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Comparison studies of finite momentum correlators on anisotropic and isotropic lattices
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We study hadronic two- and three-point correlators relevant for heavy to light pseudoscalar meson semilep-
tonic decays, using Symanzik improved glue, a D234 light quark, and nonrelativistic QCD heavy quark
actions. Detailed comparisons are made between simulations on anisotropic and isotropic lattices involving
finite momentum hadrons. We find evidence that having an anisotropy helps in extracting better signals at
higher momenta. Initial results for the form factorsf 1(q2) and f 0(q2) are presented with tree-level matching
of the lattice heavy-light currents.
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I. INTRODUCTION

The use of anisotropic lattices with a finer grid in th
temporal direction (at,as) has been advocated for studi
of correlation functions that produce usable signals only o
a limited time rangeTsignal in physical units@1#. Even when
Tsignal is reasonably large~e.g.,.1 fm), if one is working
on coarse isotropic lattices with lattice spacinga.0.2 fm
only a few data points will lie withinTsignal and fitting data
becomes problematic. One is then naturally led to anisotro
lattices in order to retain the advantages of working w
only a small number of lattice sites in spatial directions a
nevertheless have enough temporal resolution withinTsignal .
Many recent examples of successful employment of an
tropic lattices have been in simulations on very coarse sp
lattices. These include investigations of the glueb
spectrum @2# and nonrelativistic QCD~NRQCD! studies
of heavy hybrid states@3,4# and of quarkonium fine structur
@5#. Anisotropic lattices have also been useful in fin
temperature studies@6,7# and have been employed as
alternate approach to simulations of heavy quarks@8,9#.
In several of these examples one turns to anisotropic latt
for two reasons: to be able to extract a better sign
and to avoid discretization errors coming from largeatM or
atE.

In this paper we investigate the extent to which ani
tropic lattices could also be useful in simulations of fin
momentum hadrons. We have in mind, for instance, he
meson semi-leptonic decays such asB→p(r) ln @10#. In or-
der to be able to cover the full kinematic range of interes
experimentalists and map out theq2 dependence of form
factors (qm5pm2p8m, with pm the momentum of the decay
ing B meson andp8m the pion momentum! one needs to
calculate matrix elements between hadrons with large
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menta. In theB meson rest frame, for instance, one wou
ideally like to simulate pions with momenta all the way fro
p8[upW 8u50 to approximatelyp85MB/2. Correlators for
hadrons with finite momenta are much noisier than in
zero momentum case, this being particularly true for lig
hadrons such as the pion. Hence one is dealing with a si
tion whereTsignal is shrinking rapidly as the momentum in
creases. Even for reasonably fine lattices~e.g., at5as
;0.1 fm) onceTsignal falls significantly below 1 fm one
might consider going to anisotropic lattices.

To make the above statements more explicit, and come
with concrete examples that could guide us in the future,
have studied heavy meson semileptonic decays on both
tropic and anisotropic lattices with comparable coarse spa
lattice spacings aroundas'0.25–0.29 fm. Simulations o
semileptonic decays require good control over both two- a
three-point correlators. We use identical operators and sm
ing functions on the isotropic and anisotropic lattices. T
way one creates similar signals on the initial timeslices a
can watch how they propagate in time on the two lattices.
then compare the ease with which physics is extracted on
anisotropic versus the isotropic lattice. We find that at hig
momenta anisotropic simulations are superior in provid
more reliable signals.

Extracting a good signal is just one of the challenges o
faces in lattice studies of semileptonic decays involving h
rons with high momenta. One must, for instance, also con
large ap discretization errors. The second objective of t
present simulations was to check how successful highly
proved quark and glue actions are in removing lattice a
facts. Working with Symanzik improved gauge actions@11#,
D234 light quark@12# andO(a2) improved NRQCD heavy
quark @13# actions we have studied dispersion relation
speed of light renormalizations and also heavy meson de
constants at finite momenta. We find a continuumlike beh
ior within 5% up to about p;1.2 GeV. Even for p
;1.5 GeV, which on our coarse lattices corresponds
asp;2, deviations are 10% or less in many cases. Althou
additional tests are clearly still called for, we are very e
couraged by these findings. In the future we plan to go
r-
©2001 The American Physical Society02-1
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lattices finer than those used in the present initial study.
experience to date indicates it may not be necessary to
very much finer to obtain phenomenologically meaning
results. With highly improved actions, simulations of ha
rons with momenta as high asp;1.5–2.0 GeV are possibl
once as,0.2 fm. It is not necessary to haveasp,1. We
also note that the findings of the present work should ca
over from the actions used here to other highly improv
actions. For instance, the most highly improved light qu
action with better chiral properties than the D234 act
would be the staggered action@1,14#. One could also con-
sider using heavy clover@15# rather than NRQCD heavy
quarks. It will be worthwhile investigating these alternati
options in the future.

In Sec. II we introduce the highly improved gauge a
quark actions used in our study and discuss simulation
rameters. In the current exploratory study, we have not t
to tune quark masses very accurately. On both the isotr
and anisotropic lattices we work with one light quark ma
slightly heavier than thestrangequark. On the anisotropic
lattice we accummulated results for two heavy quark mas
one around thebottom quark and the other close to th
charm quark. On the isotropic lattice only one heavy qua
mass near thebottom quark was used. Section III concen
trates on two-point function results. We compare effect
masses on isotropic and anisotropic lattices and discuss
persion relations and ratios of decay constant matrix
ments for heavy mesons with and without spatial mome
In Sec. IV we present results for three-point functions r
evant for pseudoscalar→ pseudoscalar semileptonic decay
Again comparisons are made between signals on isotr
and anisotropic lattices. The form factorsf 1(q2) and f 0(q2)
are extracted.

II. GAUGE AND QUARK ACTIONS AND SIMULATION
PARAMETERS

A. Gauge actions

We use the standard Symanzik improved isotro
gauge action including square and six-link rectangular lo
@11#:

S G
( iso)52b (

x,m.n
H 5

3

Pmn

uL
4

2
1

12

Rmn

uL
6

2
1

12

Rnm

uL
6 J , ~1!

with

Pmn5
1

Nc
Re„Tr$Um~x!Un~x1am!Um

† ~x1an!Un
†~x!%…,

~2!

Rmn5
1

Nc
Re„Tr$Um~x!Um~x1am!Un~x12am!Um

†

3~x1am1an!Um
† ~x1an!Un

†~x!%…. ~3!
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b52Nc /g2 anduL is the tadpole improvement ‘‘u0’’ factor,
for which we use the Landau-link definition in this pap
@16#. For eachb, uL must be determined iteratively vi
simulations. One could also consider using perturbative
pressions foruL . On anisotropic lattices one can drop rec
angles that extend over two links in the time direction a
one has

S G
(aniso)52b (

x,s.s8

1

x0
H 5

3

Pss8

us
4

2
1

12

Rss8

us
6

2
1

12

Rs8s

us
6 J

2b(
x,s

x0H 4

3

Pst

us
2ut

2
2

1

12

Rst

us
4ut

2J . ~4!

