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CP asymmetry of B— X "I~ in the low invariant mass region
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| analyze theCP asymmetry ofB— X "1~ based on a model-independent analysis, which includes 12
independent four-Fermi operators. TB@&® asymmetry is suppressed in the standard model; however, if some
new physics makes it much larger, the present or the next generatibfaofories may catch th€ P violation
in this decay mode. In this paper, we study the correlation of the asymmetry and the branching ratio, and then
we find only a type of interaction which can enlarge the asymmetry. Therefore, in comparison with experi-
ments, we have the possibility that we can constrain models beyond the standard model.
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I. INTRODUCTION v
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The inclusive rareB decayB— X/ ¥~ has already been
studied by many researchers. It is attractive to investigate — q” — — -
this process experimentally or theoretically. This decay mode +CagSi qu?(mbR)bl Y+ CLsyubLlLy
is experimentally clean as well &— Xy, especially in the
low invariant mass region, and, When we can use a partpn +CLR§L7MbL|_R7“|R+ CRL;R')’/LbRI_L'y'MlL
model to study this process theoretically, it is a semileptonic

decay. In the standard mod@&@M), a flavor changing neutral + CreSrY PRI RY IR T CLrirSLORI LIR
current(FCNC) process appears only through one or more - - -
loops. SinceB— X "1~ is also a FCNC, new physics can + CruLrSrOLILIR T CLrriSLORIRIL+ CririSROLIRIL
clarify itself to measure this decay. The extended models

beyond the SM, such as the minimal supersymmetrized +CTgUMVb|_O'MV|+iCTE;O';wbI_O'aB| eHvaB| (1)

model(MSSM) and the two Higgs doublets mod@HDM),

predict some deviation form the SM—14]. The SM predic- , o o

tion shows that, fof=e or 4, this mode will be found at the vyhere Cyxx's are the coefficients of th.e four-Fermi mtergc-
KEKB and the SLACe*e™ storage ring PEP-II B factories fuons. A_mong them, there are twsy mt_juced four-Fermi
in the near future. Therefore, in order to search new physicéf‘teraCtlonS denoted bgs, andCgr, Which correspond to

1 o ~eff : ; s
the study of this process is one of the most interesting topics. C7| '2 the SfoM’ and _‘I’_\;]h'Ch are (;onstralned by thg expen
In this paper, the final leptons will be muons or electronsmental data ob—sy. There are four vector-type interac-

throughout. tions denoted byC,, , C g, Cr., andCgrg. Two of them

The CP-violating asymmetry of this decay is also a sub- (Cuo, Cup) are already present in the SM as the combina-

. o . . . tions of (Cq—C;p, Cg+C4g). Therefore, they are regarded
ject that many physicists investigate. This observable is very ./ sEm91 of %ﬂe c%ntriéoations from the gM and ?he new
sensitive to the complex phase of the Cabibbo-Kobayashi-, . L new —~ne .
. physics deviations G {",C{'r"). The other vector interac-
Maskawa(CKM) matrix elements, so that we have the pos-_. d db dc btained by | h
sibility to find effects beyond the SM. The SM predicts that 1ONS: denoted btr, andCrg, are obtained by interchang-
. ' = ing the chirality projection& < R. There are four scalar-type
the CP asymmetry is sgppressgd, about™{0or smaller interactions,C, r g, Criir, CriLr, and CrigL. The re-
[15,14. If some non-SM interactions enlarge for the asym'maining two denoted by and C1e correspond to tensor
metry to get sizable, we can know the existence beyond S ype. The indices and R are chiral projectionsL = (1
This observable has been calculated in MSSM and 2HDM” 5) andR=1(1+ ys). Then, we can get the differential
[10-14. In these models, as well as the SM, the dis’[ributionbr(,jnching ratio of the FECNC r,)rocebs—>sl+l -
is a function of fewer Wilson coefficients than the full op- '
erator basis. In our previous work, we analyzed the branch-
ing ratio and the forward-backwar@B) asymmetry, which — = —BoRe [S1(5){mZ|Cg |+ MZ|Carl?} +S,(5)
is an observable corresponding to the size of parity violationd$s 2m,

in the decayB—Xd "1, with a most general model- * 2 * *
independent methofL7,18. Generally, the matrix element X{2mpmyCs Cgri +S3(5){2msCs (CL L+ Cp)

for the decayb—sl*I~ includes all types of local and 2MiM.Can(CE 4+ C* N+ S, () 2M2Can( CF

bsy-induced four-Fermi operators. That is, bMsCar( Crut Cre)i + Sa(s){2MyCar(CLL
+C{r)+2mpymCs (CK + Cip)} +Mo(S){|CLL|?

