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Signatures of noncommutative QED at photon colliders
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In this paper we study noncommutatiféC) quantum electrodynami¢QED) signatures at photon colliders
through pair production of charged leptoris (") and charged scalar$i("H ™). The NC corrections for the
fermion pair production can be easily obtained since NC QED with fermions has been extensively studied in
the literature. NC QED with scalars is less studied. To obtain the cross sectibii fér production, we first
investigate the structure of NC QED with scalars, and then study the corrections due to the NC geometry to the
ordinary QED cross sections. Finally by folding in the photon spectra foy aollider with laser backscattered
photons from thee*e™ machine, we obtain a 95% C.L. lower bound on the NC scale using the above two
processes. We find that, witfls=0.5, 1.0, and 1.5 TeV and integrated luminodity:500 (fb 1), the NC
scale up to 0.7, 1.2, and 1.6 TeV can be probed, respectively, while, for monochromatic photon beams, these
numbers become 1.1, 1.7, 2.6 TeV, respectively.

DOI: 10.1103/PhysRevD.64.056001 PACS nuni®erll.15—-q, 11.25.Mj, 13.40-f

[. INTRODUCTION information about the scal& of noncommutative geometry.
Two processeyy—I|*1~ and yy—H"H™ will be studied
The property of space-time has fundamental importancén detail. These processes are particularly interesting in
in understanding the laws of nature. NoncommutatN€)  studying the noncommutative QED effects because at lead-
quantum field theory provides an alternative to ordinarying order they are purely QED processes, eliminating prob-
quantum field theory which may shed some light on the detems associated with difficulties in having a full gauge theory
tailed structure of space-time and has been studied in the pagl sy(3).x SU(2), x U(1)y . This is because that only the
[1]. Recently NC quantum field theory and its applicationsy(n) group can be gauged consistently with NC geometry
have also been developed within string theories where ifg] The gauge group of the standard model has to be en-
arises in low energy excitations of D-branes in the presencgyrged in the presence of NC geometry, Efj. If weak
of a certainU (1) background field and has received a lot of interaction is involved, then there is a problem in identifying
attention[2]. A simple way to modify the commutation rela- NC effects such as the processe” —e e~ where ex-
tion for ordinary spacAe-timel is defined, with the modified change of thez boson also contributds).
space-time coordinatg, as The paper is organized as follows. In Sec. Il we study the
) vy—1*1" process in NC QED with monochromatic photon
:'_C 1) beams and laser backscattered photon beams for three values
AZTHYe of center-of-mass energies 0.5, 1, and 1.5 TeéVWe obtain
) ) ] 95% C.L. lower bound which can be probed on the NC scale
In the above the parameter, which has the dimension of \ |, sec. 11l we study the noncommutative scalar QED. We

energy, signifies the scale where NC effects become relevanf st derive the corresponding Feynman rules and use them to

Cuv iS a real antisymmetric matrix with elemepts of order gptain 95% C.L. lower bound oA from the yy—HTH™
one which commute with the space-time coordinette process. Finally in Sec. IV, we summarize our results.

Phenomenologically the NC scale can take any value,
the likely one being on the order of the Planck scalg. M
However, the recent studies in the area of large extra dimen-
sions show that gravity becomes strong at the TeV 4&le
and also one might see some stringy effects at this scale. In this section we study the effects of NC QED in the
Hence, it is justified if one takes the scale/ofto be onthe  yy—I1"1~ process. NC QED with fermions has been studied
order of the TeV scale. If this is the case, then whether NGextensively[4]. The relevant Feynman rules are shown in
geometry has anything to do with reality has to be testedrig. 1 and the Feynman diagrams fgy— "1~ are shown
experimentally. In this context the Next Generatiehe ™ in Fig. 2. It is clear from the Feynman rules as well as from
Linear Collider (NLC) will be an ideal machine to probe Fig. 2 that there are extra contributions to the ordinary QED.
such new physics effects. Tle& e~ version of NLC can be The ordinary QED vertex is modified to have a momentum
modified to givee" e, ey, and yy modes of the collider. dependent phase factor. Apart from this there are completely
Some of the authors have already studied the NC effects atew triple and quartic photon vertices making the NC QED
NLC [4-6]. like a non-Abelian gauge theory. The origin of phase factors

In this paper we study signatures of NC quantum electroin the vertices can be traced back to the famous Weyl-Moyal
dynamics(QED) at yy colliders. yy colliders can be very correspondencgl0] which we will state later. These new
sensitive to certain new physics beyond the standard modebntributions to the existing vertices result in deviations
[7]. We also find thatyy colliders can provide interesting from the ordinary QED predictions. We obtain the unpolar-