The variabless and s8 run only over spatial directions an
one must now distinguish between temporal and spa
Landau-link tadpole improvement factorsut and us . x0 is
the bare anisotropy. It differs from the true or renormaliz
anisotropy,

x[as /at , ~5!

once quantum corrections are taken into account. Just as
fixes lattice spacings through some experimental input
conventional lattice calculations, when working on anis
tropic lattices one must, in addition, determine the ratio
the spatial and temporal lattice spacingsas /at via some
physics requirement. This leads to the renormalized ani
ropy x. In the absence of lattice artifacts, it should not mat
which physical quantity is used to fixx. Conversely the de-
pendence ofx on how it was determined provides a measu
of discretization errors in the lattice system. In Ref.@17# the
renormalized anisotropy was calculated for the act
S G

(aniso) of Eq. ~4! using both the torelon dispersion relatio
and the sideways potential method for several values ob
and x0. Agreement was found between the two determin
tions within 3–4 %. We will be using those results in th
paper.

An alternate and equivalent procedure would be to wr

S G
(aniso)52b (

x,s.s8

h

x H 5

3

Pss8

us
4

2
1

12

Rss8

us
6

2
1

12

Rs8s

us
6 J

2b(
x,s

x

h H 4

3

Pst

us
2ut

2
2

1

12

Rst

us
4ut

2J ~6!

(h[x/x0), and adjusth at fixedx to satisfy some physica
criterion.
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B. Light quark actions

The isotropic D234 quark action is given by@12#

S D234
( iso)5a4(

x
C̄cH g t

1

a S“ t2
1

6
C3t“ t

(3)D
1

C0

a
gW •S“W 2

1

6
C3“

W (3)D1m0

2
ra

2 F 1

a2 S“ t
(2)2

1

12
C4t“ t

(4)D
1

1

a2 (
j 51

3 S“ j
(2)2

1

12
C4“ j

(4)D G
2ra

CF

4

ismnF̃mn

a2 J Cc , ~7!

5(
x

C̄H g tS“ t2
1

6
C3t“ t

(3)D1C0gW •S“W 2
1

6
C3“

W (3)D
1am02

r

2 F S“ t
(2)2

1

12
C4t“ t

(4)D
1(

j 51

3 S“ j
(2)2

1

12
C4“ j

(4)D G2r
CF

4
ismnF̃mnJ C. ~8!

The quark fieldsCc and the dimensionless lattice fieldsC
are related through

C5a3/2Cc . ~9!

Definitions for tadpole improved dimensionless covariant
rivatives and field strength tensors are summarized for
stance in the Appendix of Ref.@18#. We note here just the
relation between unimprovedFmn and theO(a2) improved
field strength tensorsF̃mn used in D234 actions:

F̃mn~x!5
5

3
Fmn~x!2

1

6 F 1

um
2 @Um~x!Fmn~x1am!Um

† ~x!

1Um
† ~x2am!Fmn~x2am!Um~x2am!#2~m↔n!G

1
1

6 S 1

um
2

1
1

un
2

22D Fmn~x!. ~10!

The last term is needed so that factors of 1/um are correctly
removed from contributions toUFmnU† and U†FmnU that
end up being four link objects rather than six link ones. E
fects of this term are non-negligible on coarse lattices.

After tadpole improving the action we set the coefficien
Cti , Ci , C0 andCF equal to their tree-level value of unity i
our simulations. We also work withr 51.

The anisotropic D234 action is given by
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S D234
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1
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J Cc , ~11!

5(
x

C̄H g t¹ t1
C0

x
gW •S ¹W 2

1

6
C3¹W (3)D1atm0

2
r

2 Fx¹ t
(2)1

1

x (
j 51

3 S ¹ j
(2)2

1

12
C4¹ j

(4)D G
2r

CF

4
ismnF̃mn

asat

aman
J C, ~12!

where we have used the spatial lattice spacingas to rescale
the quark fields according to Eq.~9!. Note that the renormal-
ized anisotropyx5as /at appears in the quark action. In
quenched calculation it is permissible to first fixx in the pure
glue sector, and use this value for the ratio of spatial a
temporal lattice spacings in the quark action.S D234

(aniso) has its
own ‘‘speed of light’’ renormalization termC0. For fixedx
this coefficient must be tuned to ensure correct dispers
relations in fermionic correlators. In the future, especially
unquenched calculations, it may be simplest to work w
Eqs. ~6! and ~12! at fixed x, and simultaneously and itera
tively adjust h and C0 using appropriate physics criteria
Another possibility is to use perturbative expressions forh
andC0 throughout. In the present paper we will use nonp
turbatively determinedx, uL , us andut from Refs.@12,17#
and a one-loop perturbative estimate forC0 from Ref. @18#.
Just as inS D234

( iso) , we setC3 , C4 andCF in S D234
(aniso) equal to

unity.

C. Heavy quark actions

It suffices to write down one expression for both the is
tropic and anisotropic NRQCD actions, the former cor
sponding simply tox51 @13,19#. We work with dimension-
less two-spinor fieldsF5as

3/2Fc in terms of which

SNRQCD5(
x

H F̄ tF t2F̄ tS 12
atdH

2 D
t
S 12

atH0

2n D
t

n

U4
†

3S 12
atH0

2n D
t21

n S 12
atdH

2 D
t21

F t21J . ~13!

H0 is the nonrelativistic kinetic energy operator,

atH052
D (2)

2x~asM0!
, ~14!

anddH includes relativistic and finite-lattice-spacing corre
tions:
2-3
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TABLE I. Simulation details.

Isotropic Anisotropic

lattice size 83320 83348
No. configs 200 200
b 1.719 1.8
Landau linku0 0.797@12# us50.721ut50.992@17#

x0 6.0
x5as /at 1 5.3 @17#

C0 1 0.82

as
21 0.8~1! GeV 0.7~1! GeV

at
21 0.8~1! GeV 3.7~4! GeV

atm0 1.15 0.39
P/V 0.725~5! 0.726~6!

typical No. of BiCGstab iters 140–160 220–270
asM0 6.5 7.0 and 2.0
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2c3

1

8~asM0!2
s•~“̃3Ẽ2Ẽ3“̃ !2c4

~D (2)!2

8x~asM0!3

1c5

D (4)

24x~asM0!
2c6

~D (2)!2

16nx2~asM0!2
. ~15!

All derivatives are tadpole improved and

D (2)5(
j 51

3

“ j
(2) , D (4)5(

j 51

3

“ j
(4) , ~16!

“̃k5“k2
1

6
“k

(3). ~17!

The dimensionless Euclidean electric and magnetic fields

Ẽk5F̃k4 , B̃k52 1
2 e i jk F̃ i j . ~18!

“k , “k
( j ) , j 52,3,4 andF̃mn are the same as in the ligh

quark actions of Sec. II B. In our simulations we again set
ci51.

