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We study the deconfinement phase transition and monopole properties in a finite temperature three-
dimensional compact Abelian gauge model on the lattice. We predict the critical coupling as a function of the
lattice size in a simplified model to describe monopole binding. We demonstrate numerically that monopoles
are sensitive to the transition. In the deconfinement phase the monopoles appear in the form of a dilute gas of
magnetic dipoles. In the confinement phase both monopole density and string tension differ from semiclassical
estimates if monopole binding is neglected. However, an analysis of the monopole clusters shows that the
relation between the string tension and the density of monopoles in charged clusters is in reasonable agreement
with predictions. We study the cluster structure of the vacuum in both phases of the model.
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[. INTRODUCTION electric current, to an excess of the free energy proportional
to the area.

Compact Abelian gauge theory in three Euclidean dimen- At finite temperature the phase structure becomes non-
sions is a case where permanent confinement is proven andvial. What we have in mind, is compactifying 3B(2
qualitatively understoofll,2]. In order to gain some experi- +1)D in the “temporal” (third or z) direction. The
ence for more realistic theories, it is interesting to study howconfinement-deconfinement phase transition was studied on
this mechanism ceases to work under special conditionghe lattice both analyticallj4] and numerically{7]. Accord-
High temperature is such a case. In this paper we reexamirieg to Svetitsky-Yaffe universality argumenfS], an inter-
the finite temperature deconfining phase transition. We wilpretation of the transition was attempted in terms of the
emphasize the aspect of monopole binding which explain&J (1) vortex dynamics of the corresponding 2D spin system.
the breakdown of confinement. In a companion paper, w&he phase transition—which is expected to be of Kosterlitz-
extend these studies to the case of nonvanishing extern@houless typg6]—was demonstrated to be accompanied by
fields. restructuring of the vortex systefif]. The vortices are de-

Compact QED theory possesses Abelian monopoles as tgeribed by a 20J (1) spin model representing the dynamics
pological defects appearing due to the compactness of thef the Polyakov loop(also see the discussion in Ré#)).
gauge group. Considering the three-dimensid88l) theory  Approaching the transition temperature, vortices and antivor-
as the static limit of a 4D theory, the monopoles are justices start to form bound states. In the high temperature
magneticmonopoles at rest, and the components of fieldphase no unbound vortices and antivortices are left.
strength aremagnetic In a three-dimensional theory, the Inthe present paper we discuss an interpretation of decon-
monopoles are instanton-like objects: instead of tracindinement starting from the confinement picture outlined
world lines (as they do in four-dimensiohghey occupy above, in terms of magnetic monopoles. The confining
points. The plasma of monopoles and antimonopoles can exlasma of the monopoles and antimonopoles turns into a
plain the permanent confinement of oppositely charged eledipole plasma at the deconfinement phase transition. A dipole
tric test charge§l] in bound states, kept together by a linear plasma is inefficient to completely screen the field created by
potential. In the language of magnetostatics, confinement aglectric currents running along the pair of Polyakov loops. In
pears due to a screening of the magnetic field induced by thihis case the screening mass vanishes while the magnetic
electric current circulating along the Wilson loop. Mono- susceptibility of the medium is smaller than unity. Both
poles and antimonopoles form a polarized sheet of finitanonopole and vortex binding mechanisms of the deconfine-
thickness(the “string”) along the minimal surface spanned ment phase transition were discussed for 3D finite tempera-
by the Wilson loop. The formation of the striigbserved in  ture Georgi-Glashow model in Ref§8] and [9], respec-
the lattice simulations in Ref3]) leads, for nonvanishing tively.

In the finite temperature case, strictly speaking, there is a
problem with calling all the fields “magnetic,” as we did

*Email address: maxim@heron.itep.ru above when we summarized the zero temperature case. Simi-
"Email address: ilgenfri@alphal.tphys.physik.uni-tuebingen.de lar to Ref.[7], the confinement aspect itself will be illumi-
*Email address: schiller@itp.uni-leipzig.de nated in terms of théJ(1) valued Polyakov loops in the
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third direction, and in terms of Polyakov loop correlatorsWhereqa andia are, respectively, the chargi@ units of the
representing pairs of charges separated in 2D space. In (@ementary monopole chargg,,=27/gs, Wheregs is the
+1)D there is no longer symmetry between the three comthree dimensional coupling constargnd the 3D position
ponents of the field strength tensor. The closest relative ofector of theath monopole. The subscrif indicates that
the true magnetic field i5;, distinct from the others, while  the interaction potentia¥/; eventually depends on the tem-
there is still a symmetry betweelf 3 and F,3. With this  perature.
distinction in mind one can conditionally call these “mag- At zero temperature the monopoles are randomly located
netic” and “electric” components of the field strength tensor, jn EuclideanR ® space, and the classical interaction potential
respectively. As long as one does not introduce externghetween the monopole and antimonopole is inversely propor-
fields, even at finite temperature there is no need to distinonal to the distanceR between the objectsVy(R)
guish between them. The sources of the respective fluxes will — (4, R) . At finite temperaturd the monopoles live in
be simply called monopoles or “magnetic charges” in theine R 2x S, space(with S; being a circle of perimetef 1)
following. _ _ . and the interaction potential is modified. At small separations
The binding of the monopoles is not isotropic. It occurspetween the monopole and antimonopole the interaction is

