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Lattice study of 3D compact QED at finite temperature

M. N. Chernodub*
ITEP, B. Cheremushkinskaya 25, Moscow, 117259, Russia

E.-M. Ilgenfritz†

Institut für Theoretische Physik, Universita¨t Tübingen, D-72076 Tu¨bingen, Germany
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We study the deconfinement phase transition and monopole properties in a finite temperature three-
dimensional compact Abelian gauge model on the lattice. We predict the critical coupling as a function of the
lattice size in a simplified model to describe monopole binding. We demonstrate numerically that monopoles
are sensitive to the transition. In the deconfinement phase the monopoles appear in the form of a dilute gas of
magnetic dipoles. In the confinement phase both monopole density and string tension differ from semiclassical
estimates if monopole binding is neglected. However, an analysis of the monopole clusters shows that the
relation between the string tension and the density of monopoles in charged clusters is in reasonable agreement
with predictions. We study the cluster structure of the vacuum in both phases of the model.
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I. INTRODUCTION

Compact Abelian gauge theory in three Euclidean dim
sions is a case where permanent confinement is proven
qualitatively understood@1,2#. In order to gain some experi
ence for more realistic theories, it is interesting to study h
this mechanism ceases to work under special conditio
High temperature is such a case. In this paper we reexam
the finite temperature deconfining phase transition. We
emphasize the aspect of monopole binding which expla
the breakdown of confinement. In a companion paper,
extend these studies to the case of nonvanishing exte
fields.

Compact QED theory possesses Abelian monopoles a
pological defects appearing due to the compactness of
gauge group. Considering the three-dimensional~3D! theory
as the static limit of a 4D theory, the monopoles are j
magneticmonopoles at rest, and the components of fi
strength aremagnetic. In a three-dimensional theory, th
monopoles are instanton-like objects: instead of trac
world lines ~as they do in four-dimensions! they occupy
points. The plasma of monopoles and antimonopoles can
plain the permanent confinement of oppositely charged e
tric test charges@1# in bound states, kept together by a line
potential. In the language of magnetostatics, confinement
pears due to a screening of the magnetic field induced by
electric current circulating along the Wilson loop. Mon
poles and antimonopoles form a polarized sheet of fin
thickness~the ‘‘string’’ ! along the minimal surface spanne
by the Wilson loop. The formation of the string~observed in
the lattice simulations in Ref.@3#! leads, for nonvanishing
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electric current, to an excess of the free energy proportio
to the area.

At finite temperature the phase structure becomes n
trivial. What we have in mind, is compactifying 3D→(2
11)D in the ‘‘temporal’’ ~third or z) direction. The
confinement-deconfinement phase transition was studied
the lattice both analytically@4# and numerically@7#. Accord-
ing to Svetitsky-Yaffe universality arguments@5#, an inter-
pretation of the transition was attempted in terms of
U(1) vortex dynamics of the corresponding 2D spin syste
The phase transition—which is expected to be of Kosterl
Thouless type@6#—was demonstrated to be accompanied
restructuring of the vortex system@7#. The vortices are de-
scribed by a 2DU(1) spin model representing the dynami
of the Polyakov loop~also see the discussion in Ref.@4#!.
Approaching the transition temperature, vortices and antiv
tices start to form bound states. In the high temperat
phase no unbound vortices and antivortices are left.

In the present paper we discuss an interpretation of dec
finement starting from the confinement picture outlin
above, in terms of magnetic monopoles. The confin
plasma of the monopoles and antimonopoles turns int
dipole plasma at the deconfinement phase transition. A dip
plasma is inefficient to completely screen the field created
electric currents running along the pair of Polyakov loops.
this case the screening mass vanishes while the mag
susceptibility of the medium is smaller than unity. Bo
monopole and vortex binding mechanisms of the deconfi
ment phase transition were discussed for 3D finite temp
ture Georgi-Glashow model in Refs.@8# and @9#, respec-
tively.

In the finite temperature case, strictly speaking, there
problem with calling all the fields ‘‘magnetic,’’ as we did
above when we summarized the zero temperature case. S
lar to Ref. @7#, the confinement aspect itself will be illumi
nated in terms of theU(1) valued Polyakov loops in the
©2001 The American Physical Society07-1
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third direction, and in terms of Polyakov loop correlato
representing pairs of charges separated in 2D space. I
11)D there is no longer symmetry between the three co
ponents of the field strength tensor. The closest relative
the true magnetic field isF12 distinct from the others, while
there is still a symmetry betweenF13 and F23. With this
distinction in mind one can conditionally call these ‘‘ma
netic’’ and ‘‘electric’’ components of the field strength tenso
respectively. As long as one does not introduce exte
fields, even at finite temperature there is no need to dis
guish between them. The sources of the respective fluxes
be simply called monopoles or ‘‘magnetic charges’’ in t
following.

