where rates 1N, subleading effects disregarded by the MTY paper.
0:,9,,9'% are dimensionless four-fermion couplings,is  The BHL model is in fact equivalent to the MTY model at
the cutoff, andN,, is the number of colors, and similarly for 1/N. leading ordef6]. Such 1N. subleading effects reduced
leptons as well as the first and second generations of quarkke above MTY value 250 GeV to 220 GeV, a somewhat
and leptons. Whilg, is responsible for the top mass, th&’ smaller value but still on the order of the weak scale. Even
coupling is vital to the generation of the bottom mass with-this value, however, turned out to be a bit larger than the
mass of the top quark observed later.
Quite recently, Arkani-Hamed, Cheng, Dobrescu, and
*Electronic address: michioh@tuhep.phys.tohoku.ac.jp Hall (ACDH) [7] proposed a very interesting version of the
"Electronic address: tanabash@tuhep.phys.tohoku.ac.jp TMSM in six and eight dimensions, in which the third family
*Electronic address: yamawaki@eken.phys.nagoya-u.ac.jp fermion and the gauge bosons are put in the
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(=6,8)dimensional bulk, while the first and second families fied for e~ (1) within the perturbative analysis, its exis-
are in the four-dimensional bran@-brang. The model is tence is supported by a recent lattice calculafi28]. As-
largely based on the earlier papg8s9], which, motivated by  suming the nonperturbative existence of such a fixed point,
the topcolor[10] and the top-seesaw modéll], proposed we then evaluate the gauge coupling strength at the fixed
formulating the top quark condensate in the extra dimensiongoint by using the one-loop RGE which was actually adopted
in the spirit of large scale compactification scenaft®,13. by ACDH for their prediction of the top quark mass. In the
ACDH argued that thé-dimensional SM gauge couplings bulk SM, QCD is the only non-Abelian gauge theory rel-
become strong due to Kaluza-KlefkK) modes of the stan- evant to the ¥SB. We then observe that tizdimensional
dard model gauge bosons and hence may naturally give rissulk QCD coupling cannot grow over the fixed point value,
to the effective four-fermion interactioris D-dimensional  since at a certain compactification scale we match the bulk
bulk which have the same structure as Efj.1), with g¢  QCD coupling with the 3-brane QCD coupling, which is
>gcrit>0p ., the situation similar to the original TMSM, Eq. obviously small, and hence the phase must be in the weak
(1.2.* Moreover they argued that the top mass can be areoupling regime below the fixed point. The QCD coupling
ranged to be a realistic value due to the effects of many Kkfor the ACDH version of the TMSM foD =6,8 is actually
modes of top quark even for the TeV scale cutoff, thus thesvaluated by the truncated KK effective theory.
model may be free from serious fine tuning as compared We next study the dynamical symmetry breaking in
with the original TMSM having the cutoff near the Planck D-dimensional gauge theories, based on the improved ladder
scale. SD equation 18], with the D-dimensional bulk gauge cou-
However, ACDH gave no dynamical arguments onpling in the ladder SD equation being simply replaced by the
whether dynamical symmetry breaking really takes place o[modified minimal subtraction scheniS] one-loop run-
not in their model. They made an ansatz that bulk stronging coupling. Actually, inD-dimensional gauge theories for
gauge dynamics in the ultraviolet region near the cutoffooth the fermion and the gauge bosons living in the
(“string scale”) can well be simulated by the-dimensional  D-dimensional bulk, with the extra dimensions being com-
bulk four-fermion couplings characterized by the cutoff pactified, dynamical symmetry breaking can be triggered
scale. They then calculated the relative strength of the bullgnly by the dynamics in the ultraviolet region where the
attractive forces among various channels based on the mogauge coupling becomes strong, and hence can be well de-
attractive channe(MAC) hypothesis[16] and argued that scribed by theD-dimensional improved ladder SD equation,
only the top coupling can be arranged to be above the criticakith massless gauge bosons in thalimensional bulk, irre-
coupling like Eq.(1.2) in the original mechanism of MTY. spectively of details of the infrared dynamics of the compac-
However, this would make sense only when these fourtification scale.
fermion couplings were near the critical coupling, the situa- It is then found that, for the simplest version of the ACDH
tion being what they simply assumed. In fact, there is noscenario with only the third familyas well as the gauge
information on the strength of the bulk effective four- bosons living in the bulk, the UV fixed point of the bulk
fermion couplings, which cannot be related in any definiteQCD coupling is smaller than the critical coupling for dy-
manner to the bulk gauge coupling, while the latter is calculnamical chiral symmetry breaking to occur fr=6, while
able through matching with the low-energy SM coupling inthe situation is reversed fd» =8. That is, dynamical sym-
four dimensiong3-brang at the compactification scalé7].  metry breaking due to the bulk QCD dynamics cannot take
In this paper, we shall study the dynamical issues of thelace in six dimensions and can in eight dimensions for the
ACDH version of the TMSM, based on tignproved lad-  simplest ACDH version of the TMSM.
der SD equation for the gauge theories in the bllk Remarkably enough, the improved ladder SD equation
(=6,8) dimensions. As in ACDH7], we here assume that with running coupling has an approximately scale-invariant
the bulk anomaly may be cancelled by some stringy arguform in D dimensions and thus the scaling law is the
ments like the Green-Schwarz mechanism. Then we presestsential-singularity type of “conformal phase transition”
explicit solutions for the dynamical chiral symmetry break-[19] similar to Miransky scaling in the four-dimensional lad-
ing (DxSB) for D dimensions with their implications on the der SD equation with nonrunning couplifig0]. Moreover, it
ACDH scenario and reveal some salient features of this dyhas a large anomalous dimensigg=D/2— 1 near the fixed
namics forD dimensions. point and hence has a chance to solve the flavor-changing-
We first discuss a nontrivial ultraviolet)V) fixed pointin  neutral-current problem as in walking technicolor =4
the one-loop renormalization-group equation of the “trun-[21].
cated KK” effective theory[17] of D-dimensional non- This corresponds to a slowly damping mass function that
Abelian gauge theories with compactified extra dimensionssii|| yields finiteness of the bulk decay Constaﬁ{f) and
in @ manner similar to the analysis Bf=4+€ (0<e<1)  hence of the induced bulk Yukawa coupling even in the limit
gauge theories. Although such a fixed point cannot be justiof infinite cutoff (in the formal senge Such a situation is
similar to the renormalizability of the gauged NJL model in
four dimensiong22].

The previous studies in extra dimensidigs9,14 were focused ‘We also comment that, instead of t_NTS running cou-
on the four-fermion interactions in the 3-brane in contrast to thosgling in the improved ladder SD equation, we may use the
in the ACDH model which are in thB-dimensional bul7,15). “effective” coupling including finite renormalization effects.
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cludes the effects of KK modes heavier than the renormalin D (=4+¢, 0<e<1) dimensiong27] (e expansion

ization scale. It is shown that the decoupling theorem is vio- The one-loop renormalization-group equation of the
lated in the “effective” gauge coupling due to the summationgauge coupling is given by

of the large number of KK modes. Nevertheless, we find an

upper bound on the effective gauge coupling strength, which d. €. Dby -

- ; . Ll —Qg==g+ 3 (2.7

is roughly proportional to the UV fixed point in thBIS '“d,ug 29 (477)29 '

scheme. We also show that the upper bound of the “effec-

tive” gauge coupling can be regarded as a UV fixed point o
“bare gauge coupling.” Our results are therefore unchange
qualitatively even if we adopt the “effective” coupling in-

&vhere@ is the dimensionless gauge coupling scaled by a
renormalization scalg:

stead ofMS. A

It should be emphasized, however, that finite renormaliza- _9 2.2
. e 9o /2! ( .
tion can affect our quantitative results, such as the value of ue