mainly in the 2D space direction due to the logarithmic po- : _ 20 2y
tential between the monopoles separated by a large spatié?ro temperature likey(x,2)=Vo(Vx“+2°) + - - -, where

distance. As a consequence of periodic boundary condition§= (%,¥,2)=(x,2). At large spatial separationsthe poten-
in the temporal direction, the force between the monopole&@! between monopoles is essentially two dimensi¢8|
and antimonopoles vanishes at half of the temporal extent.
Therefore, theppotential in the temporal directioﬁ is weaker Vi )= =2Tnx+ -, [x[T>1, 22
than in the spatial directions. As a consequence, the spatigjowever, the interaction between monopoles separated by a
size of the monopole bound state is expected to be smallgfistancez in the third (temperaturgdirection is of 3D Cou-
than the size in the temporal direction. This means that thgymp type for small spatial intermonopole distanchgT
dipoles are dominantly oriented parallel or antiparallel to the<1: v (x,z)=—(4wz)~%, zT<1. The force between
third direction. The monopole deconfinement scenario raisegonopoles and antimonopoles at a distameel/(2T) van-
the question of whether monopole propertigsch as pairing  jshes due to periodicity in the temperature direction. Thus
and orientationcould be influenced by an eventual extemnalgne might expect that at finite temperature the monopoles
field. This aspect will be addressed in a companion paper. form magnetically neutral states which are bounded in spa-
_ With or without an external field, the deconfining mecha-tjg| directions. However, the dynamics of the monopoles in
nism by monopole pairing seems to have interesting countefhe temperature direction is not restricted by a logarithmic
parts in more realistic gauge theories. The formation ofygtential.
monopole pairs is qualitatively similar to the binding of in- ° Thus at zero temperature the system exists in the form of
stantons in instanton molecules with increasing temperaturg coulomb gas of magnetic monopoles and antimonopoles.
in QCD suggested to be responsible for chiral symmetry resy, s phase the medium confines electric chafdgsAs the
toration [10]. In the electroweak theory, the formation of temperature increases, the three-dimensional Coulombic po-
Nambu monopole-antimonopole pairs, a remnant from gential turns into a two-dimensional logarithmic potential for
dense medium of disorderedivortices and Nambu mono-  gpatial monopole interactions. The monopoles and antimono-
poles wh.|ch charactep;es the high-temperature phase, aBoles become weakly confined, and form more and more
ccompanies the transition toward a low-temperature phasginole bound states. The dipoles have a finite average spatial
[1_1]. Also note, thatadi_pole vacuum, although not confining.size (the distance between the magnetically oppositely
still has a nonperturbative natug2]. _ charged constituentsvhich is a decreasing function of the
The plan of this paper is as follows. In Sec. Il we estimateiemperature since the interaction potential between the par-
the critical coupling of the confinement-deconfinement phasgc|es rises as temperature increases; cf. B®.
transition based on a monopole binding model for a finite |4 the Jow temperature regime, this dipole size would still
Iatt@ce. I_n Sec. Il the transition_ is numerically I_ocated for ape larger than the average distance between the particles in-
lattice size of 32x8, and confinement properties are stud-sjge the plasma, and therefore only a small fraction of mono-
ied. We present various monopole properties including dipoles residing in actual dipoles is mixed with a weakly cor-
pole formation based on a cluster analysis, in Sec. IV. Wgg|ated monopole-antimonopole component. At sufficiently
study the relation of the monopoles and dipoles to the phasgrge temperature, however, the typical dipole size becomes
transition in Sec. V. We briefly summarize our results Secsmaller than the interparticle distance in the plasma and the
VI. system turns into a pure dipole plasma. The confinement
property is closely related to the Debye mass generation ef-
Il. SOME HEURISTIC CONSIDERATIONS fect which is absent in the pure dipole plasipis]. As a
. ._consequence, the confinement of electrically charged par-
In 3D compact electrodynamics there are monopoles iNgicjas disappears. The system experiences a confinement-

teracting via the Coulomb potentials, deconfinement phase transition due to the monopole binding

Y mechanism.

_°m c o One can use these heuristic arguments to estimate the
S=— V1 (Xa— Xp), 2.1 . 4 .