The binding of the monopoles is not isotropic. It occu
mainly in the 2D space direction due to the logarithmic p
tential between the monopoles separated by a large sp
distance. As a consequence of periodic boundary condit
in the temporal direction, the force between the monopo
and antimonopoles vanishes at half of the temporal ext
Therefore, the potential in the temporal direction is wea
than in the spatial directions. As a consequence, the sp
size of the monopole bound state is expected to be sm
than the size in the temporal direction. This means that
dipoles are dominantly oriented parallel or antiparallel to
third direction. The monopole deconfinement scenario ra
the question of whether monopole properties~such as pairing
and orientation! could be influenced by an eventual extern
field. This aspect will be addressed in a companion pape

With or without an external field, the deconfining mech
nism by monopole pairing seems to have interesting coun
parts in more realistic gauge theories. The formation
monopole pairs is qualitatively similar to the binding of i
stantons in instanton molecules with increasing tempera
in QCD suggested to be responsible for chiral symmetry
toration @10#. In the electroweak theory, the formation
Nambu monopole-antimonopole pairs, a remnant from
dense medium of disorderedZ vortices and Nambu mono
poles which characterizes the high-temperature phase
ccompanies the transition toward a low-temperature ph
@11#. Also note, that a dipole vacuum, although not confinin
still has a nonperturbative nature@12#.

The plan of this paper is as follows. In Sec. II we estim
the critical coupling of the confinement-deconfinement ph
transition based on a monopole binding model for a fin
lattice. In Sec. III the transition is numerically located for
lattice size of 32238, and confinement properties are stu
ied. We present various monopole properties including
pole formation based on a cluster analysis, in Sec. IV.
study the relation of the monopoles and dipoles to the ph
transition in Sec. V. We briefly summarize our results S
VI.

II. SOME HEURISTIC CONSIDERATIONS

In 3D compact electrodynamics there are monopoles
teracting via the Coulomb potentials,

S5
gm

2

2 (
a,b

qaqbVT~xWa2xWb!, ~2.1!
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whereqa andxWa are, respectively, the charge~in units of the
elementary monopole charge,gm52p/g3, whereg3 is the
three dimensional coupling constant! and the 3D position
vector of theath monopole. The subscriptT indicates that
the interaction potentialVT eventually depends on the tem
perature.

At zero temperature the monopoles are randomly loca
in EuclideanR 3 space, and the classical interaction poten
between the monopole and antimonopole is inversely prop
tional to the distanceR between the objects,V0(R)
52(4p R)21. At finite temperatureT the monopoles live in
theR 23S1 space~with S1 being a circle of perimeterT21)
and the interaction potential is modified. At small separatio
between the monopole and antimonopole the interactio

zero temperature like,VT(x,z)5V0(Ax21z2)1•••, where
xW5(x,y,z)5(x,z). At large spatial separationsx the poten-
tial between monopoles is essentially two dimensional@8#,

VT~x,z!522 T lnuxu1•••, uxuT@1. ~2.2!

However, the interaction between monopoles separated
distancez in the third~temperature! direction is of 3D Cou-
lomb type for small spatial intermonopole distances,uxuT
!1: VT(x,z)52(4p z)21, zT!1. The force between
monopoles and antimonopoles at a distancez51/(2T) van-
ishes due to periodicity in the temperature direction. Th
one might expect that at finite temperature the monopo
form magnetically neutral states which are bounded in s
tial directions. However, the dynamics of the monopoles
the temperature direction is not restricted by a logarithm
potential.

Thus at zero temperature the system exists in the form
a Coulomb gas of magnetic monopoles and antimonopo
In this phase the medium confines electric charges@1#. As the
temperature increases, the three-dimensional Coulombic
tential turns into a two-dimensional logarithmic potential f
spatial monopole interactions. The monopoles and antimo
poles become weakly confined, and form more and m
dipole bound states. The dipoles have a finite average sp
size ~the distance between the magnetically opposit
charged constituents! which is a decreasing function of th
temperature since the interaction potential between the
ticles rises as temperature increases; cf. Eq.~2.2!.

