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Heavy quark potential in the static limit of QCD
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Following the procedure and motivations developed by Richardson, Buchmu¨ller, and Tye, we derive the
potential of static quarks consistent with both the three-loop running of the QCD coupling constant under the
two-loop perturbative matching of V andMS schemes and the confinement regime at long distances. The
implications for the heavy quark masses as well as the quarkonium spectra and leptonic widths are discussed.
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I. INTRODUCTION

The potential of static heavy quarks illuminates the m
important features of QCD dynamics: the asymptotic fr
dom and confinement. Trying to study subtle electrowe
phenomena in the heavy quark sector of the standard mo
we need quite an accurate quantitative understanding o
effects caused by the strong interactions. In addition to
perturbative calculations for hard contributions, at pres
there are three general approaches to get a systemati
scription of how the heavy quarks are bound to the hadr
and what the relations are between the measured prope
of such hadrons and the characteristics of heavy quark
relevant to the electroweak interactions and QCD. These
proaches are the operator product expansion~OPE! in the
inverse powers of heavy quark mass, the sum rules~SR’s! of
QCD, and the potential models for the systems contain
the heavy quarks by exploring various approximations of
Bethe-Salpeter equation with the static potential treated
the framework of effective theory with a power counting
terms of powers of the inverse heavy quark mass. The
method is usually exploited in the inclusive estimates, wh
the second and third techniques are the frameworks of ex
sive calculations. The important challenge is a consistenc
evaluations obtained in such ways that requires the comp
tive analysis of calculations. A wide variety of systems a
processes for the analysis provides a more complete qua
tive and quantitative understanding of heavy quark dyna
ics.

In the leading order of perturbative QCD at short d
tances and with a linear confining term in the infrared regi
the potential of static heavy quarks was considered in
Cornell model@1#, incorporating the simple superposition
both asymptotic limits~the effective Coulomb and string-lik
interactions!. The observed heavy quarkonia posed in
intermediate distances, where both terms are important
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the determination of mass spectra. So, the phenomenolo
approximations of potential~logarithmic one@2# and power
law @3#!, taking into account the regularities of such the sp
tra, were quite successful@4#, while the quantities more sen
sitive to the global properties of potential are the wave fu
tions at the origin as related to the leptonic constants
production rates. So, the potentials consistent with
asymptotic freedom to one and two loops as well as
linear confinement were proposed by Richardson@5#, and
Buchmüller and Tye @6#, respectively. Technically, using
given scheme of regularization, say, the modified minim
subtraction scheme (MS), one has to calculate the perturb
tive expansion for the potential of static quarks. This pote
tial can be written down as the Coulomb one with the ru
ning coupling constant in the so-called V scheme. Thus,
perturbative calculations provide us with the matching ofMS
scheme with the V scheme. Then loop running ofas

MS re-
quires then21 loops to matchaV . Note, that initially two
coefficients of correspondingb functions are scheme an
gauge independent, while the others are generally depen
With the dynamical fields integrated out, the V scheme
defined in terms of the action depending on the static sou
~the distancer ), so that itsb function is gauge invariant. The
motivation by Buchmu¨ller and Tye was to write down theb
function of aV consistent with two known asymptotic re
gimes at short and long distances. They proposed the fu
tion, which results in the effective charge determined by t
parameters, only: the perturbative parameter is the scal
the running of coupling constant at large virtualities and
nonperturbative parameter is the string tension. The ne
sary inputs are the coefficients ofb function. Two loop re-
sults and one loop matching condition were available for
BT model. Recently, the progress in calculations has p
vided us with the two loop matching of V andMS schemes
@7,8#, which can be combined with the three loop running
as

MS. Therefore, the modification of Buchmu¨ller-Tye ~BT!
potential of static quarks as dictated by the current statu
perturbative calculations is of great interest. Moreover, at
moment two peculiar questions become apparent. First,
asymptotic perturbative expansion of the BTb function to
the third order results in the three loop coefficient, which
wrong even in its sign. Second, the elaboratedLMS param-
eter by BT is in a deep contradiction with the measured va

y,
:
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@9#. To clarify the situation, we will derive the static qua
potential consistent from the state of the art.