[Xu: X, ]=16,,

Il. yy—I1*1~ IN NC QED
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FIG. 1. Feynman rules for NC QED with fer-
mions.
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where the NC phase 8= (k- 6-k,/2). s=(k;+ ko) 2= (p;
+p2)?, t= (ky=p1)?=(ko—p,)?, and u= (ki—p2)*=(k,
—p,)? are the standard Mandelstam variables. In the
center-of-mass framé,andu can be further written in terms
of s and the angl& betweerk; (thez direction andp, with
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t=—(5/2)(1-2), u=—(s/2)(1+z), where z=cosf. The
angle ¢ is the azimuthal angle. So, the NC effect in the
yy— 111~ process lies in the even function $ihof & and
one can recover the ordinary QED result by taking the limit
6—0. The phase’ arises from thes-channel triple photon
vertex diagram and also from the interference between the
st-channel andgu-channel diagrams.

The cross sections are only sensitive to the NC parameter

Co, because the corrections only depend orf($kg- 6-ky)

which is equal to sifi(s4)(co,/A?)] for head-on photon
collisions. Because of this the cross section does not depend
on the azimuthal anglé and will be integrated over in the

£+ (p1)

FIG. 2. Feynman diagram foyy—1*1~ in
the presence of NC QED.
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FIG. 4. 95% C.L. lower bound o\ can be probed as a function
FIG. 3. Variation ofo(yy—I"17) and o(yy—H"H™) with of integrated luminosity from theyy—I|"1~ process. The solid
the NC scale\ at they/s,+s- =1 TeV NLC machine. The notations lines are using monochromatic photon beams, while the dashed
are as follows:(i) o(yy—I717) with monochromatic and with lines are with backscattered photons. The numbers adjacent to each
laser backscattered photon beams are represented by the curve wéthrve represent thd§e+e—-
© and with dotted lines, respectively. The solid lines adjacent to

these correspond to commutative QED contribution) o(yy . . .
—H*H") with monochromatic and with laser backscattered pho-“ne represents the ordinary QED cross section. It can be seen

ton beams are represented by the curve with dark boxes and witwat the ordinary QED gets a_ negative contribution from NC
dashed lines, respectively. The solid lines adjacent to these corréED; and as the NC scale increases the NC QED result

spond to ordinary QED contribution. For this we have fixed the@symptotically approgches the__o_rdinary QED one.
scalar massn, =100 GeV. To study the possible sensitivity of NLC to the NC scale

A we perform ay?(A) fit assuming that statistical errors are
cross section from now on. In our later discussions, we willGaussian and that there are no systematic ersgi&\) is
setcy,= 1 and study the sensitivity to the NC scale given by

NC theories violate Lorentz invariance. In general in dif-
ferent frames, the parametey,/A? may be different. How-
ever, in cases with head-on photon collisioksg: 8-k, )
= (Cop/A2) (Ko%KE—K2KD). Because of the fact thatk{k? Xz:L(UNc(A)‘“SM) 3
—k2k9) is invariant under a boost along thadirection, the Osm ’
Co,/A? is the same in all frames boosted in thdirection.
This is important for our later discussions on constraining the

parametelcOZ/A_z using backsc_atter_ed photon beams, WhiChwhereL is the integrated luminositygsy, is the ordinary
involves boosting along the direction from the center of