2 az,b %aoVr(Xa=Xs) @ phase transition temperature. In continuum theory this analy-

054507-2



LATTICE STUDY OF 3D COMPACT QED AT FINI'E . .. PHYSICAL REVIEW D 64 054507

sis was made in Ref8] where compact electrodynamics was ) 1 el (P.X)
represented as a limit of the Georgi-Glashow model. The AN (x;Lg,Ly)= 5 3 , (2.8
hase transition in this theory occurs at a temperafure 2LgL¢ p2#0
P y P 3—2 cosp;
. i

= g%/(er). This result was obtained under the condition that

the average size of the effective magnetic dipole is not an

infrared divergent quantity, as is the case in the confinemerwhere p,,=0,...,27(L,—1)/Lg and p3=0,...,27(L,
phase. —-1)/L;.

However, in lattice gauge theory the considered quantities In order to estimate the average distance between the
are all finite and the considerations should be modified commonopole and antimonopole constituents in a dipole state
pared to the continuum case. The difference between mondi.e., the dipole size we use thecanonical monopole-
pole and dipole plasmas can only be seen if the mean disntimonopolgdipole) partition function, which can be easily

tance r between the constituent monopoles becomegead from Eq(2.7):
comparable to the dipole siz& The distance can be ex-

pressed, via the density of the monopojesasr=p 173, z@=const >, exp{4m?By[AL(x;Ls, L)

Thus the phase transition happens when the dipole size and Xz);o

the average distance between monopoles become of the same .

order, —A7H0;Ls, L)1}, (2.9
d=¢gp 13 2.3 the sum extends over all lattice separationbetween the

monopole and antimonopole. The zero distance between
whereg is a geometrical factor of order unity. For both quan_these objects is excludésince this case does not correspond

tities d andp, estimates can be easily obtained on the lattice!© @ dipole state The rms dipole sizel is given by
while the factoré is to be defined from a simulation.
We consider a 3D compadii(1) gauge model on the 2By 2 1
. : . . , I Ls,L x%exp(4 A7 (x;Lg,L
L2x L lattice with the action written in the Villain represen- (Buiks L= z@ E AT ALA T (GLs LY

di
tation, P

_Ail(O;LS!Lt)]}v (210

+a BV
Z=f Do >, ) eXp[ - 7I|d0+ 2mn|l?1, (24  where the actual distance squared,is evaluated by taking

- n(ca) =7 into account the periodic boundary conditions of the lattice.
The sums cannot be taken analytically.

where# is the compact (1) gauge field and is the integer- The monopole density can be read off from Eq2.7),

valued auxiliary tensor field variabl@,, is the Villain cou-

pling constant. Lo L) =2exd — 272 A-Y0L. L
To relate this to the numerical simulations, we also con- p(BiLs.Ly A=2mByv(B) (OiLs. t)},(z.ll)
sider a formulation of the compatt(1) gauge theory with
Wilson action: where the dependence on the lattice geometry is indicated
explicitly. Note that in this formula no interaction between
s=83 [1-cosbp]. (2.5) monopoles is taken into account, and we refer to it as “bind-

ingless.” Only the local self-interaction of monopoles is ac-
counted for via the Coulomb propagatdr 1(0) in the
The Villain coupling constan,, is related to the Wilson fugacity. We discuss the binding effects on the monopole

coupling 8 as[14] density in Sec. V.
. The geometrical factof is to be defined from the numeri-
Bu(B)=|2 Iog(low)” 2.6 cal data. To this end we assume that this factor is a constant
v 1.(B) ' ' quantity which does not depend on the lattice extensions.

Indeed, it gives an estimate how large the intradipole dis-
wherel ; are the standard modified Bessel functions. tances should be compared to the monopole density in order
The partition functiofEq. (2.4)] can be rewritten in the for the dipole field to be screened. This is quite a strong
following grand canonicalform, i.e., represented as a sum assumption which, however, turns out to be reasonable, as
over monopole charges in tlidual) lattice cubeg14]: will we see below. To define the factgrwe substitute Eqgs.
(2.10 and(2.1)) into Eq.(2.3), and use nur%e(rical values for
_ 52 1 B. presented in Ref.7]. For the lattices 1oxL,, L,=4,6,
2% Zmon= m(%ez exp =27 By(mA M} (27 2818 e obtairg=0.723(58), 0.622(47), and 0.646(116),
respectively. These numbers coincide with each other within
Here A" is the inverse of the Laplacian operator on anpumerical errors. Taking the average olgrwe obtain &
asymmetric lattice andn, denotes the monopole charge in ~2/3. In what follows we take
the cubecs. The inverse Laplacian for lattice sizegandL,
is given as £=2/3, (2.12
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TABLE I. The critical coupling (:onstan;.?t:h calculated using
Egs.(2.6), (2.3, (2.10, (2.1, and(2.12 for different IatticesL§
X L, compared to lattice Monte Carlo results of Rf]. Note that
our results for the lattice 3X 8 are slightly higher than that of Ref.
[7]; see the text.

