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Comparison studies of finite momentum correlators on anisotropic and isotropic lattices
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We study hadronic two- and three-point correlators relevant for heavy to light pseudoscalar meson semilep-
tonic decays, using Symanzik improved glue, a D234 light quark, and nonrelativistic QCD heavy quark
actions. Detailed comparisons are made between simulations on anisotropic and isotropic lattices involving
finite momentum hadrons. We find evidence that having an anisotropy helps in extracting better signals at
higher momenta. Initial results for the form factdrs(g?) andfq(q?) are presented with tree-level matching
of the lattice heavy-light currents.
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[. INTRODUCTION menta. In theB meson rest frame, for instance, one would
ideally like to simulate pions with momenta all the way from
The use of anisotropic lattices with a finer grid in the p’=|p’|=0 to approximatelyp’=Mg/2. Correlators for

temporal direction §;,<ag) has been advocated for studies hadrons with finite momenta are much noisier than in the
of correlation functions that produce usable signals only oveZ€ro momentum case, this being particularly true for light
a limited time rangélg;qna in physical unitd1]. Even when hadrons such as _the pion. Hence one is dealing with a situa-
Tsignal IS reasonably largée.g.,>1 fm), if one is working tion whereTgjqn, is shrinking rapidly as the momentum in-
on coarse isotropic lattices with lattice spaciag-0.2 fm creases. Even for reasonably fine latticsg., a=as

. S s ~0.1 fm) onceTsqyny falls significantly below 1 fm one
only a few data points will lie withifl 5;4,,, and fitting data might consider going to anisotropic lattices.

becomes problematic. One is then naturally led to anisotropic T4 make the above statements more explicit, and come up
lattices in order to retain the advantages of working withyith concrete examples that could guide us in the future, we
only a small number of lattice sites in spatial directions anchave studied heavy meson semileptonic decays on both iso-
nevertheless have enough temporal resolution witljg, ;- tropic and anisotropic lattices with comparable coarse spatial
Many recent examples of successful employment of anisotattice spacings arounds~0.25-0.29 fm. Simulations of
tropic lattices have been in simulations on very coarse spatigemileptonic decays require good control over both two- and
lattices. These include investigations of the glueballthree-point correlators. We use identical operators and smear-
spectrum[2] and nonrelativistic QCD(NRQCD) studies ing functions on the isotropic and anisotropic lattices. This
of heavy hybrid statefs3,4] and of quarkonium fine structure way one creates similar signals on the initial timeslices and
[5]. Anisotropic lattices have also been useful in finite can watch how they propagate in time on the two lattices. We
temperature studief,7] and have been employed as anthen compare the ease with which physics is extracted on the
alternate approach to simulations of heavy qua&®].  anisotropic versus the isotropic lattice. We find that at higher
In several of these examples one turns to anisotropic latticesiomenta anisotropic simulations are superior in providing
for two reasons: to be able to extract a better signalmore reliable signals.
and to avoid discretization errors coming from laey® or Extracting a good signal is just one of the challenges one
aE. faces in lattice studies of semileptonic decays involving had-
In this paper we investigate the extent to which anisorons with high momenta. One must, for instance, also control
tropic lattices could also be useful in simulations of finite large ap discretization errors. The second objective of the
momentum hadrons. We have in mind, for instance, heavpresent simulations was to check how successful highly im-
meson semi-leptonic decays suchBas w(p)lv [10]. Inor-  proved quark and glue actions are in removing lattice arti-
der to be able to cover the full kinematic range of interest tofacts. Working with Symanzik improved gauge actigmg],
experimentalists and map out tlg dependence of form D234 light quark{12] and O(a?) improved NRQCD heavy
factors @#=p*—p'#, with p# the momentum of the decay- quark [13] actions we have studied dispersion relations,
ing B meson andp’# the pion momentumone needs to speed of light renormalizations and also heavy meson decay
calculate matrix elements between hadrons with large moeonstants at finite momenta. We find a continuumlike behav-
ior within 5% up to aboutp~1.2 GeV. Even forp
~1.5 GeV, which on our coarse lattices corresponds to

* Associated with the UKQCD Collaboration. a,p~2, deviations are 10% or less in many cases. Although
"Present address: Department of Physics and Astronomy, Univeadditional tests are clearly still called for, we are very en-
sity of Edinburgh, Edinburgh EH9 3JZ, United Kingdom. couraged by these findings. In the future we plan to go to
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lattices finer than those used in the present initial study. Oug=2N_/g? andu, is the tadpole improvementuy” factor,
experience to date indicates it may not be necessary to g@r which we use the Landau-link definition in this paper
very much finer to obtain phenomenologically meaningful[16]. For eachg, u, must be determined iteratively via
results. With highly improved actions, simulations of had-gjmyjations. One could also consider using perturbative ex-
rons with momenta as high @s-1.5-2.0 GeV are possible ressions fou, . On anisotropic lattices one can drop rect-

onceas<0.2 fm. It is not necessary to hawp<1. We  5n4jeq that extend over two links in the time direction and
also note that the findings of the present work should cary, .« has

over from the actions used here to other highly improved
actions. For instance, the most highly improved light quark
action with better chiral properties than the D234 action

would be the staggered acti¢fh,14]. One could also con- _ 1(5P.. 1R. 1Ru
sider using heavy clovef15] rather than NRQCD heavy  S&"<9=-—p —{5%—1—2%—1—2%]
quarks. It will be worthwhile investigating these alternative x,s>s' X0 Us Us Us
options in the future.

In Sec. Il we introduce the highly improved gauge and —,32 Yo fﬁ_i Rst 4)
quark actions used in our study and discuss simulation pa- xs | 3udu? 12ytu?

rameters. In the current exploratory study, we have not tried

to tune quark masses very accurately. On both the isotropic

and anisotropic lattices we work with one light quark mass ) ) o

slightly heavier than thetrangequark. On the anisotropic 1he variabless ands’ run only over spatial directions and
lattice we accummulated results for two heavy quark masse§n€ must now distinguish between temporal and spatial
one around thebottom quark and the other close to the Landau-link tadpole improvement factows and us. xo is
charmquark. On the isotropic lattice only one heavy quarkth"? bare anisotropy. It differs from the true or renormalized
mass near theottom quark was used. Section Ill concen- anisotropy,

trates on two-point function results. We compare effective

masses on isotropic and anisotropic lattices and discuss dis-

persion relations and ratios of decay constant matrix ele- x=asla, ®)
ments for heavy mesons with and without spatial momenta.