mass frame. Although the frames may be different for eacfQE[.) total cross segtlog;am:lNc(A) 'S the NC QED cross
energy of photons, we obtain constraint on the same pararr?—ecuon' By demandcl)ng =4, we obtain the lower bOUCVS'rO”
eter co,/A°. This is also true for our later discussions onthe NC scalet at 95/‘,’ C.L. we .denote this bound By™.
charged scalar production. One should note that the abo¥e take three machine energigse+e-=0.5, 1.0, and 1.5
situation does not happen in general. For example, in thdeV, for illustrations. In the case of the monochromatic pho-
y(Ky) v(K,) — y(ks) y(Ks) process, because several combi-ton collider, s ,= \Se+q-.
nations ofk; - 6- k; are involved(5], a boost along one direc-  In Fig. 4 we show the scal&'*"*"as a function ot. from
tion cannot make all of them invariant. the yy—1*1~ process. The solid lines in Fig. 4 are repre-
Now we study the cross section as a function of the NCsented as a function of integrated luminoditfor the mono-
scaleA. In obtaining the cross section we sum over threechromatic photon beams. The higher ttis,+. the larger
leptonic (e, u, 7) generations. We also assume the identificathe value ofA can be probed for a fixed integrated luminos-
tion efficiencies fore and 1, and 7 to be 100% and 60%, ity. This behavior can be understood from the nature of the
respectively. One should note that, due to the neglect oNC correction term which goes ass?/ A* to this process.
small lepton masses, there are singularities in the cross sec- Until now, we have discussed the monochromatic photon
tion whenz==1. To avoid these singularities, we demand peams. However, it is very difficult to obtain such a beam in
that the rapidity| | of each lepton should be less than 1. practice. A realistic method of obtaining the high energy pho-
This choice of rapidity cut corresponds to an angular cuton beam is to use the laser backscattering technique on an
|z|<0.76 on each lepton. In Fig. 3 we plot the variation of electron or positron beam, which produces abundant hard
this cross section witih for a monochromati¢line with ©)  photons along nearly the same direction as the original elec-
photon collider with energy/gy,/:l TeV. The adjacent solid tron or positron beam. The photon beam energy obtained in
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this way is not monochromatic. The energy spectrum of the .k

backscattered photon is given [i/i] a
SANNN @ = ek + ke)qexp(ifigh2)
F(X)= o 1 xt LS -
X)=——1—X - ; %
D(¢) 1-x &1-8 &1-x? ’“2
po=[1- 2~ Zlinarer o2 ! >
(f)— ¢ 52 n( g) 2 ¢ 2(1+§)2’ kL ka /,,
4 7
. = 2ie2g,s cos Blkz exp(jkalhs)
wherex is the fraction of the energy of the incidesit beam. ke k;
The parametet is determined to be 2(%/2) by requiring B N
that the backscattered photon have the largest possible en-
ergy, but does not interfere with the incident photon to create FIG. 5. Feynman rules for NC scalar QED.
an unwantede™ e~ pair which setsx,,=&/(1+&~0.828.
The cross section at suchsay collider with thee™e™ col- When the above Lagrangian is formulated with noncom-
lider center of mass frame energg is given by mutative coordinates, there are corrections. NC quantum

field theory can be easily studied using the Weyl-Moyal cor-
Zma do(X0X25,2) resAponQence replacing the product of two fieM§() and
f dz——7F7——. B(X) with NC coordinates by10]
Z

Xmax Xmax
o= fx Xmf(Xl) dXZf(Xz) dz
©)

1min X2min min
AGOB(X)—A(X)*B(x) =[5 YA B(Y) -y
To avoid the singularities at=*1 in yy—I*1", we @
make a cut on the rapidity of each lepton in the laboratory
frame to be less than 1 and also a cut on the lepton energyherex andy are the ordinary coordinates, adg=d/dx,
such that the minimal values fay , to bex; ;mi=0.5. With =alay.
this choice of cuts we show the variation of cross section ” ynder an infinitesimal local gauge transformatio(x),
with A in Fig. 3. The dotted lines represent the NC QED the transformation law foH is given by
cross section, while the adjacent solid lines correspond to the
ordinary QED results. Compared to the monochromatic case,
the cross section decreases. Naively one would expect it tcReH’(x)—>ReH*(x)—cos(%0Mﬁ§&;))\(x)lm H™(Y)|x=y
be the other way around because the cross section decreases
with energy. However, because of the cut>nyy,, a cer- —sin(%GW&;’“a;))\(x)ReH‘(yHX:y,
tain portion of the scattering is also cut off, which results in
a smaller cross section.
In Fig. 4 we present/x"’we';/gs a function ofL (dashed ImMH™(x)—Im H™(x)
line). In this case, for a giver's and integrated luminosity, Y _
the 95% C.L. lower bounds are vzaker than that of mono- 083 0,,, 0% FNO)IMH ™ (y) =y
chromatic photons. For example, @$.+.-=1 TeV and as- i y _
suming the integrated luminosity =500 fb ! the 95% ~Sin(z 0,,0xdy)M(X)ReH W=y ®)
C.L. lower bound can be probed anis 1.2 TeV, while in
the monochromatic case, the corresponding bound is 1.6 Writing the Lagrangian in NC geometry, one obtains the
TeV. This is due to the fact that the availabje center-of-  tree level NC QED with scalars. We have
mass energy is not fixed but has an energy spectrum, which
suppresses the NC effect. ] o B
L=(d,H"+ieH *A )*(9"H —ieA*H")
ll. yy—H*H™ IN NC SCALAR QED —mﬁHJr*H_. (9)