L,=16 Ls=32 L,=64
L, By Be By Be B
4 1.87 1.882) 2.01 - 2.10
6 2.04 2.082) 2.26 2.183) 2.44
8 2.12 2.145) 2.39 2.302) 2.62

and then solve Eq42.3), (2.11), and(2.10 with respect to

the Villain couplingBy . Then we finally estimate the critical

Wilson coupling,Bf:h with the help of Eq.(2.6). The results

PHYSICAL REVIEW D64 054507

domly selected among the three, to the dynamical gauge field
subject to a global Metropolis acceptance check.

For example, one unit of flux imj plane is introduced
with the help of the following gauge field shiftl5] 6,

—[ 6+ 0 Imodzn:

~ r ~

aj:L_i(ZXi_Li_l), 0120 for X]7&LJ,

B=om(1-x), B0, K#i]
I_TLJ( XJ)1 k™Y IIJ'

The acceptance rate of the global step changes within the
considered3 range from roughly 0.7confinement phagdo

0.2 (deconfinement phageOne total Monte Carlo update
cycle consists of two combined local Metropolis and micro-

for lattices of various sizes are represented in Table I, andynical sweep§equiring an acceptance rate of 0.5 for the

compared with pseudocritical couplings, obtained in lat-

tice simulations of Ref[7]. The agreement between the data

Metropolis step and the global update described above.
In order to localize the deconfinement transition, it is con-

and our estimates is within 4%. Thus the simple heuristiq,enient to study the expectation values of the two bulk op-
arguments based on the monopole-dipole picture work surs;ators

prisingly well.

IIl. PHASE TRANSITION AND CONFINEMENT

We have performed our numerical study of{2)D com-
pact electrodynamics using the Wilson actiggqg. (2.5)].
The lattice couplings is related to the lattice spaciregand
the continuum coupling constagt of the 3D theory as fol-
lows:

1
B=—

=—. (3.1
ags

1 1 2
Wh=35 2 L))o =52 )
) ) 3.3
constructed from the Polyakov loop:
Lt
L(x)zexp{ i 21 493(x,z)} . (3.9

Herex=(x,y) is a two-dimensional vector. In the deconfine-
ment phase the quantity| is of the order of unity, while in

Note that in three-dimensional gauge theory the couplinghe confinement phase it is close to zero in a finite volume,

constanty; has a dimension magto the power of 1/2).

and vanishes in the infinite volume limit.

The lattice corresponding to the finite temperature is The behavior of the expectation value of the Polyakov

asymmetricL 2X L, L;<Ls. In the limit Ls— the tempo-

loop vs the lattice coupling is shown in Fig. 1a). The low

ral extension of the lattice, is related to the physical tem- temperature phas@<pg. corresponds to the confinement

peratureL,=1/(Ta). Using Eq. (3.1 the temperature is
given via the lattice parameters as follows:

T_8
i (3.2

Thus, at a fixed lattice size lowéhighep values of the lat-
tice coupling constanB correspond to lowethighep tem-
peratures.

Our simulations have been performed mainly on & 32
X 8 lattice. In the present paper we do not intend to study
finite size scaling aspects of this model. The local Monte
Carlo algorithm is based on a five-hit Metropolis update

phase, while the high temperature phase is deconfining.
The susceptibility of the Polyakov loop,

xe=(LIH)= (L),

is shown in Fig. 1b). The peak of the Polyakov loop suscep-
tibility corresponds to the pseudocritica} of the deconfine-
ment phase transition. We have fitted the susceptibility near
its maximum by the function

(3.5

C2

1
- (3.6)
3+ (B~ Be)?

x(B)=

sweep followed by a microcanonical sweep. For better erwhere the critical coupling was estimated to kg
godicity, in particular in the presence of an external field=2.346(2) which is quite close to the result of Ref]. The
(considered in a companion papeglobal updates are also best fit is shown in Fig. (b) by a solid line.

included. Following the ideas of Ref15], the global re-

To calculate the string tension we use an analog of plane-

freshment step consists of an attempt to add an additiongllane correlators of two Polyakov loops. In addition, aver-
unit of flux with a randomly chosen sign in a direction ran- ages of temporal Wilson loops have also been studied. More
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FIG. 1. (a) The expectation value of the absolute value of the average Polyako Bap$3.3)] and (b) its susceptibility[Eq. (3.5)]
Vs B.

precisely, in (2+1)D systems, we define first sums of the this fitting function in the confinemen{s=1.8) and decon-

Polyakov loops along a line parallel to a spatial lattice axisfinement 3=2.5) phases, respectively.
(e.g., in they direction: In Fig. 2(b) we present the fitted string tensions as func-

tions of B. Above 3. the string tension quickly drops, but
S remains nonzero due to finite volume effects. The temporal
L pland X) = 21 L(X.y). (3.7 string tensions obtained using either the Polyakov loop
- plane-plane correlators or the temporal Wilson loop averages

The plane-plane correlator may be written as a sum of pointtoughly coincide with each other. The dashed curve repre-