D. Simulation parameters

Simulations have been carried out on 83320 isotropic
and 83348 (x55.3) anisotropic lattices using ensembles
200 configurations each. Details are summarized in Tab
The b, u0, anda21 values are taken from Ref.@12# for the
isotropic and from Ref.@17# for the anisotropic lattices, re
spectively. The latter reference also providedx0 andx. None
of the lattice spacing determinations are very precise. For
anisotropic lattice we have taken the 4.503 GeV quoted
Ref. @17# for at

21 from Y 1S-1P splittings and reduced it b
22%, approximately the amount by which light hadr
a21 values differ from those fixed byY splittings in
05500
re

ll

f
I.

e
in

quenched calculations. This is also consistent with R
@17#’s finding for a21 from the string tension. In heavy-ligh
physics one expects light hadrona21 values to be more
appropriate. The ‘‘speed of light’’ renormalization coefficie
C0 was estimated from the one-loop perturbative result
x55.3, namely fromC05120.45as @18#, usingas'0.4.

The bare light quark mass has been adjusted so that
has the same pseudoscalar-to-vector ratio, P/V, on the iso
pic and anisotropic lattices. We found that this required
proximately a factor of 3/2 more BiCGstab iterations to c
ate light quark propagators on the anisotropic latt
compared to on the isotropic one~actual numbers are give
in Table I!. We believe the reason for this is critical slowin
down due to an increase in the condition number withat

21 .
Although our pion is still quite heavy (;840 MeV), on the
anisotropic lattice we did, on a few occasions, encoun
problems with ‘‘exceptional’’ configurations. In the proce
of accumulating an ensemble of 200 configurations, 5 ha
be skipped. We will see below that the anisotropic pi
propagators are noisier than the isotropic ones for the s
pion mass. Other mesons such as ther andB, which use the
same light quark propagators are not affected, however.
though this aspect of simulations on anisotropic lattices
worrisome and needs further study, we do not, at the m
ment, believe that this implies anisotropic lattices will nev
be useful for light quarks. The problem has been exagger
in the present calculations since we are on very coarse sp
lattices andx55.3 is a large anisotropy. In future, more r
alistic, simulations we plan to use finer lattices and wo
with moderate anisotropies such asx52 –3. We expect to be
able to go to lighter pions there without encountering pro
lems. We mention that the tadpole improvement adopted
Eq. ~10! leads to a larger effective ‘‘cSW’’ than has been used
in the past, and it is known that largecSW, such as the
nonperturbativecSW, leads to problems on coarse lattice
This phenomenon appears to set in at heavier quark ma
when x.1. There were no hints of problems with exce
tional configurations on our coarse isotropic lattice for t
light quark masses considered.
2-4
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FIG. 1. Fractional errors inBs meson correlators for momenta~0,0,0! and ~1,1,1!.
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III. RESULTS FROM TWO POINT FUNCTIONS

We calculated two-point correlators for the light-lig
pseudoscalar and vector, theBs andBs* mesons, and, on th
anisotropic lattice, also for theDs andDs* mesons. We will
generically call these the ‘‘pion,’’ ‘‘rho,’’ ‘‘B meson’’ and ‘‘D
meson’’ channels respectively. Current sinks correspond
to the temporal and spatial components of the heavy-l
axial vector currents were also considered. We emplo
gauge invariant smearings, separately for the light and he
quarks, of the form

~11csmD (2)! ld (3)~xW2xW0!. ~19!

For light quarks we usedl 510 andcsm51/12. We have two
smearings for the heavy quarks both withcsm51/24 but with
different l values,l 152 andl 2510. We found thatl 2 works
better for zero and low momentumB mesons andl 1 gives
better signals for higher momentum correlators. We accu
lated data at 7 spatial momenta,~0,0,0!, ~0,0,1!, ~0,1,1!,
~1,1,1!, ~0,0,2!, ~0,2,2! and ~0,0,3! in units of 2p/aL, aver-
aging over all equivalent momenta. In the following subs
tions we will compare effective masses, present fit results
a small number of states and dispersion relations, and loo
ratios of matrix elements with current sinks.

A. Effective masses

We start by comparing raw data forB meson correlators
on the anisotropic and isotropic lattices. Figures 1 and
show fractional errors of the correlators versus physical t
for several momenta. One sees that, where there is ove
the fluctuations ofB correlators are identical on the two la
tices. Effective mass plots are presented in Figs. 3–5 for
B meson for three representative momenta. Each fig
shows results in lattice units on the left and results in phy
cal units, using central values of the scales from Table I,
05500
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d
vy
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r
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e
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e
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the right. In Figs. 4 and 5 the isotropic results in physic
units have been shifted down for clarity. We label time slic
such that sources are att50. By looking at the anisotropic
data one finds plateaus starting at aboutt50.3–0.4 fm for
all momenta. This must also be the case for the isotropic d
since the original signals are essentially the same. Howe
based only on information from the isotropic data, this is n
always obvious, especially for the higher momenta. Ther
also an unfortunate upward fluctuation at aroundt50.7 fm
which makes fitting the isotropic data more difficult. On
agonizes over whether to fit starting before or after the hum
This illustrates some of the immediate advantages of an
tropic lattices. Once a plateau has set in it is more ea
recognized, and one is also less sensitive to one or two po
fluctuating up or down, since there are enough other po
around.

Effective mass plots for pions and rhos are given in Fi
6–9 and corresponding correlator fractional errors in Fi
10 and 11. Again, isotropic data in physical units Figs. 7 a
9 have been shifted down for clarity. In contrast to theB
meson case, one sees that fluctuations are considerably l
for the pion correlators on anisotropic lattices. This indica
that some configurations are close to being ‘‘exceptiona
The rho correlators show no enhanced errors relative to
isotropic lattice. Despite the larger fluctuations, it is not d
ficult to fit the anisotropic pion data, and fluctuations can
to some degree upon calculating physical quantities suc
dispersion relations or semileptonic formfactors. In Fig.
we show fitted energies for the anisotropic lattice pion a
rho at momentum~1,1,1! versustmin /at from single cosh
fits. The pion energies have larger errors but look otherw
normal. In future simulations one will have to monitor pio
correlators carefully.