. (23

d -~ €~ b(l) ~a b(z) ~5
—g=-g+ + : 2.
“a9 I e (2.9

the critical coupling. The effective coupling tends to be
stronger tharMS coupling and hence there appears the posWith gp being the gauge coupling d (=4+ ¢€) dimensions
sibility that bulk SM couplings could lead to the top quark and of mass dimension €/2. Hereafter we assume that the
condensate in the manner of E4.2) under certain condi- renormalization-group coefficierti(;) is negative,b(;)<0.
tions even forD=6 in the simplest ACDH version of the From Eq.(2.1), the renormalization-group flow of the dimen-
TMSM. _ _ _ sionless couplingy is given by
The paper is organized as follows. In Sec. Il we discuss
the existence of the nontrivial UV fixed point iD- [=(4 A 1
+ €)-]dimensional non-Abelian gauge theories in thex- 9%(u)=
pansion. Then we show the nontrivial UV fixed point in the m'eo1 2 b u' e
D- [ =(4+ 6)-]dimensional non-Abelian gauge theories with “w %(u) T e (41)2 1- m
the extraé (=2,4) dimensions compactified. The value of
the UV fixed point for the ACDH version of the TMSM is e then find an ultravioletg— ) fixed point
evaluated forD=6,8 based on the truncated KK effective
theory. We then give a rough argument why the “strong” 2 i Ao € (4)?
bulk QCD coupling may not necessarily give rise to the con- gy =1lm g% (n)=5 —p—. 2.9
densate, based on a naive dimensional analyNiBA) pe ™
[23'24" In Sec. Il we Qerlve thd-dimensional Iad_der SD It should be emphasized thais considered to be small here
equation, and also the improved ladder SD equation. In Sec, . : L :
IV we find numerically the critical values for 5B to occur anq theref.ore thg fixed pongﬁ € is still in its per'Furba_Uve
y X5
for D=6,8, which are compared with those of the ACDH regime. It is straightforward to e_xtend the apalyss to include
R : ) o higher-I ffects. The UV fixed point in the two-loo
gher-loop effec p p
couplings estimated in Sec. Il. The analytical solution is als GE
obtained in further approximation, and shows essential- '
singular-type scaling. In Sec. V we analyze the operator
product expansiorfOPE for the fermion propagator and
identify the anomalous dimension, which is then calculated
to bey,=D/2—1. In Sec. VI the chiral fermion through the
orbifold projection into the 3-brane is studied in some detail.is given in terms of the: expansion,
In Sec. VIl we discuss use of the effective coupling instead
of the MS running coupling in the improved ladder SD equa- 2 _ (4m)° € 1+ % € +O() 2.6
tion. Section VIII is devoted to the summary and discussion. 9 == by 2 (€9). '

2 2

Appendix A contains formulas for the angular integration of (8
the ladder SD equation, which is a generalization of the preThe two-loop effectb(z) term affects the coefficient of?,
vious resul{25] to arbitrary(nonintegey D dimensions. Ap-  keeping the coefficient oé* unchanged. In fact, the-loop
pendix B shows a gap equation of the NJL-type four-fermioneffect can be regarded as @le") effect in thee expansion.
model inD (>4) dimensions, in which the scaling law is The perturbative stability of the fixed poigt, is thus guar-
1gcrii— 1g~(m/A)?, essentially the saméup to loga- anteed in the D=4+ ¢)-dimensional gauge theories. We
rithms) as the NJL model fob=4, in sharp contrast to the also note that the coefficientg;, andb,, are both negative
case ofD<4 where the scaling law is given bydklii  in QCD with Ny<8. The two-loop UV fixed point Eg(2.6)
—1/g~(m/A)P~2 [26]. Appendix C is for the approxima- s thus smaller than the one-loop estimate ).
tion to the effective coupling discussed in Sec. VII. Hence we expect that there exigtt least two phases
separated by the fixed poigt, in this theory. The weakly
interacting phasg<g, can be controlled perturbatively. It

In order to illustrate the existence of the nontrivial ultra- is therefore considered to be in the Coulomb phase and the
violet fixed point of the gauge theory in more than four di- chiral symmetry is not broken in this phase. On the other

II. EXISTENCE OF ULTRAVIOLET FIXED POINT
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hand, the theory becomes strongly interacting in the low- The gauge coupling on the 3-brane can be related to the

energy region in the phagg>g, . It is therefore expected to gauge coupling in theD-dimensional bulkgp as g}
be in the confinement phase and the chiral symmetry is ex= (27R)°g%/n. Thus thedimensionlesbulk gauge coupling
pected to be broken dynamically. g can be defined following Eq2.2):
Although the existence of such a fixed point for larger
~(O(1) cannot be justified within perturbative analysis, re- .. (2@Ruw)?
cent analysis based on the lattice gauge thgp8} suggests g’ =—-—0¢?
that the fixed point structure described above holds even at
larger (intege) values ofe, if the extra dimensions are com- o . )
pactified in a short distanceActually, as we will see in the Substituting Eq(2.11) into Eq.(2.7), we obtain
following, there exists a close correspondence between the g 5
RGEs ofe<1 and of the compactified extra dimensions even ~ O 3
within the perturbative approach. '“ﬂg_ §g+(1+ 912)Qnpab’ 9", 212
Now we evaluate the nontrivial UV fixed point of the
gauge t.heory i (=4+ 5_)' dimensiqns where the exti@  ith Qupoa being the loop factor in the NDA23,24:
dimensions are compactified. In this case we need to deal
with an infinite number of Kaluza-Klein modes above the
compactification scal®~ 1. However, the KK modes heavier
than the renormalization scaje are actually decoupled in
the RGE. We only need to sum up the loops of KK modes

lighter than. This approach is called *truncated KK” ef- 1 is interesting to note a similarity between Eg.1) and Eq.
fective theory[17]. The theory can be fully controlled in this (2.12): The factore in the e expansion corresponds ®in

(2.1)

n

1
Qupp=——————, D=4+s5. (213
NPAT (4m)Pr (D /2)

truncated KK effective theory. _ the truncated KK effective theory with the simple replace-
The RGE of the gauge couplin@) on the 3-brane is | on ofb/(47)2 by (1+ 8/2)Qnpab’-
given by The RGE Eq(2.12 can easily be solved as
2 d r~3
(4m) ;U«d_g:NKKb g 2.7 ~p 1
K 9°(m)=—75 1 G
in the truncated KK effective theory. Hely stands for the (7) () —(3+ 1)QNDAb’ 1- (7) }
number of KK modes below the renormalization scale ® (2.14

The RGE factotb’ is given by
Thus, we find a nontrivial UV fixed point

, 26-D n
b = 6 CG+ gTRNf y (28)
2 Onpa= ! (2.15
where 7 represents the dimension of the spinor representa- 9x*ENDA= " h '
tion of SO(1Pp—1), - (_S+1 b

=trp 1=2°"2 for evenD, 2.9 gy
7= v 29 It should be noted that the coupling in Eq. (2.14 grows

very quickly close to the value of the fixed point.

In the ACDH scenarid7] of the TMSM, the top quark
interaction responsible for the dynamical electroweak sym-
metry breaking is assumed to cortraainly) from the bulk
QCD interaction. On the other hand, the low-energy QCD
1 o2 coupling in the 3-brane is obviously well below its fixed
ﬁm(uR)‘?, (210 point. [g%/g? ~1.83/n(0.72x/n) with a=g2/(4m) for D
=6 (D=8) atu=R 1] Thus, Eq(2.15 can be regarded as

1e upper bound of the dimensionless coupling of the bulk
CD. In fact, in the ACDH scenario fob =6 the upper
bound of the dimensionless QCD coupling is given by

and N; is the number of fermions in the bulk. The group-
theoretical factor€C; and Ti are given byCe=N and Tg
=1/2 for SUN) gauge theory.