Thus, our motivation is to combine high order multiloo
calculations of the perturbative static potential@7,8# with the
string tension ansatz. We improve the perturbative input
the potential model in order to remove the contradiction
tween the modern high energy data on the QCD coup
constant and the description of heavy quark potential in
framework of the one-loop Buchmu¨ller-Tye model, which
accepts an extremely high value of the coupling cons
evolved to theZ mass scale. In other words, if we accept t
current normalization of the coupling constant and introdu
its value into the Buchmu¨ller-Tye approach to the one-loo
potential, then we get the contradiction of such the poten
with the heavy quarkonium mass spectra, certainly, since
find about 200 MeV smaller splitting between the 1S and 2S
levels in comparison with the experimental 580 MeV. Th
discrepancy cannot be removed by the modification of
nonperturbative part in the potential with no contradicti
with the data on the slope of Regge trajectories. Theref
the modification of perturbative input for the model of sta
potential in QCD is meaningful in this sense even when
nonperturbative contribution is conserved in the old str
tension form. So, the significant improvement of the pert
bativeb function for the charge in the Coulomb potential
combined with the consequent evolution from high virtua
ties to low ones, taking into account the influence of t
nonperturbative term on the evolution, which becomes
sential numerically below the scale of 4 GeV.

We have to emphasize that at the moment the pape
Buchmüller and Tye @6# was published, a theory for th
heavy nonrelativisticQQ̄ pair did not exist. So, the phenom
enological derivation of the static potential including pertu
bative short-distance and nonperturbative long-distance
ments made by BT was all one could do. At present, at le
for very heavy quarks, such a theory does exist in the form
potential nonrelativistic QCD~PNRQCD! @10# and velocity-
counting nonrelativistic QCD~vNRQCD! @11#, and we ad-
dress the comparison of the static potential model develo
in this work with these sound theoretical approaches in Q
to the physics of heavy quarkonium.

Another aspect of this work is devoted to the heavy qu
masses. After the potential is given, the heavy quark ma
incorporated in the corresponding Schro¨dinger equation de-
termine the heavy quarkonium spectra with no ambigui1

These masses involved in the potential model are denote
mQ

V . This mass should be distinguished from the pole m
which is a purely perturbative concept defined unambi
ously at each order of perturbation theory through the pole
the perturbative heavy quark propagator. Thus, we nee
test the consistency of estimates for the masses in the Q
potential of static quarks and in SR.

In Sec. II we generalize the BT approach to three loo

1We deal with the so-called spin-averaged spectra, since the
sideration of spin-dependent splitting involves some additional
rameters beyond the static potential.
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and derive the static potential of heavy quarks. The num
cal values of potential parameters and their consistency w
the relevant quantities are considered. The implications
the heavy quark masses, spectra of heavy quarkonia,
leptonic constants are discussed in Sec. III. The obtai
results are summarized in the conclusions~Sec. IV!.

II. QCD AND POTENTIAL OF STATIC QUARKS

In this section, first, we discuss two regimes for the QC
forces between the static heavy quarks: the asymptotic f
dom and confinement. Second, we formulate how they
be combined in a unifiedb function obeying both limits of
small and large QCD couplings.

A. Perturbative results at short distances

The static potential is defined in a manifestly gauge
variant way by means of the vacuum expectation value o
Wilson loop @12#

V~r !52 lim
T→`

1

iT
ln^WG&,

WG5tr̃P expS ig R
G
dxmAmD . ~1!

Here,G is taken as a rectangular loop with time extensionT
and spatial extensionr. The gauge fieldsAm are path ordered
along the loop, while the color trace is normalized accord
to tr̃( . . . )5tr( . . . )/tr1.

Generally, one introduces the V scheme of QCD coupl
constant by the definition of QCD potential of static quar
in momentum space as follows:

V~q2!52CF

4paV~q2!

q2
, ~2!

while aV can be matched withaMS

aV~q2!5aMS~m2! (
n50

`

ãn~m2/q2!S aMS~m2!

4p D n

~3!

5aMS~q2! (
n50

`

anS aMS~q2!

4p D n

. ~4!

At present, our knowledge of this expansion2 is restricted by

a05ã051, a15
31

9
CA2

20

9
TFnf , ã15a11b0 ln

m2

q2
,

~5!

which is the well-known one-loop result, and the recent tw
loop calculations@7,8#, which gave

n-
-

2On a possible peculiar behavior in the expansion see Ref.@12#.
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a25S 4343

162
14p22

p4

4
1

22

3
z~3! DCA

22S 1798

81

1
56

3
z~3! DCATFnf2S 55

3
216z~3! DCFTFnf

1S 20

9
TFnf D 2

, ~6!

ã25a21b0
2 ln2

m2

q2
1~b112b0a1!ln

m2

q2
. ~7!