Meson correlators were calculated up to the center of
lattice in the time direction. We find that for zero and lo
momentaTsignal covers the entireT/2 region ~1.24 fm for
2-5
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FIG. 2. Fractional errors inBs meson correlators for momenta~0,0,2! and ~0,0,3!.
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the anisotropic lattice and 2.25 fm for the isotropic lattic!.
However as the momentum increasesTsignal starts to
shrink. For the B meson this occurs only at the highest t
momenta ~0,2,2! and ~0,0,3!. For the pion and the rho
Tsignal shrinks below;1 fm once one goes beyond mo
mentum~1,1,1!. It then becomes much harder to obtain re
able information from the isotropic lattice. For instance,
should be obvious from Fig. 9 that trying to fit the isotrop
data is considerably more frustrating than carrying out fits
the anisotropic data. Figure 13 shows fitted energies ve
tmin /at for the isotropic rho and pion with momentum
~1,1,1!. This should be compared with the corresponding
isotropic results in Fig. 12. With the isotropic data, pickin
tmin is extremely tricky. In past work on isotropic lattices w
05500
o

t

o
us

-

often adopted a criterion whereby iftmin
(0) is the smallesttmin

which gives an acceptableQ-value (.0.1) then our pre-
ferred choice fortmin in a single exponential~cosh! fit to a
single correlator would betmin

(0) 12at @20,21#. This is a fairly
conservative criterion leading to larger statistical errors th
if one chooses a smallertmin . We will call fits using this
criterion ‘‘B fits.’’ In the present calculation,B fits would
dictatetmin /at53 or 4 for most of our fits to isotropic data
We will abide by thistmin for fitting B meson correlators
However, for the rho and pion we will be less conservat
and usetmin /at52, which is equal to 0.5 fm in physica
units. Q-values are always acceptable already fortmin /at
52. We call this latter choice ‘‘A fits.’’ Based only on the
isotropic data, one would be hard pressed to argue whyA fits
FIG. 3. Effective masses for the~0,0,0! momentumBs meson correlators in lattice~left figure! and physical~right figure! units.
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FIG. 4. Effective masses for the~1,1,1! momentumBs meson correlators in lattice~left figure! and physical~right figure! units. The
isotropic points to the right have been shifted down for clarity.
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should be preferred overB fits. In the present compariso
study, however, we have additional information from the a
isotropic lattice that tells us that plateaus have set in bt
;0.3–0.4 fm, i.e., beforet50.5 fm, and henceA fits
should be fine. We should also note that correlated fits w
used throughout our analysis.

The results presented in this subsection demonstrate
for the pion and rho correlators there is a clear advantag
anisotropic simulations starting with momenta arou
~1,1,1!. For B correlators benefits start around~0,2,2!. Below
we will present physics results extracted from the isotro
and anisotropic lattices, concentrating on momentum dep
05500
-

re

at
to

c
n-

dent quantities. For theB meson on both lattices and the pio
and rho on the anisotropic lattice we can go to the high
momentum~0,0,3!. On the isotropic lattice, pion and rh
results can only be extracted up to momentum~0,0,2! using
A fits. With B fits, only momenta up to~1,1,1! can be reached
and errors are larger than withA fits.

Another lesson to be drawn from the present exercis
the importance of good smearings. Here we can get a
with single exponential~cosh! fits, because our smearings a
reasonable and plateaus set in well withinTsignal . In the case
of poorer smearings it would still be advantageous to be
an anisotropic lattice with many data points withinTsignal ,
FIG. 5. Effective masses for the~0,0,3! momentumBs meson correlators in lattice~left figure! and physical~right figure! units. The
isotropic points to the right have been shifted down for clarity.
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FIG. 6. Effective masses for the~0,0,0! momentum pion correlators in lattice~left figure! and physical~right figure! units.
to
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a

a-
t

oth
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t
hat.
tum
since that would facilitate multi-exponential fits. Going
lattices with longer time extent in physical units in search
a plateau will not work for high momentum correlators, sin
Tsignal stops well before the end of the lattice. It is mu
more profitable to explore better smearings and/or incre
the number of points withinTsignal .

B. Dispersion relation

A convenient way to investigate how well lattice simul
tions are reproducing relativistic dispersion relations is
consider the quantity@12#
05500
f

se

o

C~p![AE2~p!2E2~0!

p2
, ~20!

wherep[upW u andE(p) is the total energy of the particle. In
a relativistic theoryC(p)51 for all p. C(p) is shown for the
pion and the rho in Figs. 14 and 15. One sees that on b
isotropic and anisotropic lattices, continuum behavior is o
served to better than;5% for momenta of up to 1.2 GeV a
the minimum and, in the case of the rho, even beyond t
Hence, it appears one can simulate particles with momen
FIG. 7. Effective masses for the~1,1,1! momentum pion correlators in lattice~left figure! and physical~right figure! units. The isotropic
points to the right have been shifted down for clarity.
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FIG. 8. Effective masses for the~0,0,0! momentum rho correlators in lattice~left figure! and physical~right figure! units.
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sly
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as high asp'1.5/as to 2.0/as without introducing large dis-
cretization errors. One notes a slightly better behavior
isotropic lattices compared to on anisotropic lattices for
smaller momentum points. The anisotropic results are m
sensitive to the tuning ofC0, for which we have used the
one-loop estimate. We have studied the effect of this o
loop correction by calculating anisotropic light quark prop
gators withC051 on a subset of 50 configurations~at the
same time adjustingatm0 to obtain the same pion mass!. The
fancy squares in Fig. 16 show results forC(p) for C051,
i.e., without the one-loop correction. They are compared w
results from 50 configurations usingC050.82. For com-
pleteness we also include corresponding points from Figs
05500
n
e
re

e-
-

h

4

and 15, which are based on the full set of 200 configurati
with C050.82. Although effects from the one-loop corre
tion are not large, nevertheless, they are crucial for obtain
the ;2% to ;5% agreement with relativistic behavio
Even if we had attempted to tuneC0 nonperturbatively, it
would have been difficult to do much better simultaneou
for both pions and rhos, than our perturbative estimate.
errors onC(p) for anisotropic pions~from a bootstrap analy-
sis! are smaller than one might have expected based on
large fluctuations noted above in pion correlators. We e
dently observe large cancellations between fluctuations in
zero and nonzero momentum correlators.

The isotropic results in Figs. 14 and 15 are based oA
FIG. 9. Effective masses for the~1,1,1! momentum rho correlators in lattice~left figure! and physical~right figure! units. The isotropic
points to the right have been shifted down for clarity.
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FIG. 10. Fractional errors in pion correlators for momenta~0,0,0! and ~1,1,1!.
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s
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rk
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v
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om
ve
fits, defined above. In Fig. 17 we compare with results us
B fits. Results from the two different fits are consistent. B
as expected, errors are much larger forB fits, and one canno
go beyond the three lowest momenta using them. Un
specified otherwise, for the rest of this paper we will useA
fits for pions and rhos on isotropic lattices. The isotrop
results in Figs. 14 and 15 are also consistent with finding
Ref. @12#, where comparisons were made with clover qua
at similar lattice spacings. In those studiesC(p), at a lattice
spacinga50.25 fm, was consistent with unity within error
up to aboutp51.2 GeV for the D234 quark action and e
hibited 10–20 % deviations from unity for the clover qua
action.

C(p) is not applicable for heavy-light mesons involvin
NRQCD heavy quarks. The NRQCD action omits the hea
05500
g
,

ss

in
s

y

quark rest mass and meson correlators fall off with an ene
Esim(p) that differs from the total energyE(p). However
one has

dE~p![Esim~p!2Esim~0!5E~p!2E~0!, ~21!

and one can define the ‘‘kinetic’’ mass,Mkin5M2 through

Mkin5@p22dE2~p!#/@2dE~p!#. ~22!