For sufficiently largeu>R™1, Ny« is estimated afl7]

Nk =

where we have assumed that the extra dimensions are co
pactified to an orbifoldr’/Z,, with Z,, being a discrete group
with order ofn.

CFQZQNDA<CngQNDA:O'091 (216)

There still exists nontrivial phase structure even in the case of
noncompactified extra dimensions. However, the phase transition @Where we have used=2, n=8, Cp=4/3, Cg=3, andN;
shown to be first ordg29] and we cannot obtain hierarchy between =2 in Egs.(2.8) and (2.15. Even though the value af,
the cutoff scale and the low-energy scales. can be affected by the higher-loop effects, it is proportional
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to 1/(—b’) for sufficiently large—b’ .2 Equation(2.16 im- _1 .

plies that, although the bulk QCD coupling is generally ex- ;NVLL

pected to become “strong” in the region beyond the compac- ® ®

tification scale, it is actually not so strong as to make the fFiG. 1. Feynman diagram of the SD equation in the ladder ap-

perturbative expansion totally useless. Moreover, an analysisroximation. Solid lines with and without a blob represent dressed

similar to ECI(26) indicates that the value Qf* of the bulk and bare propagators of fermiopS(p),Sy(p)]1, respectively. The

QCD with 6=2 andN;=2 tends to be decreased by taking gauge boson propagatod (;y) is denoted by a wavy line.

into account the two-loop effects. The estimate Ef16

can thus be regarded as a conservative one, although we

expect sizable higher-loop uncertainty in our estimate. ig—l(p):isal(p)+f
It is therefore quite nontrivial whether bulk QCD can be

strong enough to trigger dynamical electroweak symmetry .

breaking. Before starting a detailed analysis, it would be XS(a)[~igpTT"Dyn(p—a), (3.

helpful to give a simpler discussion from the viewpoint of

the NDA[23,24 and MAC [16], which leads to the condi- WhereSand$, denote dressed and bare propagators of the

tion for the dynamica| Symmetry breaking to take p|ace fermion, reSpeCtively. Within the ladder apprOXimation, the
gauge boson propagatd@r,,, is approximated at the tree
level by the form

dD

o TaFM
(27T)Di[ 19p ]

Crg°Qpnpa=1, (217

D o —i (1 (P—A)m(P—A)n

whereQ \pa comes from the loop suppression factor of NDA mn(P q)_(p_q)z gun—(1-¢) (p—q)2
andCg is the quadratic Casimir of the fundamental represen- (3.2
tation, which is from the MAC assumption. Hence E2;16)
suggests that bulk QCD may not be enough to induce dygith ¢ heing a gauge-fixing parameter. We also indicate the
namical electroweak symmetry breaking in the ACDH sce+,o gamma matrix of SO(D,— 1) by I'™
nario in six dimensions.

However, the present analysis might be too simple
minded. In the following sections we will investigate this

issue using the SD gap equation within the improved ladder ) ) )
approximation. Since we are dealing with 5B in the bulk, we take the

bare propagator of the fermion [ dimensions to be mass-
Iess,isgl(p) =p. The dressed propagatSrmay be written
I1l. IMPROVED LADDER SCHWINGER-DYSON as
EQUATION

A. Ladder SD equation iS™Y(p)=A(—p?)p—B(—p). (3.4

We next investigate the condition for the chiral symmetry
to break dynamically in gauge theories in dimensibns4.
The dimensions of the space-tirbeneed to be even in order
that the chiral symmetry is defined in the bulk. Since the
electroweak symmetry is a chiral symmetry, the condition

{rMr¥ =2gMN" M,N=0,1,2,3,5...,D. (3.3

Then Eq.(3.1) leads to coupled SD equations after Wick
rotation:

Crg3 ( dP A(q2
AP =1+ Fng Je (9g)

studied in this section can be regarded as the condition for pé (27)P A2q§+BZ
dynamical electroweak symmetry breaking in the bulk.
Bulk dynamical chiral symmetry breaking in gauge theo- Pe- O
ries with extra dimensions is considered as a nonperturbative X =(B=D=§)——-+2(1-§)
effect of the high-energy regiof7] where the SM gauge (Pe—Qe)
couplings in theD-dimensional bulk become strong. We
therefore neglect the infrared dynamics due to the finite size W PE (P~ 9e)%e" (P~ de) , (3.5
effects of extra dimensions in the following. (pe—qe)?
The D-dimensional ladder SD equation for the fermion
propagator is given by Fig. 1. It then reads B(p§)=(D—1+§)CFg%
dqe  B(gg) 1
31t should be emphasized, however, that the higher-loop effects Xf (277)0 A2qE+BZ (pE_qE)z’ (3.6

cannot be made arbitrarily small even in the large’ (>0) limit.
Equation(2.8) shows that large-b’ corresponds to larg€g (and )
smallN;) with Cg=N for SU(N) gauge theory. The typical size of Wherepg andqgg denote the Euclidean momenta= — p?,

the n-loop effect at the fixed point is thus of ordeN¢Z Qypa)" qz=—g?, respectively. Performing the angular integrals in
~[N/(—b")]"=[6/(26—D)]" even in the largeN limit. Eq. (3.5 and Eq.(3.6), we find
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Cr

D-2 2
A(X):1+2_§QNDA_fA dy yP'# 1
D X Jo

2
A
gpA(Y) KA(X.Y).

e ke 3.
A%y +B2 " (3.7

B(x)=(D—-1+ g)ﬂNDACFfOA dy yP'2-?

2
9pB(Y)
X?BZKB(X,V),

A2y (3.9

with x=p2, y=q2, where we have introduced the ultravio-
let cutoff A, which is believed to have physical meaning
such as the string scale in this class of models with extr.

dimensions.
The integral kernel& 4 andKg are given in Ref[25] and
are explicitly written as

Ka(XY)= 2 0x=y) +(xY), 39
1
Ks(x,y)=;0(x—y)+(XHy) (3.10
for D=4,
y y
KA(X,y)=;(1—ﬂ)ﬁ(x—yH(XHy), (3.1
1 y
KB(x,y)—; -3¢ O(X—Yy)+ (Xey)
(3.12
for D=6, and
4 2
KA(X,y):z(l_%"—é) O(X—y)+(Xey),
(3.13
1 2
y |y
KB(X,Y):;(l—ﬂﬂLr.XZ) O(X—y)+ (x=y)
(3.14

for D=8. (See Appendix A for details.

Hereafter, we will use the Landau gauge 0 in which
the wave function renormalization is absem(x)=1]
within the ladder approximation.

B. Improved ladder SD equation

PHYSICAL REVIEW D 64 056003

which the renormalization point? of the running coupling
constant in the SD equation is replaced by np@x¢2). This

is a successful approximation for explaining properties of
low-energy QCD phenomenology. In the following analysis
we adopt the improved ladder approximation and replace the
gauge couplingy3 in Eq. (3.8 by

g(|pel)
g%%g%(pE’qE):g(plF;:/L 6(|pel—ael)
E
9%(lael)
+W¢9(|QE|_|F’E|)- (3.15
E

As we discussed in Sec. Il, the UV fixed poigpt plays

he role of the upper bound gfin the ACDH scenario of the

MSM. We also note that the dimensionless bulk gauge cou-
pling g in Eq. (2.14) approaches its fixed point very quickly
for u>1/R due to its power-law running and hence is near
the fixed point value over a wide range of the momentum in
the integral of the SD equation. For determination of the
condition of the bulk xySB, it is therefore sufficient to in-
vestigate the SD equation with the coupling just on the UV
fixed point:

A2 Bly)
B(x)=(D-1 f dy yP2ml———— _KIMP(x,
(0=(0=Dp || dy P2k 21@
with
C
KDECngQNDA: 2 26—FD 7 ,
(m‘l—l Tce—gTRNf}
(3.17

where we have used Eq®.8) and(2.15), andKiE’;np is given
by
K (x,y) = 1- 2| ox—y) + forD=6
B (x,y)—X2 3x| fXY) T (xey)  forD=
(3.18
and
1
X

2
KIP(x,y) = ( 1- 2+ %) B(x—y)+ (x—y)

2X 1

for D=8. (3.19

Since the extra dimensions are compactified below the scale
1/R, we have introduced the infrarétR) cutoff Mg in Eq.