In Sec. IV we present results for three-point functions rel-

evant for pseudosca|a.|:) pseudosca|ar Sem"eptonic decays_once quantum corrections are taken into account. Just as one
Again comparisons are made between signals on isotropi¢xes lattice spacings through some experimental input in

and anisotropic lattices. The form factdrs(q?) andf,(q?)  conventional lattice calculations, when working on aniso-
are extracted. tropic lattices one must, in addition, determine the ratio of

the spatial and temporal lattice spacings/a; via some
physics requirement. This leads to the renormalized anisot-

Il. GAUGE AND QUARK ACTIONS AND SIMULATION ropy x. In the absence of lattice artifacts, it should not matter
PARAMETERS which physical quantity is used to fix. Conversely the de-
A. Gauge actions pendence oj on how it was determined provides a measure

of discretization errors in the lattice system. In Réf7] the

We use the standard Symanzik improved iSotropiGenormalized anisotropy was calculated for the action
gauge action including square and six-link rectangular |00p%gm|so) of Eq. (4) using both the torelon dispersion relation

[11] and the sideways potential method for several valueg of
and y,. Agreement was found between the two determina-
Si__g S SPu 1R, 1R, (1)  fions within 3—-49. We will be using those resuilts in this
G xido |3 uf 128 12 8 paper.
An alternate and equivalent procedure would be to write
with
Staniso__ g 3 n EE_EE_i Ry
P L Re(THU (U (x+a,)U" (x+a,)Ul0D ¢ xs=s X (3 ug 12ug 12 4
uv Nc m v [y v/=wv ! '
2 x|4 Py 1 Rg
B2 V3 2z 1o ®
xs 7 ugUug UgUy
1
_ t
Ru= N—CRe(Tr{UH(x)UM(er a,)U,(x+2a,)U,
(n=x/x0), and adjusty at fixed y to satisfy some physical
X (x+a,+a,)UL(x+a,)Ulx)}). (3®  criterion.
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B. Light quark actions 1 Co 1
iSO _ A3 T Ry 5(3
The isotropic D234 quark action is given by2] S(Da;éic’)_asat; ‘I’c[ YtgtVtJr a ( V—€C3V( V| +mg
Si%=a> ¥, ytE(Vt—ECg,tV(g)) 2 1o, s (g Lo gm
D234 = Yol My 6 t - = ;Vt +¥Zl )= 5CaV]
t s |
Co- (- 1 . L =
+_0’y V__CSV(B) +m0 CF |O'MDF#V
a 6 —rasTT ¢ (11)
nwhv
ra| 1 1
- | | V- 1—204tV§4)) _
a =§ Wy V,+ y-(V——C3V() +a,mg
3
1 1
+ 23 (v dewwp| :
2~ J 12747V r
a 1 __ (2) (2) (4)
j ) 5| xVP+ ]§=) (Vi 5G4V ”
Crio, Fr
—ra- MZ ¢ (7 Ce. -~ a@
a —r—io, F* v, (12
4 K W

— 1
=2 \P[ yt(vt— 5CaVt?

+Co;" ( V*_Ecsv*(g)) where we have used the spatial lattice spacindo rescale
6 the quark fields according to E(R). Note that the renormal-
ized anisotropyy=as/a; appears in the quark action. In a
came— L{(V(Z)— ic V("')) quenched calculation it is permissible to first fixn the pure
Mo 2 t 1274t glue sector, and use this value for the ratio of spatial and
. . temporal Iadttic]:el's%a:cings in tf;g qtl',larkt a(;tﬁi:&g"lzzgj")fhasd its
Fooo=u own “speed of light” renormalization ternC,. For fixed y
+j§1 (VJ(Z)_ 1_2C4VJ(4)”_rT'UWFM ]q" ®  this coefficient must be tuned to ensure correct dispersion
relations in fermionic correlators. In the future, especially in
The quark fields¥, and the dimensionless lattice fields ~ unduenched calculations, it may be simplest to work with
are related through Egs.(6) and (12) at fixed y, and simultaneously and itera-
tively adjust » and C, using appropriate physics criteria.
V=a%2y . (9) Another possibility is to use perturbative expressions sfor
andC, throughout. In the present paper we will use nonper-
Definitions for tadpole improved dimensionless covariant defurbatively determined, u,, us andu, from Refs.[12,17]
rivatives and field strength tensors are summarized for in@nd @ one-loop perturbative estimate @y from Ref.[18].
stance in the Appendix of Ref18]. We note here just the Just as inS§3%,, we setCz, C, andCr in S§53539 equal to
relation between unimprove#,,, and theO(a?) improved  unity.
field strength tensorﬁw used in D234 actions:
C. Heavy quark actions

It suffices to write down one expression for both the iso-
tropic and anisotropic NRQCD actions, the former corre-
w sponding simply toy=1 [13,19. We work with dimension-
less two-spinor fieldsb=a2*®. in terms of which

~ 5 11 1 +
Fu(X)= §F,W(X)— 5 u—z[U,L(X)F,w(XJr a,)U ,(x)

+Ul(x—a,)F,,(x—a,)U,(x-a,)]—(p=v)

— — a;oH aHp\"
Snroco= 2 ‘cbtcbt—cbt( 1-— ) ~n | Vi
1/1 1 X t t
+ | S+ S5-2|F,x). 10
6luz  u? wrlX) 19 aHo|" a;oH
w W - =5 - b, .1, (13
The last term is needed so that factors aof 1are correctly ot ot
removed from contributions tt FMU’r and UTFWU that  Hg is the nonrelativistic kinetic energy operator,
end up being four link objects rather than six link ones. Ef-
fects of this term are non-negligible on coarse lattices. A®
. . - - aHp=— 57—, (14)
After tadpole improving the action we set the coefficients, 2x(asMy)
Cii, Ci, CpandCr equal to their tree-level value of unity in
our simulations. We also work with=1. and 6H includes relativistic and finite-lattice-spacing correc-

The anisotropic D234 action is given by tions:
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TABLE |. Simulation details.

Isotropic Anisotropic
lattice size 8x 20 83x 48
No. configs 200 200
B 1.719 1.8
Landau linkuy 0.797[12] ug=0.721u,=0.992[17]
Xo 6.0
x=as/a; 1 5.3[17]
Co 1 0.82
aj! 0.8(1) GeV 0.11) GeV
a; ! 0.8(1) GeV 3.14) GeV
a;mg 1.15 0.39
P/V 0.728%5) 0.7266)
typical No. of BiCGstab iters 140-160 220-270
asMg 6.5 7.0 and 2.0

quenched calculations. This is also consistent with Ref.

a,0H= —Clﬁtrﬁ-i— cZI—Z(V-E—E- V) [17]'s finding for a~* from the string tension. In heavy-light
XtdsMo 8(asMo) physics one expects light hadrai ! values to be more
appropriate. The “speed of light” renormalization coefficient
1 TVE_ BT (A®)? Co was estimated from the one-loop perturbati It f
. o (VXE-ExV)—c, 0 p perturbative result for
8(aMg)? 8x(asMg)3 x=5.3, namely fromCy=1—0.45x, [18], usingas~0.4.
The bare light quark mass has been adjusted so that one
A®) (A2 has the same pseudoscalar-to-vector ratio, P/V, on the isotro-
*Cs 24x(asMoq) ~Ce 16nx%(aM )2’ (15 pic and anisotropic lattices. We found that this required ap-
S0 proximately a factor of 3/2 more BiCGstab iterations to cre-
All derivatives are tadpole improved and ate light quark propagators on the anisotropic lattice
compared to on the isotropic oriactual numbers are given
5 ° 2 4 ° 4 in Table ). We believe the reason for this is critical slowing
Af )_;1 VJ( LAl )_le VJ( g 18 Gown due to an increase in the condition number ettt .