If Esim(p) has the correct momentum dependence, thenMkin
should be independent of the momentum used on the ri
hand side~RHS! of Eq. ~22!. Figure 18 showsMkin for sev-
eral mesons versus the momentum of the correlator fr
which it was extracted. On the anisotropic lattice we ha
FIG. 11. Fractional errors in rho correlators for momenta~0,0,0! and ~1,1,1!.
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data for two heavy-light mesons, bothBs andDs . The latter
meson uses NRQCD charm quarks. One sees that fo
mesons, results forMkin are independent of momentum
within errors up to aboutp;1.5 GeV. For the pion and th
rho we can also compareMkin with the rest massM1
[E(0). Thedeviation ofMkin from M1 reflects the devia-
tion of C(p) from unity in Figs. 14 and 15 and, like th
latter, is very small.

C. Decay constant ratios

Heavy meson semileptonic decay form factors, which w
be the focus of Sec. IV, require matrix elements of hea

FIG. 12. Fitted energies vstmin /at for the pion and the rho for
momentum~1,1,1! on anisotropic lattices. Single cosh fits we
used withtmax/at fixed at 22. Errors are from a bootstrap over 2
ensembles.

FIG. 13. Fitted energies vstmin /at for the pion and the rho for
momentum~1,1,1! on isotropic lattices. Single cosh fits were us
with tmax/at fixed at 9. Errors are from a bootstrap over 200 e
sembles.
05500
all

l
-

light currents between hadronic states with and without m
mentum. It is worthwhile considering first simpler matr
elements of currents between mesons and the vacuum
studying their momentum dependence. Such matrix elem
are relevant for meson leptonic decays. Starting from
usual definition of the decay constant~in Euclidean space!,

^0uAmuB,pW &5 p̃m f B ~23!

@ p̃m5( iE,pW )#, one can form the ratio

^0uA0uPS,pW &/AE~p!

^0uA0uPS,pW 50&/AM PS

5
AE~p!

AM PS

. ~24!

This ratio was studied recently on finer lattices using a l
improved action@22# ~similar calculations were done sever
years ago with relativistic heavy fermions in Ref.@23#!. In

-

FIG. 14. C(p) vs momentum for the pion.

FIG. 15. C(p) vs momentum for the rho.
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FIG. 16. Effect of the one-loop correction toC0 on C(p) for anisotropic lattices.
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the present paper we will use the following current for t
temporal component of the axial vector current:

A0→JA0

(0)5C̄g5g0Q, ~25!

whereC is the light quark field and the heavy quark 4 spin
Q has the NRQCD 2 spinorF as the upper two componen
and zero for the lower two components. The superscript
signifies thatJA0

(0) is the zeroth order term in an 1/M expan-

sion for the axial vector current. The left-hand side of E
~24! is replaced by

R(0)~p![
^0uJA0

(0)upW &/AE~p!

^0uJA0

(0)upW 50&/AM PS

. ~26!
05500
r

)

.

In Ref. @22# 1/M current and one-loop matching correctio
were included in the ratio, and were seen to have onl
small effect relative to using just the zeroth order current
heavy quark masses around theb-quark mass. Matching cal
culations for the actions of the present paper have not b
carried out yet so we are forced to use the simple ra
R(0)(p) here. Figures 19 and 20 showR(0) for theBs andDs
leptonic decays, compared with the expected continuum
havior of the RHS of Eq.~24!. One sees good agreement f
most of the momentum range studied. Only at the high
momentum (.1.5 GeV) does one see;15% deviations for
Bs mesons. One should be able to reduce these errors b
;10% by going to slightly finer lattices. Since we do n
include higher order~in p/M ) current corrections one ex
pects agreement with full continuum QCD behavior to
FIG. 17. Comparison ofA- andB-fit ~see the text! results forC(p) on isotropic lattices.
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worse for theDs meson, especially at higher momenta@24#.
The better agreement found in Fig. 20 as compared to in
19 is, hence, fortuitous.

D. Zero momentum spectrum

In the process of studying momentum dependence of
son correlators we have also accumulated some zero mo
tum spectrum results. They are summarized in Table II. T
first errors are statistical and the second represent e
coming from uncertainties ina21 which we take to be
roughly 10% not including quenching effects. In this explo
atory study we will not try to estimate other systematic
rors. One sees that the ‘‘pion’’ and ‘‘rho’’ masses are ve
close to each other on the isotropic and anisotropic lattic

FIG. 18. Kinetic mass in lattice units vs momentum of correla
from which it was extracted for theBs , Ds , rho, and pi mesons. All
results are from anisotropic lattices. The horizontal lines show
rest massesatM1 for rho and pi.

FIG. 19. R(0)(p) as defined in Eq.~26! for the Bs meson. The
full line showsAE(p)/AM PS.
05500
g.

e-
en-
e
rs

-
-

s.

The isotropicBs meson is about 250 MeV too heavy and t
anisotropic one about 600 MeV too light compared to expe
ment. On the other hand, the uncertainty coming fro
a21 is at the 500–600 MeV level.

It is amusing that the heavy-light hyperfine splitting
which have been the bane of lattice heavy-light spectrosc
in the past, agree so well here with experiment for both
Bs and Ds mesons. One should not make too much out
this, however, until results at other lattice spacings have b
obtained. At the moment we have no estimate of the size
scaling or unquenching corrections to this quantity. If o
corrects approximately for the incorrect heavy quark mas
our simulations and multiplies by a factor of@calculated me-
son mass#/@experimental meson mass#, then the entries in
Table II for theBs* -Bs hyperfine splitting, are modified to 48
or 40 MeV for isotropic and anisotropic lattices respective
Similarly the Ds* -Ds splitting becomes 148 MeV. All these
numbers are much larger than and in better agreement
experiment than in previous lattice estimates@21,25–29#.
One difference between the present and previous calculat
lies in the last term in Eq.~10! which enhancesF̃mn . It is
hard to imagine, however, that this term alone can be
whole story. It will be interesting to see what happens af
systematic errors have been investigated more thorou
and various corrections to the present calculation have b
incorporated.

IV. RESULTS FROM THREE POINT FUNCTIONS

For pseudoscalar to pseudoscalar semileptonic decays
is interested in matrix elements of the heavy-light vec
current Vm. The matrix elements are then parametrized
terms of form factorsf 1 and f 2 ~or f 1 and f 0),

^p~p8!uVmuB~p!&5 f 1~q2!~pm1p8m!1 f 2~q2!~pm2p8m!,
~27!

whereq25(pm2p8m)2. We will write formulas forB decays
but they apply also toD decays.f 1 and f 0 are defined as

r

e

FIG. 20. R(0)(p) as defined in Eq.~26! for the Ds meson. The
full line showsAE(p)/AM PS.
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TABLE II. Some spectrum results. The first errors are statistical, and the second are estimates fo
due to uncertainties in the scale. The hyperfine splittings have not been adjusted for incomplete tunin
heavy quark mass~see the text for adjusted numbers!.