It should be recalled here that we have so far neglecte3.16. However, the bulk SB becomes insensitive td
effects of the running of the gauge coupling. The powerlikefor large A as we will show in the next section. It is to be
behavior of the running coupling makes its effects extremelynoted that the resulting improved ladder SD equation with
important, however. In the analysis of y8B in four- running coupling in Eq.(3.16 is a scale-invariant form,
dimensional gauge theories, a widely used approximation isimilar to the ladder SD equation with constant gauge cou-
the so-called “improved” ladder approximatiofil8], in pling in four dimensions.
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We note that, in the improved ladder SD equat{8riL6),
the kp defined by Eq(3.17) plays the role of a “coupling.”
It can be shown that there exists a critieg) above which
DyxSB takes place for sufficiently largk in the bulk.

IV. ANALYSIS OF THE IMPROVED LADDER
SD EQUATION

A. Numerical study

The aim of this section is to determine the critigg (and
the scaling behavior arouneh") by solving the SD equation
(3.16 in a numerical method.

Let us start with the cade =6 and consider a discretized
version of Eq.(3.16):

x;B; X X;
Bi:5K6|:2 1(1_3—;(>
|

1XJ BZ 2

'\ x.B: Xi
i5j i
+ > A0 g 4.1
jTHL X+ B 3Xj) “3

with i,j being integer indices and

M2 exl A
=M2exp n—s
0 iAr—1" M3

In order to solve the discretized SD equati@nl), a series
B(" is defined by a recursion relation,

i Rr(n 2
X; BJ- X;

al
S e BN I P
=1 XJ+(B(n)) |2 3%

iz (n) )
+Z X5, (1—3)(—)'(])] 4.3

BI" D=5

and the initial condition

B"V=Mq forj=1,2,...i,. (4.4)

For sufficiently largen, the seriesBJ(”) is numerically shown
to converge to a certaiB; , which is nothing but the solution
of the SD equatiori4.1). It is also confirmed that the solution
is insensitive to the value dfy , if i, is taken to be large
enough.

Figure 2 shows the scaling behavior of the order param-
eter of DySB, B(Mg) =Bj-4, near the criticakg. We find

kM=0.122. (4.5)

On the other hand, theg of the ACDH scenario withD
=6 (QCD with two flavor fermions in the bu)kcan be cal-
culated from Eq(3.17. We find

1
kpCPH= 170091, (4.6

where we have use@g=4/3, C;=3, N;=2, and »=8.
Note that this is the upper bound of the bulk QCD coupling.
We therefore conclude that the simplest version of the
ACDH scenario does not work properly ih=6 dimensions
within the improved ladder approximation.

A similar analysis is also performed fér=8 dimensions.
We obtain the scaling behavior of Fig. 3, and the critiegl

k§M=0.1486. (4.7)

Since the ACDH scenario iD=8 dimensions predicts

8
KkpCPH= 33~0-242, 4.9

there is the possibility to construct viable modelsDr-8
within the improved ladder approximation.

One may doubt the validity of the ladder approximation in
this model. The size of nonladder corrections is estimated to
be 1%—20% in the analysis of four-dimensional walking
technicolor[30]. We expect a similar size of nonladder cor-
rections in the present model. On the other hand, the fixed
point Eqg.(4.6) is smaller than the critical value E¢.5) by
more than 25%. Although it is extremely difficult to draw a
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definite conclusion from these numbers, it is likely that theThe integral equatiofd.10 is equivalent to a set of a differ-
ACDH scenario inD=6 dimensions is still in the chiral ential equation,
symmetric phase even in beyond-the-ladder approximations.

We also note that the ladder results are qualitatively consis- 5 d> D _
tent with the naive dimensional analysis described in Sec. II. X e + 5 X g T (P~ 1(D2=1)kp |B(X) =0,
The bulk QCD coupling is not so strong as to destroy the 4.12
perturbative picture completely, anyway. We thus expect that
our resultgFig. 2 and Fig. 3will be unchanged qualitatively and boundary conditions
even beyond the ladder approximation. g
—B(x) =0 (IR-BC) (4.13
B. Analytical study dx = M2
The improved ladder SD equation can be investigated
analytically by applying further approximations. The SD X———2w|B(X) =0 (UV-BC),
equation can be greatly simplified if the integral kerkgl® dx x=A2
is approximated by (4.14
_ 1 with @ being defined by
Klénp(X,Y)ZWH(X—Y)ﬂL(XHy)- (4.9 1/D
wE_E(E_l . (4.13
The approximation Eq4.9) can be justified in a wide range _ _ _ _
of the integration regionx#y) in Eq. (3.16. We also note It is easy to solve the differential equati¢.12. Com-
that the kernel Eq4.9) has scale invariance like the original bined with the subsidiary condition E¢+.11) and the infra-
kernel KITP, red boundary conditioiR-BC), we find
Although the SD equatioit3.16) is still nonlinear even " S o
under this approximation, we can overcome the difficulty by B(x) 1 [ X ~ [ X ~ [ X
using the bifurcation techniqu@1], in which the mass func- "M~ ~ 57| 2 (1+7) M2 —(1-») M2 ’
tion B in the denominator in the SD equation is eliminated
and an infrared cutofi1 =B(M?) is introduced instead. The ~_ i o
bifurcation technique is justified whety, is close to its criti- v=N1=rp/Kp, (4.16
cal point. . ' . for KD<KS'it and
The SD equatior{3.16) then leads to a linear equation ‘
B(X) 1 X w . —lwv
A2 -2 ~im —=—|— | (1+iv)| —
B(X):(D_l)KDJ ,dy YPZ2B(y)Kg™(x,y) M 2ivim? M?
M
(410) iov
and a subsidiary condition M
M=B(M?). (4.10) v=\kp/Kkj"—1, (4.17
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crit

for kp> 3", where we find the criticakp V. ANOMALOUS DIMENSION OF THE FERMION MASS

We next consider generally the high-energy behavior of
1 D; (4.18 the dynamical mass when)3B takes place, based on the
8D-1 OPE[33].

The OPE of the time-ordered fermion bilinear operator
Actually, the nonoscillating solution Eq(4.16 for «p  T[y(x)(0)] is given by
<k does not satisfy the ultraviolet boundary condition
(UV-BC). A nontrivial solution of Eq.(4.10 exists only for ) By JGXTT 1Ay ]
kp> k3", where the solution Eq(4.17) starts oscillating. _'f d™x €9 T4 () ¢(0)]
The critical kp Eq. (4.18 readsx{™=1/10 and«5™=3/28, A o
which are slightly smaller than the numerical results in the =c)'(0,9p ;) (T )i 6%+ Cyy(A.0p s 1) 8 8% (4h)
previous section, Eq4.5) and Eq.(4.7). Noting the inequal-

N

rit
KD

i i imp_- 7z im LRRRE (5.0
ity of the integral kernel& §"P<Kg", however, these results
are consistent with each other. _ . with ¢;,cy, being the Wilson coefficient functions, where
We next turn to the scaling behavior near the criticaly b are for gauge indices arigj are for spinor indices.
point. Equation(4.17) can be rewritten as It is straightforward to evaluate the Wilson coefficient
function ¢, in the (D= 4+ 6)-dimensional gauge theories
B(x) 1+v2[ x |“ X 1+iv at the tree level,
—= —| sin —wvin—|, €= .
M v \M? M2 Vi+172 5
(4.19 c5,(9,0: ):(D—l)&g_i (5.2)
i q4,9, 1 7 N lu/‘qu, .