Although our pion is still quite heavy~840 MeV), on the
= 1 anisotropic lattice we did, on a few occasions, encounter
Vi= Vi g Vi (17 problems with “exceptional” configurations. In the process
of accumulating an ensemble of 200 configurations, 5 had to
The dimensionless Euclidean electric and magnetic fields arfee skipped. We will see below that the anisotropic pion
propagators are noisier than the isotropic ones for the same
Ex=Fu, By=-— %Eijkiiij ) (18)  pion mass. Other mesons such asghendB, which use the
same light quark propagators are not affected, however. Al-
V., V), j=234 andlEW are the same as in the light though this aspect of simulations on anisotropic lattices is
quark actions of Sec. Il B. In our simulations we again set alvorrisome and needs further study, we do not, at the mo-
ci=1. ment, believe that this implies anisotropic lattices will never
be useful for light quarks. The problem has been exaggerated
in the present calculations since we are on very coarse spatial
lattices andy=>5.3 is a large anisotropy. In future, more re-
Simulations have been carried out oA>&0 isotropic  alistic, simulations we plan to use finer lattices and work
and 8x 48 (y=5.3) anisotropic lattices using ensembles ofwith moderate anisotropies suchys 2—3. We expect to be
200 configurations each. Details are summarized in Table lable to go to lighter pions there without encountering prob-
The B, up, anda™* values are taken from Reff12] for the  lems. We mention that the tadpole improvement adopted in
isotropic and from Ref[17] for the anisotropic lattices, re- Eq.(10) leads to a larger effectivecs,, than has been used
spectively. The latter reference also proviggdandy. None in the past, and it is known that largss,,, such as the
of the lattice spacing determinations are very precise. For thonperturbativecs,y, leads to problems on coarse lattices.
anisotropic lattice we have taken the 4.503 GeV quoted iThis phenomenon appears to set in at heavier quark masses
Ref.[17] for at‘1 fromY 1S-1P splittings and reduced it by when y>1. There were no hints of problems with excep-
22%, approximately the amount by which light hadrontional configurations on our coarse isotropic lattice for the
a~! values differ from those fixed byY splittings in light quark masses considered.

D. Simulation parameters
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FIG. 1. Fractional errors iBs meson correlators for moment@,0,0 and(1,1,.
[ll. RESULTS FROM TWO POINT FUNCTIONS the right. In Figs. 4 and 5 the isotropic results in physical
units have been shifted down for clarity. We label time slices
such that sources are &t 0. By looking at the anisotropic
data one finds plateaus starting at aboa0.3—-0.4 fm for

We calculated two-point correlators for the light-light
pseudoscalar and vector, tBg andB? mesons, and, on the

anisotropic lattice, also for thBs andD? mesons. We will . . )
. PV p . all momenta. This must also be the case for the isotropic data
generically call these the “pion,” “rho,” “B meson” and ‘D

meson” channels respectively. Current sinks correspondin ince the O“g"?a' signa]s are essen.tially the same. Hoyvever,
to the temporal and spatial components of the heavy-ligh ased onlylon |nformat_|on from the Isotropic data, this is not
axial vector currents were also considered. We employe@!Ways obvious, especially for the higher momenta. There is

gauge invariant smearings, separately for the light and hea&/SC an unfortunate upward fluctuation at arowrd.7 fm
quarks, of the form which makes fitting the isotropic data more difficult. One

agonizes over whether to fit starting before or after the hump.
This illustrates some of the immediate advantages of aniso-
tropic lattices. Once a plateau has set in it is more easily
recognized, and one is also less sensitive to one or two points
fluctuating up or down, since there are enough other points
around.

(14 CcsmA @) 63 (x—xo). (19)

For light quarks we useb= 10 andcg,,= 1/12. We have two
smearings for the heavy quarks both wath,= 1/24 but with
differentl values,l;=2 andl,=10. We found that, works ) ] ) o
better for zero and low momentu mesons and; gives Effective mass plots for pions and rhos are given in Figs.
better signals for higher momentum correlators. We accumu@—9 and corresponding correlator fractional errors in Figs.
lated data at 7 spatial momenté,0,0, (0,0,, (0,1,), 10 and 11.Again, isotropic data in physical units Figs. 7 and
(1,1,9, (0,0,2, (0,2,2 and (0,0,3 in units of 2w/aL, aver- 9 have been shifted down for clarity. In contrast to e
aging over all equivalent momenta. In the following subsec/neson case, one sees that fluctuations are considerably larger
tions we will compare effective masses, present fit results fofor the pion correlators on anisotropic lattices. This indicates

a small number of states and dispersion relations, and look &#at some configurations are close to being “exceptional.
ratios of matrix elements with current sinks. The rho correlators show no enhanced errors relative to the

isotropic lattice. Despite the larger fluctuations, it is not dif-
ficult to fit the anisotropic pion data, and fluctuations cancel
to some degree upon calculating physical quantities such as
We start by comparing raw data f& meson correlators dispersion relations or semileptonic formfactors. In Fig. 12
on the anisotropic and isotropic lattices. Figures 1 and 2ve show fitted energies for the anisotropic lattice pion and
show fractional errors of the correlators versus physical timeho at momentum(1,1,1) versust,,;,/a; from single cosh
for several momenta. One sees that, where there is overlafits. The pion energies have larger errors but look otherwise
the fluctuations oB correlators are identical on the two lat- normal. In future simulations one will have to monitor pion
tices. Effective mass plots are presented in Figs. 3—5 for theorrelators carefully.
B meson for three representative momenta. Each figure Meson correlators were calculated up to the center of the
shows results in lattice units on the left and results in physiiattice in the time direction. We find that for zero and low
cal units, using central values of the scales from Table I, omomentaT;q,, covers the entird/2 region(1.24 fm for

A. Effective masses
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FIG. 2. Fractional errors iBs meson correlators for moment@,0,2 and(0,0,3.

the anisotropic lattice and 2.25 fm for the isotropic lattice often adopted a criterion wherebytﬁﬁi)n is the smallest,,;,

However as the momentum increas@gig,, Starts to

which gives an acceptabl®-value (>0.1) then our pre-

shrink. For the B meson this occurs only at the highest twderred choice fort,,;,, in a single exponentialcosh fit to a
momenta(0,2,2 and (0,0,3. For the pion and the rho, single correlator would bé”?i)n+ 2a, [20,21). This is a fairly
Tsignal shrinks below~1 fm once one goes beyond mo- conservative criterion leading to larger statistical errors than
mentum(1,1,1). It then becomes much harder to obtain reli- if one chooses a smalldy,;,. We will call fits using this
able information from the isotropic lattice. For instance, itcriterion “B fits.” In the present calculationB fits would
should be obvious from Fig. 9 that trying to fit the isotropic dictatet,;,/a;=3 or 4 for most of our fits to isotropic data.
data is considerably more frustrating than carrying out fits toiVe will abide by thist,,;, for fitting B meson correlators.
the anisotropic data. Figure 13 shows fitted energies versugowever, for the rho and pion we will be less conservative
tmin/a; for the isotropic rho and pion with momentum and uset,,,/a;=2, which is equal to 0.5 fm in physical
(1,1,9. This should be compared with the corresponding anunits. Q-values are always acceptable already fgr,/a;
isotropic results in Fig. 12. With the isotropic data, picking =2. We call this latter choice A fits.” Based only on the
tmin IS extremely tricky. In past work on isotropic lattices we isotropic data, one would be hard pressed to argue Avfitg

1-5 T T T T | T T T | T 1~2 T T T T | T T T T |
3 B, M i )
s veson - B, Meson momentum (000) -
- momentum (000) L i
L 1.0 = —
) i
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5t S L% & ]
3 5 ol S g g -
° L $ : g ¢ g ¢ 3 § § :
. R = @

0.5 |— ¢ isotropic | L 4
) I anisotropic - .
- 1 0.6 — -
- P Tttt i o isotropic ]
- L O anisotropic 4

O‘O 1 1 1 1 | 1 1 1 1 | 1 0.4 1 1 1 1 | 1 1 1 1 |

0 10 20 0 1 2

time/a, time in fm

FIG. 3. Effective masses for th@,0,0 momentumB; meson correlators in latticgeft figure) and physicalright figure units.
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FIG. 4. Effective masses for thd,1,) momentumBg meson correlators in latticeft figure) and physicalright figure units. The
isotropic points to the right have been shifted down for clarity.

should be preferred oveB fits. In the present comparison dent quantities. For thB meson on both lattices and the pion
study, however, we have additional information from the an-and rho on the anisotropic lattice we can go to the highest
isotropic lattice that tells us that plateaus have set it by momentum(0,0,3. On the isotropic lattice, pion and rho
~0.3-0.4 fm, i.e., beforet=0.5 fm, and henceA fits results can only be extracted up to moment{d®,2 using
should be fine. We should also note that correlated fits werd fits. With B fits, only momenta up té1,1,1 can be reached
used throughout our analysis. and errors are larger than withfits.