*Email address: fukae@hiroshima-u.ac.jp +|CLrl?+|Cro|*+|Cre? + Mg(s){ —2(CL Ci,

0556-2821/2001/6%)/05401@8)/$20.00 64 054010-1 ©2001 The American Physical Society



S. FUKAE PHYSICAL REVIEW D 64 054010

+C, oCE)+(C C* _+C c* +Ma(s TABLE I. The partially integratedCP asymmetry for p, )
1RCRR) H(CLrirCrurt CurriCrirU} + Ma(S) =(0.12,0.25), (0.16,0.33), and (0.27,0.40) and in the SMuat
X{|CLrLR**|CriLr >+ |CLrrU*+|CrLRUT} =(My)ms-
+Mo(s){16/Cr|?+64/Crel}]. (2) (p.7) A
Here, we ignore terms including lepton maiss because we (0.12,0.25) 0.8% 10:2
take only massles@nti-) lepton into consideration. A set of (0.16,0.33) 112107
the kinematic functionsSi(s) (i=1,2,3,4,5,6) andV(s) (0.27,0.40) 1.3810
(n=2,6,8) is shown in the Appendix. The normalization fac-
tor By is given by
W(S) NDR
Bo=|1+a——|Cgq "+ Y(S). (6)
B=R3 3a? |Vt*svtb|2 1 3) m
762 V2 f(My)k(my) Only Ay=(V,,Vus*)/(V,Vts*) includes theC P-violating

phase. Sinca Aq is very small except for thec resonance
where the other factofigm,) and«(m.) are the phase-space region, the SM predicts that tH@P asymmetry is very neg-
factor and theéd(as) QCD correction factof19]. The factor  ligible [15]. B
B, denotes the branching ratio of the semileptonic decay, We must takecc resonance into consideration to discuss
and we set it to 10.4%. We can also have the FB asymmetrthe branching ratio and th€ P asymmetry[23], otherwise
from Eq. (1). Thus, by numerical analysis, we obtained use-avoid the region wherd/¢ and ' poles contributg¢16]. In
ful information to pin down new physics beyond the standarchis paper, we take the latter stand. The residual region is the
model. However, we set all the new Wilson coefficients tolower region before thé/ resonance or higher region after
real when we carried out the numerical analysis. This meang’ resonancl3]. We restrict our discussion to only the low
that we assume that there is no n@#-violating source in  invariant mass region, 4s<8 (GeV?), where s=(p,+
the decayB— X4l "1 . TheCP asymmetry is sensitive to the +p,-)2. We then introduce the partially integrate@P
imaginary part of the coefficients. Therefore, it is worth asymmetry.Aqp defined by
treating theCP asymmetry based on our previous analysis.

This paper is organized as follows. In Sec. Il, we find how 4 B(B—=XJd 1) =BB—=XJ"17)  Ngp
to obtain the generaCP asymmetry, study the correlation c _ = =5
between the asymmetry and the branching ratio to pin down B(B—Xd"17) + BB-XJ 1) Pee
the type of interactions, and give some discussions. We giv:
a summary in Sec. lll.

)

Where B(B— X "17) is the partially integrated branching
ratio for the proces8— XJ*1~, defined by

ds—————~~3.73x10 ©

Il. GENERAL CP ASYMMETRY fg dB(B—Xd17)
1(Ge\®) ds

We assume the semileptonic deday-cl™ v, is an ap-
proximatelyC P-conserving mode; in fact, experiments show [at u=(MmyImsl:
they correspond with each other within about $(20]. The
partonic approximation predicts r@P-violating asymmetry ~ In the same way, we define the partially integrated branching
in the SM. That is, we can use the same normalization factoratio for B—XdJ*l1~. We set CS",C)PR,Cy9=
as Eq.(3) to express the branching ratio bf~s!*1~ and  (—0.317,4.52-4.29) for numerical calculation. We listed
b—sl*1~. For a general Wilson coefficier@yy, we can its value for the SM at the renormalization scaje