We have used here the ordinary notations for the SU(Nc)
gauge group:CA5Nc , CF5(Nc

221)/2Nc , TF5 1
2 . The

number of active flavors is denoted bynf .
After the introduction ofa5a/4p, the b function is ac-

tually defined by

da~m2!

d ln m2
5b~a!52 (

n50

`

bn•a
n12~m2!, ~8!

so thatb0,1
V 5b0,1

MS and

b2
V5b2

MS2a1b1
MS1~a22a1

2!b0
MS5S 6181242z~3!

9

1
11~16p22p4!

12 DCA
32S 4451704z~3!

9

1
16p22p4

3 DCA
2TFnf1

21224z~3!

9
CA~TFnf !

2

2
6862528z~3!

9
CACFTFnf ~9!

12CF
2TFnf1

1842192z~3!

9
CF~TFnf !

2. ~10!

The coefficients ofb function, calculated in theMS scheme
@13#, are given by

b0
MS5

11

3
CA2

4

3
TFnf , ~11!

b1
MS5

34

3
CA

224CFTFnf2
20

3
CATFnf , ~12!

b2
MS5

2857

54
CA

312CF
2TFnf2

205

9
CACFTFnf

2
1415

27
CA

2TFnf1
44

9
CF~TFnf !

21
158

27
CA~TFnf !

2.

~13!

The Fourier transform results in the position-space poten
@7#
05400
al

V~r !52CF

aMS~m2!

r S 11
aMS~m2!

4p
~2b0 ln~mr 8!1a1!

1S aMS~m2!

4p D 2S b0
2S 4 ln2~mr 8!1

p2

3 D12~b1

12b0a1!ln~mr 8!1a2D1••• D ~14!

with r 8[r exp(gE). Defining the new running coupling con
stant, depending on the distance,

V~r !52CF

āV~1/r 2!

r
, ~15!

we can calculate itsb function from Eq.~14!, so that@7#

b̄2
V5b2

V1
p2

3
b0

3 , ~16!

and the minor coefficientsb̄0,1
V are equal to the scheme

independent values given above.
To normalize the couplings, we use Eq.~4! at q25mZ

2 .

B. Confining term

The nonperturbative behavior of QCD forces between
static heavy quarks at long distancesr is usually represented
by the linear potential~see discussion in Ref.@14#!

Vconf~r !5k•r , ~17!

which corresponds to the square-law limit for the Wils
loop.

We can represent this potential in terms of the const
chromoelectric field between the sources posed in the fun
mental representation of SU(Nc). So, in the Fock-Schwinge
gauge of fixed point

xm•Am~x!50,

we can represent the gluon field by means of the stren
tensor@15#

Am~x!'2 1
2 xnGnm~0!,

so that for the static quarks separated by the distancer

Q̄i~0!Gm0
a ~0!Qj~0!5

rm

r
ETi j

a ,

where the heavy quark fields are normalized to unity. Th
the confining potential is written down as

Vconf~r !5 1
2 gsCFE•r .

Supposing, that the same strength of the field is respons
for the formation of gluon condensate, by introducing t
colored sourcesni , which have to be averaged in th
vacuum, we can easily find@16#
9-3
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^Gmn
2 &524^Gm0

a ~0!Gm0
a ~0!&54CFE2^n̄n&,

where we have supposed the relation

^n̄TaTbn&52^n̄Tan•n̄Tbn&, ~18!

which ensures that the sources conserve the massless o
gluon, and, hence, the gauge invariance.3 Further, it is evi-
dent that

^n̄TaTbn&5CF

dab

Nc
221

^n̄n&.

Then, we conclude that the relation between the strengE
and the string tension depends on the normalization
vacuum sourcesni . We put

^n̄inj&5nld i j ,

where nl denotes the number of lightstochasticflavors,
which is the free parameter of such a representation.
course, the value ofnl should be finite even in the case
pure gluodynamics with no light quarks in the infrared r
gion. Moreover, the light quark loops could cause the bre
ing of gluon string, i.e., the strong decays of higher exc
tions. We assume thatnl is basically determined by the gluo
dynamics~i.e., the number of colors!, and it slightly corre-
lates with the number of quark flavors. After a simple co
sideration of potential strength between two colored sour
in the fundamental and adjoint representations, i.e., the c
factors in front of a single gluon Coulomb potential, we a
sume that in the pure gluodynamics the number of stocha
sources substituting for the vacuum gluons can be acce
in the form4

nl5
1

Nc

CA

CF
5

3

4
5

1

4
ñl ,

where the factor 1/Nc normalizes the source to unit, an
CA /CF is the appropriate ratio of color charges. To the m
ment, the shift ofnl in QCD with light quarks is not explic-
itly fixed, while the lattice calculations show that the depe
dence of string tension on the number of light quarks is w
@17#. Finally, we find for the linear term of the potential

k5
p

ACFNcñl

CFAK as

p
Gmn

2 L 5
p

2ANc

CFAK as

p
Gmn

2 L .

~19!