The results presented in this subsection demonstrate that Another lesson to be drawn from the present exercise is
for the pion and rho correlators there is a clear advantage tthe importance of good smearings. Here we can get away
anisotropic simulations starting with momenta aroundwith single exponentialcosh fits, because our smearings are
(1,1,1. ForB correlators benefits start arouf@?2,2. Below  reasonable and plateaus set in well witi, 5. In the case
we will present physics results extracted from the isotropicof poorer smearings it would still be advantageous to be on
and anisotropic lattices, concentrating on momentum deperan anisotropic lattice with many data points withligignaj,

1-5 T T T T | T T T T | T T 1~2 ? T T T T T T T T
- B, Meson . i momentum (00!3) 7
- §§ momentum (003) - L § N
T l [ o5 ]
Lo

| | ]
1.0 — — I % il
L 4 % L i
s | | & | I -
= i | g 08| 3 } —
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0.5 __ <o isojcropic . __ = I 1
I anisotropic 3 .
i ] 06— —
FYoeo, 8 NSRRI B 1! 1 11111 I T : :
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B 7 L B, Meson O anisotropic -

O‘O 1 1 1 1 | 1 1 1 1 | 1 1 0’4 1 1 1 1 | 1 1 1 1 |

0 10 20 0 1 2

time/a, time in fm

FIG. 5. Effective masses for th®,0,3 momentumB; meson correlators in latticeft figure) and physicalright figure units. The
isotropic points to the right have been shifted down for clarity.

055002-7



S. COLLINS et al.

PHYSICAL REVIEW D 64 055002

1.5 T T T I T T T T T
3 PION
- momentum (000)
™ 3¢ 3
10—
g L
= |
@
B n s t .
05— 1so. ropic o
| I anisotropic |
i I
| e 11, 11 1 1 T
0.0 1 1 1 1 | 1 1 1 1 |
0 10 20

time/a,

1‘4 T T T | T T T T |
'Y PION momentum (000) |
1.2 — —
I ]
> 1.0 —
[ &] - P 1
s I ﬁ :
- | R4 < o ¢ ]
< 08 @ﬁ@@@@ —
0.6 — ]
i ¢ isotropic ]
L | O anisotropic | ]
0.4 1 1 1 1 1 1 1
0 1 2

time in fm

FIG. 6. Effective masses for tH®,0,0 momentum pion correlators in latti¢eeft figure) and physicalright figure units.

since that would facilitate multi-exponential fits. Going to
lattices with longer time extent in physical units in search of
a plateau will not work for high momentum correlators, since
Tsignal Stops well before the end of the lattice. It is much
more profitable to explore better smearings and/or increase

the number of points withiTgignq)-

B. Dispersion relation

E2(p)—EZ(0
Clp)= 1 /%U,

Wherepz||5| andE(p) is the total energy of the particle. In

(20

a relativistic theoryC(p) =1 for all p. C(p) is shown for the
pion and the rho in Figs. 14 and 15. One sees that on both

consider the quantitj12]

B T T T T | T T T T | T T ]
- PION .
5 momentum (111)
— m iq -
- i
= L 4
o
1 — pum—
X isotropic
B I I anisotropic -
1
i ! 111 111 I I ]
O 1 1 1 | | 1 1 1 | | 1 1
0 10 20
time/a,

isotropic and anisotropic lattices, continuum behavior is ob-
A convenient way to investigate how well lattice simula- served to better thar 5% for momenta of up to 1.2 GeV at

tions are reproducing relativistic dispersion relations is tothe minimum and, in the case of the rho, even beyond that.

Hence, it appears one can simulate particles with momentum

M in GeV

T

momentum (111) -

i )

¢ isotropic -
O anisotropic

time in fm

FIG. 7. Effective masses for th&,1,1) momentum pion correlators in latti¢eeft figure) and physicalright figure units. The isotropic
points to the right have been shifted down for clarity.
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FIG. 8. Effective masses for tH®,0,0 momentum rho correlators in latti¢eeft figure) and physicalright figure units.

as high ap~1.5/a, to 2.0& without introducing large dis- and 15, which are based on the full set of 200 configurations
cretization errors. One notes a slightly better behavior orwith Cy=0.82. Although effects from the one-loop correc-
isotropic lattices compared to on anisotropic lattices for theion are not large, nevertheless, they are crucial for obtaining
smaller momentum points. The anisotropic results are morthe ~2% to ~5% agreement with relativistic behavior.
sensitive to the tuning o€, for which we have used the Even if we had attempted to tur@, nonperturbatively, it
one-loop estimate. We have studied the effect of this onewould have been difficult to do much better simultaneously
loop correction by calculating anisotropic light quark propa-for both pions and rhos, than our perturbative estimate. The
gators withCy=1 on a subset of 50 configuratiofiat the  errors onC(p) for anisotropic piongfrom a bootstrap analy-
same time adjusting;m, to obtain the same pion mas¥he sis) are smaller than one might have expected based on the
fancy squares in Fig. 16 show results ©(p) for Co=1, large fluctuations noted above in pion correlators. We evi-
i.e., without the one-loop correction. They are compared wittdently observe large cancellations between fluctuations in the
results from 50 configurations usinG,=0.82. For com- zero and nonzero momentum correlators.

pleteness we also include corresponding points from Figs. 14 The isotropic results in Figs. 14 and 15 are basedAon

C T T T T | T T T T | T T i T T T T | T T T T | i
_ © RHO momentum (111)
3 % RHO . - .
momentum (111)
R—x — 2 —
™ 1 |0 1
L K - L (D@(IJ 4
> B %
! i O @@@% i
|3 —_
= L ] g L 3 } ]
] 1 E] &
11— — =1— ¢ —
. X isotropic I 1
- I anisotropic - - -
- L 11 o111 I 1 I I = o —
o isotropic

B . 3 O anisotropic .

O | 1 | 1 | | | 1 1 | 1 | 0 1 1 1 1 | 1 1 1 1 |

0 10 20 0 1 2

time/a, time in fm

FIG. 9. Effective masses for tHd,1,1) momentum rho correlators in latti¢keft figure) and physicalright figure units. The isotropic

points to the right have been shifted down for clarity.
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FIG. 10. Fractional errors in pion correlators for momef@®,0 and(1,1,.

fits, defined above. In Fig. 17 we compare with results usingjuark rest mass and meson correlators fall off with an energy
B fits. Results from the two different fits are consistent. But,E;(p) that differs from the total energi(p). However

as expected, errors are much largerBdits, and one cannot one has
go beyond the three lowest momenta using them. Unless

specified otherwise, for the rest of this paper we will ése

fits for pions and rhos on isotropic lattices. The isotropic
results in Figs. 14 and 15 are also consistent with findings irand one can define the “kinetic” mashl;,= M, through
Ref.[12], where comparisons were made with clover quarks

at similar lattice spacings. In those stud@gp), at a lattice

spacinga=0.25 fm, was consistent with unity within errors
up to aboutp=1.2 GeV for the D234 quark action and ex- If Egj(p) has the correct momentum dependence, ¥eR
hibited 10—20 % deviations from unity for the clover quark should be independent of the momentum used on the right-
hand sideaRHS) of Eq. (22). Figure 18 show$/,;, for sev-
C(p) is not applicable for heavy-light mesons involving eral mesons versus the momentum of the correlator from
NRQCD heavy quarks. The NRQCD action omits the heavywhich it was extracted. On the anisotropic lattice we have

action.