NC QED with scalars are less studied. In order to study

yy—H"H", we first construct the NC QED Lagrangian Because of the NC properties, the ordering of the fields in
with scalars in the following. The Lagrangian in the ordinary the above equation is important and should not be misplaced.

quantum field theory relevant tpy—H"H "™ is given by From this Lagrangian one obtains the Feynman rules given
in Fig. 5. The structure shows some similar momentum de-
L=(D*H™)*(D,H )—miH"H", (6)  pendent phase factor as in the NC QED with fermions. The
Feynman diagrams foyy—H™H~ are shown in Fig. 6. In
whereD ,=d,—ieA,, is the covariant derivative. this case we also get an additional contribution to the normal

056001-4



SIGNATURES OF NONCOMMUTATIVE QED AT PHOTON . .. PHYSICAL REVIEW [B4 056001

AN H=(p2) [ VUV VR H* (pr)
’Y(sz)\/\/\/\)_ ________ H+(p1) ’Y(sz)\/\/\/\)_ ________ H —(p2)
() () FIG. 6. Feynman diagram foyy—H*H™ in
the presence of NC QED.
® gy " 0
E v ///
\H o 5 \\
(z2) ) » H-(p2)

QED process from an ext®channel diagram, which has a do azig (m2+H)2  (m2+0)2 sm
non-Abelian kind of structure. The amplitude for this process = ;' — ;' — = Hz
can be expressed as zdp  4s |[(mi-1)% (MEZ—0)2 (Mi—1)(mi—u)
(M= (mi—u)
{1— n st 8|, (12)
S

i (k1-0~k2)
—SIN| ———
S

iM =2ie?e*(k;) e”(kp)el/2P1 P2 3

where the NC phases has been defined earlief
=m—(s/2)(1-B2), u=mi—(s/2)(1+Bz), and B
ﬁ_k22p1#p2V = \/1—4mﬁ/§ is the velocity of the charged scalar. In this
case also, in the limié— 0, one obtains the pure QED result.
Again this process depends only og,/A.
The scalars are similar to charged Higgs bosons in multi-
(10 Higgs-boson models. However the decay products are not
clear because the minimal standard model for electroweak
interactions has to be extended with NC geometry. The
charged scalar decay products may be modified. We will as-
In obtaining the cross section one should be careful abowgume that the decay productstéfare similar to the charged
the non-Abelian nature of the triple photon vertex since moreHiggs scalars in multi-Higgs models and can be studied ex-
than one gauge bosons are involved; that is one should treperimentally. One may also formulate NC QED with com-
the photon polarization sum with care to make sure thaposite charged scalars, such@a$ and K=, which will be
Ward identities are satisfied and also to guarantee that theommented on later.
unphysical photon polarization states do not appear. We have The variation of unpolarized cross sections withfor
worked with two methods with the same final results: onescalar massn, =100 GeV at\/§w=1 TeV is also shown in
using explicit transverse photon polarization vectors and anFig. 3 for both monochromati¢ine with dark boxes and
other using 12] laser backscattere@ashed linesphoton beams. The corre-
sponding ordinary QED contributions are also depicted by
the solid lines. From this figure it can be seen that the ordi-

X ((u_t)guv+ 2k2,u,(pl_ pZ)V_ 2klv(p1_ pZ)M)

ki-0-k
+c05< ! 2 Our

+ e (2K
2

2

+ gli/2ky-0-k; pZ#plv
u— mH

nAk+n"k®  n2kPk? nary QED gets a negative contribution from NC QED like
> eH(N) e (N)=—| gt + Al the yy— |71~ process, and as the NC scaleincreases the
N (n.k) (n.k) NC QED contribution asymptotically approaches the ordi-

(1) nary QED result. It is interesting to note that the cross sec-
tion in the backscattered case is larger than that of the mono-
chromatic case, unlike thgy—1"1~ case discussed earlier.

wheren is any arbitrary four-vector anklis the photon four-  This is because in this case no cut on the final product energy
momentum. The same technique has been applied in the applied, therefore all contributions are included. However,
above charged lepton pair production study. The unpolarizethe monochromatic case still has larger deviation between
differential cross section in they center-of-mass frame is the ordinary and noncommutative QED as can be seen in
given by Fig. 3.
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Now we will discuss our results om\'®“®" for yy  used. However, the loop corrections are much smaller than
—H"H~ with monochromatic photon beams. We use twothe NC corrections fory? as large as 4. The bounds we
charged scalar masses,; =100 and 200 GeV, for illustra- obtained are for NC corrections to good approximations.
tions. We displayA '®"®" as a function oL by the solid lines
in Fig. 7(a@) (my=100 GeV} and Fig. 7b) (my=200 GeV.

