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Top mode standard model with extra dimensions
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We critically examine a version of the top mode standard model recently cast in extra dimensions by
Arkani-Hamed, Cheng, Dobrescu, and Hall, based on the~improved! ladder Schwinger-Dyson~SD! equation
for theD- (56,8-! dimensional gauge theories. We find that the bulk QCD cannot have larger coupling beyond
the nontrivial ultraviolet~UV! fixed point, the existence of which is supported by a recent lattice analysis. The
coupling strength at the fixed point is evaluated by using the one-loop renormalization group equation. It is
then found that, in a version with only the third family~as well as the gauge bosons! living in the
D-dimensional bulk, the critical~dimensionless! coupling for dynamical chiral symmetry breaking to occur is
larger than the UV fixed point of the bulk QCD coupling forD56, while smaller forD58. We further find
that the improved ladder SD equation inD dimensions has an approximate scale invariance due to the running
of the coupling and hence has an essential-singularity scaling of the ‘‘conformal phase transition,’’ similar to
Miransky scaling in the four-dimensional ladder SD equation with a nonrunning coupling. This essential-
singularity scaling can resolve the fine-tuning even when the cutoff~‘‘string scale’’! is large. Such a theory has
a large anomalous dimensiongm5D/221 and is expected to be free from the flavor-changing-neutral-current
problem as in walking technicolor forD54. Furthermore, the induced bulk Yukawa coupling becomes finite
even at infinite cutoff limit~in the formal sense!, similar to the renormalizability of the gauged Nambu–Jona-
Lasinio model. Comments are made on the use of the ‘‘effective’’ coupling, which includes finite renormal-
ization effects, instead of theMS running coupling in the improved ladder SD equation.

DOI: 10.1103/PhysRevD.64.056003 PACS number~s!: 11.15.Ex, 11.10.Kk, 11.25.Mj, 12.60.Rc
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I. INTRODUCTION

The top quark condensate proposed by Miransky, Ta
bashi, and Yamawaki~MTY ! @1,2# and by Nambu@3# inde-
pendently is a natural idea to account for the large mas
the top quark~t! on the weak-scale order in contrast wi
other quarks and leptons. The Higgs boson in the stand
model~SM! emerges as at̄ t bound state and hence is close
connected with the top quark itself. Thus the model may
called the ‘‘top mode standard model~TMSM!’’ @2#.

Actually, MTY introduced explicit four-fermion interac
tions @1,2#

L4 f5
4p2

NcL
2

@gt~ c̄LtR!21gb~ c̄LbR!2

1g(2)e i ,ke j ,l~ c̄L
i cR

j !~ c̄L
kcR

l !1H.c.#, ~1.1!

with i ( j ,k,l )5t,b for top and bottom quarks, wher
gt ,gb ,g(2) are dimensionless four-fermion couplings,L is
the cutoff, andNc is the number of colors, and similarly fo
leptons as well as the first and second generations of qu
and leptons. Whilegt is responsible for the top mass, theg(2)

coupling is vital to the generation of the bottom mass wi
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out the problem of the axion. MTY further gave a concre
formulation based on the~improved! ladder Schwinger-
Dyson ~SD! equation for the QCD plus the four-fermion in
teraction ~1.1!, the gauged Nambu–Jona-Lasinio~NJL!
model, and found that when

gt.gcrit.gb ~1.2!

only the top quark can condense, giving rise to the large
mass, while the bottom quark is kept massless, wheregcrit is
the critical coupling of the SD equation. As to the value
the top mass, MTY substituted the solution of the~improved!
ladder SD equation into the Pagels-Stokar~PS! formula @4#
for Fp5250 GeV and predictedmt.250 GeV for the cut-
off near the Planck scale@1,2#.

The model was further formulated in an elegant fash
by Bardeen, Hill, and Lindner~BHL! @5# in the SM lan-
guage, based on the renormalization-group equation~RGE!
and the compositeness condition. This essentially incor
rates 1/Nc subleading effects disregarded by the MTY pap
The BHL model is in fact equivalent to the MTY model a
1/Nc leading order@6#. Such 1/Nc subleading effects reduce
the above MTY value 250 GeV to 220 GeV, a somewh
smaller value but still on the order of the weak scale. Ev
this value, however, turned out to be a bit larger than
mass of the top quark observed later.

Quite recently, Arkani-Hamed, Cheng, Dobrescu, a
Hall ~ACDH! @7# proposed a very interesting version of th
TMSM in six and eight dimensions, in which the third fami
fermion and the gauge bosons are put in theD-
©2001 The American Physical Society03-1
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(56,8-!dimensional bulk, while the first and second famili
are in the four-dimensional brane~3-brane!. The model is
largely based on the earlier papers@8,9#, which, motivated by
the topcolor@10# and the top-seesaw model@11#, proposed
formulating the top quark condensate in the extra dimens
in the spirit of large scale compactification scenarios@12,13#.
ACDH argued that theD-dimensional SM gauge coupling
become strong due to Kaluza-Klein~KK ! modes of the stan
dard model gauge bosons and hence may naturally give
to the effective four-fermion interactionsin D-dimensional
bulk which have the same structure as Eq.~1.1!, with gt

.gcrit.gb , the situation similar to the original TMSM, Eq
~1.2!.1 Moreover they argued that the top mass can be
ranged to be a realistic value due to the effects of many
modes of top quark even for the TeV scale cutoff, thus
model may be free from serious fine tuning as compa
with the original TMSM having the cutoff near the Planc
scale.

However, ACDH gave no dynamical arguments
whether dynamical symmetry breaking really takes place
not in their model. They made an ansatz that bulk stro
gauge dynamics in the ultraviolet region near the cut
~‘‘string scale’’! can well be simulated by theD-dimensional
bulk four-fermion couplings characterized by the cuto
scale. They then calculated the relative strength of the b
attractive forces among various channels based on the
attractive channel~MAC! hypothesis@16# and argued tha
only the top coupling can be arranged to be above the crit
coupling like Eq.~1.2! in the original mechanism of MTY.
However, this would make sense only when these fo
fermion couplings were near the critical coupling, the situ
tion being what they simply assumed. In fact, there is
information on the strength of the bulk effective fou
fermion couplings, which cannot be related in any defin
manner to the bulk gauge coupling, while the latter is calc
able through matching with the low-energy SM coupling
four dimensions~3-brane! at the compactification scale@17#.

In this paper, we shall study the dynamical issues of
ACDH version of the TMSM, based on the~improved! lad-
der SD equation for the gauge theories in the bulkD
(56,8) dimensions. As in ACDH@7#, we here assume tha
the bulk anomaly may be cancelled by some stringy ar
ments like the Green-Schwarz mechanism. Then we pre
explicit solutions for the dynamical chiral symmetry brea
ing (DxSB) for D dimensions with their implications on th
ACDH scenario and reveal some salient features of this
namics forD dimensions.

We first discuss a nontrivial ultraviolet~UV! fixed point in
the one-loop renormalization-group equation of the ‘‘tru
cated KK’’ effective theory @17# of D-dimensional non-
Abelian gauge theories with compactified extra dimensio
in a manner similar to the analysis ofD541e (0,e!1)
gauge theories. Although such a fixed point cannot be ju

1The previous studies in extra dimensions@8,9,14# were focused
on the four-fermion interactions in the 3-brane in contrast to th
in the ACDH model which are in theD-dimensional bulk@7,15#.
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fied for e;O(1) within the perturbative analysis, its exis
tence is supported by a recent lattice calculation@28#. As-
suming the nonperturbative existence of such a fixed po
we then evaluate the gauge coupling strength at the fi
point by using the one-loop RGE which was actually adop
by ACDH for their prediction of the top quark mass. In th
bulk SM, QCD is the only non-Abelian gauge theory re
evant to the DxSB. We then observe that theD-dimensional
bulk QCD coupling cannot grow over the fixed point valu
since at a certain compactification scale we match the b
QCD coupling with the 3-brane QCD coupling, which
obviously small, and hence the phase must be in the w
coupling regime below the fixed point. The QCD couplin
for the ACDH version of the TMSM forD56,8 is actually
evaluated by the truncated KK effective theory.

We next study the dynamical symmetry breaking
D-dimensional gauge theories, based on the improved lad
SD equation@18#, with the D-dimensional bulk gauge cou
pling in the ladder SD equation being simply replaced by
@modified minimal subtraction schemeMS] one-loop run-
ning coupling. Actually, inD-dimensional gauge theories fo
both the fermion and the gauge bosons living in t
D-dimensional bulk, with the extra dimensions being co
pactified, dynamical symmetry breaking can be trigge
only by the dynamics in the ultraviolet region where t
gauge coupling becomes strong, and hence can be wel
scribed by theD-dimensional improved ladder SD equatio
with massless gauge bosons in theD-dimensional bulk, irre-
spectively of details of the infrared dynamics of the comp
tification scale.