OE(P)=Esim(P) —Esim(0)=E(p)—E(0),

Myin=[p?~ SE%(p)1/[25E(P)].

(21)

(22)
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o o
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a, L i (Y L i
k= &
&~ i ] = i © 7
9] L i o L i
S g
&~ =
() L 4 o L 4
e 01 o~ S 01 —
s o { g L O o i
3 3 o
® - <> . ® - a .
1 & O [
) M _ i M ]

O-O 1 1 1 1 | 1 1 1 1 | 1 O'O 1 1 1 1 | 1 1 1 1 | 1
0 1 2 0 1 2
time in fm time in fm

FIG. 11. Fractional errors in rho correlators for momet@®,0 and(1,1,7).
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FIG. 12. Fitted energies Ms,;,/a; for the pion and the rho for FIG. 14. C(p) vs momentum for the pion.

momentum(1,1,) on anisotropic lattices. Single cosh fits were

used withty,,/a, fixed at 22. Errors are from a bootstrap over 200 light currents between hadronic states with and without mo-

ensembles. mentum. It is worthwhile considering first simpler matrix
elements of currents between mesons and the vacuum and

data for two heavy-light mesons, bdiy andDs. The latter  studying their momentum dependence. Such matrix elements

meson uses NRQCD charm quarks. One sees that for alre relevant for meson leptonic decays. Starting from the

mesons, results foM,;, are independent of momentum ysual definition of the decay constdin Euclidean spade
within errors up to aboup~1.5 GeV. For the pion and the

rho we can also compar®l;, with the rest massvi; <O|AM|B,5>:B#1‘B (23
=E(0). Thedeviation ofM;, from M, reflects the devia-
tion of C(p) from unity in Figs. 14 and 15 and, like the
latter, is very small.

C. Decay constant ratios <O|A0|PS’5>/ VE(p) — E(p)
(0|Ag|PS,p=0)/YMps Mpsg

[BM=(iE,|5)], one can form the ratio

(29)
Heavy meson semileptonic decay form factors, which will

be the focus of Sec. IV, require matrix elements of heavy-
This ratio was studied recently on finer lattices using a less

3.0 T improved actiof22] (similar calculations were done several
ro ] 7 years ago with relativistic heavy fermions in Rg23]). In
I isotropic ¢ rho b
- momentum (111) O pion A
55l _ L RHO | | ! .
- 1 15— —
W_. 2.0 __ @ __ i 7
m - 1 i [ -
[ $ E ] ] 1.0 I %
i D ] C - °T o070 0 ¢ $§ 4
1.5 — ] © L i
B 7 05— —
1.0 I | T | Lo | Lo : i isotropic :
1 2 3 4 5 | O anisotropic |
tmin/at. - -
OO 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1
FIG. 13. Fitted energies Ms,;,/a; for the pion and the rho for 0.0 0.5 1.0 15 50
momentum(1,1,1) on isotropic lattices. Single cosh fits were used Ip| in GeV
with t.,.,/a; fixed at 9. Errors are from a bootstrap over 200 en-
sembles. FIG. 15. C(p) vs momentum for the rho.
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FIG. 16. Effect of the one-loop correction &, on C(p) for anisotropic lattices.

the present paper we will use the following current for theln Ref.[22] 1/M current and one-loop matching corrections

temporal component of the axial vector current:

Ao— J,&%) =V y570Q,

(29

were included in the ratio, and were seen to have only a
small effect relative to using just the zeroth order current for
heavy quark masses around tiguark mass. Matching cal-
culations for the actions of the present paper have not been

whereW is the light quark field and the heavy quark 4 spinorcarried out yet so we are forced to use the simple ratio
Q has the NRQCD 2 spincP as the upper two components R()(p) here. Figures 19 and 20 shd¥® for the B andDy

and zero for the lower two components. The superscript (O)eptonic decays, compared with the expected continuum be-
signifies that)},) is the zeroth order term in anNl/ expan-  havior of the RHS of Eq(24). One sees good agreement for
sion for the axial vector current. The left-hand side of Egq.most of the momentum range studied. Only at the highest
(24) is replaced by momentum & 1.5 GeV) does one seel5% deviations for

B mesons. One should be able to reduce these errors below
~10% by going to slightly finer lattices. Since we do not

(013Ip)/ VE(p)

RO(p)= 0= : (26)  include higher ordexin p/M) current corrections one ex-
<O|‘]Ao|p70>/ Mes pects agreement with full continuum QCD behavior to be
- PION | | | . - RHO | | | .
1.5 — 15— —
I =3 a— T | I -3 x5, l |
~ 1.0 10
chll R R Py le -
O | i (@] L i
05 — 0.5 —
I o A-fits | I o A-fits |
I O B—fits | | O B—fits |
O'O I 1 1 1 1 | 1 | 1 | | | 1 1 1 | 1 1 [ 1 ] 0.0 i 1 | 1 1 | 1 1 1 1 | 1 | 1 | | | 1 1 1 1
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
lp| in GeV lp| in GeV

FIG. 17. Comparison of\- and B-fit (see the tejtresults forC(p) on isotropic lattices.
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FIG. 20. R©9(p) as defined in Eq(26) for the D, meson. The
full line showsVE(p)/VMps

The isotropicBs meson is about 250 MeV too heavy and the
anisotropic one about 600 MeV too light compared to experi-
ment On the other hand, the uncertainty coming from
is at the 500—600 MeV level.
It is amusing that the heavy-light hyperfine splittings,
which have been the bane of lattice heavy-light spectroscopy
in the past, agree so well here with experiment for both the
Bs and Dg mesons. One should not make too much out of
In the process of studying momentum dependence of mehis, however, until results at other lattice spacings have been
son correlators we have also accumulated some zero momeobtained. At the moment we have no estimate of the size of
tum spectrum results. They are summarized in Table Il. Thecaling or unguenching corrections to this quantity. If one
first errors are statistical and the second represent errorrrects approximately for the incorrect heavy quark mass in
coming from uncertainties i~ ! which we take to be our simulations and multiplies by a factor [afalculated me-
roughly 10% not including quenching effects. In this explor-son mas§[experimental meson mdsshen the entries in
atory study we will not try to estimate other systematic er-Table Il for theBZ -Bg hyperfine splitting, are modified to 48
rors. One sees that the “pion” and “rho” masses are veryor 40 MeV for isotropic and anisotropic lattices respectively.
close to each other on the isotropic and anisotropic latticessimilarly the D% -Dg splitting becomes 148 MeV. All these

FIG. 18. Kinetic mass in lattice units vs momentum of correlator
from which it was extracted for thB, D, rho, and pi mesons. All
results are from anisotropic lattices. The horizontal lines show the
rest massea;M for rho and pi.

worse for theD, meson, especially at higher momenng4].

The better agreement found in Fig. 20 as compared to in F|gal
19 is, hence, fortuitous.