L

point correlation functions: sents the theoretical prediction for the string tengibf, 16]:
LS
(Loand O)Lfand )= 20 (LOYDLT (Xy2)). (39 (B) 42 B — 72Bu(B)A " 1(0;Ls, L)}
127 o(B)= ————=¢exp{— 7By iLe, Lo}
T Bv(B)
The form of this correlator is expected to be Y (3.10

* Ls
{Lpiand O)L piand X)) = const COS%“’Lt(X_ ?) } (39 Agreement between the prediction and the numerical results
is reached only in the vicinity of the phase transition point,
whereo is the temporal string tension. In Fige2 we show  8~2.3. In order to understand these differences, we now
the fit of the Polyakov plane-plane correlafég. (3.8)] by  turn to a closer investigation of the monopole properties.

c T
L S
010 g © Polyakov loop
1x10°2 1 y 7 '
. o temporal Wilson
o \\ g —— bindingless
\\
\\ [e)
005 | e
1x10™ | . ANY
S \@
~N
~
\Q\@
\@m
D~
€ 8 g~
1x10° : 0.00 .
0 5 10 1.7 2 2.3 2.6

(a) (b)

FIG. 2. (a) Fit of the Polyakov plane-plane correlatdtq. (3.8)] using Eqg.(3.9) in the confinement8=1.8), and deconfinemenj3(
=2.5) phases(b) String tensions as functions @ compared with the bindingless theoretical re$&l. (3.10].
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1x 10° ‘ ‘ ‘ ‘ In Fig. 3, with the dashed line we show the density of the
P monopoles calculated using EQ.11) for comparison. As in
mon ——- bindingl - - - -
NS Lnaingless the case of the string tension, the predicted monopole density
Ix 107} ©q O all monopoles E s . .
By o Z is in agreement with the numerical data only n@ar
N Sl = in neutral clusters . . . .
fe . ° 5 Equation(2.12) is based on a single monopole contribu-
1x 1072} \E\\E e 3 tion to the partition function; thus it does not take the pairing
\5\; S of the monopoles into account. The effect of constituent
1x 102k \G\z ® | monopole pairinQdipole fgrmatior) due to fin_ite.tempera—
=g ture can explain the deviations from the bindingless case
\%\g seen in this Fig. 3. In the confinement phase the density of
Ix 107} N the monopoles is larger than the prediction of E2.11).
@\@ Indeed, we expect that the formation of the bound state de-
1x 107 ‘ ‘ ‘ = creases the total energgction of the chosen monopole and
1 L5 2 25 B 3 antimonopole. As a result binding favors the creation of ad-
ditional monopoles by quantum fluctuations. This tendency

increases with largeB; however the cost of creating new
monopoles also grows.

Note that the entropy of the bound state is smaller than
the entropy of a free monopole and an antimonopole. How-
ever the entropy effect does not seem to change essentially
near the phase transition.

The basic quantity describing the behavior of the mono- We remind the reader that on the classical level dipoles
poles is the monopole densip=3/m.|/(L2L,), wherem,  are formed both in the confinement and deconfinement
is the integer valued monopole charge inside the autle-  phases due to the logarithmic potential between the mono-
fined in the standard waji 7], poles. However, at low temperatures the dipole size is larger

than the average distance between the monopoles; therefore,
1 the dipole formation does not destroy confinement.
me=>— > (= 1)P[0p]mod 20+ (4.1 One can analyze the monopole pairing, studying the clus-
T Pedc ter structure of the monopole ensemble extracted from the
Monte Carlo configurations. For our purposes, clusters are
where the plaquette orientations relative to the boundary oflefined as follows: clusters are connected groups of mono-
the cube are taken into account. The density of the totgboles and antimonopoles, where each object is separated
number of monopoles is a decreasing function of the latticédrom at least one neighbor belonging to the same cluster by a
coupling B (or the temperatude as shown in Fig. 3 by distance less than or equal Ry,,. In the following we use
circles. At high temperaturefarge ) the monopoles are RZ,=3 a> which means that neighboring monopole cubes
dilute and form dipole bound states. Typical monopole conshould share at least one single corhétote that the in-
figurations in both phases are visualized in Fig. 4. crease of the coupling constant leads not only to an increase

FIG. 3. The density of all monopoles and of monopoles in neu-
tral clusters vs8.

IV. PROPERTIES OF THE MONOPOLE-ANTIMONOPOLE
SYSTEM

—_

_—

(@ (b)
FIG. 4. Typical monopole configurations féa& the confinement phasgE& 1.6) and(b) the deconfinement phas@€2.5).