It is then found that, for the simplest version of the ACD
scenario with only the third family~as well as the gauge
bosons! living in the bulk, the UV fixed point of the bulk
QCD coupling is smaller than the critical coupling for d
namical chiral symmetry breaking to occur forD56, while
the situation is reversed forD58. That is, dynamical sym-
metry breaking due to the bulk QCD dynamics cannot ta
place in six dimensions and can in eight dimensions for
simplest ACDH version of the TMSM.

Remarkably enough, the improved ladder SD equat
with running coupling has an approximately scale-invaria
form in D dimensions and thus the scaling law is t
essential-singularity type of ‘‘conformal phase transitio
@19# similar to Miransky scaling in the four-dimensional lad
der SD equation with nonrunning coupling@20#. Moreover, it
has a large anomalous dimensiongm5D/221 near the fixed
point and hence has a chance to solve the flavor-chang
neutral-current problem as in walking technicolor forD54
@21#.

This corresponds to a slowly damping mass function t
still yields finiteness of the bulk decay constantFp

(D) and
hence of the induced bulk Yukawa coupling even in the lim
of infinite cutoff ~in the formal sense!. Such a situation is
similar to the renormalizability of the gauged NJL model
four dimensions@22#.

We also comment that, instead of theMS running cou-
pling in the improved ladder SD equation, we may use
‘‘effective’’ coupling including finite renormalization effects
e

3-2
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TOP MODE STANDARD MODEL WITH EXTRA DIMENSIONS PHYSICAL REVIEW D64 056003
Unlike MS coupling, the ‘‘effective’’ gauge coupling in
cludes the effects of KK modes heavier than the renorm
ization scale. It is shown that the decoupling theorem is v
lated in the ‘‘effective’’ gauge coupling due to the summati
of the large number of KK modes. Nevertheless, we find
upper bound on the effective gauge coupling strength, wh
is roughly proportional to the UV fixed point in theMS
scheme. We also show that the upper bound of the ‘‘eff
tive’’ gauge coupling can be regarded as a UV fixed point
‘‘bare gauge coupling.’’ Our results are therefore unchang
qualitatively even if we adopt the ‘‘effective’’ coupling in
stead ofMS.

It should be emphasized, however, that finite renormal
tion can affect our quantitative results, such as the value
the critical coupling. The effective coupling tends to
stronger thanMS coupling and hence there appears the p
sibility that bulk SM couplings could lead to the top qua
condensate in the manner of Eq.~1.2! under certain condi-
tions even forD56 in the simplest ACDH version of the
TMSM.

The paper is organized as follows. In Sec. II we disc
the existence of the nontrivial UV fixed point inD- @5(4
1e)-#dimensional non-Abelian gauge theories in thee ex-
pansion. Then we show the nontrivial UV fixed point in th
D- @5(41d)-#dimensional non-Abelian gauge theories w
the extrad (52,4) dimensions compactified. The value
the UV fixed point for the ACDH version of the TMSM i
evaluated forD56,8 based on the truncated KK effectiv
theory. We then give a rough argument why the ‘‘stron
bulk QCD coupling may not necessarily give rise to the co
densate, based on a naive dimensional analysis~NDA!
@23,24#. In Sec. III we derive theD-dimensional ladder SD
equation, and also the improved ladder SD equation. In S
IV we find numerically the critical values for DxSB to occur
for D56,8, which are compared with those of the ACD
couplings estimated in Sec. II. The analytical solution is a
obtained in further approximation, and shows essent
singular-type scaling. In Sec. V we analyze the opera
product expansion~OPE! for the fermion propagator an
identify the anomalous dimension, which is then calcula
to begm5D/221. In Sec. VI the chiral fermion through th
orbifold projection into the 3-brane is studied in some det
In Sec. VII we discuss use of the effective coupling inste
of theMS running coupling in the improved ladder SD equ
tion. Section VIII is devoted to the summary and discussi
Appendix A contains formulas for the angular integration
the ladder SD equation, which is a generalization of the p
vious result@25# to arbitrary~noninteger! D dimensions. Ap-
pendix B shows a gap equation of the NJL-type four-ferm
model in D (.4) dimensions, in which the scaling law
1/gcrit21/g;(m/L)2, essentially the same~up to loga-
rithms! as the NJL model forD54, in sharp contrast to the
case of D,4 where the scaling law is given by 1/gcrit
21/g;(m/L)D22 @26#. Appendix C is for the approxima
tion to the effective coupling discussed in Sec. VII.

II. EXISTENCE OF ULTRAVIOLET FIXED POINT

In order to illustrate the existence of the nontrivial ultr
violet fixed point of the gauge theory in more than four d
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mensions, we start with a brief review of the gauge dynam
in D (541e, 0,e!1) dimensions@27# (e expansion!.

The one-loop renormalization-group equation of t
gauge coupling is given by

m
d

dm
ĝ5

e

2
ĝ1

b(1)

~4p!2
ĝ3, ~2.1!

where ĝ is the dimensionless gauge coupling scaled by
renormalization scalem:

gD[
ĝ

me/2
, ~2.2!

with gD being the gauge coupling inD (541e) dimensions
and of mass dimension2e/2. Hereafter we assume that th
renormalization-group coefficientb(1) is negative,b(1),0.
From Eq.~2.1!, the renormalization-group flow of the dimen
sionless couplingĝ is given by

ĝ2~m!5
1

S m8

m D e 1

ĝ2~m8!
2

2

e

b(1)

~4p!2 F12S m8

m D eG . ~2.3!

We then find an ultraviolet (m→`) fixed point

g
*
2 5 lim

m→`

ĝ2~m!5
e

2

~4p!2

2b(1)
. ~2.4!

It should be emphasized thate is considered to be small her
and therefore the fixed pointg

*
2 }e is still in its perturbative

regime. It is straightforward to extend the analysis to inclu
higher-loop effects. The UV fixed point in the two-loo
RGE,

m
d

dm
ĝ5

e

2
ĝ1

b(1)

~4p!2
ĝ31

b(2)

~4p!4
ĝ5, ~2.5!

is given in terms of thee expansion,

g
*
2 5

~4p!2

2b(1)

e

2 S 11
b(2)

b(1)
2

e

2D 1O~e3!. ~2.6!

The two-loop effect,b(2) term affects the coefficient ofe2,
keeping the coefficient ofe1 unchanged. In fact, then-loop
effect can be regarded as anO(en) effect in thee expansion.
The perturbative stability of the fixed pointg* is thus guar-
anteed in the (D541e!-dimensional gauge theories. W
also note that the coefficientsb(1) andb(2) are both negative
in QCD with Nf<8. The two-loop UV fixed point Eq.~2.6!
is thus smaller than the one-loop estimate Eq.~2.4!.

Hence we expect that there exist~at least! two phases
separated by the fixed pointg* in this theory. The weakly
interacting phaseĝ,g* can be controlled perturbatively. I
is therefore considered to be in the Coulomb phase and
chiral symmetry is not broken in this phase. On the oth
3-3



w

e

e

n
-

t
e

e

de
he
r

e
-
s

nt

p-

co

the

e-

m-

D
d

s
ulk

nal

n
en

HASHIMOTO, TANABASHI, AND YAMAWAKI PHYSICAL REVIEW D 64 056003
hand, the theory becomes strongly interacting in the lo
energy region in the phaseĝ.g* . It is therefore expected to
be in the confinement phase and the chiral symmetry is
pected to be broken dynamically.

Although the existence of such a fixed point for largere
;O(1) cannot be justified within perturbative analysis, r
cent analysis based on the lattice gauge theory@28# suggests
that the fixed point structure described above holds eve
larger~integer! values ofe, if the extra dimensions are com
pactified in a short distance.2 Actually, as we will see in the
following, there exists a close correspondence between
RGEs ofe!1 and of the compactified extra dimensions ev
within the perturbative approach.

Now we evaluate the nontrivial UV fixed point of th
gauge theory inD (541d) dimensions where the extrad
dimensions are compactified. In this case we need to
with an infinite number of Kaluza-Klein modes above t
compactification scaleR21. However, the KK modes heavie
than the renormalization scalem are actually decoupled in
the RGE. We only need to sum up the loops of KK mod
lighter thanm. This approach is called ‘‘truncated KK’’ ef
fective theory@17#. The theory can be fully controlled in thi
truncated KK effective theory.

The RGE of the gauge coupling~g! on the 3-brane is
given by

~4p!2m
d

dm
g5NKKb8g3 ~2.7!

in the truncated KK effective theory. HereNKK stands for the
number of KK modes below the renormalization scalem.
The RGE factorb8 is given by

b852
262D

6
CG1

h

3
TRNf , ~2.8!

whereh represents the dimension of the spinor represe
tion of SO(1,D21),

h[trG 152D/2 for evenD, ~2.9!

and Nf is the number of fermions in the bulk. The grou
theoretical factorsCG and TR are given byCG5N and TR
51/2 for SU(N) gauge theory.