In the low temperature regime, this dipole size would s
be larger than the average distance between the particle
side the plasma, and therefore only a small fraction of mo
poles residing in actual dipoles is mixed with a weakly co
related monopole-antimonopole component. At sufficien
large temperature, however, the typical dipole size beco
smaller than the interparticle distance in the plasma and
system turns into a pure dipole plasma. The confinem
property is closely related to the Debye mass generation
fect which is absent in the pure dipole plasma@13#. As a
consequence, the confinement of electrically charged
ticles disappears. The system experiences a confinem
deconfinement phase transition due to the monopole bind
mechanism.

One can use these heuristic arguments to estimate
phase transition temperature. In continuum theory this an
7-2
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LATTICE STUDY OF 3D COMPACT QED AT FINITE . . . PHYSICAL REVIEW D 64 054507
sis was made in Ref.@8# where compact electrodynamics w
represented as a limit of the Georgi-Glashow model. T
phase transition in this theory occurs at a temperaturT
5g3

2/(2p). This result was obtained under the condition th
the average size of the effective magnetic dipole is not
infrared divergent quantity, as is the case in the confinem
phase.

However, in lattice gauge theory the considered quanti
are all finite and the considerations should be modified co
pared to the continuum case. The difference between mo
pole and dipole plasmas can only be seen if the mean
tance r̄ between the constituent monopoles becom
comparable to the dipole sized̄. The distancer̄ can be ex-
pressed, via the density of the monopolesr, as r̄ 5r21/3.
Thus the phase transition happens when the dipole size
the average distance between monopoles become of the
order,

d̄5j r21/3, ~2.3!

wherej is a geometrical factor of order unity. For both qua
tities d̄ andr, estimates can be easily obtained on the latt
while the factorj is to be defined from a simulation.

We consider a 3D compactU(1) gauge model on the
Ls

23Lt lattice with the action written in the Villain represen
tation,

Z5E
2p

1p

Du (
n(c2)PZ

expH 2
bV

2
zudu12pnuz2J , ~2.4!

whereu is the compactU(1) gauge field andn is the integer-
valued auxiliary tensor field variable.bV is the Villain cou-
pling constant.

To relate this to the numerical simulations, we also co
sider a formulation of the compactU(1) gauge theory with
Wilson action:

S5b(
P

@12cosuP#. ~2.5!

The Villain coupling constantbV is related to the Wilson
couplingb as @14#

bV~b!5F2 logS I 0~b!

I 1~b! D G
21

, ~2.6!

whereI 0,1 are the standard modified Bessel functions.
The partition function@Eq. ~2.4!# can be rewritten in the

following grand canonicalform, i.e., represented as a su
over monopole charges in the~dual! lattice cubes@14#:

Z}Zmon5 (
m(c3)PZ

exp$22p2bV~m,D21m!%. ~2.7!

Here D21 is the inverse of the Laplacian operator on
asymmetric lattice andmc denotes the monopole charge
the cubec3. The inverse Laplacian for lattice sizesLs andLt
is given as
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D21~xW ;Ls ,Lt!5
1

2Ls
2 Lt

(
pW 2Þ0

ei (pW ,xW )

32(
i 51

3

cospi

, ~2.8!

where p1,250, . . . ,2p(Ls21)/Ls and p350, . . . ,2p(Lt
21)/Lt .

In order to estimate the average distance between
monopole and antimonopole constituents in a dipole s
~i.e., the dipole size! we use thecanonical monopole-
antimonopole~dipole! partition function, which can be easil
read from Eq.~2.7!:

Z dip
(2)5const• (

x
x2Þ0

exp$4p2bV@D21~x;Ls ,Lt!

2D21~0;Ls ,Lt!#%, ~2.9!

the sum extends over all lattice separationsx between the
monopole and antimonopole. The zero distance betw
these objects is excluded~since this case does not correspo
to a dipole state!. The rms dipole sized̄ is given by

d̄2~bV ;Ls ,Lt!5
1

Z dip
(2) (

x
x2exp$4p2bV@D21~x;Ls ,Lt!

2D21~0;Ls ,Lt!#%, ~2.10!

where the actual distance squared,x2, is evaluated by taking
into account the periodic boundary conditions of the latti
The sums cannot be taken analytically.

The monopole densityr can be read off from Eq.~2.7!,

r~b;Ls ,Lt!52exp$22p2bV~b!D21~0;Ls ,Lt!%,
~2.11!

where the dependence on the lattice geometry is indica
explicitly. Note that in this formula no interaction betwee
monopoles is taken into account, and we refer to it as ‘‘bin
ingless.’’ Only the local self-interaction of monopoles is a
counted for via the Coulomb propagatorD21(0) in the
fugacity. We discuss the binding effects on the monop
density in Sec. V.