In Ref.[18] a similar definition was used to investigate tightly packed clusters Rjh=a. In our case the condition for the cluster is
more relaxed.
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0.60 |
< all monopoles 060 [ oa monopoles
B 2 Qin neutral clusters O in neutral clusters
B 4
040 | 040 -
020 | 020 |
b=
g
& o ® < - -
0.00 j: @: ~ L 0.00 h=d g: < L
1.5 1.5 2

(@) (b)

FIG. 5. The seconda) and the fourth Binderb) cumulants according to Eq4.3) for the total (antimonopole density and the
corresponding densities enclosed in neutral clusters. The fits are shown as solid lines.

of the temperaturfEg. (3.2)], but to a decrease of the lattice poles and antimonopoles that are parts of clusters ofNdize
spacinga as well[Eq. (3.1)]. Thus at different8 the same The cluster size is the number of monopoles and antimono-
characteristic distandg,,,,, corresponds to different physical poles which belong to the given cluster. There is no separa-
scales. Therefore our results below are of only a qualitativéion according to the cluster’s charge. In the confinement
nature. phase,=1.5, the fraction of monopoles slowly decreases
A monopole cluster is neutral if the charges of the con-with the cluster sizeN. The percentage of isolate@nti-)
stituent monopoles sum up to zero. In Fig. 3, with squaresnonopoles =1 cluster$ amounts to roughly 45% while
we show the density of monopoles belonging to neutral cluselusters(with a size up toN=10) contain the rest.
ters as a function oB. The difference between this density = At the phase transition pointg=2.3) the number of
and the total monopole density amounts to a factor $at (antimonopoles enclosed in larger clusters drops drastically.
~1 and becomes smaller at largerAt large 8 (entering the  The monopole vacuum is composed mostly of individual
deconfinement phasapproximately every second monopole (antimonopoleS60%) and dipoles40%). This observation
or antimonopole belongs to a neutral cluster. At still largercan be reconciled with our theoretical expectation that all
B’s almost all monopoles are in neutral clusters. monopoles must become paired only if we accept that the
We are confident that the fluctuation of monopole num-unpaired monopoles are actually part of dipoles of sizes
bers signals a deconfining phase transition. This is demorarger thanR,,«. Deeper in the deconfined phase, however,
strated by studying the second afmdodified fourth Binder at 8=2.8 practically 90% of the(antimonopoles form
cumulants of the total number of monopoles and antimonotightly bound states with sizes smaller thep,,=+3 a.
poles[and of the number of anti monopoles being part of As we discussed above, we expect that the force in the
neutral clusterk In Fig. 5 we present the cumulants, with  spatial direction is larger than the force along the temporal

denoting the respective number: directionz. This fact can be qualitatively analyzed with the
help of the cluster sphericity
B (M?) 1 4.2
2= -4 : Az
(M)? Razd N)= <'2 o . 4.5
V(AXDR+(AYDY

MY 1
= ( 2>2 3 (4.3  where(|Ax|)y is the average distance from the center of the
3(M<) cluster in thex direction, etc., for a cluster sizN. If the

. e . Clusters are elongated predominantly in the temporal direc-
Similarly to the Polyakov loop susceptibility these quantities;j, tnis quantity would be larger than unity, and smaller

are suitable to localize the deconfining phase transition. Wehanwise. In Fig. @) we show the dependence of the sphe-
fit these cumulants by ricity Rg,e ON the cluster siz& for various 3 values. Small

4

2

fit, o (o) _ TABLE Il. Pseudocritical couplings8, from the fits to the
Bn(B) —m’ n=24. (4.4 Binder cumulant$Egs. (4.2) and(4.3)].
The fits are shown by solid lines in Fig. 5, and the results forcumulant Second Fourth
the pseudocritical coupling8, are given in Table II. total 2.3803) 2.4044)
Some details on the cluster structure at various values Gfeytral 2.37%) 2.3723)

B can be seen in Fig.(8). We show the fraction of mono-
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FIG. 6. (a) The cluster structure at various of the coupling consfanthe cluster distribution is shown as a function of the number of
constituent monopoles inside clusteks,(b) The cluster shape functidieq. (4.5)], for variousp.

clusters are directed predominantly along the temporal direc- 4 [p(B)
tion, as expected, at gB. With larger 8 the elongation be- ath=; m (5.2
comes stronger. For large clusters the direction of the cluster v

is random, since in this case the cluster shape function is
very close to 12 [this follows directly from definition —andpy is defined in Eq(2.6).
(4.5)]. This random limit is marked by the solid line in Fig. ~ The circles shown take into account all active monopoles,
6. i.e., isolated ones and those from charged monopole clusters
which might be thought to be responsible for the string ten-
sion. The ratio is close to unity, indicating the fact that the
V. CONFINEMENT AND MONOPOLES charged monopoles provide the major contribution to the

We have observed that agreement between predictionstrlng tension, as expected. Note that in the deconfinement

from a theory without monopole binding and our resultsP125€ .the string tension is nonzero 'due. {0 the finite-size ef-
from finite temperature simulation results is reached only infec.tS dlSCL_Jssed_ below. The squares in Fig) are related to
the vicinity of the phase transition poini~2.3. In the con- ratio (5.1) in which all monopoles are taken into account. In

. . . both phases this ratio is smaller than unity: a neutral fraction
finement phase both the measured temporal string tensio : . X

. 2 of the monopoles bound in the small dipole pairs does not
and monopole density are larger compared to the bindingless

oredictions, see Figs () and 3 contribute to the string tension.