For sufficiently largem@R21, NKK is estimated as@17#

NKK5
1

n

pd/2

G~11d/2!
~mR!d, ~2.10!

where we have assumed that the extra dimensions are
pactified to an orbifoldTd/Zn with Zn being a discrete group
with order ofn.

2There still exists nontrivial phase structure even in the case
noncompactified extra dimensions. However, the phase transitio
shown to be first order@29# and we cannot obtain hierarchy betwe
the cutoff scale and the low-energy scales.
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The gauge coupling on the 3-brane can be related to
gauge coupling in theD-dimensional bulk gD as gD

2

5(2pR)dg2/n. Thus thedimensionlessbulk gauge coupling
ĝ can be defined following Eq.~2.2!:

ĝ25
~2pRm!d

n
g2. ~2.11!

Substituting Eq.~2.11! into Eq. ~2.7!, we obtain

m
d

dm
ĝ5

d

2
ĝ1~11d/2!VNDAb8ĝ3, ~2.12!

with VNDA being the loop factor in the NDA@23,24#:

VNDA[
1

~4p!D/2G~D/2!
, D541d. ~2.13!

It is interesting to note a similarity between Eq.~2.1! and Eq.
~2.12!: The factore in the e expansion corresponds tod in
the truncated KK effective theory with the simple replac
ment ofb/(4p)2 by (11d/2)VNDAb8.

The RGE Eq.~2.12! can easily be solved as

ĝ2~m!5
1

S m8

m D d 1

ĝ2~m8!
2S 2

d
11DVNDAb8F12S m8

m D dG .

~2.14!

Thus, we find a nontrivial UV fixed point

g
*
2 VNDA5

1

2S 2

d
11Db8

. ~2.15!

It should be noted that the couplingĝ2 in Eq. ~2.14! grows
very quickly close to the value of the fixed point.

In the ACDH scenario@7# of the TMSM, the top quark
interaction responsible for the dynamical electroweak sy
metry breaking is assumed to come~mainly! from the bulk
QCD interaction. On the other hand, the low-energy QC
coupling in the 3-brane is obviously well below its fixe
point. @ ĝ2/g

*
2 .1.83a/n(0.72a/n) with a[g2/(4p) for D

56 (D58) atm5R21.# Thus, Eq.~2.15! can be regarded a
the upper bound of the dimensionless coupling of the b
QCD. In fact, in the ACDH scenario forD56 the upper
bound of the dimensionless QCD coupling is given by

CFĝ2VNDA,CFg
*
2 VNDA.0.09, ~2.16!

where we have usedd52, h58, CF54/3, CG53, andNf
52 in Eqs.~2.8! and ~2.15!. Even though the value ofg*
can be affected by the higher-loop effects, it is proportio

of
is
3-4
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to 1/(2b8) for sufficiently large2b8.3 Equation~2.16! im-
plies that, although the bulk QCD coupling is generally e
pected to become ‘‘strong’’ in the region beyond the comp
tification scale, it is actually not so strong as to make
perturbative expansion totally useless. Moreover, an ana
similar to Eq.~2.6! indicates that the value ofg* of the bulk
QCD with d52 andNf52 tends to be decreased by takin
into account the two-loop effects. The estimate Eq.~2.16!
can thus be regarded as a conservative one, although
expect sizable higher-loop uncertainty in our estimate.

It is therefore quite nontrivial whether bulk QCD can b
strong enough to trigger dynamical electroweak symme
breaking. Before starting a detailed analysis, it would
helpful to give a simpler discussion from the viewpoint
the NDA @23,24# and MAC @16#, which leads to the condi
tion for the dynamical symmetry breaking to take place

CFĝ2VNDA*1, ~2.17!

whereVNDA comes from the loop suppression factor of ND
andCF is the quadratic Casimir of the fundamental repres
tation, which is from the MAC assumption. Hence Eq.~2.16!
suggests that bulk QCD may not be enough to induce
namical electroweak symmetry breaking in the ACDH s
nario in six dimensions.

However, the present analysis might be too sim
minded. In the following sections we will investigate th
issue using the SD gap equation within the improved lad
approximation.

III. IMPROVED LADDER SCHWINGER-DYSON
EQUATION

A. Ladder SD equation

We next investigate the condition for the chiral symme
to break dynamically in gauge theories in dimensionsD.4.
The dimensions of the space-timeD need to be even in orde
that the chiral symmetry is defined in the bulk. Since t
electroweak symmetry is a chiral symmetry, the condit
studied in this section can be regarded as the condition
dynamical electroweak symmetry breaking in the bulk.

Bulk dynamical chiral symmetry breaking in gauge the
ries with extra dimensions is considered as a nonperturba
effect of the high-energy region@7# where the SM gauge
couplings in theD-dimensional bulk become strong. W
therefore neglect the infrared dynamics due to the finite s
effects of extra dimensions in the following.

The D-dimensional ladder SD equation for the fermio
propagator is given by Fig. 1. It then reads

3It should be emphasized, however, that the higher-loop eff
cannot be made arbitrarily small even in the large2b8 (.0) limit.
Equation~2.8! shows that large2b8 corresponds to largeCG ~and
smallNf) with CG5N for SU(N) gauge theory. The typical size o
the n-loop effect at the fixed point is thus of order (Ng

*
2 VNDA)n

;@N/(2b8)#n.@6/(262D)#n even in the largeN limit.
05600
-
-
e
is

we

y
e

-

y-
-

e

r

e
n
or

-
ve

e

iS21~p!5 iS0
21~p!1E dDq

~2p!Di
@2 igDTaGM#

3S~q!@2 igDTaGN#DMN~p2q!, ~3.1!

whereS andS0 denote dressed and bare propagators of
fermion, respectively. Within the ladder approximation, t
gauge boson propagatorDMN is approximated at the tre
level by the form

DMN~p2q!5
2 i

~p2q!2 FgMN2~12j!
~p2q!M~p2q!N

~p2q!2 G ,

~3.2!

with j being a gauge-fixing parameter. We also indicate
the gamma matrix of SO(1,D21) by GM

$GM,GN%52gMN, M ,N50,1,2,3,5, . . . ,D. ~3.3!

Since we are dealing with DxSB in the bulk, we take the
bare propagator of the fermion inD dimensions to be mass
less,iS0

21(p)5p” . The dressed propagatorS may be written
as

iS21~p!5A~2p2!p”2B~2p2!. ~3.4!

Then Eq. ~3.1! leads to coupled SD equations after Wic
rotation:

A~pE
2 !511

CFgD
2

pE
2 E dDqE

~2p!D

A~qE
2 !

A2qE
21B2

3F2~32D2j!
pE•qE

~pE2qE!2
12~12j!

3
pE•~pE2qE!qE•~pE2qE!

~pE2qE!4 G , ~3.5!

B~pE
2 !5~D211j!CFgD

2

3E dDqE

~2p!D

B~qE
2 !

A2qE
21B2

1

~pE2qE!2
, ~3.6!

wherepE andqE denote the Euclidean momentapE
2[2p2,

qE
2[2q2, respectively. Performing the angular integrals

Eq. ~3.5! and Eq.~3.6!, we find

ts

FIG. 1. Feynman diagram of the SD equation in the ladder
proximation. Solid lines with and without a blob represent dres
and bare propagators of fermions@S(p),S0(p)#, respectively. The
gauge boson propagator (DMN) is denoted by a wavy line.
3-5
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A~x!5112
D22

D
jVNDA

CF

x E
0

L2

dy yD/221

3
gD

2 A~y!

A2y1B2
KA~x,y!, ~3.7!

B~x!5~D211j!VNDACFE
0

L2

dy yD/221

3
gD

2 B~y!

A2y1B2
KB~x,y!, ~3.8!

with x[pE
2 , y[qE

2 , where we have introduced the ultravio
let cutoff L, which is believed to have physical meanin
such as the string scale in this class of models with e
dimensions.

The integral kernelsKA andKB are given in Ref.@25# and
are explicitly written as

KA~x,y!5
y

x
u~x2y!1~x↔y!, ~3.9!

KB~x,y!5
1

x
u~x2y!1~x↔y! ~3.10!

for D54,

KA~x,y!5
y

x S 12
y

2xD u~x2y!1~x↔y!, ~3.11!

KB~x,y!5
1

x S 12
y

3xD u~x2y!1~x↔y!

~3.12!

for D56, and

KA~x,y!5
y

x S 12
4y

5x
1

y2

5x2D u~x2y!1~x↔y!,

~3.13!

KB~x,y!5
1

x S 12
y

2x
1

y2

10x2D u~x2y!1~x↔y!