3The mass term generated by the sources should be equalL
;An

aAn
b@ n̄TaTbn1n̄Tan•n̄Tbn#, so that the averaging of source

yields zero, if we suppose Eq.~18!.
4This assumption corresponds to the definition of vacuum pro

ties in QCD in terms of notations under the consideration, whic
in agreement with the value of gluon condensate and Regge tr
tories slope.
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Thek term is usually represented through a parameteraP8 as

k5
1

2paP8
.

Buchmüller and Tye putaP8 51.04 GeV22, which we use
throughout this paper. This value of tension, which is rela
with a slope of Regge trajectories, can be compared with
estimate following from Eq.~19!. At

K as

p
Gmn

2 L 5~1.660.1!•1022 GeV4 @18#

we have found

aP8 51.0460.03 GeV22,

which is in a good agreement with the fixed value.5

The form of Eq.~17! corresponds to the limit, when a
low virtualities q2→0 the couplingaV tends to

aV~q2!→ K

q2 ,

so that

daV~q2!

ln q2
→2aV~q2!, ~20!

which gives the confinement asymptotics for thebV func-
tion.

A special comment should be made on the role of
linear term in the potential. Considering the power corre
tions, which can be attributed to various sources such as
renormalon, topological effects caused by monopoles
vorteces, deviations from the operator product expansion,
authors of @19# argued that this term responsible for th
quark confinement can contribute at short distances too. T
conclusion is essentially different from the point of vie
based on the notion about a low energy phase transition l
ing to the condensation of gluons and quarks. This cond
sation provides the formation of a chromoelectric string b
tween the static quarks. Thus, at short distances~or high
virtualities q2) one could expect the decomposition of co
densates, which means the scale of confinement~or the string
tension! should disappear from the physical quantities
largeq2. In contrast, the nonperturbative scale can contrib
as the factor in front of power corrections 1/q2 even atq2

→`. So, in @19# several indications of linear term contribu
tion at small distances were considered. We repeat the it
relevant to the question on the static potential here.

First, the lattice simulation@20# does not show any chang
in the slope of the fullQQ̄ potential as the distances a
changed from the largest to the smallest ones where the C

r-
s
c-5The ambiguity in the choice ofnl can change the appropriat
value of gluon condensate.
9-4



rg
th
ns
y
-

he
yl
I

a
n
le
ad
ce
n

uc

io

h
n
e

h
ng
ed

o

o
sa
at

or

m
e

t

e-

e

the

ffi-

ive

on-

HEAVY QUARK POTENTIAL IN THE STATIC LIMIT OF QCD PHYSICAL REVIEW D 64 054009
lombic part becomes dominant. Hence, no rapid ene
jump, characteristic of the phase transition, is found on
lattice. An explicit subtraction of the perturbative correctio
at small distances from the potential in the lattice gluod
namics was performed in@21#. This procedure gives an es
sential nonzero linear term at very small distances.

Second, there are the lattice measurements@22# of the fine
splitting in the heavy quarkonium levels as a function of t
heavy quark mass. The approach by Voloshin and Leutw
@16# predicts a particular pattern of such a dependence.
deed, the multipole expansion of heavy quarkonium inter
tion with the external gluon field leads to the dominant co
tribution by the second order of the chromoelectric dipo
Therefore, the quark distance squared appears as the le
term in the perturbation due to soft gluons at short distan
These predictions are very different from the evaluatio
based on the static quark potential with the linear term, s
as the potential by Buchmu¨ller and Tye@6#. The numerical
results from the lattice simulations favor the linear correct
to the potential at short distances.

Third, an interesting manifestation of short strings mig
be the power corrections to current correlation functio
P j (q

2). Calculations of a relevant coefficient in front of th
1/q2 terms involve the model assumptions. So, in@23# it was
suggested that we simulate this power correction by a tac
onic gluon mass. The tachyonic mass can imitate the stri
piece in the potential at short distances. Rather unexpect
the use of the tachyonic gluon mass (mg

2520.5GeV2) ex-
plains well the behavior ofP j (q

2) in various channels. This
fact again implies that we see the confirmation of the sh
distance linear term in the potential.