The numbers adjacent to each curve correspond to the mono- IV. CONCLUSIONS

chromatic photon collider. It is clear from these two figures | h ined the feasibil f ob
that A"’ depends on the scalar mass. The lighter the mass, " Summary, we have examined the feasibility of observ-

the larger the scale one can explore for a givenand inte- N9 th_e experimental signature pf noncommutative QED by
grated Iuminosity. For example, witgs, =1 TeV, Alower studying the dilepton and a pair of charged scalar produc-
- 1 ‘y‘y 7

are 1.53 TeV fomy, =100 GeV and 1.48 TeV fom;, = 200 tions at a high energy photon collider. We have parametrized

GeV, respectively. Like the dilepton final state, here one car'%he effect of NC QED by an antlsym_metrlc mati,, and
; . an overall NC scale\. We found that in our processes only
also probe the larger value dof if one goes to higher ener-

gies Co, contributes. Throughout our analysis we have set this

. S i
The results for the laser backscattered photon beams aPearameter to 1 and studied the sensitivitie g+~171 " and

+ -
also shown in Figs. (@) and 1b) by the dotted lines. In this y7_>H. H ProCcesses on t_h_e_ NC scalle .
case, there are no singularitieszat + 1. Therefore we will We first studied the sensitivity for monochromaig col-

o o liders. The variations of o(yy—I1*17) and o(yy
let z vary within the full allowed range, that is with;,= i N
—1znm=1. The integration lower limits fox; andx, are —H"H ) with the NC scale at \/Ew—l Tev were ob-

X = Am2/s andx. = 4m2/sx.. The maximum val- tained. We found that there are visible deviations between
Lmin H/SXmax 2min HP=TL : . ordinary and NC QED predictions for small, but whenA

ues ofx; and x, have already been mentioned in Sec. “'becomes larer asvmototically aporoaches We
Using Eq.(3) we then obtainA'®*®" as a function of inte- 9elonc asymp y app SM-

7 _ . . also obtained a 95% C.L. lower limit which can be probed
grated luminosityl, which is shown by the dotted lines in . .
. : n A from the above mentioned two processes as functions
Fig. 7. As before, we also study this case for two values o

scalar masses 100 and 200 GeV. We see that the boun%{ the integrated luminosity. It turned out that the higher

S :
which can be probed on the scale are in the range of 0.8—1. 'e available center-of-mass energy, the I_arger the NC scale
0.7-1.0, and 0.4—0.6 TeV fofs, —1.5, 1.0, and 0.5 TeV, one can pr.obe. We founq tha_t Wltly‘EW—O.S, 1.0, and

' o ) ' yy e ) ' 1.5 TeV and integrated luminosity=500 (fb 1) the NC
re.spectllvely. Trlefe bounds are slightly lower than that Obécales can be probed upto 1.1, 1.7, and 2.6 TeV, respectively.
tained inyy—I _I . ) _ Next we considered a more realistic case, where, the pho-

If the theory is applicable to composite particles such agon peams are obtained by a laser backscattered &6m
7~ and _Kl*_’ the NC scale that can be probed with  peams. In this case, the available center-of-mass energy
=500 fb~"is 1.5 TeV(1.2 TeV) for monochromatigback-  has a spectrum with a maximum energy around 80% of the
scatteregiphoton beams fog/s,, =1 TeV (\Sere-=1TeV).  s.... In general bounds on the scale that can be probed
Of course it may be difficult to carry out such experimentspecome lower. We have observed that {6 .- =0.5, 1.0,
with energies as high as what we are considering. and 1.5 TeV, with the integrated luminosity=500 (fb %),

In the above discussions we have used tree level crogpe NC scales up to 0.7, 1.2, and 1.6 TeV, respectively, can
sections, especially our reference ordinary cross sectionse probed.
ogyv. There are loop contributions which may lead to the In both monochromatic and laser backscattered photon
change ofy? compared with when tree cross sections arecollider cases, the bounds ok that can be probed using
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yy—HTH™ are slightly lower than those that can be ob- ACKNOWLEDGMENTS
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the signal of the NC QED. This analysis is now in progress.
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