Inserting Eq.(4.19 into the UV-BC Eq.(4.14), we obtain
where we adopted the Landau gauge. Comparing(&q)

2 with the propagator of the fermion field
0—wvIin— +tan v=nmr, (4.20
MZ
—iS(p)= > >
with n being a positive integer. It can be shown that the A(=p)p—B(—p%)
ground state corresponds to the zero-node {) solution b B(—p?)
[32]. Noting thatd=tan ! v=» for v<1, we thus obtain the ~ +..., (5.3
scaling relation near the critical point, A(=p?)p®  A*(—p?)p?
B we find that the high-energy behavior of the dynamical fer-
M X 77 ) (4.2 mion mass functioB(—p?) is given by
(DI2—1)\kp/xkE'—1 B
B(—p?)=p?Cyy(p.g; 1)), (5.4

Thus we found that the scaling of the phase transition Eq.

(4.21) is an essential-singularity type, the “conformal phasewhere we have assumed absence of wave-function renormal-
transition” [19], similar to the result of the quenched ladder ization of the fermion field, which is justified in the Landau
SD equation of four-dimensional QE[R20]. It is suggestive gauge within the ladder approximation.

that, as we noted at the end of Sec. IIl, these SD equations The solution of the RGE focy,,, is given by,

are both scale invariant.

It is also worth pointing out that the essential singularity
may be used to construct models with large hierarchy be-
tween the cutoff and the weak scale without introducing ad-
ditional fine tuning. This important property of our analysis
is contrasted with the NJL approafh], where we need fine
tuning of the NJL coupling strength with th&1(A)? level. R . t .
(See Appendix B for details. Cuu(€'P.0; ) = Cyy(p,g(t); w)exp f dt[ ym(g(t))—D],

Near the critical point {—0 limit), Eq. (4.19 gives 0

Jd . d ~ “
- — A _ — t . —

which is solved as

(5.6
—(D/2—1)/2 D _
B(x)=M| — 1+ =—1 |ni with the running gauge coupling(t):
M2 212 '
(4.22 - 1
97 () =—— 5 . (5.7
which is regarded as the asymptotic behavior of the solution Ae_ —Z4+1]|Qupabl1—e ]
of the SD equatior{3.16). g’(pn) \6
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FIG. 5. The “power” behavior of the mass function in eight
dimensions. The lines from left to right represent graphs &gr
=0.146,0.147,0.150,0.160r B3(M3)/A?=5.8x10 °,4.1x 107,
6.8 10 °,6.8x 10 ] with A%/M3=10".

FIG. 4. The “power” behavior of the mass function in six di-
mensions. The lines from left to right represent graphs #gr
=0.122,0.125,0.130,0.140 [or B%(M3)/A?=4.1x101°5.4
X1077,6.9x107°,2.2x 10" %] with A2/M3=10".

N * —~
For sufficiently larget, it is evident that lim_... g(t)=g, . Ym=20+(D=2)=3, 5.13
The high-energy behavior of the Wilson coefficient function

¢y, therefore reads for D=8.

The analytical result in the previous section E4.22

cw(e‘p,@;ﬂ)xe(%‘mt, V= yn(Gs ), 5.9 compared with Eq(5.10 yields

D
or =51 (5.19
Cyp( PG ) (—p?) m= P2, (5.9 _ _ _
which agrees with the above numerical result.
The high-energy behavior of the mass functi®m Eq. (5.4) It is remarkable that Eq5.14) is also consistent with the
thus is given by conformal phase transitions for other dimensi@ns4: vy,
. =1/2 for D=3 agrees with the high-energy behav|[@5]
B(—p?)oc(—p?)im*2-D)2, (5.10 and y,=1 for D=4 is the walking theory[21] obtained

The anomalous dimension at the fixed poiit can be from the ladder SD equation with fixed coupling. They are
extracted from the numerical solution of the SD equationobtained in different approximations: Namely, the result for

For this purpose we define the “power” of the mass functionthree dimensions is obtained by running coupling with the IR
(w) fixed point and that for six/eight dimensions by running cou-

pling with the UV fixed point, while the four-dimensional
result is obtained by fixed coupling. However, the SD equa-
tions in all these cases happen to be quite similar because of
the scale invariance at the fixed point.

Figure 4 shows the “power” behaviors of the numerical It should be emphasized that such a large anomalous di-
solution of the SD equation in six dimensions for variousmension implies suppression of the flavor-changing-neutral-
“couplings.” It can be seen that the “power” is almost con- current problem in the dynamical electroweak symmetry
stant in the asymptotic regioB?(M,)<x<A? as we ex- breaking scenario as in walking technico[@1]. The large
pected from Eq(5.10. The behavior near the cutaft=A2 vm Observed in this section is, therefore, good news for con-
in Fig. 4 is an artifacf34] due to the sharp cutoff introduced structing phenomenologically viable models in this direction.
in the analysis of the SD equati8iThis artifact disappears Moreover, the corresponding asymptotic behavior of the
at the limit of A—o. Reading the “power” in the mass function Eq(4.22), B(pZ)~MP2(p2)(t=PR)2 il
asymptotic region ¢ =—1), we obtain yields strong convergence of the bulk decay consl-'e{,ﬁf,

which may be calculated through the PS formjuld

x d
wzm&B(X). (5.1])

yi=2w+(D-2)=2 (5.12
_ . s LIt deE BZ(DE)
for the D=6 bulk gauge theory at the critical poirf™. (F(D))zwf ,
A similar analysis is also performed f@&=8. The corre- " (2m)P [pz+B2(pg)]?

sponding “power” behavior is shown in Fig. 5. The anoma-
. . . 1
lous dimension is then ocMDf dpe—. (5.15
Pe

“4Equation (4.14) leads to the relation ofA?B’(A%)/B(A%)=1  This suggests that the dynamically induced bulk Yukawa
-D/2. couplinggy=M/F) can be made finite even in the “infi-
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nite cutoff limit” A—o.> This is in contrast with perturba- which indicate thatl’, s and ', ; are simultaneously diago-
tion theory where the gauge theoryin(>4) dimensions is  nalizable, eigenvalues &f, s are = 1, and the sum of eigen-
obviously nonrenormalizable. This situation is similar to thevalues of 'y 5 is zero for a chiral fermion in the six-

renormalizability of the gauged NJL mod&2]. dimensional bulk. It is therefore evident that the zero mode
4 in this torus compactification is vectorlike in its four-
VI. CHIRAL FERMION ON THE 3-BRANE dimensional effective theory. We need to eliminate unwanted

) ] o ) components of the fermion on the four-dimensional brane by

more components, it is nontrivial to obtain a four- gimensjons does not suit our purpose, because it is explicitly
dimensional chiral fermion with two components as an efg|ated in the chiral theory of the bufkWe then try to

fective _theory. For such a purpose, we _need to compactify thﬁdopt rotation in the extra dimensions by the anglé
extra dimensions on an orbifold, in which unwanted compo-

nents are projected out by its boundary conditipfisIn this ) 5 6 i 56 s s
section we describe a systematic procedure to find such or- P (Xy”y°) =ex 52 T H(X =Y —Y0)
bifold compactifications.
We start with the minimal casB =6 for simplicity. The =i%%%y(x, —y®, —y®), (6.7)
chiral projection operators in six dimensions are given by VN b i
with "™ being defined by
1xThr O 172131516 i
. = |
5 FCp=T"TT<T°T°T", (6.1 sMN=Lrpm g, 6.8
2
and the chiral fermiongj.. obey There are two possible boundary conditions of this orbi-
Faslhe=*4h.. (62 o
5,,6\_(_ 1\n% 56 _y5 _ 6 =
Hereafter we argue only ., , the chiral fermion with positive P O0ynyR) = (C DR 7y —y), =0 Or(é ’9)
chirality in the bulk. It is easy to extend our arguments to the '
case ofy_ . which leads to the constraint for the zero mode fermion
We next decompose the space-time coordinate into con- 00 56,00
ventional and extra dimensions: P (X)=(=1)"ZP(X). (6.10

xM=(x#y™),  ©x=0,1,2,3, m=5,, (6.3 Noting. the identity.2.56=—FA'5FA’7,' we can rewrite Eq.
(6.10 into the conditions of the chiral fermion on the four

and assume a torus compactification, dimensional brane:

(/I+(X,y5,y6)=IJI+(X,y5+27TR,y6)=l/l+(X,y5,y6+2’7TR), FA’5¢20(X):(_1)n+1 S—O(X). (611)

The chirality on the brane is determined by the choice of the
boundary conditionn=0 or 1, in Eq.(6.9).

where the radii of the fifth and sixth dimensions are assumegcrlii):g(i)r?It?]isbzestri]:)?]hgslrfgs dge;i(;r:)i[ aou;rgéaf;dcur:gisc: edgf'
to be the samddenoted byR) for simplicity. The chiral b P

fermion inD =6 is then decomposed into KK modes: the representatmn of the Clifford glgebra. we can egsny gen-
eralize our arguments to an orbifold compactification from

Key5 -+ kgy® D=2(k+ 1) into D=2k dimensions. By applying these pro-
P (X,y)= z thkG(X)GX[{i ¥} (6.5 cedures repeatedly, we are thus able to obtain orbifold com-
ks kg R pactification starting from a bulk chiral theory bf=2k (k

. . . o . =3) into a brane chiral theory with four dimensions.
We next introduce the four-dimensional chirality matrix

Las=iTTr2r2. It is easy to show several identities:

(6.9

VIl. EFFECTIVE GAUGE COUPLING

[Faclpsd=0. Tplpe=l, tiT 157 _o Although theMS scheme has been widely adopted for
ASZATITH S AS AST S AS 2 ’ running gauge coupling in the improved ladder approxima-
(6.6) tion, it is worth investigating yet another choice, “effective”

SThis statement is of course rather formal in the sensexhah 5CP is also violated in the six-dimensional bulk, since charge
Eg. (3.17 is actually not an arbitrary adjustable parameter andconjugation does not flip chirality i =4k+2 dimensions.
hence cannot be fine tuned k@”t, KDHKCDm, to make the dynami- “Itis also possible to use/2 rotation to define an orbifold, which
cal massaM finite through Eq.(4.21) in that limit. keeps chirality on the four-dimensional brane.
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gauge couplingyes, Which is closely related to the gauge r'(2—d/2)

boson propagator and its momentum. For this purpose, we |,(q%,m?)= iz f dx(2x—1)2

evaluate the one-loop gauge boson propagator in the trun- 2(4m)

cated KK effective theory on the 3-brane, and derive a rela- X[m2—x(1—x)g?]¥22,

tion between the effective and théS couplings.

The effective gauge couplirgy on the 3-brane is defined

by? r'(2-dP2)

l{(g?,m?)=——— dx X(1—Xx)

(4 )d/2

—j —j X[mZ_X(l_X)qZ]d/272.
——5 D () ="5D 5, (D)~ (6%, —9,0,)11(97)
() T gt M S _
(7)) The counterterm for thé1S couplind in the truncated KK

effective theory is given by
with go being the bare gauge coupling, and tffeur-

dimensional gauge boson propagators are given by

1 1 M
———==- > I(g*=0m))
_ Ogs(w) 95 n
__I q,uq —e
D0)url® = 5| 9u»— (1= &0) MIH T (2-d/2)
q + — it (7.6)

(7.2 T (4m)9?

D,.(a)=— 7

where the tern® ;™ *I1(g?= O,m%) comes from the loop of
KK modes heavier than the renormalization scaleThis
term is independent of. and therefore does not affect the
RGE for the gauge coupling, in accordance with the decou-
pling theorem that is assumed in the truncated KK effective

(g,w (1 for(qD)] 20 )

Equation(7.1) reads

1 1 theory.
= (g?). (7.3 Taking thed—4 limit we now obtain
geﬁ(q ) gO
n>
The vacuum polarization functidi(g?) can be decomposed 1 _ 1 _mzﬂ M- (q? m%)
into loops of each KK mode at the one-loop level: 2(02)  g3<(p) = =AMy
geﬁ(q ng(M n

lik

(g% =2, H(qz,mf;), mn=%. (7.4 - > H<(q2,m§;n), (7.7)

In order to calculate the relation between the effective anqyhere1. andII. are given by
the MS couplings, we next evaluafé(g?,m ) using dimen-
sional regularizationd=4+¢),

1 2—-D
(47)%11-(g? m?) = —ch dx| 4+ T(Zx—l)z}
0

I1(q%,m?) = Cg[ 4l 4(g%,m?) +(2— D)l (g% m?)]
—27TrN¢l (g% m?), (7.9

XIn

where we used notations introduced in Sec. Il and

T'(2-d/2)

) d X[m?—x(1—x)q?]%922,

lg(qzlmz)_

2
1—q—2x(1—x))
m
1
+27;TRfo dx x(1—x)
0

xIn (7.9

2
1—%x(1—x)>,

8We use the background gauge-fixing method throughout this sec-
tion. The Ward-Takahashi identities of non-Abelian gauge theory
are QED-like and keep manifest gauge invariance in this gauge °Strictly speaking, Eq(7.6) is evaluated in the modified dimen-

fixing.

sional reduction schen&6].
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FIG. 6. The graph of the dimensionless gauge
coupling with Cg=3, Ny=0, R =1 TeV, A
=10 TeV, agg(Mz) =0.1. The solid line and the
dashed line represent tHdS coupling and the
effective coupling of Eq(7.11), respectively.
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In the analysis of the SD equation basedgun, we adopt
the effective coupling?; Eq. (7.1 [instead ofg’s in Eq.
(2.14)] in the formula for the improved ladder approximation
" In( mz—qzx(l—x)> Eq. (3.15.

2

2 2 2 ! 2-D 2
(4m) Il-(g°,m ;’“)E_CGJO dx| 4+ —F5—(2x—1)

> Several comments are in order.
K (@) The decoupling theorem is violated in the effective

1 coupling Eq.(7.12), since it depends explicitly on the ultra-
+277TRNfJ dx X(1—X) violet cutoff A. This result comes from the nonrenormaliz-
0 ability of the six-dimensional bulk gauge theory.

m?—g2x(1—x) (b) The effective coupling is larger than tiéS coupling
XIn — (7.9 by approximately a factor ok ~*. (See also Fig. 6.If we
o

adoptg.y instead ofgys in the improved ladder approxima-

tion, there is a chance that the bulk QCD coupling even in

Note here that thee dependence in the right-hand side of Eq. six dimensions can be strong enough to caugSB in the

(7.7) cancels exactly. We also introduce a dimensionless efpulk under certain conditions.

fe_ct_ive gauge coupling of the bulk gauge theory defined in a (c) There still exists an upper bound gg; similar to the

similar manner to Eq(2.2), nontrivial UV fixed point, which is roughly proportional to

the UV fixed point in theMS scheme(See Appendix C for a
(27RV-¢?)? ) detailed discussionlt is therefore still a nontrivial question
fgeﬁ(q ). (710 whether D¢SB occurs or not in the bulk gauge theories even
if we adoptge in the improved ladder SD equation.