. - The small value of the string tension remaining after pass-

As we have discussed, due to monopole binding the den- . S e ,
. g .~ Ing the deconfinement transition at this finite lattice can be
sity of the monopoles is increased compared to the noninter- : . . . ;
. ) ; . . ~explained from the point of view of the dipole picture as
acting case. However, the size of the dipoles in the confine;

. ; ollows. Test particles separated by distances smaller than
ment phase is larger than the average distance between the L . .
. . .. sizes of certain dipoles are influenced by the constituent
ordinary monopoles calculated from their total density.

Therefore, monopoles bound in dipoles due to classical loga-

rithmic potential still give a contribution to the string ten- R
sion. o O all monopoles
. . . . O charged component
It is interesting to check how the monopole density fits
into the theoretical predictions of the string tensideq. %
(3.10]. Using this predicted relation, in Fig. 7 we compare 10 oo E__E___Ei ______ -
the ratioR, between the measured string tensi@nfrom z T
plane-plane correlators of Polyakov logpgith a calculated %
“theoretical” string tensiono" using as input theneasured - mm@%
monopole density: p U ﬁ %
o 0.5t % %
Ry=—r. (5.2 ‘ ‘
o 1.7 2 2.3 B 2.6
Here o™ is given in accordance with Eq&2.11) and(3.10 FIG. 7. The ratio of the temporal string tensiof&q. (5.1)]
via Vs B.
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FIG. 9. The spatial string tension y&

FIG. 8. The density of all monopoles and of monopoles in
charged clusters vg for a 32 lattice compared to prediction At sufficiently high temperatures the system might be
(2.1D. treated as two-dimensional with an effective 2D coupling

constant3®®)=L,8. Moreover, since the monopole density

monopoles of those dipoles. The monopoles make contribus low at larges (in deconfinement the model becomes
tions to the string tension term. On the finite lattice the maxi-effectively noncompact. Thus the spatial Wilson loop behav-
mal distance between the test particles is of the order of th@r in this regime is given by the perturbative one-photon
lattice size. Therefore, dipoles of the same size could bexchange. In two dimensions the Coulomb law provides the
responsible for the nonvanishing small string tension. Di-linearly confining potentiaM?®)(R)=R/2, corresponding
poles of these sizes may be present in the deconfinemetu the spatial string tension
phase(with a probability that decreases with an increase of

the lattice sizg However, this does not contradict the crite- 1 1

rion used to locate the phase transition in the previous sec- crtsh(,B)= =, (5.3
! d ! . . ZE(ZD) 2L

tions, since dipoles of such large sizes are heavily sup-

pressed.

Dipole formation due to Coulomb forces also occurs atwhich is shown in Fig. 9 by the dashed line. The spatial
zero temperature. This effect increases the monopole densigring tension data and the curve approach each other for
compared to that in the “bindingless” world. To check this, sufficiently large. However, in the confinement phase the
in Fig. 8 we compare the total density of monopoles and thenonopoles make a significant contribution to the spatial
exclusive density of monopoles residing in charged clusterstring tension.

(the latter includes free monopoles and antimonopdlasa

328 lattice. The charged monopoles comprise around 55% of V1. SUMMARY
the total monopole density. This ratio does not depend on the ’
value of the coupling constant, indicating that the scaling In this paper we have considered a mechanism for a finite

behaviors of charged and neutral clusters are the same. Themperature deconfinement phase transition in three dimen-
charged fraction of the monopoles is perfectly described bygional compact electrodynamics based on monopole binding.
the “bindingless” formula[Eg. (2.11)] for the monopole The considerations are similar to those given in R&f.for
density. This formula is incorporated implicitly into the the- the continuum theory, and they incorporate features of the
oretical prediction of the string tensidiq. (3.10], which  lattice geometry. This allows us to predict the pseudocritical
works well according to Ref[19]. Thus only monopoles coupling as a function of the lattice size.
from charged cluster§including separate monopo)eson- In our numerical simulations we have demonstrated that
tribute to the string tension, while the binding effect causeshe monopoles are sensitive to the phase transition despite
the appearance of a large fraction of inactive neutral clustershe fact that the monopole density itself behaves smoothly
Finally, we have measured the spatial string tension: thecross the transition. The pseudocritical couplings found by
coefficient in front of the area term in the spatial Wilson the Binder cumulants of the density are very close to that
loops. This string tensiong has been obtained by means of identified using the Polyakov loop susceptibility. We stress
the standard diagonal Creutz ratios. The results are presentdtht we did not intend to study the finite size scaling behavior
in Fig. 9 as functions of3. As expected, the spatial string of this model.
tension does not vanish and behaves smoothly across the Based on the observation used to fiidin this way, we
deconfining phase transition. In contrast, in this figure wehave studied the monopole properties in more detail. We
also show the “true,” i.e., temporal string tension extractedhave found that both the monopole density and the string
from temporal Wilson loops, which drops down to the leveltension differ from the predictions based on a model which
of the finite-volume correction that we have just discussed.does not take the monopole binding effects into account.
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However we found numerically that the ratio between thesdappen to the confinement-deconfinement phase transition.