~3.14!

for D58. ~See Appendix A for details.!
Hereafter, we will use the Landau gaugej50 in which

the wave function renormalization is absent@A(x)[1#
within the ladder approximation.

B. Improved ladder SD equation

It should be recalled here that we have so far neglec
effects of the running of the gauge coupling. The powerl
behavior of the running coupling makes its effects extrem
important, however. In the analysis of DxSB in four-
dimensional gauge theories, a widely used approximatio
the so-called ‘‘improved’’ ladder approximation@18#, in
05600
a

d
e
y

is

which the renormalization pointm2 of the running coupling
constant in the SD equation is replaced by max(pE

2 ,qE
2). This

is a successful approximation for explaining properties
low-energy QCD phenomenology. In the following analys
we adopt the improved ladder approximation and replace
gauge couplinggD

2 in Eq. ~3.8! by

gD
2 →gD

2 ~pE ,qE!5
ĝ2~ upEu!

~pE
2 !d/2

u~ upEu2uqEu!

1
ĝ2~ uqEu!

~qE
2 !d/2

u~ uqEu2upEu!. ~3.15!

As we discussed in Sec. II, the UV fixed pointg* plays
the role of the upper bound ofĝ in the ACDH scenario of the
TMSM. We also note that the dimensionless bulk gauge c
pling ĝ in Eq. ~2.14! approaches its fixed point very quickl
for m.1/R due to its power-law running and hence is ne
the fixed point value over a wide range of the momentum
the integral of the SD equation. For determination of t
condition of the bulk DxSB, it is therefore sufficient to in-
vestigate the SD equation with the coupling just on the U
fixed point:

B~x!5~D21!kDE
M0

2

L2

dy yD/221
B~y!

y1B2~y!
KB

imp~x,y!

~3.16!

with

kD[CFg
*
2 VNDA5

CF

S 2

D24
11D F262D

6
CG2

h

3
TRNf G ,

~3.17!

where we have used Eqs.~2.8! and~2.15!, andKB
imp is given

by

KB
imp~x,y!5

1

x2 S 12
y

3xD u~x2y!1~x↔y! for D56

~3.18!

and

KB
imp~x,y!5

1

x3 S 12
y

2x
1

y2

10x2D u~x2y!1~x↔y!

for D58. ~3.19!

Since the extra dimensions are compactified below the s
1/R, we have introduced the infrared~IR! cutoff M0 in Eq.
~3.16!. However, the bulk DxSB becomes insensitive toM0
for large L as we will show in the next section. It is to b
noted that the resulting improved ladder SD equation w
running coupling in Eq.~3.16! is a scale-invariant form,
similar to the ladder SD equation with constant gauge c
pling in four dimensions.
3-6
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FIG. 2. The scaling behavior in six dimen
sions. The lines from right to left are graphs fo
L2/M0

25103,104,105,106,1010, respectively.
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We note that, in the improved ladder SD equation~3.16!,
the kD defined by Eq.~3.17! plays the role of a ‘‘coupling.’’
It can be shown that there exists a criticalkD above which
DxSB takes place for sufficiently largeL in the bulk.

IV. ANALYSIS OF THE IMPROVED LADDER
SD EQUATION

A. Numerical study

The aim of this section is to determine the criticalkD ~and
the scaling behavior aroundkD

crit) by solving the SD equation
~3.16! in a numerical method.

Let us start with the caseD56 and consider a discretize
version of Eq.~3.16!:

Bi55k6F (
j 51

i
xjBj

xj1Bj
2

xj
2

xi
2 S 12

xj

3xi
D

1 (
j 5 i 11

i L xjBj

xj1Bj
2 S 12

xi

3xj
D G ~4.1!

with i , j being integer indices and

xj[M0
2 expF j 21

i L21
ln

L2

M0
2G , Bj[B~xj !. ~4.2!

In order to solve the discretized SD equation~4.1!, a series
Bj

(n) is defined by a recursion relation,

Bi
(n11)[5k6F (

j 51

i xjBj
(n)

xj1~Bj
(n)!2

xj
2

xi
2 S 12

xj

3xi
D

1 (
j 5 i 11

i L xjBj
(n)

xj1~Bj
(n)!2 S 12

xi

3xj
D G ~4.3!

and the initial condition

Bj
(n50)5M0 for j 51,2, . . . ,i L . ~4.4!
05600
For sufficiently largen, the seriesBj
(n) is numerically shown

to converge to a certainBj , which is nothing but the solution
of the SD equation~4.1!. It is also confirmed that the solutio
is insensitive to the value ofi L , if i L is taken to be large
enough.

Figure 2 shows the scaling behavior of the order para
eter of DxSB, B(M0)5Bj 51, near the criticalk6. We find

k6
crit.0.122. ~4.5!

On the other hand, thek6 of the ACDH scenario withD
56 ~QCD with two flavor fermions in the bulk! can be cal-
culated from Eq.~3.17!. We find

k6
ACDH5

1

11
.0.091, ~4.6!

where we have usedCF54/3, CG53, Nf52, and h58.
Note that this is the upper bound of the bulk QCD couplin
We therefore conclude that the simplest version of
ACDH scenario does not work properly inD56 dimensions
within the improved ladder approximation.

A similar analysis is also performed forD58 dimensions.
We obtain the scaling behavior of Fig. 3, and the criticalk8

k8
crit.0.146. ~4.7!

Since the ACDH scenario inD58 dimensions predicts

k8
ACDH5

8

33
.0.242, ~4.8!

there is the possibility to construct viable models inD58
within the improved ladder approximation.

One may doubt the validity of the ladder approximation
this model. The size of nonladder corrections is estimate
be 1%220% in the analysis of four-dimensional walkin
technicolor@30#. We expect a similar size of nonladder co
rections in the present model. On the other hand, the fi
point Eq.~4.6! is smaller than the critical value Eq.~4.5! by
more than 25%. Although it is extremely difficult to draw
3-7
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FIG. 3. The scaling behavior in eight dimen
sions. The lines from right to left are graphs fo
L2/M0

25103,104,105,106,1010, respectively.
he
l
on
si
. I
th
th

te
D

e

al

b

ed

-
definite conclusion from these numbers, it is likely that t
ACDH scenario inD56 dimensions is still in the chira
symmetric phase even in beyond-the-ladder approximati
We also note that the ladder results are qualitatively con
tent with the naive dimensional analysis described in Sec
The bulk QCD coupling is not so strong as to destroy
perturbative picture completely, anyway. We thus expect
our results~Fig. 2 and Fig. 3! will be unchanged qualitatively
even beyond the ladder approximation.

B. Analytical study

The improved ladder SD equation can be investiga
analytically by applying further approximations. The S
equation can be greatly simplified if the integral kernelKB

imp

is approximated by

K̃B
imp~x,y!5

1

xD/221
u~x2y!1~x↔y!. ~4.9!

The approximation Eq.~4.9! can be justified in a wide rang
of the integration region (x.” y) in Eq. ~3.16!. We also note
that the kernel Eq.~4.9! has scale invariance like the origin
kernelKB

imp .
Although the SD equation~3.16! is still nonlinear even

under this approximation, we can overcome the difficulty
using the bifurcation technique@31#, in which the mass func-
tion B in the denominator in the SD equation is eliminat
and an infrared cutoffM[B(M2) is introduced instead. The
bifurcation technique is justified whenkD is close to its criti-
cal point.

The SD equation~3.16! then leads to a linear equation

B~x!5~D21!kDE
M2

L2

dy yD/222B~y!K̃B
imp~x,y!

~4.10!

and a subsidiary condition

M5B~M2!. ~4.11!
05600
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The integral equation~4.10! is equivalent to a set of a differ
ential equation,

Fx2
d2

dx2
1

D

2
x

d

dx
1~D21!~D/221!kDGB~x!50,

~4.12!

and boundary conditions

d

dx
B~x!U

x5M2

50 ~ IR-BC! ~4.13!

Fx
d

dx
22vGB~x!U

x5L2

50 ~UV-BC!,

~4.14!

with v being defined by

v[2
1

2 S D

2
21D . ~4.15!

It is easy to solve the differential equation~4.12!. Com-
bined with the subsidiary condition Eq.~4.11! and the infra-
red boundary condition~IR-BC!, we find

B~x!

M
5

1

2ñ
S x

M2D vF ~11 ñ !S x

M2D 2vñ

2~12 ñ !S x

M2D vñG ,

ñ[A12kD /kD
crit, ~4.16!

for kD,kD
crit and

B~x!

M
5

1

2in S x

M2D vF ~11 in!S x

M2D 2 ivn

2~12 in!S x

M2D ivnG ,

n[AkD /kD
crit21, ~4.17!
3-8
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for kD.kD
crit , where we find the criticalkD

kD
crit[

1

8

D22

D21
. ~4.18!