D. Zero momentum spectrum

numbers are much larger than and in better agreement with

RO T ] experiment than in previous lattice estima{&i,25-29.
[ B, Meson O anisotropic | One difference between the present and previous calculations
X isotropic lies in the last term in Eq(10) which enhances . It is
i i hard to imagine, however, that this term alone can be the
5 i | whole story. It will be interesting to see what happens after

1.0

0.5 1 1 )

RO(p)
3]
D

[S)

[S]
| 1 1

FIG. 19. RO (p) as defined in Eq(26) for the B meson. The
full line shows VE(p)/VMps.

|p| in GeV

systematic errors have been investigated more thoroughly
and various corrections to the present calculation have been
incorporated.

IV. RESULTS FROM THREE POINT FUNCTIONS

For pseudoscalar to pseudoscalar semileptonic decays one
is interested in matrix elements of the heavy-light vector
currentV#. The matrix elements are then parametrized in
terms of form factors, andf_ (or f; andfy),

(m(p")|V¥|B(p))=",(q®)(p*+ p’“)+f7(q2)(p“—p’(“2)7,)

whereg?= (p*—p’*)2. We will write formulas forB decays
but they apply also t® decays.f,; andf, are defined as
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TABLE Il. Some spectrum results. The first errors are statistical, and the second are estimates for errors
due to uncertainties in the scale. The hyperfine splittings have not been adjusted for incomplete tuning of the
heavy quark masksee the text for adjusted numbkers

Isotropic Anisotropic Experiment

light-light

“pion” mass 0.85&3)(86) GeV 0.8407)(84) GeV

“rho” mass 1.17910)(118 GeV 1.1587)(116) GeV

heavy-light

Bs 5.6531)(57) GeV 4.8020)(48) GeV 5.369 GeV

Dg 2.04(5)(20) GeV 1.969 GeV

B%-Bs 46(3)(5) MeV 45(2)(5) MeV 47.026) MeV

D¥-Dg 1434)(14) MeV 143.84) MeV

2 ground state and whees E=(T~Y can be ignored relative to
fo=fit+———-f_, f1=f,. (28) e E«', T being the time extent of the lattice. If these condi-
(Mg—M?7) tions are satisfied the three-point correlafgq. (29)] be-
Our main goal in this section will be to compare the qualityComes
of signals for matrix elements such as those in &7) be- @) A
: . . . : . . G, (p.p" tg 1)

tween isotropic and anisotropic lattices. Since the light
quarks in this study are still heavier than the strange quark, (0| ®g|B(p)WB(P)|VE|7(p) ) w(p')|PT|0)
the physical situation we are simulating will be closesBto — 3” 3
or D, decays into kaons. (2Egas)(2E ;ay)

—ESM™tg—t) o Et
A. Current matrix elements xe e 7B e ) (32)
In order to extract the matrix element of E@®7) one The exponential factors in E¢31) can be removed by di-
starts from the following three-point function, viding with the appropriate two-point functions:

G®(p,p’ tg,1), on the lattice(for technical reasons it is o
more convenient to consider the time reversed matrix ele- GEZ)(FS,»[)ZE e*ip'x<o|<I>B(t,>Z)<I>’g(0)|O>
menp: M

. i B(p)|P4[0)* s
GELS)(pyplthyt):z Z ef|p.xe|(p—p )y _>|< (p | B| >| e_EBm[
X oy

(2Egad)
X (0[dg(tg , X)VL(t,y) P (0)[0). =g 5, (32
(29 -
- w(p)|®1|0)[*

®! and ®] are interpolating operators used to create the Gf)(p’,t)—>M[e{w%e{w”*”]

.” nplrLe —— (2E,a3)
pion or B meson respectively/,, is the dimensionless Eu- s
clidean space lattice heavy-light vector current. It will be ~{, e Edt (33
defined more precisely below. It is related to the continuum
Minkowski spaceV* through The matrix element of the continuum currdft can now be

obtained from
Vi =aVzZDewve. (30

G,E,Ls)(ﬁ!ﬁ, 1tB vt)
GP(p,ts—1)GP(p' 1)

Vioplrn

z{ is the tree-level wave function renormalization for lat- I'®(p,p' tg,)=¢"(n)
tice light quark actions. It is discussed for the isotropic and

anisotropic D234 actions in the Appendig ) is the con- (34)
version factor between Euclidean and Minkowski space - >,

quark bilinear currents which is necessary due to the differ- _)\/Z(Uj<B(p)|VM|7T(p ) vy (35
ent y-matrix conventions in the two spacef0)=1 and q 2\EgE '
é(k)=—1, k=1,2,3.tg denotes the time slice at which tBe

meson operator is inserted. In the simulationss kept fixed  Equations34) and(35) relate the three- and two-point func-
and we varyt, the timeslice of the current insertion, betweentions evaluated in our simulations to the continuum matrix
0 andtg. Physics is extracted from those timeslices whereelements of Eq(27). We now need to specify the lattice
the corresponding two-point correlators are dominated by theurrentVlLL that enters into the three-point functions. It is
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FIG. 21. T(t) of Eq. (34 for pion momentun{0,0,0 and(0,0,1).

defined in terms of Euclidean spacg-matrices vy,
= &(1) ¥{mink,) - Since we use the NRQCD formulation of currents {>0) are listed in Ref{30]. The matching coeffi-

heavy quarksvh becomes an expansion inM/ the inverse
of the heavy quark mass. After matching to continuum QCD

one has

L_ (V) ()
A ; Ci73y). (36)
For j=0 one has the zeroth ord&f (1/M)°] current

I=T7,Q, (37)
2.0 i T T T T | T T T | i
- momentum (111) X isotropic -
3 I|anisotropic -
1.5 — —
- )( -
:‘_,\ - |
s 10 —
g i :
o 3
0.5 —II II _
_I I -

0‘0 1 1 1 1 | 1 1 1 |

0 1 2

time in fm

with the fields¥ andQ defined as in Eq(25). Higher order

cientsCfV#) are not yet known beyond the tree level, so we

will work with Cf)vﬂ)zl and all otherCy’s equal to zero.
One of the 1I¥M current correctionsl{") has C(lVM)zl
e

+0(ay), and also contributes at the tree level. However, its
matrix elements include power law terms that will not be
canceled unless a proper one-loop calculation has been car-
ried out. Hence we do not includ? contributions in the
present study. g

We have evaluateB(®(p,p’ g ,t) of Eq.(34) for several
pion momentg’ ranging from(0,0,0 to (0,0,3 in units of

2.0 T T T T | T T T T |
- momentum (002) X isotropic -
3 I anisotropic -
1.5 — —
g - _ |
s 10— —
e i ]
= i X ]
L T i
05— Iﬁ I 1 —
LT J
_I -

O'O 1 1 1 1 | 1 1 1 1 |

time in fm

FIG. 22.T)(t) of Eq. (34) for pion momenta1,1,1) and(0,0,2.
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FIG. 23.T(t) of Eq. (34) for pion momentum(0,0,0 vs time in lattice units.