The geometrical factorj is to be defined from the numeri
cal data. To this end we assume that this factor is a cons
quantity which does not depend on the lattice extensio
Indeed, it gives an estimate how large the intradipole d
tances should be compared to the monopole density in o
for the dipole field to be screened. This is quite a stro
assumption which, however, turns out to be reasonable
will we see below. To define the factorj we substitute Eqs.
~2.10! and~2.11! into Eq.~2.3!, and use numerical values fo
bc presented in Ref.@7#. For the lattices 1623Lt , Lt54,6,
and 8 we obtainj50.723(58), 0.622(47), and 0.646(116
respectively. These numbers coincide with each other wit
numerical errors. Taking the average overLt we obtain j̄
'2/3. In what follows we take

j52/3, ~2.12!
7-3
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and then solve Eqs.~2.3!, ~2.11!, and ~2.10! with respect to
the Villain couplingbV . Then we finally estimate the critica
Wilson couplingbc

th with the help of Eq.~2.6!. The results
for lattices of various sizes are represented in Table I,
compared with pseudocritical couplingsbc obtained in lat-
tice simulations of Ref.@7#. The agreement between the da
and our estimates is within 4%. Thus the simple heuris
arguments based on the monopole-dipole picture work
prisingly well.

III. PHASE TRANSITION AND CONFINEMENT

We have performed our numerical study of (211)D com-
pact electrodynamics using the Wilson action@Eq. ~2.5!#.
The lattice couplingb is related to the lattice spacinga and
the continuum coupling constantg3 of the 3D theory as fol-
lows:

b5
1

a g3
2

. ~3.1!

Note that in three-dimensional gauge theory the coup
constantg3 has a dimension mass~to the power of 1/2).

The lattice corresponding to the finite temperature
asymmetric:Ls

23Lt , Lt,Ls . In the limit Ls→` the tempo-
ral extension of the latticeLt is related to the physical tem
peratureLt51/(Ta). Using Eq. ~3.1! the temperature is
given via the lattice parameters as follows:

T

g3
2

5
b

Lt
. ~3.2!

Thus, at a fixed lattice size lower~higher! values of the lat-
tice coupling constantb correspond to lower~higher! tem-
peratures.

Our simulations have been performed mainly on a 32

38 lattice. In the present paper we do not intend to stu
finite size scaling aspects of this model. The local Mo
Carlo algorithm is based on a five-hit Metropolis upda
sweep followed by a microcanonical sweep. For better
godicity, in particular in the presence of an external fie
~considered in a companion paper!, global updates are als
included. Following the ideas of Ref.@15#, the global re-
freshment step consists of an attempt to add an additi
unit of flux with a randomly chosen sign in a direction ra

TABLE I. The critical coupling constantbc
th calculated using

Eqs. ~2.6!, ~2.3!, ~2.10!, ~2.11!, and ~2.12! for different latticesLs
2

3Lt compared to lattice Monte Carlo results of Ref.@7#. Note that
our results for the lattice 32238 are slightly higher than that of Ref
@7#; see the text.

Ls516 Ls532 Ls564
Lt bc

th bc bc
th bc bc

th

4 1.87 1.83~2! 2.01 – 2.10
6 2.04 2.08~2! 2.26 2.18~3! 2.44
8 2.12 2.14~5! 2.39 2.30~2! 2.62
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domly selected among the three, to the dynamical gauge
subject to a global Metropolis acceptance check.

For example, one unit of flux ini j plane is introduced
with the help of the following gauge field shift@15# u i

→@u i1 ũ i #mod2p :

ũ j5
p

Li
~2xi2Li21!, ũ j50 for xjÞL j ,

ũ i5
2p

Li L j
~12xj !, ũk50, kÞ i , j .

The acceptance rate of the global step changes within
consideredb range from roughly 0.7~confinement phase! to
0.2 ~deconfinement phase!. One total Monte Carlo update
cycle consists of two combined local Metropolis and micr
canonical sweeps~requiring an acceptance rate of 0.5 for th
Metropolis step! and the global update described above.

In order to localize the deconfinement transition, it is co
venient to study the expectation values of the two bulk o
erators,

^uLu&5
1

Ls
2 K U(x

L~x!U L , ^uLu2&5
1

Ls
2 K U(x

L~x!U2L ,

~3.3!

constructed from the Polyakov loop:

L~x!5expH i (
z51

Lt

u3~x,z!J . ~3.4!

Herex5(x,y) is a two-dimensional vector. In the deconfin
ment phase the quantityuLu is of the order of unity, while in
the confinement phase it is close to zero in a finite volum
and vanishes in the infinite volume limit.