defineByy, Axx, andAyy by =(mpyms=4.2 GeV in Table |, where we set Wolfenstein’s
CKM parameterq24] to (p,7)=(0.12,0.25), (0.16,0.33),
Cyx=Byxt+ AxAyx, (4) and (0.27,0.40). We should note that there is a huge uncer-

tainty about theCP asymmetry predicted by the SM before

where\ . is theC P-violating phase and generally boly, ~ We discuss the sensitivity_to new phygics from our numerical
andA, are complex. In the case of the SM, only the CKM results. The asymmetry in the SM is uncertain by a!most
matrix elements give th€ P-violating weak phase and the 100%[16]. So, we must get at least a 10 times larger size as
strong phase appears through the QCD penguin correctiothe SM pr_ed|ct|on for_thé:P asymmetry to find the signal of
Conventionally, these effects are included in the Wilson col'€W physics; otherwise we fail to do so. Then, from Eq,
efficients CS" of the vector-type current-current interaction W& can get the numeratolcp of the CP asymmetry by
[21]. Explicitly it is expressed by21,22 Eg)pl\zlc;;:wg ReCyxCYVy) in the branching ratio given in Eqg.

eff__
Co'=Bot Ao, ®) — 2 1m0 IM(BE ) — 2 IM(hy ) IM(ByAyy)

where, without thesc long-distant contribution, —2IM(A ATy IM(AxXATY),
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and, for the dominatoD¢p, with Here, Axxs are real and\xxs are phase factors defined by
expldxy), where O<gyy<2w, and BJ"'=Bs—C,, and
2 ReBxxBYy) +2 Re(Axx) RE(BY yAxx) BSN=Bg+Cyo. In the same way, we can redefifigr and
+2 Re A yy)REBE Ay y) + 2 REA o X ) RE Ay AL ). CBZS_L);(a;d have other constraints from the measurement of
s/

The resultanCP asymmetry takes the most general model-
independent form. We show the explicit expression of this 4|CS"2(mi+m2) = mi(|AY 12+ |Agrl?), (10
asymmetry in the Appendix. ThEP asymmetry does not

vanish, if and only ifByy or Axx has a different phase from Where A, =(m,/mg)As, [18]. The definitions ofAgg and

Avy and yy OF AxxA¥y has an imaginary part. HerXX  Asp and ¢gr and ¢ follow Eq. (9). Thus if there is an

and Y'Y denote types of interactions, whether they are thenterference between such coefficients and @ it can
same type or not. However, in the most interesting model€nlarge theCP asymmetry. Otherwise, the new interactions
like the 2HDM [13,14 and the MSSM[1,11], the strong Suppress the observable according to the above assumption.
phase does not play such an important role toGtieasym-  In this case, the explicit form of the partially integrat€d®
metry. Therefore, we assume that we can ignore a set gisymmetry is given by

strong phases introduced by new phygigk Then, for new .

vector, scalar, and tensor-type interactions, we can redefine

the Wilson coefficients as J Vzds[dNCP(S)/dS]

SM Acp=—73 EDCP, (11
Cux =B+ (AxxF Ag)(Ag+Axx) for XX=LLOrLR, f ds[dDep(s)/ds] _CF
(8) 1 GeV?
Cxyx=AxxAxx for others. (90  where
|
dNCP(S) _ 1 2 * * * *
T—_m_g Bo[ Sz(s){2mg[Im(Asp) Im(Ag Bg) +Im(Ag A ) IM(Ag Ag) +Im(Ng)Im(Ag Bg)
+IM(Ag AR IM(Ag A IH+ Sa(s){2mi[ IM(Agr) IM(AgrBE) +IM(Ngr\ ) IM(AgrAS)
+Im(Ngr) IM(AgrB3 ) + IM(Agr\[R) IM(AgRAS ) 1}
+My(s){2(Im(N ) IM((Bg— C10)(Ag+ AL )*)+IM(N\ g)(Bg+ Ci0)(Ag+ALr)*))}
+Mg(s){—2(Im(\g) IM((Bg — C19)Arp) + IM(A AR ) IM(AGAR,)
+Im(Im(AgR) IM((B§ + C10)Agr) + IM(A gRARR) IM((Ag+ ALR)ARR)} (12
and
dDcp(s) 1 2 2, .2 2 * * 2
d _EBO[Sl(S){mslASJ + M| Aggl )+ Sp(s){2mpmsRe(\ s A gr) Re(As | Agr)} + Sa(S){2MS{Re(A s R As (Bg
b