Actually, the nonoscillating solution Eq.~4.16! for kD

,kD
crit does not satisfy the ultraviolet boundary conditi

~UV-BC!. A nontrivial solution of Eq.~4.10! exists only for
kD.kD

crit , where the solution Eq.~4.17! starts oscillating.
The critical kD Eq. ~4.18! readsk6

crit51/10 andk8
crit53/28,

which are slightly smaller than the numerical results in
previous section, Eq.~4.5! and Eq.~4.7!. Noting the inequal-
ity of the integral kernelsKB

imp,K̃B
imp , however, these result

are consistent with each other.
We next turn to the scaling behavior near the critic

point. Equation~4.17! can be rewritten as

B~x!

M
5

A11n2

n S x

M2D v

sinFu2vn ln
x

M2G , eiu[
11 in

A11n2
.

~4.19!

Inserting Eq.~4.19! into the UV-BC Eq.~4.14!, we obtain

u2vn ln
L2

M2
1tan21 n5np, ~4.20!

with n being a positive integer. It can be shown that t
ground state corresponds to the zero-node (n51) solution
@32#. Noting thatu5tan21 n.n for n!1, we thus obtain the
scaling relation near the critical point,

M}L expF 2p

~D/221!AkD /kD
crit21

G . ~4.21!

Thus we found that the scaling of the phase transition
~4.21! is an essential-singularity type, the ‘‘conformal pha
transition’’ @19#, similar to the result of the quenched ladd
SD equation of four-dimensional QED@20#. It is suggestive
that, as we noted at the end of Sec. III, these SD equat
are both scale invariant.

It is also worth pointing out that the essential singular
may be used to construct models with large hierarchy
tween the cutoff and the weak scale without introducing
ditional fine tuning. This important property of our analys
is contrasted with the NJL approach@7#, where we need fine
tuning of the NJL coupling strength with the (M /L)2 level.
~See Appendix B for details.!

Near the critical point (n→0 limit!, Eq. ~4.19! gives

B~x!5M S x

M2D 2(D/221)/2F11
1

2 S D

2
21D ln

x

M2G ,

~4.22!

which is regarded as the asymptotic behavior of the solu
of the SD equation~3.16!.
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V. ANOMALOUS DIMENSION OF THE FERMION MASS

We next consider generally the high-energy behavior
the dynamical mass when DxSB takes place, based on th
OPE @33#.

The OPE of the time-ordered fermion bilinear opera
T@c(x)c̄(0)# is given by

2 i E dDx eiq•xT@c i
a~x!c̄b

j ~0!#

5c1
M~q,gD ;m!~GM ! i

jda
b1cc̄c~q,gD ;m!d i

jda
b~ c̄c!

1•••, ~5.1!

with c1 ,cc̄c being the Wilson coefficient functions, wher
a,b are for gauge indices andi , j are for spinor indices.

It is straightforward to evaluate the Wilson coefficie
function cc̄c in the (D541d)-dimensional gauge theorie
at the tree level,

cc̄c~q,ĝ;m!5
~D21!

h

CF

N

ĝ2

md

1

q4
, ~5.2!

where we adopted the Landau gauge. Comparing Eq.~5.1!
with the propagator of the fermion field

2 iS~p!5
1

A~2p2!p”2B~2p2!

.
p”

A~2p2!p2
1

B~2p2!

A2~2p2!p2
1•••, ~5.3!

we find that the high-energy behavior of the dynamical f
mion mass functionB(2p2) is given by

B~2p2!.p2cc̄c~p,ĝ;m!^c̄c&, ~5.4!

where we have assumed absence of wave-function renor
ization of the fermion field, which is justified in the Landa
gauge within the ladder approximation.

The solution of the RGE forcc̄c is given by,

F ]

]t
2b̂

]

]ĝ
1D2gm~ ĝ!Gcc̄c~etp,ĝ;m!50, ~5.5!

which is solved as

cc̄c~etp,ĝ;m!5cc̄c„p,ḡ~ t !;m…expE
0

t

dt@gm„ḡ~ t !…2D#,

~5.6!

with the running gauge couplingḡ(t):

ḡ2~ t !5
1

e2dt

ĝ2~m!
2S 2

d
11DVNDAb@12e2dt#

. ~5.7!
3-9
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For sufficiently larget, it is evident that limt→` ḡ(t)5g* .
The high-energy behavior of the Wilson coefficient functi
cc̄c therefore reads

cc̄c~etp,ĝ;m!}e(gm* 2D)t, gm* [gm~g* !, ~5.8!

or

cc̄c~p,ĝ;m!}~2p2!(gm* 2D)/2. ~5.9!

The high-energy behavior of the mass functionB in Eq. ~5.4!
thus is given by

B~2p2!}~2p2!(gm* 122D)/2. ~5.10!

The anomalous dimension at the fixed pointgm* can be
extracted from the numerical solution of the SD equati
For this purpose we define the ‘‘power’’ of the mass functi
(v)

v[
x

B~x!

d

dx
B~x!. ~5.11!

Figure 4 shows the ‘‘power’’ behaviors of the numeric
solution of the SD equation in six dimensions for vario
‘‘couplings.’’ It can be seen that the ‘‘power’’ is almost con
stant in the asymptotic regionB2(M0)!x!L2 as we ex-
pected from Eq.~5.10!. The behavior near the cutoffx.L2

in Fig. 4 is an artifact@34# due to the sharp cutoff introduce
in the analysis of the SD equation.4 This artifact disappears
at the limit of L→`. Reading the ‘‘power’’ in the
asymptotic region (v.21), we obtain

gm* .2v1~D22!.2 ~5.12!

for the D56 bulk gauge theory at the critical pointk6
crit .

A similar analysis is also performed forD58. The corre-
sponding ‘‘power’’ behavior is shown in Fig. 5. The anom
lous dimension is then

4Equation ~4.14! leads to the relation ofL2B8(L2)/B(L2)51
2D/2.

FIG. 4. The ‘‘power’’ behavior of the mass function in six d
mensions. The lines from left to right represent graphs fork6

50.122,0.125,0.130,0.140 @or B2(M0
2)/L254.1310210,5.4

31027,6.931025,2.231023] with L2/M0
251010.
05600
.

gm* .2v1~D22!.3, ~5.13!

for D58.
The analytical result in the previous section Eq.~4.22!

compared with Eq.~5.10! yields

gm* 5
D

2
21, ~5.14!

which agrees with the above numerical result.
It is remarkable that Eq.~5.14! is also consistent with the

conformal phase transitions for other dimensionsD<4: gm
51/2 for D53 agrees with the high-energy behavior@35#
and gm51 for D54 is the walking theory@21# obtained
from the ladder SD equation with fixed coupling. They a
obtained in different approximations: Namely, the result
three dimensions is obtained by running coupling with the
fixed point and that for six/eight dimensions by running co
pling with the UV fixed point, while the four-dimensiona
result is obtained by fixed coupling. However, the SD eq
tions in all these cases happen to be quite similar becaus
the scale invariance at the fixed point.

It should be emphasized that such a large anomalous
mension implies suppression of the flavor-changing-neut
current problem in the dynamical electroweak symme
breaking scenario as in walking technicolor@21#. The large
gm observed in this section is, therefore, good news for c
structing phenomenologically viable models in this directio

Moreover, the corresponding asymptotic behavior of
mass function Eq.~4.22!, B(pE

2);MD/2(pE
2)(12D/2)/2, still

yields strong convergence of the bulk decay constantFp
(D) ,

which may be calculated through the PS formula@4#:

~Fp
(D)!2;E dDpE

~2p!D

B2~pE
2 !

@pE
21B2~pE

2 !#2
,

}MDE dpE

1

pE
3

. ~5.15!

This suggests that the dynamically induced bulk Yuka
couplinggY5M /Fp

(D) can be made finite even in the ‘‘infi

FIG. 5. The ‘‘power’’ behavior of the mass function in eigh
dimensions. The lines from left to right represent graphs fork8

50.146,0.147,0.150,0.160@or B2(M0
2)/L255.831029,4.131027,

6.831025,6.831023] with L2/M0
251010.
3-10
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nite cutoff limit’’ L→`.5 This is in contrast with perturba
tion theory where the gauge theory inD ~.4! dimensions is
obviously nonrenormalizable. This situation is similar to t
renormalizability of the gauged NJL model@22#.

VI. CHIRAL FERMION ON THE 3-BRANE

We have investigated so far the possibility of DxSB in the
bulk. Since a chiral fermion in the bulk (D.4) has four or
more components, it is nontrivial to obtain a fou
dimensional chiral fermion with two components as an
fective theory. For such a purpose, we need to compactify
extra dimensions on an orbifold, in which unwanted comp
nents are projected out by its boundary conditions@7#. In this
section we describe a systematic procedure to find such
bifold compactifications.