The behavior of the expectation value of the Polyak
loop vs the lattice couplingb is shown in Fig. 1~a!. The low
temperature phaseb,bc corresponds to the confineme
phase, while the high temperature phase is deconfining.

The susceptibility of the Polyakov loop,

xL5^uLu2&2^uLu&2, ~3.5!

is shown in Fig. 1~b!. The peak of the Polyakov loop susce
tibility corresponds to the pseudocriticalbc of the deconfine-
ment phase transition. We have fitted the susceptibility n
its maximum by the function

xL
fit~b!5

c1
2

c2
21~b2bc!

2
, ~3.6!

where the critical coupling was estimated to bebc
52.346(2) which is quite close to the result of Ref.@7#. The
best fit is shown in Fig. 1~b! by a solid line.

To calculate the string tension we use an analog of pla
plane correlators of two Polyakov loops. In addition, av
ages of temporal Wilson loops have also been studied. M
7-4
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FIG. 1. ~a! The expectation value of the absolute value of the average Polyakov loop@Eq. ~3.3!# and ~b! its susceptibility@Eq. ~3.5!#
vs b.
e
xi

in

c-
t
ral
op
ges
re-

ults
nt,
ow
precisely, in (211)D systems, we define first sums of th
Polyakov loops along a line parallel to a spatial lattice a
~e.g., in they direction!:

Lplane~x!5 (
y51

Ls

L~x,y!. ~3.7!

The plane-plane correlator may be written as a sum of po
point correlation functions:

^Lplane~0!Lplane* ~x!&5 (
y1,251

Ls

^L~0,y1!L* ~x,y2!&. ~3.8!

The form of this correlator is expected to be

^Lplane~0!Lplane* ~x!&5const coshFsLtS x2
Ls

2 D G , ~3.9!

wheres is the temporal string tension. In Fig. 2~a! we show
the fit of the Polyakov plane-plane correlator@Eq. ~3.8!# by
05450
s

t-

this fitting function in the confinement (b51.8) and decon-
finement (b52.5) phases, respectively.

In Fig. 2~b! we present the fitted string tensions as fun
tions of b. Above bc the string tension quickly drops, bu
remains nonzero due to finite volume effects. The tempo
string tensions obtained using either the Polyakov lo
plane-plane correlators or the temporal Wilson loop avera
roughly coincide with each other. The dashed curve rep
sents the theoretical prediction for the string tension@14,16#:

s~b!5
4A2

pAbV~b!
exp$2p2bV~b!D21~0;Ls ,Lt!%.

~3.10!

Agreement between the prediction and the numerical res
is reached only in the vicinity of the phase transition poi
b'2.3. In order to understand these differences, we n
turn to a closer investigation of the monopole properties.
FIG. 2. ~a! Fit of the Polyakov plane-plane correlator@Eq. ~3.8!# using Eq.~3.9! in the confinement (b51.8), and deconfinement (b
52.5) phases.~b! String tensions as functions ofb compared with the bindingless theoretical result@Eq. ~3.10!#.
7-5
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IV. PROPERTIES OF THE MONOPOLE-ANTIMONOPOLE
SYSTEM

The basic quantity describing the behavior of the mo
poles is the monopole densityr5(cumcu/(Ls

2Lt), wheremc

is the integer valued monopole charge inside the cubec de-
fined in the standard way@17#,

mc5
1

2p (
PP]c

~21!P @uP#mod 2p , ~4.1!

where the plaquette orientations relative to the boundary
the cube are taken into account. The density of the t
number of monopoles is a decreasing function of the lat
coupling b ~or the temperature!, as shown in Fig. 3 by
circles. At high temperatures~large b) the monopoles are
dilute and form dipole bound states. Typical monopole c
figurations in both phases are visualized in Fig. 4.

FIG. 3. The density of all monopoles and of monopoles in n
tral clusters vsb.
05450
-

of
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e

-

In Fig. 3, with the dashed line we show the density of t
monopoles calculated using Eq.~2.11! for comparison. As in
the case of the string tension, the predicted monopole den
is in agreement with the numerical data only nearbc .

Equation~2.11! is based on a single monopole contrib
tion to the partition function; thus it does not take the pairi
of the monopoles into account. The effect of constitue
monopole pairing~dipole formation! due to finite tempera-
ture can explain the deviations from the bindingless c
seen in this Fig. 3. In the confinement phase the density
the monopoles is larger than the prediction of Eq.~2.11!.
Indeed, we expect that the formation of the bound state
creases the total energy~action! of the chosen monopole an
antimonopole. As a result binding favors the creation of a
ditional monopoles by quantum fluctuations. This tenden
increases with largerb; however the cost of creating new
monopoles also grows.