—C10* ]+ ReAg A ) REAg (Ag+ AL )" ]+ RN )RE Ag(Bg+ C10)* ]+ RENg M R)RE Ag (Ag+ ALR)* T}
+2mymy Re(\grh k) RE(AgrAk ) + RENgrA k) R AgrARR) 1} + S4(5){2mE{Re(\ gr) RE Agr(Bg— C10)* |
+Re(\gr\ ) RE A Ag+ A ) * ]+ RE(Agr)RE Agr(Bg+ C10)* ]+ RENgrA [R)RE Agr(Ag+ ALr)* ]}

+2mpmy Re(A s A& )RE(As AR + REA s ARRIRE(As | ARR) I} + Mo(8){|Bo— Cigl *+ [Ag + A |?

+2 Re(\ )RE (Bg— C10)(Ag+ AL )* 1+ [Bg+ Cio +|Ag+ ALl +2 REN R)RE (Bg+ C10) (Ag+ALR)* ]
+ArU?+ArR %+ Mg(s){ — 2{Re(\ g )RE(Bo— C10* Ari]+ REN L ARDRE (Ag+ AL A ]

+ReArr)RE (Bg+ C10)* Arrl + REN L RARR)IRE (Ag+ AL r)ARgl} + [RE LRLRNRLLR REALRLRARLLR)

+ R\ rrIMRLRUREALRRARLRD ]} T Ma(S){IALRLR >+ [ARLLR*+ ] ALrrU + | ArLr )

+Mg(s){16|Ar|*+ 84| Arel %], (13
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FIG. 1. The correlation betwees/ 35 and.Acp asA,, moves, FIG. 2. The correlation betweds/ 5™ and Acp asA, g moves,
and ¢ =0 (thin solid ling, 7/4 (dotted ling, /2 (thick solid  and ¢ =0 (thin solid line), =/4 (dotted ling, /2 (thick solid
line), and 3r/4 (dashed ling The marks¢, +, O, and X show  line), and 37/4 (dashed ling ¢ shows the standard model predic-
the prediction for¢, | =0, w/4, #/2, and 37/4 with A  =0. tion. ¢, +, O, andXx show the prediction fo, g=0, w/4, 7/2,

and 3w/4 with A g=0.

Here, we omittedh, because it is very small.

We will analyze the partially integrate@P asymmetry limit. Thus, if a scalar or tensor-type interaction enters into
defined by Eq(7) and examine its sensitivity to each Wilson our decay mode, it would suppress tG® asymmetry. In
coefficient. For numerical estimation, we sefp, 1) Figs. 1 and 2, the correlation between the branching ratio and
=(0.16,0.33). At first, we investigate vector, scalar, andthe CP asymmetry wherC,, or C g moves is plotted. Be-
tensor-type interactions, which are collectivelgw local in-  cause the flow of each interaction depends on the type of the
teractions The results of Refi17] make us predict the sen- interaction, we can pin down the type of interaction that
sitivity of the CP asymmetry to each Wilson coefficient. The contributes to the processes once we measure those observ-
branching ratio is the most sensitive to the vector-type interable. These show behavior as expected in the above discus-
actions, especiallZ, , , and the contribution due 6z, and  sion. We should pay attention to Fig. 1, which shows@t
Cgr is positive. Only theC,, andC, g have the weak and asymmetry can get much larger as the branching ratio is
strong phases, so we can expect that only two types of intepredicted by the SM. It is because the partially integr&éd
actions can mak&€ P asymmetry large, we can especially asymmetry for the SM is so suppressed that it is enlarged by
expect that th€ P asymmetry is sizable by appropriaie, . 10°. For ¢ =ml4, w2, or 3m/4, the asymmetry is the
However,Cg, and Crg would suppress th€ P asymmetry. most enlarged whei,  ~—1.2Cyg, 0 or 1.1Cy. If we
The scalar and tensor-type interactions hardly interfere wittignore the SMC P-violating contribution,Ag and X, C
each other or a vector-type interaction in the massless leptagnters into the asymmetry as in the following:

Zf ds{Im[M,(Bg—C10)—2M4C5"|(A% + AL ) }sing

, (14
zmgBSM+f dSM2|A9+ALL|2+2f ds{RE M,(Bg— C1) — 2M,CSM|(AS + AL ) }cosp, |

where M,(s) and M,(s) are shown in the Appendix, and tion is very sensitive to whethep, | is infinitesimal or not.
2miBsyu~0.72. By choosing an approximate setAyf, and ~ Thus, the SM prediction point is far from other lines. In the
¢, to hold same way, soma, g and ¢, g enlarge the asymmetry and are
sensitive tog, g but, becausB4+ C1;<Bg— Cg, its contri-
bution is smaller tharA | and ¢, . And, in order to see
j dsMyA | ~— Zf dsM, RgBg—C;g)cosp, | , how much the coefficiemd g contributes to the asymmetry,
we check when the absolute value of the asymmetry be-

0 o . comes the maximum. By analogy with the analysis @y
the asymmetry can become 10 That is, if there is new 5nq Eq (14), we find that it has the largest value when,
physics throughC, | with a weak phase, there is the possi- roughly,

bility that we may pin down this type of interaction at tBe
factory in the near future, even if there is no contradiction
with present experiments. Equati¢h4) shows the correla- 2[ ds M2RG(A9)~_J ds MoA R,

054010-4
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—0.006 1 ! 1 1 1 —0.006 L 1 1 L 1
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FIG. 3. The correlation betwee/ 5™ and.Acp as § moves, FIG. 4. The correlation betweel/ B5M and Acp as § moves,

and ¢gr=0 (thin solid line, #/4 (dotted ling, =/2 (thick solid and ¢y, =0 (thin solid ling, /4 (thin dotted ling, #/2 (thick
line), and 37/4 (dashed ling where taf=Agg/AY, . We setpg, solid line), and 37/4 (thick solid line, where taf=Agg/AY,,. We
=0. And, for Ag,=—2CS" and Agr=—2CE", plotted some set ¢y =g =dgr. For Ag=—2CS" and Agg=—2CS": ¢
marks, ¢ (¢gr=0), + (psr=7/4), O (dgr=¢/2), and X (dn=0), + (pn=7/4), 0 (dn=¢/2), andX (¢y =37/4).
(¢pgr=37/4).

imaginary part of Bg—Cyg)(Ag+Ag,) and Bg+Ci)(Ag
numericallyA g~—1.4C,q or —1.5C,q| for ¢ g=7/4 or  +A}p) yields the difference between the correlations, how-
712 and 3m/4. [Note we ignored the term including ever, the sensitivity is still small.

M,ReBy+ C10) — 2M,CS" because it is much smaller than  For scalar and tensor interactions, in the massless lepton

the remains in the dominator. limit, Wilson coefficients appear only through the squared
For Cg. and Crg, the terms fromM 20%,_ and M2C§R absolute. So, the asymmetry is almost independend f
disappear in the numerator, so that the other terms, (S=LRLR LRRL RLLR RLRL), ¢1, and ¢1g and it
gets only more suppressed Ag, At, or At gets larger.

_MG(S)(CSﬁ_ C10CE,, (15) Moreover, the sensitivity is very small because the corre-

sponding kinematic functions include a factuor.
Next, consider onlyCgg and Cg,, Which is constrained
—Mg(8)(CEM+Cr0)CE (16) by Eq.(10). Generally, without a strong phase, these coeffi-
cients are expressed by
which we ignored when we discussed the sensitivitCaf
andCgp to the branching ratio, give significant effect to the Cgr=Agre'?8R, Cg =Ag€'?st, (19
CP asymmetry, so that the asymmetry may dependpgn
and ¢rr. Here,Mg(s) is given in the Appendix. Equations where¢gr and ¢, are independent weak phases. As shown
(15) and (16) give similar contributions to the asymmetry in Ref. [18], the partially integrated branching rati8 is
except that it includes not oniyl, but Ms. SinceMg<M,  more sensitive tcCgg than CY,=(m,/my)Cs, because of
due to strange quark maiss, its sensitivity is small. We can  the strange quark mass,. This is true for the partially
also consider the correlation wheAg; and Agg are Very integratedCP asymmetryAcp. In other words, it is almost
small strong phases, that is independent of the phasks, in comparison withggr. The
asymmetry cannot be enlarged By, (or Aggr) with ¢gg
Ag =Ag+ AL, (17 =0. We can find this feature by comparing Fig. 3 with Fig.
4. In the former, we sebg, to O; in the latter, however, we
setg = dgr= dnL - By contrast withCg, , the form of the
Arr=Ag+ Agr, (18 correlation depends o€y considerably. Ignoring the SM
contribution, in the case apg, = pgr= dnL, the asymmetry
where Ag, and ALy are real. In this case, the sign of the takes the form