Isotropic Anisotropic Experiment

light-light
‘‘pion’’ mass 0.856~3!~86! GeV 0.840~7!~84! GeV
‘‘rho’’ mass 1.179~10!~118! GeV 1.158~7!~116! GeV
heavy-light
Bs 5.65~31!~57! GeV 4.80~20!~48! GeV 5.369 GeV
Ds 2.04~5!~20! GeV 1.969 GeV
Bs* -Bs 46~3!~5! MeV 45~2!~5! MeV 47.0~26! MeV
Ds* -Ds 143~4!~14! MeV 143.8~4! MeV
ity
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e
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f 05 f 11
q2

~MB
22Mp

2 !
f 2 , f 15 f 1 . ~28!

Our main goal in this section will be to compare the qual
of signals for matrix elements such as those in Eq.~27! be-
tween isotropic and anisotropic lattices. Since the lig
quarks in this study are still heavier than the strange qu
the physical situation we are simulating will be closest toBs
or Ds decays into kaons.

A. Current matrix elements

In order to extract the matrix element of Eq.~27! one
starts from the following three-point function
Gm

(3)(pW ,pW 8,tB ,t), on the lattice~for technical reasons it is
more convenient to consider the time reversed matrix
ment!:

Gm
(3)~pW ,pW 8,tB ,t !5(

xW
(

yW
e2 ipW •xWei (pW 2pW 8)•yW

3^0uFB~ tB ,xW !Vm
L ~ t,yW !Fp

† ~0!u0&.

~29!

Fp
† and FB

† are interpolating operators used to create
pion or B meson respectively.Vm

L is the dimensionless Eu
clidean space lattice heavy-light vector current. It will
defined more precisely below. It is related to the continu
Minkowski spaceVm through

Vm
L 5as

3AZq
(0)j~m!Vm. ~30!

Zq
(0) is the tree-level wave function renormalization for la

tice light quark actions. It is discussed for the isotropic a
anisotropic D234 actions in the Appendix.j(m) is the con-
version factor between Euclidean and Minkowski spa
quark bilinear currents which is necessary due to the dif
ent g-matrix conventions in the two spaces.j(0)51 and
j(k)52 i , k51,2,3. tB denotes the time slice at which theB
meson operator is inserted. In the simulationstB is kept fixed
and we varyt, the timeslice of the current insertion, betwe
0 and tB . Physics is extracted from those timeslices wh
the corresponding two-point correlators are dominated by
05500
t
k,

-

e

d

e
r-

e
e

ground state and wheree2Ep(T2t) can be ignored relative to
e2Ept, T being the time extent of the lattice. If these cond
tions are satisfied the three-point correlator@Eq. ~29!# be-
comes

Gm
(3)~pW ,pW 8,tB ,t !

→ ^0uFBuB~pW !&^B~pW !uVm
L up~pW 8!&^p~pW 8!uFp

† u0&

~2EBas
3!~2Epas

3!

3e2EB
sim(tB2t)e2Ept. ~31!

The exponential factors in Eq.~31! can be removed by di-
viding with the appropriate two-point functions:

GB
(2)~pW ,t !5(

xW
e2 ipW •xW^0uFB~ t,xW !FB

†~0!u0&

→
u^B~pW !uFB

† u0&u2

~2EBas
3!

e2EB
simt

[zBBe2EB
simt, ~32!

Gp
(2)~pW 8,t !→

u^p~pW 8!uFp
† u0&u2

~2Epas
3!

@e2Ept1e2Ep(T2t)#

'zppe2Ept. ~33!

The matrix element of the continuum currentVm can now be
obtained from

Gm
(3)~pW ,pW 8,tB ,t ![j* ~m!

Gm
(3)~pW ,pW 8,tB ,t !

GB
(2)~pW ,tB2t !Gp

(2)~pW 8,t !
AzBBzpp

~34!

→AZq
(0)^B~pW !uVmup~pW 8!&

2AEBEp

[^Ṽ&m. ~35!

Equations~34! and~35! relate the three- and two-point func
tions evaluated in our simulations to the continuum mat
elements of Eq.~27!. We now need to specify the lattic
current Vm

L that enters into the three-point functions. It
2-14
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FIG. 21. G0
(3)(t) of Eq. ~34! for pion momentum~0,0,0! and ~0,0,1!.
f

D
e

its
be
car-
defined in terms of Euclidean spaceg-matrices gm

5j(m)g (Mink.)
m . Since we use the NRQCD formulation o

heavy quarks,Vm
L becomes an expansion in 1/M , the inverse

of the heavy quark mass. After matching to continuum QC
one has

Vm
L 5(

j
Cj

(Vm)JVm

( j ) . ~36!

For j 50 one has the zeroth orderO@(1/M )0# current

JVm

(0)5C̄gmQ, ~37!
05500
,

with the fieldsC andQ defined as in Eq.~25!. Higher order
currents (j .0) are listed in Ref.@30#. The matching coeffi-
cientsCj

(Vm) are not yet known beyond the tree level, so w

will work with C0
(Vm)

51 and all otherCj ’s equal to zero.

One of the 1/M current correctionsJVm

(1) has C1
(Vm)

51

1O(as), and also contributes at the tree level. However,
matrix elements include power law terms that will not
canceled unless a proper one-loop calculation has been
ried out. Hence we do not includeJVm

(1) contributions in the

present study.
We have evaluatedGm

(3)(pW ,pW 8,tB ,t) of Eq. ~34! for several

pion momentapW 8 ranging from~0,0,0! to ~0,0,3! in units of
FIG. 22. G0
(3)(t) of Eq. ~34! for pion momenta~1,1,1! and ~0,0,2!.
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FIG. 23. G0
(3)(t) of Eq. ~34! for pion momentum~0,0,0! vs time in lattice units.
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2p/(aL). TheB meson momentum was always set equa
zero. On the anisotropic lattice we usedtB /at524, and on
the isotropic latticetB /at510. Figures 21 and 22 showG0

(3)

versust in physical units for zero momentum and for thr
nonzero momenta. One sees that, where there is ove
anisotropic and isotropic lattices give consistent results. O
is interested, of course, in the region whereG0

(3) is indepen-
dent of t, implying that the simplet dependence in Eq.~31!
and the last expression in Eq.~33! is justified.G0