Note that the entropy of the bound state is smaller th
the entropy of a free monopole and an antimonopole. Ho
ever the entropy effect does not seem to change essen
near the phase transition.

We remind the reader that on the classical level dipo
are formed both in the confinement and deconfinem
phases due to the logarithmic potential between the mo
poles. However, at low temperatures the dipole size is lar
than the average distance between the monopoles; there
the dipole formation does not destroy confinement.

One can analyze the monopole pairing, studying the c
ter structure of the monopole ensemble extracted from
Monte Carlo configurations. For our purposes, clusters
defined as follows: clusters are connected groups of mo
poles and antimonopoles, where each object is separ
from at least one neighbor belonging to the same cluster b
distance less than or equal toRmax. In the following we use
Rmax

2 53 a2 which means that neighboring monopole cub
should share at least one single corner.1 Note that the in-
crease of the coupling constant leads not only to an incre

-

is
FIG. 4. Typical monopole configurations for~a! the confinement phase (b51.6) and~b! the deconfinement phase (b52.5).

1In Ref. @18# a similar definition was used to investigate tightly packed clusters withRmax5a. In our case the condition for the cluster
more relaxed.
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FIG. 5. The second~a! and the fourth Binder~b! cumulants according to Eq.~4.3! for the total ~anti!monopole density and the
corresponding densities enclosed in neutral clusters. The fits are shown as solid lines.
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of the temperature@Eq. ~3.2!#, but to a decrease of the lattic
spacinga as well @Eq. ~3.1!#. Thus at differentb the same
characteristic distanceRmax corresponds to different physica
scales. Therefore our results below are of only a qualita
nature.

A monopole cluster is neutral if the charges of the co
stituent monopoles sum up to zero. In Fig. 3, with squa
we show the density of monopoles belonging to neutral c
ters as a function ofb. The difference between this densi
and the total monopole density amounts to a factor 3 ab
'1 and becomes smaller at largerb. At largeb ~entering the
deconfinement phase! approximately every second monopo
or antimonopole belongs to a neutral cluster. At still larg
b ’s almost all monopoles are in neutral clusters.

We are confident that the fluctuation of monopole nu
bers signals a deconfining phase transition. This is dem
strated by studying the second and~modified! fourth Binder
cumulants of the total number of monopoles and antimo
poles @and of the number of anti monopoles being part
neutral clusters#. In Fig. 5 we present the cumulants, withM
denoting the respective number:

B25
^M2&

^M &2
21, ~4.2!

B45
^M4&

3^M2&2
2

1

3
. ~4.3!

Similarly to the Polyakov loop susceptibility these quantit
are suitable to localize the deconfining phase transition.
fit these cumulants by

Bn
fit~b!5

c1
2

c2
21~b2bc!

2
, n52,4. ~4.4!

The fits are shown by solid lines in Fig. 5, and the results
the pseudocritical couplingsbc are given in Table II.

Some details on the cluster structure at various value
b can be seen in Fig. 6~a!. We show the fraction of mono
05450
e

-
s
-

r

-
n-

-
f

e

r

of

poles and antimonopoles that are parts of clusters of sizN.
The cluster size is the number of monopoles and antimo
poles which belong to the given cluster. There is no sepa
tion according to the cluster’s charge. In the confinem
phase,b51.5, the fraction of monopoles slowly decreas
with the cluster sizeN. The percentage of isolated~anti-!
monopoles (N51 clusters! amounts to roughly 45% while
clusters~with a size up toN510) contain the rest.

At the phase transition point (b'2.3) the number of
~anti!monopoles enclosed in larger clusters drops drastica
The monopole vacuum is composed mostly of individu
~anti!monopoles~60%! and dipoles~40%!. This observation
can be reconciled with our theoretical expectation that
monopoles must become paired only if we accept that
unpaired monopoles are actually part of dipoles of si
larger thanRmax. Deeper in the deconfined phase, howev
at b52.8 practically 90% of the~anti!monopoles form
tightly bound states with sizes smaller thanRmax5A3 a.

As we discussed above, we expect that the force in
spatial direction is larger than the force along the tempo
directionz. This fact can be qualitatively analyzed with th
help of the cluster sphericity

Rsize~N!5
^uDzu&N

A^Dxu&N
2 1^uDyu&N

2
, ~4.5!

where^uDxu&N is the average distance from the center of t
cluster in thex direction, etc., for a cluster sizeN. If the
clusters are elongated predominantly in the temporal dir
tion this quantity would be larger than unity, and smal
otherwise. In Fig. 6~b! we show the dependence of the sph
ricity Rsize on the cluster sizeN for variousb values. Small

TABLE II. Pseudocritical couplingsbc from the fits to the
Binder cumulants@Eqs.~4.2! and ~4.3!#.