Thus, we do not involve any additional assumptions
the possible scale and properties of quark-gluon conden
decomposition at short distances in the description of st
potential in QCD.

C. Unified b function and potential

Buchmüller and Tye supposed the following procedure f
the reconstruction ofb function in the whole region of
charge variation by the known limits of asymptotic freedo
to a given order inas and confinement regime. So, in th
framework of asymptotic perturbative theory~PT! to one
loop, thebPT is transformed to the Richardson one

1

bPT~a!
52

1

b0a
2
⇒ 1

bRich~a!
52

1

b0a
2S 12expF2

1

b0a
G D .

~21!

The Richardson function has the essential peculiarity aa
→0, so that the expansion is the asymptotic series ina. At
a→` the b function tends to the confinement limit repr
sented in Eq.~20!.

According to the two-loop accuracy, following in th
same way results in theb function by Buchmu¨ller-Tye
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bPT~a!
52

1

b0a
2

1
b1

b0
2a

⇒ 1

bBT~a!

52
1

b0a
2S 12expF2

1

b0a
G D 1

b1

b0
2a

exp@2 la#.

~22!

The exponential factor in the second term contributes to
next order ina at smalla, so that the perturbative limit is
restored. However, we can easily find that the third coe
cient of bBT function is equal to

b2,BT5
b1

b0
~b12 lb0!,

and it is negative at the chosen value ofl 524 @6#, which is in
contradiction with the recent result@7,8#, shown in Eq.~10!.

To incorporate the three-loop results into the perturbat
b function, we introduce

1

bPT~a!
52

1

b0a
2

1

b11S b2
V2

b1
2

b0
D a

b0
2a

⇒ 1

b~a!

52
1

b0a
2S 12expF2

1

b0a
G D

1

b11S b2
V2

b1
2

b0
D a

b0
2a

expF2
l 2a2

2 G , ~23!

where again the exponential factor in the second term c
tributes to the next order ina→0. In the perturbative limit
the usual solution

a~m2!5
1

b0 ln
m2

L2
F 12

b1

b0
2

1

ln
m2

L2

ln ln
m2

L2

1
b1

2

b0
4

1

ln2
m2

L2

S ln2 ln
m2

L2
2 ln ln

m2

L2
211

b2
Vb0

b1
2 D G

~24!

is valid. Using the asymptotic limits of Eqs.~20! and ~24!,
one can get the equations for anyb function, satisfying these
boundary conditions, as follows:
9-5
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ln
m2

L2
5

1

b0a~m2!
1

b1

b0
2

ln b0a~m2!

1E
0

a(m2)
dxF 1

b0x2
2

b1

b0
2x

1
1

b~x!G , ~25!

ln
K

m2
5 ln a~m2!1E

a(m2)

`

dxF1

x
1

1

b~x!G . ~26!

In general, at a givenb function, Eqs.~25! and ~26! deter-
mine the connection between the scaleL and the paramete
of linear potentialK,

k52pCFK.

Supposing Eq.~23!, we can easily integrate out Eq.~25! to
get the implicit solution of charge dependence on the sc

ln
m2

L2
5 lnFexpS 1

b0a~m2!
D 21G1

b1

b0
2 F ln

b0A2

l

2
1

2 S gE1E1F l 2a2~m2!

2 G D G

1
b2

Vb02b1
2

b0
3

Ap

2

l
ErfF la~m2!

A2
G , ~27!

whereE1@x#5*x
`dtt21 exp@2t# is the exponential integral

and Erf@x#5(2/Ap)*0
xdt exp@2t2# is the error function.

Equation~27! can be inverted by the iteration procedu
as it was explored in the derivation of Eq.~24!. So, the
approximate solution of Eq.~27! has the following form:

a~m2!5
1

b0 lnS 11h~m2!
m2

L2D , ~28!

where

h~m2!5S l

b0A2
D b1 /b0

2

expF b1

2b0
2 S gE1E1F l 2a1

2~m2!

2 G D

2
b2

Vb02b1
2

b0
3

Ap

2

l
ErfF la1~m2!

A2
G G , ~29!

while a1 is obtained in two iterations

a1~m2!5
1

b0 lnS 11h1~m2!
m2

L2D , ~30!
05400
e

h1~m2!5S l

b0A2
D b1 /b0

2

expF b1

2b0
2 S gE1E1F l 2a0

2~m2!