(3) can then

be identified with the asymptotic matrix element^Ṽ&0 of Eq.
~35!. Again the crucial question for the higher momentu
isotropic results becomes whether one would believe in
presence of a plateau if one did not have the compar
05500
o

p,
e

e
n

anisotropic data. To illustrate this point we showG0
(3) versus

t in lattice units separately for isotropic and anisotropic l
tices in Figs. 23–26. One might still feel comfortable extra
ing a signal from the~1,1,1! isotropic data. One would be
hard pressed, however, to claim that a plateau has been
tablished at momentum~0,0,2! based solely on the left han
plot in Fig. 26. Note thatTsignal , the time range over which
statistical errors are under control, is about 1 fm for mom
tum ~1,1,1! and has shrunk to about 0.5 fm for~0,0,2!. We
saw in the previous section that individual two-point corre
tors had reached a plateau by 0.3–0.4 fm. If sufficient d
points could be introduced between 0.3 and 0.5 fm, then
should be able to extract meaningful results for^Ṽ&0. Hence
FIG. 24. G0
(3)(t) of Eq. ~34! for pion momentum~0,0,1! vs time in lattice units.
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FIG. 25. G0
(3)(t) of Eq. ~34! for pion momentum~1,1,1! vs time in lattice units.
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once again one sees an advantage to using anisotropic
tices starting with momentum~1,1,1!. This is the same situ
ation as with the pion and rho correlators described in S
III, not a surprising finding since statistical errors inGm

(3) are
dominated by the pion correlator and not by theB correlator.

From the region whereGm
(3) is independent oft, one can

extract^Ṽ&m. We show^Ṽ&0 and ^Ṽ&k in Fig. 27 as a func-
tion of the pion momentump8. For points at the larges
momenta on the anisotropic lattice one could be seeing s
discretization effects. Only a more careful analysis involvi
simulations at several lattice spacings and/or further stu
with nonzeroB meson momenta will be able to shed mo
light on this. Here we are concentrating mainly on wheth
05500
lat-

c.

e

es

r

signals can be extracted, postponing scaling studies for
future. This is in contrast to the two-point correlator stud
of Sec. III, where several continuum expectations based
on simple Lorentz symmetry considerations could be tes

B. Form factors f¿„q
2
… and f 0„q

2
…

From Eqs.~35!, ~27! and ~28! one can extract the form
factorsf 1(q2) and f 0(q2). Isotropic lattice results for theBs
meson are shown in Fig. 28, and anisotropic lattice res
for theBs andDs mesons in Figs. 29 and 30. The kinematic
including the range inq2 that is covered, depends on th
meson masses of Table II and differs for the two types
FIG. 26. G0
(3)(t) of Eq. ~34! for pion momentum~0,0,2! vs time in lattice units.
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FIG. 27. ^Ṽ&m of Eq. ~35! from isotropic and anisotropic lattices vs the pion momentum.
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lattices. The errors in the three figures are statistical
come from a simultaneous bootstrap analysis of theV0 and
Vk three-point functions and theB ~or D) and pion correla-
tors.

Since we have at present only tree-level matching of
heavy-light currents and also have not tuned~or extrapolated
in! the heavy and light quark masses, the above form fa
results cannot be applied yet to phenomenology. Wha
important, however, is that with just 200 configurations
was possible to obtain form factors for a nontrivial range
q2, and that we were able to demonstrate the advantage
anisotropic lattices in calculations of this kind. By increasi
statistics in the future one should be able to get good d

FIG. 28. The form factorsf 0(q2) and f 1(q2) for Bs decays
from isotropic lattices. See Table II for actual values of the dec
ing heavy meson and daughter meson masses.
05500
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e

or
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ta

over an even wider range inq2. At that point one would also
want to go to finer lattices and work with improved curren
so that finite momentum errors are minimized even at
largest momenta for which signals can be obtained.

V. SUMMARY

This paper investigates the extent to which anisotro
lattices can help in extracting better signals from two- a
three-point correlators involving high momentum hadro
and whether they can play an important role in studies
semileptonic heavy meson decays into light hadrons. To
dress this question we have carried out simulations of he

-

FIG. 29. The form factorsf 0(q2) and f 1(q2) for Bs decays
from anisotropic lattices. See Table II for actual values of the
caying heavy meson and daughter meson masses. Some points
been shifted horizontally for clarity.
2-18



a
on
us

le
ro

an
2
re

in
n
he
b
r-
ic

k
nd
sp

ta
th
a
/V
e

of
er
e
r
b

pi
n
e

the

t-
this
ng

tter
as

ts
hat
w
d on
t
o-
la-

m

o-

m

of

pic

the
-
e
iso-
ity
eti-
ht-
the

of
led
lep-
on-
ent
up

in
to

und
d-
5–2

ed.

ose
ork
a-

e

COMPARISON STUDIES OF FINITE MOMENTUM . . . PHYSICAL REVIEW D64 055002
meson semileptonic decays, in parallel, on isotropic and
isotropic lattices. In order to have a meaningful comparis
we work with similar coarse spatial lattice spacings and
identical sources and smearings on the two lattices.

We find that it is considerably easier to extract reliab
signals from anisotropic simulations once the light had
momentum reaches~1,1,1! 2p/(asL) or higher. This advan-
tage may not be so obvious just by comparing Figs. 28
29, and one needs to go back to figures such as Fig. 2
fully appreciate how much the anisotropy is helping he
The last point~at the smallest value ofq2) in Fig. 28 comes
from the isotropic data in the left-hand plot of Fig. 22~also
see Fig. 25!. It is because the first three isotropic points
Fig. 22 agree with the anisotropic data that one feels co
dent about the form factor results in Fig. 28. Without t
anisotropic data, one would have to allow for a considera
additional systematic error, which one might call ‘‘fitting e
ror’’ or ‘‘ tmin dependence error,’’ when presenting isotrop
results. Hence the main conclusion from the present wor
that anisotropic lattices definitely improve signal quality a
should be considered in semileptonic decay studies, e
cially if a large range inq2 is of interest.

The advantages of anisotropic lattices come at a cer
price. For instance, such lattices require more sites in
time direction. Also light quark inversions take more iter
tions in order to obtain the same pion-to-rho mass ratio P
In the present simulations, the cost increase from just th
two effects meant a factor of 2.431.553.6 in CPU time.
Working with anisotropic lattices also requires tuning
more parameters. At a minimum, two additional paramet
h in the glue action andC0 in the D234 quark action must b
determined nonperturbatively or perturbatively. It is impo
tant that efficient procedures for carrying out such tunings
developed. Another drawback in the current anisotro
simulations was the increased susceptibility to exceptio
configurations. If it were not for this problem and the larg

FIG. 30. The form factorsf 0(q2) and f 1(q2) for Ds decays
from anisotropic lattices. The ‘‘burst’’ shows an experimentally d
termined value off 1(q250) for the decayD0→K2l 1n @34#.
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fluctuations in pion correlators, the anisotropic results for
form factors f 0(q2) and f 1(q2) would have been of even
higher quality relative to those coming from isotropic la
tices. There are several ways one could try to ameliorate
problem in the future. Just going to finer lattices and worki
with more moderate anisotropies,x,5.3, should help. One
could also explore other light quark actions that have be
chiral properties than the clover or D234 actions, such
highly improved staggered fermions@1,14#, domain wall fer-
mions @31# or the twisted QCD approach@32#.