Cumulant Second Fourth

total 2.380~3! 2.404~4!

neutral 2.379~5! 2.372~3!
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FIG. 6. ~a! The cluster structure at various of the coupling constantb. The cluster distribution is shown as a function of the number
constituent monopoles inside clusters,N. ~b! The cluster shape function@Eq. ~4.5!#, for variousb.
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clusters are directed predominantly along the temporal di
tion, as expected, at allb. With largerb the elongation be-
comes stronger. For large clusters the direction of the clu
is random, since in this case the cluster shape functio
very close to 1/A2 @this follows directly from definition
~4.5!#. This random limit is marked by the solid line in Fig
6.

V. CONFINEMENT AND MONOPOLES

We have observed that agreement between predict
from a theory without monopole binding and our resu
from finite temperature simulation results is reached only
the vicinity of the phase transition point,b'2.3. In the con-
finement phase both the measured temporal string ten
and monopole density are larger compared to the binding
predictions, see Figs. 2~b! and 3.

As we have discussed, due to monopole binding the d
sity of the monopoles is increased compared to the nonin
acting case. However, the size of the dipoles in the confi
ment phase is larger than the average distance betwee
ordinary monopoles calculated from their total dens
Therefore, monopoles bound in dipoles due to classical lo
rithmic potential still give a contribution to the string ten
sion.

It is interesting to check how the monopole density fi
into the theoretical predictions of the string tension@Eq.
~3.10!#. Using this predicted relation, in Fig. 7 we compa
the ratio Rs between the measured string tensions ~from
plane-plane correlators of Polyakov loops! with a calculated
‘‘theoretical’’ string tensions th using as input themeasured
monopole densityr:

Rs5
s

s th
. ~5.1!

Heres th is given in accordance with Eqs.~2.11! and ~3.10!
via
05450
c-

er
is

ns

n

on
ss

n-
r-

e-
the
.
a-

s th5
4

p
A r~b!

bV~b!
, ~5.2!

andbV is defined in Eq.~2.6!.
The circles shown take into account all active monopol

i.e., isolated ones and those from charged monopole clus
which might be thought to be responsible for the string te
sion. The ratio is close to unity, indicating the fact that t
charged monopoles provide the major contribution to
string tension, as expected. Note that in the deconfinem
phase the string tension is nonzero due to the finite-size
fects discussed below. The squares in Fig. 7~a! are related to
ratio ~5.1! in which all monopoles are taken into account.
both phases this ratio is smaller than unity: a neutral fract
of the monopoles bound in the small dipole pairs does
contribute to the string tension.

The small value of the string tension remaining after pa
ing the deconfinement transition at this finite lattice can
explained from the point of view of the dipole picture a
follows. Test particles separated by distances smaller t
sizes of certain dipoles are influenced by the constitu

FIG. 7. The ratio of the temporal string tensions@Eq. ~5.1!#
vs b.
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monopoles of those dipoles. The monopoles make contr
tions to the string tension term. On the finite lattice the ma
mal distance between the test particles is of the order of
lattice size. Therefore, dipoles of the same size could
responsible for the nonvanishing small string tension.
poles of these sizes may be present in the deconfinem
phase~with a probability that decreases with an increase
the lattice size!. However, this does not contradict the crit
rion used to locate the phase transition in the previous
tions, since dipoles of such large sizes are heavily s
pressed.

Dipole formation due to Coulomb forces also occurs
zero temperature. This effect increases the monopole de
compared to that in the ‘‘bindingless’’ world. To check thi
in Fig. 8 we compare the total density of monopoles and
exclusive density of monopoles residing in charged clus
~the latter includes free monopoles and antimonopoles! for a
323 lattice. The charged monopoles comprise around 55%
the total monopole density. This ratio does not depend on
value of the coupling constantb, indicating that the scaling
behaviors of charged and neutral clusters are the same.
charged fraction of the monopoles is perfectly described
the ‘‘bindingless’’ formula @Eq. ~2.11!# for the monopole
density. This formula is incorporated implicitly into the th
oretical prediction of the string tension@Eq. ~3.10!#, which
works well according to Ref.@19#. Thus only monopoles
from charged clusters~including separate monopoles! con-
tribute to the string tension, while the binding effect caus
the appearance of a large fraction of inactive neutral clust