2 G D G ,

~31!

a0~m2!5
1

b0 lnS 11
m2

L2D . ~32!

Taking the limit ofm2→0 we find the relation

ln 4p2CFaP8L25 ln b01
b1

2b0
2 S gE1

l 2

2b0
2D

2
b2

Vb02b1
2

b0
3

Ap

2

l
, ~33!

which completely fixes theb function and charge in terms o
scaleL and the slopeaP8 , since we have expressed the p
rameterl in terms of the above quantities.

Remember, that atm2→` the perturbative expression Eq
~24! becomes valid as the limit of effective charge Eq.~28!.

At the moment we are ready to discuss the numer
values of parameters.

D. Setting the scales

As we have already mentioned the slope of Regge tra
tories, determining the linear part of the potential, is fixed

aP8 51.04 GeV22.

We also use the measured value of QCD coupling cons
@9# and pose

as
MS~mZ

2!50.123,

as the basic input of the potential.
At the given choice of normalization value for the QC

coupling constant we get the scaleLnf55
MS '273 MeV,

which certainly differs from the world average value resu
ing in the analysis of the Particle Data Group@9#, where
Lnf55

MS '208223
125 MeV, which corresponds to the couplin

constantas
MS(mZ

2)50.118160.002 @9#. However, this aver-
age value including various data is generally determined
the most precise measurements: the data on the had
events in the peak ofZ boson at the CERNe1e2 collider
~LEP! ~the hadronic width!, the decays oft lepton, the data
on the deep inelastic scattering~DIS! for leptons off nucle-
ons, and the lattice simulations for the systems of he
quarkonia. In this set of estimates, the high energy meas
ments at LEP forZ and at the DESYep collider HERA for
the evolution of nucleon structure functions give the avera
values as

MS(mZ
2)50.12360.004 and as

MS(mZ
2)50.122

60.004, respectively, while the evolution of structure fun
tions at low virtualities, where an ambiguity in the descri
9-6
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HEAVY QUARK POTENTIAL IN THE STATIC LIMIT OF QCD PHYSICAL REVIEW D 64 054009
tion of nonperturbative effects and contributions of high
twists are essential, as well as the energy-dependent
rules for the structure functions at low energies, significan
displace the common average value for the coupling cons
extracted from the DIS data. Thus, we argue that the
thodical uncertainty for such averaging is underestima
since the low-energy data have some additional source
theoretical uncertainties. The analysis of data on the dec
of t lepton resulting inas

MS(mZ
2)50.12160.003 is based on

the sum rules, where the control of nonperturbative corr
tions is much better than in DIS, though there are some
oretical problems on the formulation of sum rules in t
region of physical states in contrast with the classic vari
of sum rules in the deep euclidean region. Finally, the lat
simulations investigate the splitting between the states
heavy quarkonia, i.e., they operate with the low-energy d
and rely on an approximation with the zero number of lig
quarksnf50 or nf52 under the extrapolation to both th
real number ofnf53 and the region of high virtualities du
to the evolution. A high accuracy of such lattice estimate
announced. As we have seen the spectroscopic character
for the systems of heavy quarks need an extremely car
interpretation, since the evolution of potential paramet
from the region of bound states to the high virtualities
affected by the nonperturbative factors. Thus, we see tha
normalization value of the QCD coupling constant accep
above agrees with the direct high-energy measureme
while the data obtained at low energies allow the agreem
if we take into account their systematic uncertainties, wh
are not well estimated.

Note that the decrease of normalization value
as

MS(mZ
2)50.120, for example, leads to a discrepancy w

the data on the splitting of heavy quarkonium masses
tween the levels of 1S and 2S states, which is very sensitiv
to the normalization of QCD coupling constant, so that
stead of M (2S)2M (1S)'580 MeV we get the value
which is less by about 100 MeV. In this respect, the variat
of the other dimensional parameter, the Regge trajec
slope, from the accepted value ofaP8 51.04 GeV22 to aP8
50.87 GeV22 leads to an unessential change in both
splitting and the corresponding value for the scale in
coupling constant evolved to low virtualities.

Then, we evaluate

aV~mZ
2!'0.1306,

and put it as the normalization point fora(mZ
2)

5aV(mZ
2)/(4p). Further, we find the following values ofL

for the effective charge, depending on the number of ac
flavors:

Lnf535643.48 MeV, l 556, ~34!