Ultimately one will have to weigh the additional cos
associated with anisotropic lattices against the likelihood t
an isotropic simulation with much higher statistics will allo
us to approach the high momenta we are seeking. Base
our ~and also other peoples’! experience to date, we do no
believe isotropic lattices can be competitive at high m
menta. The signal-to-noise ratio of high momentum corre
tors will decrease exponentially witht. When at is large it
will be very costly to move even one additional point fro
the noise intoTsignal . In order to do so one will need to
reduce errors by roughly a factor ofeat(E(p)2E0), whereE0 is
the ground state energy@33#. In other words, one will need
an increase in statistics by a factor ofNstat[ueat(E(p)2E0)u2.
Typical numbers for the current isotropic simulation for m
menta starting with~1,1,1! and higher, would beNstat'4
210. This means a factor of 16–100 if one wants to go fro
just one or two points inTsignal to a marginally useful
Tsignal of 3–4 points. This is much more than the cost
going to anisotropic lattices.

We mention another unrelated advantage of anisotro
actions. One difference betweenS G

( iso) and S G
(aniso) is the

omission in the latter of rectangles that span two links in
time direction. SimilarlyS D234

( iso) includes higher time deriva
tives that are absent inS D234

(aniso) . As a consequence, for th
same amount of improvement in spatial directions, the an
tropic actions suffer less from the lack of reflection positiv
and/or the presence of ghosts. In addition to being theor
cally cleaner this means perturbation theory is more straig
forward for the anisotropic actions. One such example is
Zq

(0) calculation in the Appendix.
In the course of this study we accumulated a wealth

two-point correlator data at finite momentum. This enab
us to compare lattice results for dispersion relations and
tonic decays of finite momentum heavy mesons with c
tinuum expectations. We found that momentum depend
discretization errors were under control and less than 10%
to aboutasp'2. Discretization errors at high momenta
three-point functions have not been critically assessed
date. However, assuming a situation similar to the one fo
with the two-point functions, prospects for simulating ha
rons in semileptonic decays with momenta as high as 1.
GeV look promising. Only slightly finer lattices (as

21

>1 GeV) than those of the present work may be requir
This would have to be coupled with an anisotropy ofx
'2.5 or higher in order to be able to extract a signal at th
high momenta. The experience gained in the present w
will be indispensable when picking optimal simulation p

-
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rameters in the future and going onto more realistic calcu
tions.
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APPENDIX: TREE-LEVEL WAVE-FUNCTION
RENORMALIZATION FOR D234 QUARK ACTIONS

In this appendix we sketch the derivation of the tree-le
wave function renormalizations,Zq

(0) , for the light quark ac-
tions used in this article. Results forS D234

(aniso) already ap-
peared in Ref.@18#. One starts from the requirement that t
propagator for a zero momentum quark have the form

G~ t,pW 50!5E
2p/at

p/at dp0

2p
eip0tḠ~p0 ,pW 50!

[Zqe2M1t
11g0

2
1•••. ~A1!

Ḡ(p) is the momentum space propagator andM1 denotes the
pole mass. The dots refer to lattice artifacts and additio
multiparticle states that could be created by the lattice
mion field operatorC beyond the single quark state. Writin

1

at
Ḡ~p0 ,pW 50!5

1

ig0A1B
, ~A2!

and using the complex variable

z[eiatp05e2atE, ~A3!

one finds

G~ t,pW 50!5E
2p/at

p/at dp0

2p
eip0tat

2 ig0A1B

~A21B2!

5E dz

2p iz
zt/at

2 ig0A1B

~A1 iB !~A2 iB !
. ~A4!

One can show that the pole

z1[e2atM1 ~A5!

corresponding to a physical positive energy particle ob
(A2 iB)uz5z1

50 or Buz5z1
52 iAuz5z1

. The contribution to

G(t,0) from the residue at this physical pole is then given
05500
-

-
y
-

d
s.
ty
-

l

al
r-

s

y

F zt/at~2 ig0A1B!

z
d

dz
~A21B2! G

z5z1

5
~g011!

2
e2M1tF 2 i

z~A82 iB8!
G

z5z1

. ~A6!

Using

S z
d f

dzD
z5z1

52 i S d f

d~atp0! D
p05 iM 1

, ~A7!

and comparing with Eq.~A1!, one finds

Zq5F 1

d

d~atp0!
~A2 iB !G

p05 iM 1

. ~A8!

For S D234
(aniso) one has, at the tree level,

A(aniso)5sin~atp0!, ~A9!

B(aniso)5atm1x2x cos~atp0!, ~A10!

and

e2atM15
~atm1x!2A~atm1x!2112x2

x21
, ~A11!

or, equivalently,

eatM15
~atm1x!1A~atm1x!2112x2

x11
. ~A12!

As explained in Ref.@18# m5m02mc , andmc is the value
of m0 that gives a massless pion. From Eq.~A8! one finds,

Zq
(0),aniso5

1

cosh~atM1!1xsinh~atM1!

5
1

A~atm!212~atm!x11
. ~A13!

For the isotropic actionS D234
( iso) with higher time derivatives

the formulas are more complicated:

A( iso)5
4

3
sin~atp0!2

1

6
sin~2atp0!, ~A14!

B( iso)5atm1
4

3
@12cos~atp0!#

2
1

6
sin 2~atp0!. ~A15!

Equation~A8! leads to
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Zq
(0),iso5

1

H 4

3
eatM12

1

3
@cosh2~atM1!1sinh2~atM1!1sinh~atM1!cosh~atM1!#J . ~A16!
-
in

d

u

e
ate

ate

at-
The tree-level physical polez15e2atM1 is the solution to

z42~24atm130!z2132z2350, ~A17!

that evolves smoothly fromz151 at atm50. A lengthy
closed expression forz1 as a function ofatm can be obtained
~using for instanceMATHEMATICA !; however, we do not con
sider it worthwhile to reproduce it here. It is easier to plug
specific values foratm into Eq. ~A17! before solving for the
roots. At smallatm the physical pole is well approximate
by

1

z1
5eatM1511~atm!1

1

6
~atm!32

5

24
~atm!41O@~atm!5#.

~A18!

For the mass parameter values used in the current sim
.

,

.
.

D

05500
la-

tions, the sum of just the first three terms in Eq.~A18! differs
from the exact solution to Eq.~A17! by only 1%.

In order to obtain explicit values forZq
(0) , one needs to

know atm5at(m02mc). Since we have data at only on
light quark mass, we do not have a nonperturbative estim
for atmc based on a vanishing pion mass. We approxim
atmc using perturbation theory and find@18# atm'0.635 and
atm'0.196 respectively for the isotropic and anisotropic l
tices. This leads to

AZq
(0),iso5

1

1.2226
, ~A19!

AZq
(0),aniso5

1

1.3286
, ~A20!

which are the values used in Sec. IV.
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