Using approximations described in Appendix C, we find (@) We can define an analogue of thg ‘function” for

“pare coupling” gx=0.s(a°=—A?). (See Appendix G.

The upper bound ojeﬁ can be regarded as an UV fixed point

éeff(qz):

1 N 1 3 4 .
_ = + ——C +1T N of such a ‘B function” and therefore independent of the
2 (a2)  02<(\—NG2 3| 576 15 RUI :
9er(9°)  Ops(V—AQ9)  (4m) choice of the cutoff scald.
) In fact the finite renormalization effect is the largest un-
<In —\q (7.19) certainty of our analysis based on the improved ladder SD
A2 : equation, compared with other uncertainties such as the non-

ladder effects, higher-order corrections, etc. A detailed analy-

sis of the improved ladder SD equation wi@gﬁ will be

for the bulk gauge theory iD=6 dimensions. Here is presented elsewhefa7].

given by

4 5
CG(_ 8- 5(2- D))+ > AT, VIil. SUMMARY AND DISCUSSION
N\ =ex . (712 We have studied dynamical issues of the ACDH version
—-b’ [7] of the TMSM[1-3,5 within the framework of the im-
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proved ladder SD equation. Based on the truncated KK efbe written as the dimensionless coupling multiplied by a fac-
fective theory[17], we found thatD-dimensional non- tor having dimensions carried by the renormalization paint
Abelian gauge theories with compactified extra dimensiongsee Eq.(2.11)], which is then traded for the momentum in
possess a nontrivial UV fixed point. We then evaluated thehe running coupling in the improved ladder SD equation,
UV fixed point by using the one-loop RGE, assuming itsand moreover the running coupling quickly increases up to
nonperturbative existence. Although the SM couplings in thehe UV fixed point. Hence the SD equation can be well ap-
D-dimensional bulk generally become strong beyond theproximated by the coupling at the fixed point. Then the re-
compactification scale, thédimensionless bulk coupling  sulting SD equation(3.16) has no scale parameters except
cannot grow beyond the UV fixed point and hence it isfor the cutoff.
highly nontrivial whether or not RSB really takes place. This is the very reason why we obtained the essential-
For the simplest scenario of ACDH with the masslesssingularity scaling of the conformal phase transition, Eq.
gauge bosons and third family quarks and leptons living in(4.21), with the analytical result for the critical point Eq.
the D-dimensional bulk and the rest in the four-dimensional(4.18
brane (3-brane, we have the UV fixed points Egs.
(4.6),(4.9): KE’m:—SEI)D—Zl) ; (8.9
k=0.091, kg=0.242 (8.1 (
which was derived through certain approximations and is

consistent with the numerical result above.
The essential-singularity scaling gives us the possibility to

for the bulk dimensions of six and eight, respectively.
On the other hand, the improved ladder SD equatioD in
(>4) dimensions yields the critical points in six/eight dimen-

sions as Eqé4.5), (4.7): hgve a Ie_lrge higrarchy between the weqk scale and _the cutoff
without fine tuning. Here we note that, is not an arbitrary
Kg”t: 0.122, Kgfit: 0.146. 8.2 parameter but a definite number once the model is set up. We

should therefore note that it is impossible to take the cutoff

These results are qualitatively consistent with a naive dimeninfinitely large.
sional analysis. The ACDH scenario thus can work for In a realistic model based on the ACDH scenario, how-
=8 but not forD =6 if we take the results E¢8.1) and Eq.  ever, the bulk gauge coupling of QCD is determined through
(8.2 at face value. It should be emphasized, however, thatatching with the QCD on the 3-brane at the compactifica-
our analysis is based on the ladder approximation. We cetion scaleR 1. The bulk coupling grows at high energy to-
tainly need further investigation to incorporate nonladder efward the UV fixed point and can exceed the critical coupling
fects in order to evaluate the critical value more accurately.only for a certain cutoff(“critical cutoff” ). When we tune

We also discussed some subtlety about the “improved’the cutoff very close to the critical one, the SD equation
ladder SD equation by replacing tMS running coupling by  Yyields a very small dynamical mass compared with the cut-
the effective coupling including the finite renormalization ef- off. We are thus able to determine the value of the cutoff,
fects. This makes attractive forces somewhat larger than iwhich enables us to evaluate the low-energy predictions of
MS coupling, so that the condensate can occur more easil{ie ACDH scenaride.g.,m; andmy) more accurately.
In the case of the ACDH scenario, top condensation may be Moreover, we had a very large anomalous dimension Eq.
possible due to effects of finite renormalization even in six(5-14:
dimensions, since the coupling has a chance to increase over
the critical point for sufficiently large cutoff. :E q 8.5

However, if the cutoff is too large, then tig(1) cou- Ym=3 ' '
pling dominates the QCD coupling so that the MAC favors
other channelgtau lepton condensatehan the top quark which happens to coincide with the casesfos4, i.e., the
condensate. We then obtain some conditions for the “effecquenched ladder SD equatiéwith nonrunning or walking/
tive (phenomenologicalcutoff” (A) where the bulk QCD standing couplingfor D=4 (y,=1) and also with the im-
and hypercharge couplings are aligned in the MAC in such groved ladder SD equation f&=3 QED (y,,=1/2) where
way that only the top quark condenses while otibittom,  the running coupling has an infrared fixed point. In all the
etc) do not. Another constraint comes from the top quarkcases includind® <4, the SD equation has scale invariance
mass which is related to the decay cons&{® in D dimen-  at the fixed point.
sions through the PS formula, E®.15. Thus it is related to
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3 DD 1
APPENDIX A: ANGULAR INTEGRALS IN THE LADDER X1 2 ' 510;2 : (A6)

SD EQUATIONS
) . It should be noted thaf(x)=1 holds for arbitrary dimen-
The momentum integrals of the SD equations B15  sjons in the Landau gauge=0 [25].

and Eq.(3.6) can be decomposed into polar and angular The integrall (x,,0;z) was given for certain integer di-

integrals, mensions in Ref[25] and now is expressed in terms of the
hypergeometric functiof («,B,v;z) for arbitraryD:
d°ge
F(pZ.0z .Pe- ) 20t L [a T (v 41
j (2mp \PECE E- Qe w.0i2) = JaT(v+1)

I (v ])

2 ™
=CDJA dy yD’Z‘lf dosin® =2 9F(x,y, /Xy cosé), 1 3
0 0 XF ,u+v+l,u+§1/+—2_2 . (A7)

2
(A1)
with
with xzpé, yEf@, and Cp defined by Cp )
=Qn\pa/B(1/2D/2—1/2). In order to evaluate the angular S gt 1= maxx,y)  ~_, min(xy) (A8)
integrald @, we define the integral Wy max(x,y)
| | _fﬁdnSin2V+l 0cod 0 - We thus obtain the integral kernkl, ,
(wrpi2)= | 46 st A2 Ka(X,y)=2 2F(2,2-D/2D/2+1Z72),  (A9)
d the int | kerned g [38],
It is easy to see that the angular integrals in B0p) and Eq. and the integral kemé{.g [38]
(3.6) can be expressed in terms df(u,»,0;z) and 1 ~
(e, v,1:2) with z=(x+Y)/(2Xy). We obtain[25] KeOOY) = maay) (12~ D2D12:275). (AL0)
Using the Taylor expansion of the hypergeometric function
CFgD -1 ™Y )
AB)=1+ X dy y” AzynL B2 a)(B) z
F(a.B.7:2)= E ST
XD—l—g(s D D 31) = (N
2 2 2’2 27 (o) =ala+1)(a+2)---(a+1-1),
1-¢ (3 DD 1 we obtain
T A _—_l___lo;z 1 (A3)
2 2 2'2 2 512
=XE —812),(1+1) [y 0 '+ N
K V=& orra), x| XYy
B(x)=(D—1+£)Crg3Cp f dy y>'> ! (A11)
0
B 1 (3 DD 3 K —1§) —o2) 9 +
27 (y) ( ______ ,O,Z) . B(X y =; ' (5/2+ 2) (X y) (X(_)y)
A2y 1B22(xy \2 2'2 2 (A12)
(A4)  for even dimension® =4+ 5=4.
Using the relation APPENDIX B: THE NJL MODEL IN D (>4) DIMENSIONS