Lnf545495.24 MeV, l 537.876, ~35!

Lnf555369.99 MeV, l 523.8967, ~36!

where we set the threshold values for switching the num
of flavors to be equal tom554.6 GeV andm451.5 GeV.
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After fixing the momentum space dependence of the cha
we perform the Fourier transform to get

V~r !5k•r 2
8CF

r
u~r !, ~37!

with

u~r !5E
0

`dq

q S a~q2!2
K

q2D sin~q•r !,

which is calculated numerically atr .0.01 fm and repre-
sented in theMATHEMATICA file in the format of notebook a
the site http://www.ihep.su/;kiselev/Potential.nb

Note, that at short distances the potential behavior
purely perturbative, so that atr ,0.01 fm we put

V~r !52CF

āV~1/r 2!

r
, ~38!

where the runningāV(1/r 2) is given by Eq.~24! with the
appropriate value ofb̄2

V at nf55, and with the matching
potential Eq.~37! at r s50.01 fm, where we have found

āV~1/r s
2!50.222 13,

which impliesLnf55
V̄ 5617.42 MeV.

Thus, we have completely determined the model for
potential of static heavy quarks in QCD. In Fig. 1 we pres
it versus the distance between the quarks. As we can se
potential is very close to what was obtained in the Corn
model in the phenomenological manner by fitting the m
spectra of heavy quarkonia.

FIG. 1. The potential of static heavy quarks in QCD~solid line!
in comparison with the Cornell model~dashed line! ~up to an addi-
tive shift of energy scale!.
9-7
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The visual deviation between the QCD potential deriv
and the Cornell model at long distances is caused by a
merical difference in the choice of string tension: we ad
the value given by Buchmu¨ller and Tye, while in the Cornel
model the tension is slightly greater than that we have us
A more essential point is the deviation between the poten
at short distances~see Fig. 2!, because of the running of th
coupling constant in QCD in contrast to the constant eff
tive value in the Cornell model.

For comparison, we show the differences between thb
functions Eqs.~21!, ~22!, and ~23! in Fig. 3 at the fixed
values ofl andnf53. Wee see that the asymptotic perturb
tive expansion ofb at a→0 dominates ata,a0, wherea0
'0.03 corresponding toaV,0'0.37. This value of coupling
aV,0 coincides with the effective Coulomb constant used
the Cornell model. At larger values of coupling the contrib
tions related with the confinement regime are essential.

Two comments are to the point. First, the resulting pot
tial is obtained by the perturbative normalization to the m
sured value ofas

MS(mZ
2) as combined with the three-loo

evolution to the lower virtualities. Second, the running of t
coupling constant is modified~numerically the deviation

FIG. 2. The potential of static heavy quarks in QCD~solid line!
in comparison with the Cornell model~dashed line, up to an addi
tive shift of energy scale! and the difference between them~upper
curve! at short distances as caused by the running of couplin
QCD.
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from the perturbative regime begins atm,3 –4 GeV) to
reach the confinement limit atm→0, so that the perturbative
connection between the scalesL andLMS is broken at vir-
tualities under touch by the charmed and bottom qua
which was the reason for the error in the assignment ofLMS

by Buchmüller and Tye.

III. HEAVY QUARK MASSES AND LEPTONIC
CONSTANTS

Considering the characteristics of heavy quark bou
states we should emphasize a significant necessity to sep
two distinct theoretical problems. The first problem is calc
lation of the heavy quark potential, where the leading a
proximation is the static limit ofmQ→` in the operator
product expansion over the powers of inverse heavy qu
mass. We have considered this problem in Sec. II. The o
problem is the calculation of bound state masses. In
heavy quarkonium the kinetic energy of quark motion
comparable with the potential energy. So, the leading
proximation for the effective Lagrangian in the operat
product expansion over the inverse heavy quark mass is
sum of the nonrelativistic kinetic term and the static pote
tial, which give the dominant contribution in the Schro¨dinger
equation for the bound states. Corrections are relativi

in

FIG. 3. The differences between theb functions vs the effective
charge. The value of (b2bBT)/ubu is shown by the solid line, (b
2bRich)/ubu is given by the short-dashed line, and (bBT

2bRich)/ubBTu is represented by the long-dashed line.
TABLE I. The masses of charmonium as predicted in the present paper (K2O) in comparison with the
experimental data elaborated as described in the text.

State (nL) M (K2O) M̄ ~exp.! State (nL) M (K2O) M̄ ~exp.!