two quantities derived in that modggiven by Eq.(3.10] For non-Abelian theories in-81 dimensions it was recently

remains valid in the confinement phase. concluded, from a study of the expectation value of the
We have observed that dipole formation occurs both inPolyakov loop[20], that confinement seems to become re-

confinement and deconfinement phases. In the deconfingtored under the influence of an external chromomagnetic

ment phase tightly bound dipoles—which are safely identifield. In an accompanying pap&21] we will report on a

fied by a cluster algorithm—dominate in the vacuum. Thestudy of our model under such external conditions, concern-

dipoles are oriented dominantly in the temporal direction.ing the influence of confinement and relevant properties of

These features are in agreement with general expectationise monopole system.

discussed in Secs. | and II.

At the Qonfinement _phase tran_sition we observe mostly ACKNOWLEDGMENTS
clusters with two constituents or single monopoles and anti-
monopoles. Further decreasing the temperatares), the The authors are grateful to P. van Baal, M. |. Polikarpov,

monopoles become dense and form connected clugiera and J. Zaanen for interesting discussions. M.N.Ch. acknowl-
coarser and coarser lattjcénclosing various numbers of edges a support of Bhasisches Staatsministeriun figunst
monopoles and antimonopoles. The largest clusters are moumd Wissenschaft, Grant No. 4-7531.50-04-0361-01/16 and
and more spherical. Whether the observed properties of thdnd hospitality of NTZ and the Institute of Theoretical
dipole gas formation survives in the continuum limit de- Physics of Leipzig University. The work of M.N.Ch. was
serves an additional study. partially supported by Grants Nos. RFBR 99-01230a, RFBR

When the phase transition is mediated by charged object§1-02-17456, and CRDF Award No. RP1-2103. E.-M.I. ac-
one could expect that external fields will influence the phasé&nowledges the support by the Graduiertenkolleg “Quanten-
transition. In our case the natural question arises of what wilfeldtheorie” for a working visit to Leipzig.

[1] A.M. Polyakov, Nucl. PhysB120, 429 (1977. (1998.
[2] M. Gopfert and G. Mack, Commun. Math. Phy82 545 [12] M.N. Chernodub, Phys. Rev. D63, 025003 (2001);
(198Y). hep-th/0011124; B.L. Bakker, M.N. Chernodub, and A.l. Ve-
[3] T. Sterling and J. Greensite, Nucl. Phja220, 327 (1983. selov, Phys. Lett. B502 338 (2001); I.I. Kogan, A. Kovner,
[4] N. Parga, Phys. Letl07B, 442(1981). and B. Tekin, J. High Energy Phy83, 021 (2001).
[5] B. Svetitsky, Phys. Refdl32, 1 (1986. [13] J. Glimm and A. Jaffe, Commun. Math. Phy§, 195(1977).
[6] J.M. Kosterlitz and D.J. Thouless, J. Phys6C1181(1973. [14] T. Banks, R. Myerson, and J. Kogut, Nucl. Ph129, 493
[7]1 P.D. Coddington, A.J. Hey, A.A. Middleton, and J.S. (1977.
Townsend, Phys. Lett. B75 64 (1986, [15] PH. Daamgaard and U.M. Heller, Nucl. PhyB309, 625
[8] N.O. Agasyan and K. Zarembo, Phys. Re\bD) 2475(1998. (1988.

[9] G. Dunne, I.I. Kogan, A. Kovner, and B. Tekin, J. High Energy [16] J. Ambjorn, A.J. Hey, and S. Otto, Nucl. PhyB210, 347
Phys.01, 032(2002). (1982

[10] ;' g’lchfzeé’?'agéghgwszbgni Jéimrvzrsagfﬂ“:k F;%SMRW[N] T.A. DeGrand and D. Toussaint, Phys. Re\22) 2478(1980.
' . . . yas, " [18] Z. Schram and M. Teper, Phys. Rev.48, 2881(1993.

Velkovsky, Ann. Phys(N.Y.) 280, 35 (2000; E.-M. llgenfritz
and E.V. Shuryak, Phys. Lett. 25, 263 (1994). [19] R.J. Wensley and J.D. Stack, Phys. Rev. L&3.1764(1989.

[11] M.N. Chernodub, F.V. Gubarev, and E.-M. ligenfritz, Phys. [20] P. Cea and L. Cosmali, hep-lat/QlOlOl?. )
Lett. B424, 106(1998; M.N. Chernodub, F.V. Gubarev, E.-M. [21] M:N. Chernodub, E.-M. ligenfritz, and A. Schillqunpub-
llgenfritz, and A. Schiller,ibid. 443 244 (1999; 434, 83 lished.

054507-10