2/(al). The B meson momentum was always set equal toanisotropic data. To illustrate this point we shb\’ versus
zero. On the anisotropic lattice we usgg/a,=24, and on t in lattice units separately for isotropic and anisotropic lat-
the isotropic latticeig /a,= 10. Figures 21 and 22 sho 3) tices in Figs. 23—26. One might still feel comfortable extract-
versust in physical units for zero momentum and for threeing a signal from the(1,1,1) isotropic data. One would be
nonzero momenta. One sees that, where there is overlapard pressed, however, to claim that a plateau has been es-
anisotropic and isotropic lattices give consistent results. Ontablished at momenturt0,0,2 based solely on the left hand

is interested, of course, in the region Wh(ﬂ{é) is indepen-  plot in Fig. 26. Note thal s;4,,, the time range over which
dent oft, implying that the simplé dependence in Eq31) statistical errors are under control, is about 1 fm for momen-
and the last expression in E@3) is justified.I'§*) can then  tum (1,1,) and has shrunk to about 0.5 fm (0,0,2. We

be identified with the asymptotic matrix elemgit)® of Eq. ~ Saw in the previous section that individual two-point correla-
(35). Again the crucial question for the higher momentumtors had reached a plateau by 0.3-0.4 fm. If sufficient data
isotropic results becomes whether one would believe in th@oints could be introduced between 0.3 and 0.5 fm, then one
presence of a plateau if one did not have the comparisoshould be able to extract meaningful results f@)°. Hence

2»0 T T T T T T T T T T T T T T T T T T T T 2.0 T T T T T T T T T
L | | | | i i | | _
- momentum (001) isotropic | - momentum (001) anisotropic -
1.5 — — 1.5 — —
= [ 1T =2 .0 ]
g 10— — & 10— —
) - E ) - E
TobE g B OE X oxox x4 T b 500000000000000, 1
- - . @ O -
I 1 o o |
0.5 — — 0.5 — o
0.0 i 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 ] O'O i 1 1 1 1 | 1 1 1 1 | 1 ]
0 2 4 6 8 10 0 10 20
t / a, t / a

FIG. 24.T$)(t) of Eq. (34) for pion momentum(0,0,1) vs time in lattice units.
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15[ ] 150 ]
= " . = r 7
s 10— — & 10 —
= [ 1 = [ |
L J L @ @ J
3t E ] I $7%5 :
0.5 — o.5—§§§§§§§§§§§§§ §@§ —
. - _@ @ -
0.0 i 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 ] O'O i 1 1 1 1 | 1 1 1 1 | 1 ]

0 2 4 6 8 10 0 10 20

t/ a t/ ay

FIG. 25.T (1) of Eq. (34) for pion momentum(1,1,1) vs time in lattice units.

once again one sees an advantage to using anisotropic laignals can be extracted, postponing scaling studies for the
tices starting with momenturtL,1,1). This is the same situ- future. This is in contrast to the two-point correlator studies
ation as with the pion and rho correlators described in Semf Sec. lll, where several continuum expectations based just
[, not a surprising finding since statistical errorsl"ngf) are  on simple Lorentz symmetry considerations could be tested.
dominated by the pion correlator and not by Bieorrelator.
From the region wher&? is independent of, one can

extract(V)*. We show(V)° and(V)¥ in Fig. 27 as a func-
tion of the pion momentunp’. For points at the largest From Egs.(35), (27) and (28) one can extract the form
momenta on the anisotropic lattice one could be seeing sonfactorsf , (q?) andf,(q?). Isotropic lattice results for thB,
discretization effects. Only a more careful analysis involvingmeson are shown in Fig. 28, and anisotropic lattice results
simulations at several lattice spacings and/or further studiefr theBg andD¢ mesons in Figs. 29 and 30. The kinematics,
with nonzeroB meson momenta will be able to shed moreincluding the range im? that is covered, depends on the
light on this. Here we are concentrating mainly on whethemrmeson masses of Table Il and differs for the two types of

B. Form factors f(q%) and f,(g?)

2»0 T T T T T T T T T T T T T T T T T T T T 2.0 T T T T T T T T T
i | | | | i i | | _
- momentum (002) isotropic | - momentum (002) anisotropic -
1.5 — — 1.5 — —
g 10— — & 10— —
) - E ) - E
e i i [ i i
L i L ) i
osl & E 1L — 05— .52® Fad —
L i i) i
- - _® -
0.0 i 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 ] O'O i 1 1 1 1 | 1 1 1 1 | 1 ]
0 2 4 6 8 10 0 10 20
t / a, t / a

FIG. 26. T (1) of Eq. (34) for pion momentum(0,0,2 vs time in lattice units.
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FIG. 27. (V)“ of Eq. (35 from isotropic and anisotropic lattices vs the pion momentum.

lattices. The errors in the three figures are statistical andver an even wider range f. At that point one would also
come from a simultaneous bootstrap analysis ofWAeand ~ want to go to finer lattices and work with improved currents
VK three-point functions and the (or D) and pion correla- so that finite momentum errors are minimized even at the
tors. largest momenta for which signals can be obtained.

Since we have at present only tree-level matching of the
heavy-light currents and also have not turiedextrapolated
in) the heavy and light quark masses, the above form factor _ _ . _ . _
results cannot be applied yet to phenomenology. What is Th|s paper |nv_est|gates.the extent .to which anisotropic
important, however, is that with just 200 configurations itlattices can help in extracting better signals from two- and
was possible to obtain form factors for a nontrivial range inthrée-point correlators involving high momentum hadrons,
g2, and that we were able to demonstrate the advantages 8fd Whether they can play an important role in studies of
anisotropic lattices in calculations of this kind. By increasingS€mileptonic heavy meson decays into light hadrons. To ad-
statistics in the future one should be able to get good datdress this question we have carried out simulations of heavy

V. SUMMARY

3 : : : : : : : : , , 3 T T T T T T T T | T T T T | T T T T
| | +B, ——> PS of, -
rBs —> PS o f, 1 | (anisotropic) O P
| (isotropic) o £y,
L J ol N
2 — L 4
L - | i i
i 5 i ] i i )
i E 7 11— E o —
1 — L ¢ B
[ o ] % i?
gi o : '
- - O 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1
0 1 1 1 1 | L 1 1 L | 1 L 0 5 10 15 20
0 10 20 q**2 (GeV#%2)

g*%2 (GeV%x2)
FIG. 29. The form factord,(q?) and f,(g?) for Bs decays

FIG. 28. The form factord,(q?) and f,(g?) for B; decays from anisotropic lattices. See Table Il for actual values of the de-
from isotropic lattices. See Table Il for actual values of the decay-caying heavy meson and daughter meson masses. Some points have
ing heavy meson and daughter meson masses. been shifted horizontally for clarity.
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RO —T—T— L LR fluctuations in pion correlators, the anisotropic results for the
| D, ——> PS - £+ exper. 7 form factorsfy(g?) and ., (g?) would have been of even
| (anisotropic) o f; ] higher quality relative to those coming from isotropic lat-
- 8 tices. There are several ways one could try to ameliorate this
15— ] problem in the future. Just going to finer lattices and working
L i with more moderate anisotropieg<5.3, should help. One
- o . could also explore other light quark actions that have better
i i T chiral properties than the clover or D234 actions, such as
1.0 B ] ] highly improved staggered fermiof$,14], domain wall fer-
L i E % i mions[31] or the twisted QCD approadl32].
1 Ultimately one will have to weigh the additional costs
05— ] associated with anisotropic lattices against the likelihood that
L i an isotropic simulation with much higher statistics will allow
- 8 us to approach the high momenta we are seeking. Based on
our (and also other peopleséxperience to date, we do not
ool 1 1 . R R believe isotropic lattices can be competitive at high mo-
-1 0 1 2 menta. The signal-to-noise ratio of high momentum correla-
q**2 (GeV¥x2) tors will decrease exponentially with Whena, is large it
will be very costly to move even one additional point from
the noise intoTgjgn, . IN order to do so one will need to
reduce errors by roughly a factor eft(5(P)~E0) whereEO is
the ground state enerd®3]. In other words, one will need

meson semileptonic decays, in parallel, on isotropic and ar@n increase in statistics by a factor 9, =|e*(=(P)~F0)|2,
isotropic lattices. In order to have a meaningful comparisonJypical numbers for the current isotropic simulation for mo-
we work with similar coarse spatial lattice spacings and usé@nenta starting with(1,1,1 and higher, would béNg,~4
identical sources and smearings on the two lattices. —10. This means a factor of 16—100 if one wants to go from
We find that it is considerably easier to extract reliablejust one or two points inTg;4,, to @ marginally useful
signals from anisotropic simulations once the light hadronTg;yn, 0f 3—4 points. This is much more than the cost of
momentum reached,1,) 2#/(asL) or higher. This advan- going to anisotropic lattices.
tage may not be so obvious just by comparing Figs. 28 and We mention another unrelated advantage of anisotropic
29, and one needs to go back to figures such as Fig. 22 tctions. One difference betwea{*® and SE"9 is the

fully appreciate how much the anisoztro_py is helping here gmission in the latter of rectangles that span two links in the
The last point(at the smallest value @) in Fig. 28 comes (iso)