8m,Ce" singy.

msf ds%cosﬁlm(Bg)erbf dsS;sindlm(By)

: (20

2me By +2méB —8m,Ce"

msf ds%oosﬁRe(Bg)+mbf dssingS,Re(Bg) |cOSh L
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0.08 T T

independent four-Fermi operators. In the SM, only three
types of Wilson coefficients contribute ®—XJ*1~, and
the partially integrate P asymmetry has an order of 18

We investigated the correlation of the partially integrated
branching ratio and the partially integrat€d asymmetry,
and then can conclude that on; | , the coefficient of the

operator &y, b I ¥*I), can be a meaningful contribution
to our process. This cause is the same as the branching ratio
[17], i.e., the large interference betwedy(- C,o) andC,, .
Since Bg+ C19<<(Bg—C;g), the contribution ofC, 5, the
001 ) ) . ) : coefficient of the operators(y, b Igry*Ig), is less than
0 0.5 2.5 3 C,. - However, the Wilson coefficients of the other new lo-
cal interactions beyond SM work only to suppress the asym-
FIG. 5. The correlation of3/B, and Acp/ ASM asA  moves  Metry, because we assumed there was no new strong phase,
for ¢ =m/2 and ¢y, =0 (thin solid ling, /4 (dotted ling, =/2  and then they have no interference with the SM interactions.
(thick solid lin®, and 3m/4 (dashed ling Here the definition of In order to contrast with the left-right symmetric model, we
. is the same as Fig. 4. madeCg, andCgg have very small strong phases; however
it changes the size of the P asymmetry a little. As foCgg
where By and B, are the partially integrated branching ra- andCg, the coefficients of th8— Xy operators, although
tios. For the former, only nonvanishing new Wilson coeffi- the asymmetry depends largely on the weak phagg of
cients areAgg and the latter hadg, andAgg=Ag, =0. We  Cgg, their size makes little contribution to the asymmetry.
set tar=Agr/AS, and ignored the higher-order terms aboutThus, the dependency of two coefficients is much smaller
mg/m, . The definition ofS; andS, is given in the Appen- than that ofA; | . Note that the branching ratio also depends
dix. Since ImBy) <Re(By), the partially integrated branch- on the ¢gg.
ing ratio is expressed by Our analysis contains the special cases such as the MSSM
and the 2HDM. In the MSSM, a special casedgr=Cg
1 =2C;, C =C&"-Cyp, and C g=CE"+C,y. This is ex-
—85'0{3NLJr BL_8mbC$ﬂ[ msf dsSRe(Bg)coy pressed as an example in Fig. 4. Therefore, the asymmetry is
2my very suppressed like the standard model, although the
branching ratio can be larder nof). However, the model has
co&;SNL]. (21)  the possibility of conversion of the sign €. In this case,
Figs. 1 and 2 show that tHé P asymmetry may be enlarged.

: Large contributions tAA-p were pointed out by Ref.10].
Equationg20) and(21) show that, whenpy, rounds from 0 ; . cP
to 27, so does the ellipse of the correlation, as shown in FigF|gure 4 includes the rough character of 2HDM, where a

4. The size ofAgg, and alsoAg,, is not so significant to hew weak phase enters infyg andCs, ith the deviation

enlarge the partially integratedP asymmetry. Thus, these fCrom tChe SMn(?éed'Ct\'/c\)/E fr?r ithe nium(:,rzlclial txaluesrfrf? ’tr
two types of interactions do not give a great influence to the”SL’ ~LL® a LR- en sinpy Is small, the asymmetry

partially integratedCP asymmetry even if there is another 'Sh suppresiﬁq[;h hOWevng W[qi? [SOUL 'S tﬁ:;;sg 0 umty,t it

type of new interaction, sa§, | . For example, when we set changes wi € sign @pr -onecelt asymmetry

b =2 and we check the dependency &f, on the is measured, we will be able to constrain the extended mod-
LL™ L

asymmetry, it does not largely change the form of the Corregals by comparing the data with our numerical analysis. If we