We consider the Nambu—Jona-Lasinio mdfieéh D

1 [smz”*z 0] (>4) dimensions,

I(M'V'l;z):2v+2fod (z—cosg)»+r+1 do

mtv+l

=—1(u,v+1,02), (A5) 19N order to avoid the complexity associated with the definition of
2v+2 continuous chiral symmetry D dimensions, we discuss in this
Appendix the NJL model that has only discrete chiral symmétry
Eq. (A3) can be further simplified: may be called the “Gross-Neveu” model
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— G — 4 5
L=YiT™ a5 ()2, (B1) Co| 8~ 5(2-D) |+ g nTaN;

In\= . C3
— (C3)

The gap equation is obtained from the self-consistency con-
dition for the dynamical mag®s. In the largeN limit, we find

We next turn toll... The KK mass is always heavier than

D-2 2\ D2-1 o . . : .
_ 7GA Pe the renormalization scalg in this term, whileu is propor-
- (477)D’21“(D/2) El A2 p§+m2' tional to g2 in the previous optimization procedzure. We
therefore expandll .. in terms of the powers ofqzlmﬁ. We
m find
=g| dz2P?#1—— B2
gJ Z+m2/A2’ (B2
_ _ N2
where 7 (=2P") represents the dimension of the spinor (421 (g% m?)=—Cg 2 Q} -
representation of SO(,—1). The dimensionless NJL cou- 3" 760 2
pling g is defined byg=(4m) °?5GAP /T (D/2). Ex- , )2
panding the integrand of E¢B2) in terms ofm/A, we ob- 7 —q —q
tain + 1_5TRNf — +0 — .

“Di2-1 Di2—2 A2

1
9
The sum of the KK modes can be approximated by replacing

The scaling behavior of the NJL model D (>4) dimen- it with an integral:
sions is then given by

1 1 2 mz k= M 1 2,”_5/2 51
Oort - azm P, Jcrit= D/2—-1. (B3) 2|2 n F((S/Z dm(Rm ’ (C5)
Cri

In order to obtain hierarchy betweemand A, we thus need which leads to
a fine tuning of the NJL coupling strength at the precision of
the (m/A)? level irrespectively oD for D>4. The situation

contrasts with the NJL model in dimensions less than four m>u 2
where the NJL coupling needs to be close to its critical point E H>(q2,mé): 5 [_ —Cg -|-R|\|f
at the precision of i/ A)P 2. k (4m)°nl O "5
A2
APPENDIX C: APPROXIMATE FORMULAS FOR Qg x(_q2)|n_2 (C6)
)73

Equation(7.7) can be further simplified by making sev-
eral approximations. We first concentrate our attention on
I1_. This term depends on the renormalization sqgaland  for D=4+ 6§, §=2. Combining Egs(C3), (C6), and(7.10),
therefore it can be minimized by taking an optimized choiceit is now easy to obtain Eq7.11). The validity of Eq.(7.12)
of u. We assume that the appropriaié is proportional to  can be confirmed numerically als@Gee Fig. 7.
—q% It should be noted that the approximation of EG4) is
not justified forn <1, however. In order to obtain the upper

u?=—\g?, (€D pound ofger including such a possibility, we next evaluate
, . , , . the effective coupling without use of the approximations of
with N being a constant which we will determine below. Eq. (C2) and Eq.(C4). Using the approximation EqC5)

Since the mass of the KK mode; is always lighter than the e optain a formula for the effective gauge coupling strength
renormalization scalg in I1_ , we can safely neglech;; in in six dimensions:

the following analysis. It is straightforward to evaludie. ,

(4m)°I(9%,0;u=V-\g?) 1 u? 1 b’ 1 .
4 5 G )\ G | @m?] " (ampt oA
—Cq 8+§(2—D)}—§nTRNf—b’In)\. of WSt
+Kp(9%A%) +K(g?, A?)], (C7)
(C2
This term vanishes if we take the optimized valuenof with
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0.04 T T T T T

0.035 | -

FIG. 7. Graphs of the dimensionless gauge
couplings. The solid line and the dashed line rep-
resent the effective coupling of E¢C7) and Eq.
(7.12), respectively. We also plot with the white
triangles the coupling directly calculated from the
definition of Eq.(7.7) without using approxima-
tion Eq. (C5). In this graph, we toolCs=3, N;
=0,R7'=3 TeV,A=6 TeV.

0.025

0.02

3 (q2)Npa

0.015

0.01

0.005 -

3 3.5 4 45 5 55 6
(TeV)
1 A2 A2 - 4 5 1 ?\ ¥
2 2\ — . _ W 2 2 2 2y _ . _ _
Kq(g°,A%)=4Cg 8" 6In(_q2) +(_q2).\g(q A, Kg(a%,A%) 3t 18 ( e

1 A2 «
—In

2 A2\ — T o

IRNE =

2 16A2 28 31 ¢?
2 A2 2 A2\~ __ -
+ ——Ry(@’A )). Ro(@® A" =15 7~ 25" 250,12
1 2|52 2|32
K (02 A2)=—25TN A " 15 4_q_2) 2
f(q! - 77 RINT 900 30 (_qz) A _q
2
2 1 —-q
M Kf<q2,A2>). S e
(—a%)
The functionsK 4, Ky, K are defined by K (g% A2)=— 4N 8 4T ¢
R 15 g2 45 900 A2
% (02 A2 ! 2 A2 2\ 32 2
Kg(g%,A%)= | dx f(g%,A%x), 1 A q L q
0 — 1—5 — P + P
~ 1 3/2
Kb<q2,AZ>EJ dx(2x—1)2(q% A% x), A? ) ] =
0 X| —=] tanh T
_q2 4A2_q2
Ki(92,A2)= fldx x(1—x) (g% A%X), It is evident thaig.« reaches its maximum af=— A2. (See
0 Fig. 7) We obtain
with
K= 2 Ki(—AZ%A?)
i=g.b,f
q” q°
f(qZ,Az,x)E(l—x(l—x)—> In(l——x(l—x)). 88 1045 1\ 8»T
A? A? =Cg ——+—\/—tanh’1— - 27BN, (c8)
45 3 \/E 45
The integrals can be performed easily and we obfirthe .
Euclidean regiormg?<0) Equation(C7) thus leads to an upper bound gnRg,
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(4m)°

K

9249 < for 0<—qg?<A? (C9

where we have assumed that thiS coupling is below its
UV fixed point,

(4m)?
b

~2

2 _
m<g*_

(C10

It should be emphasized that E€8) is independent of the
cutoff A and thus the upper bound E@9) can be adopted
for arbitrary A.. In order to clarify the point, it is illuminating
to defineg, by

05=021(q?=—A2). (C1D)

The coupling@ A €an be regarded as a “bare parameter” of

PHYSICAL REVIEW D 64 056003

the present model. An analogue of thg function” for QA is
then given by

K .
—0.

e (C12

. d . .
B(QA)EAd—AQAZQA_

The upper limit (47)%/K is thus given by the UV fixed point
of the “B function” Eq. (C12.

Numerically we obtairK =1.63Cs—0.71TgxN; . For large
—b’ or large Cs, we thus find that the upper bound is
roughly proportional to the UV fixed point in th&S
scheme,

(4m)° __(4m)°_

2
K —b, zg*

(C13
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