; _ ; _ time direction. SimilarlyS 53, includes higher time deriva-
from the isotropic data in the left-hand plot of Fig. gaso tives that are absent i§@1S9  As a consequence. for the
see Fig. 2k It is because the first three isotropic points in ; D234 - COnSequ ' .
Fig. 22 agree with the anisotropic data that one feels confiz@Me amo unt of improvement in spatial d|rect|qns, the'almllso—
dent about the form factor results in Fig. 28. Without thetroplc actions suffer less from the lack Qf reflectlop posmwty.
anisotropic data, one would have to allow for a considerapl@nd/or the presence of ghosts. In'addmon to being theqreu-
additional systematic error, which one might call “fitting er- Cally cléaner this means perturbation theory is more straight-
ror” or “ t,;, dependence error,” when presenting isotropicforward for the anisotropic actions. One such example is the
results. Hence the main conclusion from the present work i€y calculation in the Appendix.
that anisotropic lattices definitely improve signal quality and In the course of this study we accumulated a wealth of
should be considered in semileptonic decay studies, esp&vo-point correlator data at finite momentum. This enabled
cially if a large range irg? is of interest. us to compare lattice results for dispersion relations and lep-

The advantages of anisotropic lattices come at a certaifPnic decays of finite. momentum heavy mesons with con-
price. For instance, such lattices require more sites in thinuum expectations. We found that momentum dependent
time direction. Also light quark inversions take more itera- discretization errors were under control and less than 10% up
tions in order to obtain the same pion-to-rho mass ratio P/Mf0 aboutasp~2. Discretization errors at high momenta in
In the present simulations, the cost increase from just thes@ree-point functions have not been critically assessed to
two effects meant a factor of 21.5=3.6 in CPU time. date. However, assuming a situation similar to the one found
Working with anisotropic lattices also requires tuning of With the two-point functions, prospects for simulating had-
more parameters. At a minimum, two additional parameters[Ons in semileptonic decays with momenta as high as 1.5-2
7 in the glue action an€, in the D234 quark action must be GeV look promising. Only slightly finer latticesa(*
determined nonperturbatively or perturbatively. It is impor-=1 GeV) than those of the present work may be required.
tant that efficient procedures for carrying out such tunings bdhis would have to be coupled with an anisotropy yof
developed. Another drawback in the current anisotropic=2.5 or higher in order to be able to extract a signal at those
simulations was the increased susceptibility to exceptionahigh momenta. The experience gained in the present work
configurations. If it were not for this problem and the largerwill be indispensable when picking optimal simulation pa-

FIG. 30. The form factordo(q?) and f,(g?) for Dy decays
from anisotropic lattices. The “burst” shows an experimentally de-
termined value of , (q>=0) for the decayD’—K | v [34].
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rameters in the future and going onto more realistic calcula- 23 (—i y,A+B)
tions. —q
zd—(A2+ B?)
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APPENDIX: TREE-LEVEL WAVE-FUNCTION Zo=| =g : (A8)
RENORMALIZATION FOR D234 QUARK ACTIONS W(A—iB)
tM0 =i
: : - Po=iM
In this appendix we sketch the derivation of the tree-level o7
wave function renormalizationzgo), for the light quark ac-  For S@Mi*9 one has, at the tree level,
tions used in this article. Results f@#&s? already ap- .
peared in Ref[18]. One starts from the requirement that the ARSI =gina,py), (A9)

propagator for a zero momentum quark have the form

g B(@Ns9 =g m+ y— y coga,po), (A10)
> may APy . — >
6(tp=0)= | " SPereip, 5-0) and
~ lay
1+ B (am+x) = V(am+x)*+1—x?
Equ‘MltTyo+..._ (A1) e aMi— - Xil , (Al1)

G(p) is the momentum space propagator ahddenotes the ©F equivalently,

pole mass. The dots refer to lattice artifacts and additional

(am+x) +(am+x)*+1—x°

multiparticle states that could be created by the lattice fer- e@M1 (A12)
mion field operato® beyond the single quark state. Writing xt1
1 . 1 As explained in Ref[18] m=my—m,, andm, is the value
—G(po,p=0)=——7F"%" (A2)  of my that gives a massless pion. From EA8) one finds,
at |’)/OA+ B
and using the complex variable 7(0),aniso_ - i
a cosh(a;M;)+ ysinh(a;M,)
z=edPo=g AF (A3)
1
. = : (A13)
one finds V(agm)?+2(agm)x+1
Gitieo= [ dPo o, —170A+B For the isotropic actiors 159, with higher time derivatives
(tp=0)= _ﬁ,atﬁ a (A2+B?) the formulas are more complicated:
dz —iy,A+B o) 4 1
= t/a, AlS9)=—sin(a,py) — = sin(2a,po), Al4
f27‘rizz t(A+iB)(A—iB)' (A4) 3 n(a;po) 6 n(2a,po) (A14)

One can show that the pole (i50) 4
BYSY=am+ §[1—cos(atpo)]

z1=e V1 (A5)

1.
corresponding to a physical positive energy particle obeys - gSln *(aypo). (A15)
(A—iB)|Z:Zl=0 or B|z:21:_iA|z:zl- The contribution to
G(t,0) from the residue at this physical pole is then given byEquation(A8) leads to
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(0),iso_
Z, =

PHYSICAL REVIEW B4 055002

1

3

The tree-level physical pole,=e™ 21 s the solution to
24— (24a,m+30)z>+32z—3=0, (A17)

that evolves smoothly fronz;=1 at aim=0. A lengthy

closed expression far, as a function of;m can be obtained
(using for instanc@IATHEMATICA ); however, we do not con-
sider it worthwhile to reproduce it here. It is easier to plug in

specific values foa;m into Eq.(A17) before solving for the

roots. At smalla;m the physical pole is well approximated

by

ize""t""1=1+(am)+E(am)g—i(am)“JrO[(am)f’]
z; e 24°™ e
(A18)

4 1 ) .
—eat""l—g[cosﬁ"(atM 1)+ sintP(a;M )+ sinh(a;M)cosia;M ;)]

(A16)

tions, the sum of just the first three terms in E418) differs
from the exact solution to EqA17) by only 1%.

In order to obtain explicit values fozgo), one needs to
know a;m=a;(my—m;). Since we have data at only one
light quark mass, we do not have a nonperturbative estimate
for a;m. based on a vanishing pion mass. We approximate
a;m, using perturbation theory and fifi@l8] a;m~0.635 and
a;m~0.196 respectively for the isotropic and anisotropic lat-
tices. This leads to

1
[-(0),iso__
Zq = 1.2226 (A19)
\JZ(© aniso_ L (A20)
q 1.3286

For the mass parameter values used in the current simulavhich are the values used in Sec. IV.
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