; - et the signature of the asymmetry in it, we can conclude
lation betweens3 and.A asA,, moves negligibly, as shown 9 . B AN e
in Fig. 5, so we must note, if and only if very minute experi- that there is a new\(_ Ae (v A) Interaction ar!dlor a
ments are done. sizable strong coupling. Otherwise, the analysis of the

present paper cannot constrain us within some models, so we
have to wait for future experiments to get some information

0.07 |-
0.06 |-
Acp 0.05
0.04 |-
0.03 |-

0.02 |-

B/

+ mbf dsSRe(Bg)sing

Ill. SUMMARY on theCP from B—XJ 1~.
The model-independent analysis of the partially integrated
CP asymmetry of the inclusive rarB decayB— X "I~ ACKNOWLEDGMENTS
was presentedCP violation is one of the most interesting | \would like to thank C. S. Kim, T. Yoshikawa, and T.

topics to research new physics and understand bariogenesigrozumi. who gave suggestions and comments.
in the early universe, and many researchers have studied this

observable through both the experimental and theoretical ap-
proaches. The proce— X "1~ is experimentally clean,
and there is a possibility that this mode is found by KEKB  We list a set of kinematic functions, which decide the
and PEP-IIB factories. BecausB— X4 "1~ is a FCNC pro-  behavior of the branching ratio and ti&P asymmetry for
cess, it is the most sensitive to the various extensions of thihe decayb—s!I™1~, and show the general expression of the
SM. Our analysis includes the full operator basis, i.e., 12direct CP asymmetry. The ratio is shown by E(). We

APPENDIX: KINEMATIC FUNCTIONS
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follow Refs. [17,25 with regard to notation. That is, the M4(s)=my,mJ S;(s)+S,(s)],
functions are given by
Mg(s)=2u(s)(mz+mZ—s)s,

4 1
Si(s)=— Su(s)| = gu(s)’— (mg—md)? |, Mo(s)=2u(s)[ — 2u(s)2— 2(m2+m?)s+2(m2—m2)?],
(A1)
Sy(s)=—16u(s)myms, where we neglect lepton mass.
s 2 With the above functions, we can express the partially
S3(s)=4u(s)(s+mp—mg), integratedC P asymmetry delivered from the matrix element

Eq. (1], that is,
Sy(s)=4u(s)(s—mi+m3), [Eg. (1)], that is

8
M (5) = (2-+ M) Sy(5) + 2mym.Sy(s), Leewds[d/‘/cp(s)’ds]_ -
1 22 2 22 CP s ~ Dep’ A2
Ma(s)=2u(s)[ —zu(s)"—s+ (my—mg)“], f \Izds[chp(s)/ds]
1Ge
M 4(s)=mZSy(s) +m5Sy(s), where
dNcp(S) _

1
— —5 Bo[Sy(s){2mZIm(As)IM(BgAS)) +2maIm(Ngr) IM(BerABR)} + Sy(S) {2memd IM(A 5D IM(As  BER)

ds s

+Im(\gr) IM(B%,Agr) + IM(As A §R) IM(As AgR) 1} + Ss(8){2mZ[ Im(\sp) IM(As BY,)

+HIMA ) IMBE AL+ IM(Ag A ) IM(Ag AF ) +Im(As) IM(Ag Blr) + IM(N L g) IM(BE,ALR)

+IM(\s AR IM(Ag AlR) 1+ 2mpmg(IM(Agr) IM(AgrBg) + IM(Ag ) IM(BERARL)

+Im(AgrA R IM(AsrARL) + IM(AgR) IM(AsrBRR) + IM(\rR) IM(BERARR) + IM(NgrA RR) IM(AsrARR) I}
+S4(8){2ME[IM(\gR) IM(AgrBYL) + IM(N L) IM(BERALL) + IM(Ngr\ L) IM(AgrAYL) + IM(Xgr) IM(AgrBYR)
+1IM(\ L g) IM(BERALR) + IM(Agr\ 'R IM(ARRAR) 1+ 2mymy IM(As) IM(Ag B )+ Im(Ag) IM(BE, Agy)
+ImM(Ag A g)IM(Ag A +IM(As)IM(Ag BER) + IM(AgR) IM(BEArR) + IM(A s ARR IM(As AR 1}
+My(s){2[Im(\ ) IM(BLLAF )+ IM(A L g) IM(BLRAR) + IM(Ag ) IM(Bg AR + IM(Agr) IM(BrrARR) 1}
+Me(s){—2[Im(A ) IM(AL BE) +IMAg)IM(B] | Ag) + MmN AR IM(ALLARD) +IM(N g)IM(A RBRR)
+IM(\gR) IM(B{rARR) + IM(A L RARR) IM(ALRARR) ]+ [IM(N LrL R IM(A R RBRLLR)