We start with the minimal caseD56 for simplicity. The
chiral projection operators in six dimensions are given by

16GA,7

2
, GA,7[G0G1G2G3G5G6, ~6.1!

and the chiral fermionsc6 obey

GA,7c656c6 . ~6.2!

Hereafter we argue onlyc1 , the chiral fermion with positive
chirality in the bulk. It is easy to extend our arguments to
case ofc2 .

We next decompose the space-time coordinate into c
ventional and extra dimensions:

xM5~xm,ym!, m50,1,2,3, m55,6, ~6.3!

and assume a torus compactification,

c1~x,y5,y6!5c1~x,y512pR,y6!5c1~x,y5,y612pR!,

~6.4!

where the radii of the fifth and sixth dimensions are assum
to be the same~denoted byR) for simplicity. The chiral
fermion in D56 is then decomposed into KK modes:

c1~x,y!5 (
k5 ,k6

c
1

k5k6~x!expF i
k5y51k6y6

R G . ~6.5!

We next introduce the four-dimensional chirality matr
GA,5[ iG0G1G2G3. It is easy to show several identities:

@GA,5 ,GA,7#50, GA,5GA,551, trFGA,5

16GA,7

2 G50,

~6.6!

5This statement is of course rather formal in the sense thatkD in
Eq. ~3.17! is actually not an arbitrary adjustable parameter a
hence cannot be fine tuned tokD

crit , kD→kD
crit , to make the dynami-

cal massM finite through Eq.~4.21! in that limit.
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which indicate thatGA,5 andGA,7 are simultaneously diago
nalizable, eigenvalues ofGA,5 are61, and the sum of eigen
values of GA,5 is zero for a chiral fermion in the six
dimensional bulk. It is therefore evident that the zero mo
c1

00 in this torus compactification is vectorlike in its fou
dimensional effective theory. We need to eliminate unwan
components of the fermion on the four-dimensional brane
imposing a certain orbifold symmetry.

It should be noted, however, that the ‘‘parity’’ of extr
dimensions does not suit our purpose, because it is explic
violated in the chiral theory of the bulk.6 We then try to
adopt rotation in the extra dimensions by the anglep:7

c8~x,y5,y6!5expF i

2
S56pGc~x,2y5,2y6!

5 iS56c~x,2y5,2y6!, ~6.7!

with SMN being defined by

SMN[
i

2
@GM,GN#. ~6.8!

There are two possible boundary conditions of this or
fold:

c1~x,y5,y6!5~21!nS56c1~x,2y5,2y6!, n50 or 1,
~6.9!

which leads to the constraint for the zero mode fermion

c1
00~x!5~21!nS56c1

00~x!. ~6.10!

Noting the identityS5652GA,5GA,7 , we can rewrite Eq.
~6.10! into the conditions of the chiral fermion on the fou
dimensional brane:

GA,5c1
00~x!5~21!n11c1

00~x!. ~6.11!

The chirality on the brane is determined by the choice of
boundary condition,n50 or 1, in Eq.~6.9!.

It should be emphasized here that our procedures
scribed in this section do not depend on a particular choic
the representation of the Clifford algebra. We can easily g
eralize our arguments to an orbifold compactification fro
D52(k11) into D52k dimensions. By applying these pro
cedures repeatedly, we are thus able to obtain orbifold c
pactification starting from a bulk chiral theory ofD52k (k
>3) into a brane chiral theory with four dimensions.

VII. EFFECTIVE GAUGE COUPLING

Although theMS scheme has been widely adopted f
running gauge coupling in the improved ladder approxim
tion, it is worth investigating yet another choice, ‘‘effective

d

6CP is also violated in the six-dimensional bulk, since char
conjugation does not flip chirality inD54k12 dimensions.

7It is also possible to usep/2 rotation to define an orbifold, which
keeps chirality on the four-dimensional brane.
3-11
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gauge couplinggeff , which is closely related to the gaug
boson propagator and its momentum. For this purpose,
evaluate the one-loop gauge boson propagator in the t
cated KK effective theory on the 3-brane, and derive a re
tion between the effective and theMS couplings.

The effective gauge couplinggeff on the 3-brane is define
by8

2 i

geff
2 ~q2!

Dmn
21~q![

2 i

g0
2

D (0)mn
21 ~q!2~q2gmn2qmqn!P~q2!

~7.1!

with g0 being the bare gauge coupling, and the~four-
dimensional! gauge boson propagators are given by

D (0)mn~q!5
2 i

q2 S gmn2~12j0!
qmqn

q2 D ,

~7.2!

Dmn~q!5
2 i

q2 S gmn2@12jeff~q2!#
qmqn

q2 D .

Equation~7.1! reads

1

geff
2 ~q2!

5
1

g0
2

2P~q2!. ~7.3!

The vacuum polarization functionP(q2) can be decompose
into loops of each KK mode at the one-loop level:

P~q2!5(
nW

P~q2,mnW
2
!, mnW

2
5

unW u2

R2
. ~7.4!

In order to calculate the relation between the effective a
theMS couplings, we next evaluateP(q2,mnW

2) using dimen-
sional regularization (d[41e),

P~q2,m2!5CG@4I g~q2,m2!1~22D !I b~q2,m2!#

22hTRNfI f~q2,m2!, ~7.5!

where we used notations introduced in Sec. II and

I g~q2,m2![
G~22d/2!

~4p!d/2 E
0

1

dx@m22x~12x!q2#d/222,

8We use the background gauge-fixing method throughout this
tion. The Ward-Takahashi identities of non-Abelian gauge the
are QED-like and keep manifest gauge invariance in this ga
fixing.
05600
e
n-
-

d

I b~q2,m2![
G~22d/2!

2~4p!d/2 E0

1

dx~2x21!2

3@m22x~12x!q2#d/222,

I f~q2,m2![
G~22d/2!

~4p!d/2 E
0

1

dx x~12x!

3@m22x~12x!q2#d/222.

The counterterm for theMS coupling9 in the truncated KK
effective theory is given by

1

gMS
2

~m!
5

1

g0
2

2 (
nW

mnW .m

P~q250,mnW
2
!

1 (
nW

mnW<m
G~22d/2!

~4p!d/2
b8md24, ~7.6!

where the term(nW
mnW .mP(q250,mnW

2) comes from the loop of
KK modes heavier than the renormalization scalem. This
term is independent ofm and therefore does not affect th
RGE for the gauge coupling, in accordance with the dec
pling theorem that is assumed in the truncated KK effect
theory.

Taking thed→4 limit we now obtain

1

geff
2 ~q2!

5
1

gMS
2

~m!
2 (

nW

mnW .m

P.~q2,mnW
2
!

2 (
nW

mnW<m

P,~q2,mnW
2 ;m!, ~7.7!

whereP. andP, are given by

~4p!2P.~q2,m2![2CGE
0

1

dxF41
22D

2
~2x21!2G

3 lnS 12
q2

m2
x~12x!D

12hTRNfE
0

1

dx x~12x!

3 lnS 12
q2

m2
x~12x!D , ~7.8!

c-
y
e 9Strictly speaking, Eq.~7.6! is evaluated in the modified dimen
sional reduction scheme@36#.
3-12



ge

TOP MODE STANDARD MODEL WITH EXTRA DIMENSIONS PHYSICAL REVIEW D64 056003
FIG. 6. The graph of the dimensionless gau
coupling with CG53, Nf50, R2151 TeV, L
510 TeV,aMS(MZ)50.1. The solid line and the
dashed line represent theMS coupling and the
effective coupling of Eq.~7.11!, respectively.
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~4p!2P,~q2,m2;m![2CGE
0

1

dxF41
22D

2
~2x21!2G

3 lnS m22q2x~12x!

m2 D
12hTRNfE

0

1

dx x~12x!

3 lnS m22q2x~12x!

m2 D . ~7.9!

Note here that them dependence in the right-hand side of E
~7.7! cancels exactly. We also introduce a dimensionless
fective gauge coupling of the bulk gauge theory defined i
similar manner to Eq.~2.2!,

ĝeff
2 ~q2!5

~2pRA2q2!d

n
geff

2 ~q2!. ~7.10!

Using approximations described in Appendix C, we fin

1

ĝeff
2 ~q2!

.
l

ĝMS
2

~A2lq2!
1

1

~4p!3 F2
3

5
CG1

h

15
TRNf G

3 lnS 2lq2

L2 D ~7.11!

for the bulk gauge theory inD56 dimensions. Herel is
given by

l5expFCGX282
4

9
~22D ! C1 5

9
hTRNf

2b8
G . ~7.12!
05600
.
f-
a

In the analysis of the SD equation based ongeff , we adopt
the effective couplingĝeff

2 Eq. ~7.11! @instead ofĝMS
2 in Eq.

~2.14!# in the formula for the improved ladder approximatio
Eq. ~3.15!.