Finally, we have measured the spatial string tension:
coefficient in front of the area term in the spatial Wilso
loops. This string tensionss has been obtained by means
the standard diagonal Creutz ratios. The results are prese
in Fig. 9 as functions ofb. As expected, the spatial strin
tension does not vanish and behaves smoothly across
deconfining phase transition. In contrast, in this figure
also show the ‘‘true,’’ i.e., temporal string tension extract
from temporal Wilson loops, which drops down to the lev
of the finite-volume correction that we have just discusse

FIG. 8. The density of all monopoles and of monopoles
charged clusters vsb for a 323 lattice compared to prediction
~2.11!.
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At sufficiently high temperatures the system might
treated as two-dimensional with an effective 2D coupli
constantb (2D)5Ltb. Moreover, since the monopole densi
is low at largeb ~in deconfinement!, the model becomes
effectively noncompact. Thus the spatial Wilson loop beh
ior in this regime is given by the perturbative one-phot
exchange. In two dimensions the Coulomb law provides
linearly confining potentialV(2D)(R)5R/2, corresponding
to the spatial string tension

ss
th~b!5

1

2b (2D)
5

1

2Ltb
, ~5.3!

which is shown in Fig. 9 by the dashed line. The spa
string tension data and the curve approach each other
sufficiently largeb. However, in the confinement phase th
monopoles make a significant contribution to the spa
string tension.

VI. SUMMARY

In this paper we have considered a mechanism for a fi
temperature deconfinement phase transition in three dim
sional compact electrodynamics based on monopole bind
The considerations are similar to those given in Ref.@8# for
the continuum theory, and they incorporate features of
lattice geometry. This allows us to predict the pseudocriti
coupling as a function of the lattice size.

In our numerical simulations we have demonstrated t
the monopoles are sensitive to the phase transition des
the fact that the monopole density itself behaves smoo
across the transition. The pseudocritical couplings found
the Binder cumulants of the density are very close to t
identified using the Polyakov loop susceptibility. We stre
that we did not intend to study the finite size scaling behav
of this model.

Based on the observation used to findbc in this way, we
have studied the monopole properties in more detail.
have found that both the monopole density and the str
tension differ from the predictions based on a model wh
does not take the monopole binding effects into accou

FIG. 9. The spatial string tension vsb.
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However we found numerically that the ratio between th
two quantities derived in that model@given by Eq.~3.10!#
remains valid in the confinement phase.

We have observed that dipole formation occurs both
confinement and deconfinement phases. In the decon
ment phase tightly bound dipoles—which are safely ide
fied by a cluster algorithm—dominate in the vacuum. T
dipoles are oriented dominantly in the temporal directio
These features are in agreement with general expecta
discussed in Secs. I and II.

At the confinement phase transition we observe mo
clusters with two constituents or single monopoles and a
monopoles. Further decreasing the temperature~or b), the
monopoles become dense and form connected clusters~on a
coarser and coarser lattice! inclosing various numbers o
monopoles and antimonopoles. The largest clusters are m
and more spherical. Whether the observed properties of
dipole gas formation survives in the continuum limit d
serves an additional study.

When the phase transition is mediated by charged obje
one could expect that external fields will influence the ph
transition. In our case the natural question arises of what
.

gy

ev

s.
.
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happen to the confinement-deconfinement phase transi
For non-Abelian theories in 311 dimensions it was recently
concluded, from a study of the expectation value of t
Polyakov loop@20#, that confinement seems to become
stored under the influence of an external chromomagn
field. In an accompanying paper@21# we will report on a
study of our model under such external conditions, conce
ing the influence of confinement and relevant properties
the monopole system.
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@2# M. Göpfert and G. Mack, Commun. Math. Phys.82, 545

~1981!.
@3# T. Sterling and J. Greensite, Nucl. Phys.B220, 327 ~1983!.
@4# N. Parga, Phys. Lett.107B, 442 ~1981!.
@5# B. Svetitsky, Phys. Rep.132, 1 ~1986!.
@6# J.M. Kosterlitz and D.J. Thouless, J. Phys. C6, 1181~1973!.
@7# P.D. Coddington, A.J. Hey, A.A. Middleton, and J.S

Townsend, Phys. Lett. B175, 64 ~1986!.
@8# N.O. Agasyan and K. Zarembo, Phys. Rev. D57, 2475~1998!.
@9# G. Dunne, I.I. Kogan, A. Kovner, and B. Tekin, J. High Ener

Phys.01, 032 ~2001!.
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