+IM\rLLRIM(BE R RARLLR) + IMN LRLRNRLLRIM(ALRLRARLLR) T IM(A LrrD IM(ALRRBRLRL

+IM(Ar r)IM(B{rriARLRD T IMNLRRIMNRLRD IM(ALRRIARLRD TF+ M(S){2[IM(X L R)IM(BLRLRATRLR)
+IM\rLLR) IM(BrLLrARLLR) + IM(N LrrD IM(BLrrIA RRD + IM(NRLRD IM(BrLriARLRD T+ Mo(S)
x{32Im(\1)Im(B1AT)+128 Im(\1g)Im(BrgATe)}, (A3)

and

dDcp(s) —ZdB(S)
ds “ ds

1
+—5 Bol Si(S){m3[|As >+ 2 R A s ) Re&(Bg AS )]+ Mi[| Agrl*+ 2 R Agr) Re(BerARR) ]}

Cxx—Bxx b
+S,(s){2m,m{ Re(A 5 ) Re&(Ag Bir) + Re(Agr) RE(BE Agr) + RE(A s Ngr) RE(Ag AER) 1} + Sa(S)
x{2m[Re(As )Re(Ag B )+ Re(\  )RE(BE A )+ Re(Ag A )RE(Ag A ) + Re(A s ) RE(Ag B R)
+Re(\ r)REBE A R) + R Ag A R)RE(Ag AfR) ]+ 2mymy Re(Agr) R AgrBR, ) + Re(Ar )RE(BERARL)
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+Re(\grA R REAsrAR) + RE(Agr) RE(AgrBRR) + RENrr) REBERARR) + REN RN RR) RE(ABRARR) ]} + S4(S)
x{2mi[Re(\gr) RE(AgrB]| ) + Re( L )RE(BERALL) + RENgrA T ) REAgrA} ) + Re(\gr) RE(AgrBlR)

+Re(\ r)RE(BERALR) + RENgrA[R) RE(AgrATR) |+ 2MyMy RE(A s )REAg B ) + RE(A g ) RE(BE ArL)
+Re(Ns ARDREAg AR ) + Re(A s ) RE(Ag | BRr) + RENrr)RE(BS Arp) + REN s Agr) RE(Ag ARR) I} + M o(S)
X{|ALLI*+2 Re\ )REB Af|) +|ALRI*+2 R\ ) REB RATR) +|ArLI*+2 RE A ) REBRr AR +|ARA?

+2 ReArpr)RE(BrrARR)} T Mg(S){ —2[Re(\ | )RE(A| | BE,) + Re(Ag)REB| Ar ) + Re(N | AR REA | AR))

+Re(\ r)RE(A gBRRr) + RENRR)REBrARR) T REN rRARR) REA RARR) ]+ [REN rLR)RE(A RLRBRLLR)
+Re(Agr LRI REBr fARLLR) T RENLRLRNRLLRI REALRLRARLLR) + REA LrrD RE(ALRRIBR LR
+Re(ArLrUREBrrIARLRD + RELRRINRLRUREALRRIARLRD T+ Ma(S){|ALrLA?

+2 REALRLRIREBLRLRATRLR) T [ARLLR >+ 2 RENRLLRREBRLLRARLLR) T [ALrRU®

+2 REA rrUREBLRRIATRRD T [ARLRU+ 2 RENRLRDREBrLrIARLRD} + Mo(S){16[| A7

+2 Re\7)RE(BTAT) ]+ 64 |Argl?+ 2 Re A1) Re(BreATe) 1)

The first termdl”5‘/ds|cxx_,,3Xx in Eq. (A4) is the differential
coefficientsCyx with Byy, respectively.

(Ad)

branching ratio given by E@) after replacing all Wilson
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