Several comments are in order.
~a! The decoupling theorem is violated in the effecti

coupling Eq.~7.11!, since it depends explicitly on the ultra
violet cutoff L. This result comes from the nonrenormali
ability of the six-dimensional bulk gauge theory.

~b! The effective coupling is larger than theMS coupling
by approximately a factor ofl21. ~See also Fig. 6.! If we
adoptĝeff instead ofĝMS in the improved ladder approxima
tion, there is a chance that the bulk QCD coupling even
six dimensions can be strong enough to cause DxSB in the
bulk under certain conditions.

~c! There still exists an upper bound onĝeff similar to the
nontrivial UV fixed point, which is roughly proportional to
the UV fixed point in theMS scheme.~See Appendix C for a
detailed discussion.! It is therefore still a nontrivial question
whether DxSB occurs or not in the bulk gauge theories ev
if we adoptĝeff in the improved ladder SD equation.

~d! We can define an analogue of the ‘‘b function’’ for
‘‘bare coupling’’ ĝL[ĝeff(q

252L2). ~See Appendix C.!
The upper bound ofĝeff can be regarded as an UV fixed poi
of such a ‘‘b function’’ and therefore independent of th
choice of the cutoff scaleL.

In fact the finite renormalization effect is the largest u
certainty of our analysis based on the improved ladder
equation, compared with other uncertainties such as the n
ladder effects, higher-order corrections, etc. A detailed an
sis of the improved ladder SD equation withĝeff will be
presented elsewhere@37#.

VIII. SUMMARY AND DISCUSSION

We have studied dynamical issues of the ACDH vers
@7# of the TMSM @1–3,5# within the framework of the im-
3-13
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proved ladder SD equation. Based on the truncated KK
fective theory @17#, we found that D-dimensional non-
Abelian gauge theories with compactified extra dimensi
possess a nontrivial UV fixed point. We then evaluated
UV fixed point by using the one-loop RGE, assuming
nonperturbative existence. Although the SM couplings in
D-dimensional bulk generally become strong beyond
compactification scale, the~dimensionless! bulk coupling
cannot grow beyond the UV fixed point and hence it
highly nontrivial whether or not DxSB really takes place.

For the simplest scenario of ACDH with the massle
gauge bosons and third family quarks and leptons living
the D-dimensional bulk and the rest in the four-dimension
brane ~3-brane!, we have the UV fixed points Eqs
~4.6!,~4.8!:

k650.091, k850.242 ~8.1!

for the bulk dimensions of six and eight, respectively.
On the other hand, the improved ladder SD equation inD

~.4! dimensions yields the critical points in six/eight dime
sions as Eqs.~4.5!, ~4.7!:

k6
crit50.122, k8

crit50.146. ~8.2!

These results are qualitatively consistent with a naive dim
sional analysis. The ACDH scenario thus can work forD
58 but not forD56 if we take the results Eq.~8.1! and Eq.
~8.2! at face value. It should be emphasized, however,
our analysis is based on the ladder approximation. We
tainly need further investigation to incorporate nonladder
fects in order to evaluate the critical value more accurate

We also discussed some subtlety about the ‘‘improve
ladder SD equation by replacing theMS running coupling by
the effective coupling including the finite renormalization e
fects. This makes attractive forces somewhat larger tha
MS coupling, so that the condensate can occur more ea
In the case of the ACDH scenario, top condensation may
possible due to effects of finite renormalization even in
dimensions, since the coupling has a chance to increase
the critical point for sufficiently large cutoff.

However, if the cutoff is too large, then theU(1) cou-
pling dominates the QCD coupling so that the MAC favo
other channels~tau lepton condensate! than the top quark
condensate. We then obtain some conditions for the ‘‘eff
tive ~phenomenological! cutoff’’ ( L) where the bulk QCD
and hypercharge couplings are aligned in the MAC in suc
way that only the top quark condenses while others~bottom,
etc.! do not. Another constraint comes from the top qua
mass which is related to the decay constantFp

(D) in D dimen-
sions through the PS formula, Eq.~5.15!. Thus it is related to
the weak scaleFp5246 GeV as

Fp
2 5

~2pR!d

n
~Fp

(D)!2. ~8.3!

These matters will be dealt with in a forthcoming paper@37#.
The salient feature of the improved ladder SD equation

D ~.4! dimensions is its approximate scale invariance. T
reason is the following. The bulk dimensionful coupling c
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be written as the dimensionless coupling multiplied by a f
tor having dimensions carried by the renormalization poinm
@see Eq.~2.11!#, which is then traded for the momentum
the running coupling in the improved ladder SD equatio
and moreover the running coupling quickly increases up
the UV fixed point. Hence the SD equation can be well a
proximated by the coupling at the fixed point. Then the
sulting SD equation~3.16! has no scale parameters exce
for the cutoff.

This is the very reason why we obtained the essent
singularity scaling of the conformal phase transition, E
~4.21!, with the analytical result for the critical point Eq
~4.18!

kD
crit5

D22

8~D21!
, ~8.4!

which was derived through certain approximations and
consistent with the numerical result above.

The essential-singularity scaling gives us the possibility
have a large hierarchy between the weak scale and the c
without fine tuning. Here we note thatkD is not an arbitrary
parameter but a definite number once the model is set up
should therefore note that it is impossible to take the cu
infinitely large.

In a realistic model based on the ACDH scenario, ho
ever, the bulk gauge coupling of QCD is determined throu
matching with the QCD on the 3-brane at the compactifi
tion scaleR21. The bulk coupling grows at high energy to
ward the UV fixed point and can exceed the critical coupli
only for a certain cutoff~‘‘critical cutoff’’ !. When we tune
the cutoff very close to the critical one, the SD equati
yields a very small dynamical mass compared with the c
off. We are thus able to determine the value of the cuto
which enables us to evaluate the low-energy predictions
the ACDH scenario~e.g.,mt andmH) more accurately.

Moreover, we had a very large anomalous dimension
~5.14!:

gm5
D

2
21, ~8.5!

which happens to coincide with the cases forD<4, i.e., the
quenched ladder SD equation~with nonrunning or walking/
standing coupling! for D54 (gm51) and also with the im-
proved ladder SD equation forD53 QED (gm51/2) where
the running coupling has an infrared fixed point. In all t
cases includingD<4, the SD equation has scale invarian
at the fixed point.
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APPENDIX A: ANGULAR INTEGRALS IN THE LADDER
SD EQUATIONS

The momentum integrals of the SD equations Eq.~3.5!
and Eq. ~3.6! can be decomposed into polar and angu
integrals,

E dDqE

~2p!D
F~pE

2 ,qE
2 ,pE•qE!

5CDE
0

L2

dy yD/221E
0

p

du sinD22 uF~x,y,Axy cosu!,

~A1!

with x[pE
2 , y[qE

2 , and CD defined by CD

[VNDA /B(1/2,D/221/2). In order to evaluate the angula
integraldu, we define the integral

I ~m,n,r;z![E
0

p

du
sin2n11 u cosr u

~z2cosu!m1n11
. ~A2!

It is easy to see that the angular integrals in Eq.~3.5! and Eq.
~3.6! can be expressed in terms ofI (m,n,0;z) and
I (m,n,1;z) with z[(x1y)/(2Axy). We obtain@25#

A~x!511
CFgD

2

x
CDE

0

L2

dy yD/221
A~y!

A2y1B2

3H D212j

2
I S 3

2
2

D

2
,
D

2
2

3

2
,1;zD

2
12j

2
I S 3

2
2

D

2
,
D

2
2

1

2
,0;zD J , ~A3!

B~x!5~D211j!CFgD
2 CDE

0

L2

dy yD/221

3
B~y!

A2y1B2

1

2Axy
I S 3

2
2

D

2
,
D

2
2

3

2
,0;zD .

~A4!

Using the relation

I ~m,n,1;z!5
1

2n12E0

p

du
1

~z2cosu!m1n11

d

du
@sin2n12 u#

5
m1n11

2n12
I ~m,n11,0;z!, ~A5!

Eq. ~A3! can be further simplified:
05600
he

r

A~x!511
j

2

D22

D21

CFgD
2

x
CDE

0

L2

dy yD/221
A~y!

A2y1B2

3I S 3

2
2

D

2
,
D

2
2

1

2
,0;zD . ~A6!

It should be noted thatA(x)51 holds for arbitrary dimen-
sions in the Landau gaugej50 @25#.

The integralI (m,n,0;z) was given for certain integer di
mensions in Ref.@25# and now is expressed in terms of th
hypergeometric functionF(a,b,g;z) for arbitraryD:

I ~m,n,0;z!5
2m1n11Ap G~n11!

z̃m1n11G~n1 3
2 !

3FS m1n11m1
1

2
n1

3

2
z̃22D , ~A7!

with

z̃[z1Az2215
max~x,y!

Axy
, z̃225

min~x,y!

max~x,y!
. ~A8!

We thus obtain the integral kernelKA ,

KA~x,y!5 z̃22F~2,22D/2,D/211;z̃22!, ~A9!

and the integral kernelKB @38#,

KB~x,y!5
1

max~x,y!
F~1,22D/2,D/2;z̃22!. ~A10!

Using the Taylor expansion of the hypergeometric functio

F~a,b,g;z!5(
l 50

`
~a! l~b! l

~g! l

zl

l !
,

~a! l[a~a11!~a12!•••~a1 l 21!,

we obtain

KA~x,y![
y

x (
l 50

d/2
~2d/2! l~ l 11!

~d/213! l
S y

xD l

u~x2y!1~x↔y!,

~A11!

KB~x,y![
1

x (
l 50

d/2
~2d/2! l

~d/212! l
S y

xD l

u~x2y!1~x↔y!

~A12!

for even dimensionsD541d>4.

APPENDIX B: THE NJL MODEL IN D „Ì4… DIMENSIONS

We consider the Nambu–Jona-Lasinio model10 in D
(.4) dimensions,

10In order to avoid the complexity associated with the definition
continuous chiral symmetry inD dimensions, we discuss in thi
Appendix the NJL model that has only discrete chiral symmetry~it
may be called the ‘‘Gross-Neveu’’ model!.
3-15
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L5c̄ iGM ]Mc1
G

2N
~ c̄c!2. ~B1!

The gap equation is obtained from the self-consistency c
dition for the dynamical massm. In the largeN limit, we find

m5
h GLD22

~4p!D/2G~D/2!
E

0

L2

dpE
2 S pE

2

L2D D/221
m

pE
21m2

,

5gE
0

1

dz zD/221
m

z1m2/L2
, ~B2!

where h (52D/2) represents the dimension of the spin
representation of SO(1,D21). The dimensionless NJL cou
pling g is defined byg[(4p)2D/2hGLD22/G(D/2). Ex-
panding the integrand of Eq.~B2! in terms ofm/L, we ob-
tain

1

g
5

1

D/221
2

1

D/222

m2

L2
1•••.

The scaling behavior of the NJL model inD ~.4! dimen-
sions is then given by

1

gcrit
2

1

g
5

2

D24

m2

L2
, gcrit[D/221. ~B3!

In order to obtain hierarchy betweenm andL, we thus need
a fine tuning of the NJL coupling strength at the precision
the (m/L)2 level irrespectively ofD for D.4. The situation
contrasts with the NJL model in dimensions less than f
where the NJL coupling needs to be close to its critical po
at the precision of (m/L)D22.

APPENDIX C: APPROXIMATE FORMULAS FOR geff

Equation~7.7! can be further simplified by making sev
eral approximations. We first concentrate our attention
P, . This term depends on the renormalization scalem and
therefore it can be minimized by taking an optimized cho
of m. We assume that the appropriatem2 is proportional to
2q2:

m252lq2, ~C1!

with l being a constant which we will determine belo
Since the mass of the KK modemnW is always lighter than the
renormalization scalem in P, , we can safely neglectmnW in
the following analysis. It is straightforward to evaluateP, ,

~4p!2P,~q2,0;m5A2lq2!

5CGF81
4

9
~22D !G2

5

9
hTRNf2b8 ln l.

~C2!

This term vanishes if we take the optimized value ofl:
05600
n-

f

r
t

n

e

ln l5

CGS 282
4

9
~22D ! D1

5

9
hTRNf

2b8
. ~C3!

We next turn toP. . The KK mass is always heavier tha
the renormalization scalem in this term, whilem is propor-
tional to q2 in the previous optimization procedure. W
therefore expandP. in terms of the powers of2q2/mnW

2 . We
find

~4p!2P.~q2,m2!52CGF2

3
1

22D

60 G S 2q2

m2 D
1

h

15
TRNfS 2q2

m2 D 1OXS 2q2

m2 D 2C.
~C4!

The sum of the KK modes can be approximated by replac
it with an integral:

(
kW

mkW.m

→ 1

n

2pd/2

G~d/2!
RE

m

L

dm~Rm!d21, ~C5!

which leads to

(
kW

mkW.m

P.~q2,mkW
2
!.

pR2

~4p!2n
F2

3

5
CG1

h

15
TRNf G

3~2q2!ln
L2

m2
~C6!

for D541d, d52. Combining Eqs.~C3!, ~C6!, and~7.10!,
it is now easy to obtain Eq.~7.11!. The validity of Eq.~7.11!
can be confirmed numerically also.~See Fig. 7.!

It should be noted that the approximation of Eq.~C4! is
not justified forl!1, however. In order to obtain the uppe
bound of ĝeff including such a possibility, we next evalua
the effective coupling without use of the approximations
Eq. ~C2! and Eq.~C4!. Using the approximation Eq.~C5!,
we obtain a formula for the effective gauge coupling stren
in six dimensions:

1

ĝeff
2 ~q2!

5
m2

~2q2!
S 1

ĝMS
2

~m!
1

b8

~4p!3D 1
1

~4p!3
@Kg~q2,L2!

1Kb~q2,L2!1K f~q2,L2!#, ~C7!

with
3-16
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FIG. 7. Graphs of the dimensionless gau
couplings. The solid line and the dashed line re
resent the effective coupling of Eq.~C7! and Eq.
~7.11!, respectively. We also plot with the whit
triangles the coupling directly calculated from th
definition of Eq.~7.7! without using approxima-
tion Eq. ~C5!. In this graph, we tookCG53, Nf

50, R2153 TeV, L56 TeV.
2 2 2 2 3/2
Kg~q2,L2![4CGS 5

18
1

1

6
ln

L

~2q2!
1

L

~2q2!
K̃g~q2,L2!D ,

Kb~q2,L2![22CGS 31

450
1

1

30
ln

L2

~2q2!

1
L2

~2q2!
K̃b~q2,L2!D ,

K f~q2,L2![22hTRNfS 47

900
1

1

30
ln

L2

~2q2!

1
L2

~2q2!
K̃ f~q2,L2!D .

The functionsK̃g ,K̃b ,K̃ f are defined by

K̃g~q2,L2![E
0

1

dx f~q2,L2,x!,

K̃b~q2,L2![E
0

1

dx~2x21!2f ~q2,L2,x!,

K̃ f~q2,L2![E
0

1

dx x~12x! f ~q2,L2,x!,

with

f ~q2,L2,x![S 12x~12x!
q2

L2D lnS 12
q2

L2
x~12x!D .

The integrals can be performed easily and we obtain~in the
Euclidean regionq2,0)
05600
K̃g~q2,L2!52
4

3
1

5

18

q

L2
1

1

3 S 42
q

L2D
3S L2

2q2D 1/2

tanh21A 2q2

4L22q2
,

K̃b~q2,L2!5
16

15

L2

q2
2

28

45
1

31

450

q2

L2

1
1

15S 42
q2

L2D 5/2S L2

2q2D 3/2

3tanh21A 2q2

4L22q2
,

K̃ f~q2,L2!52
4

15

L2

q2
2

8

45
1

47

900

q2

L2

2
1

15S 42
q2

L2D 3/2S 11
q2

L2D
3S L2

2q2D 3/2

tanh21A 2q2

4L22q2
.

It is evident thatĝeff reaches its maximum atq252L2. ~See
Fig. 7.! We obtain

K[ (
i 5g,b, f

Ki~2L2,L2!

5CGS 2
88

45
1

10A5

3
tanh21

1

A5
D 2

8hTR

45
Nf . ~C8!

Equation~C7! thus leads to an upper bound onĝ eff ,
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ĝeff
2 ~q2!,

~4p!3

K
for 0<2q2<L2, ~C9!

where we have assumed that theMS coupling is below its
UV fixed point,

ĝMS
2

,g
*
2 5

~4p!3

2b8
. ~C10!

It should be emphasized that Eq.~C8! is independent of the
cutoff L and thus the upper bound Eq.~C9! can be adopted
for arbitraryL. In order to clarify the point, it is illuminating
to defineĝL by

ĝL
2 [ĝeff

2 ~q252L2!. ~C11!

The couplingĝL can be regarded as a ‘‘bare parameter’’
B

s.

in
et

ll,

B

s

05600
f

the present model. An analogue of the ‘‘b function’’ for ĝL is
then given by

b~ ĝL![L
d

dL
ĝL5ĝL2

K

~4p!3
ĝL

3 . ~C12!

The upper limit (4p)3/K is thus given by the UV fixed poin
of the ‘‘b function’’ Eq. ~C12!.

Numerically we obtainK.1.63CG20.71TRNf . For large
2b8 or large CG , we thus find that the upper bound
roughly proportional to the UV fixed point in theMS
scheme,

~4p!3

K
.2

~4p!3

2b8
52g

*
2 . ~C13!
s.
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