1S 3.068 3.068 2P 3.493 3.525
2S 3.670 3.671 3P 3.941
3S 4.092 4.040 3D 3.785 3.770
9-8
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HEAVY QUARK POTENTIAL IN THE STATIC LIMIT OF QCD PHYSICAL REVIEW D 64 054009
terms in the kinetic energy and perturbations of the st
potential in the form of operators suppressed by the inve
powers of heavy quark mass, as well as nonpotential re
dation effects. The magnitude of such corrections can be
stricted numerically, which leads to a systematic uncerta
in the calculations of mass spectra for the heavy quarkoni
the framework of the potential approach with the static p
tential.

A. Masses

The determination of potential provides us with the e
traction of heavy quark masses in the static approximation
comparison of heavy quarkonium mass spectra with the
culated ones. The predicted charmonium and bottomon
masses are presented in Tables I and II6 at the following
values of heavy quark masses in the potential approach

mc
V51.468 GeV, mb

V54.873 GeV, ~39!

without taking into account relativistic corrections, whic
can be sizable for the charmonium~say, DM ( c̄c)
;40 MeV). At the moment, the only measured splitting
nS levels is that ofhc andJ/c, which allows us to evaluate
the so-called spin-averaged mass

M̄ ~1S!5~3MJ/c1Mhc
!/4.

Supposing the simple relation@4#, M̄ (ns)5MV(nS)
2(1/4n)(MJ/c2Mhc

), we also estimate the expected valu
for the excited states with an accuracy better than 10 M
~we believe!. For theP-wave levels we explore the masse

M̄ ~P!5M11 1
3 ~M22M0!1 2

9 ~M22M112~M02M1!!,

whereMJ denotes the mass of state with the total spinJ and
the sum of quark spinsS51, and we have supposed th
spin-dependent forces in the form

VSD5A~L•S!1B~L•S!22 1
3 BL2

•S2,

6We suppose that thec(3770) state is a mixture of 3S and 3D
levels with unessential shift of 3D mass.

TABLE II. The masses of bottomonium as predicted in t
present paper (K2O) in comparison with the experimental da
elaborated as described in the text.

State
(nL)

M,
(K2O)

M̄
~exp.!

State
(nL)

M
(K2O)

M̄
~exp.!

1S 9.446 9.446 2P 9.879 9.900
2S 10.004 10.013 3P 10.239 10.260
3S 10.340 10.348 3D 10.132
4S 10.606 10.575 5S 10.835 10.865
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where the third term corresponds to the third term in
above expression forM̄ (P) and it results in theL-dependent
shift of levels.

We have also supposed

MY2Mhb
'

as~mb!

as~mc!

mc
2

mb
2

uRb̄b~0!u2

uRc̄c~0!u2
~MJ/c2Mhc

!'56 MeV.

We have found that the sizes of quarkonia are the sam
they were predicted by Buchmu¨ller and Tye, while the
masses of states are slightly different since we have used
other prescription for the input values of ground sta
masses:

Mc̄c~1S!53.068 GeV, Mb̄b~1S!59.446 GeV.

Then, we predict the masses ofb̄c quarkonium,7 as shown
in Table III. The calculated values of masses agree with th
estimated in the Buchmu¨ller-Tye and Martin potentials@25#.
The wave functions at the origin are related with the prod
tion rates of heavy quarkonia. These parameters are clos
what was predicted in the BT potential, but slightly smal
because of both the change in the charmed quark mass
the asymptotic behavior atr→0.

At the moment we have fixed the potential masses
heavy quarks Eq.~39! as independent of scale. To compa
with the masses evaluated in the framework of QCD s
rules, we note that in the sum rules for the heavy quarko
one usually explores the NRQCD@26# with the perturbative
potential Eq.~14! explicitly dependent of the normalizatio
point m ~referred asmsoft in the SR!. We have determined
that at short distances and highmsoft the perturbative poten
tial Eq. ~14! and that of the present paper coincide with ea
other, while a deviation appears atr @1/msoft. However, at
the distances characteristic for the ground states of he
quarkonia,^r b̄b(1S)&'0.22 fm and^r c̄c(1S)&'0.42 fm, the
shape of the potential can be approximated by the pertu
tive term atmsoft51.5–2.0 GeV~see Figs. 4 and 5! with the
additive shift of energy scaledV(msoft), which is defined by
the expression

dV~msoft!5@V~r !2Vpert~r ;msoft!#u r 5
1

msoft
z
, ~40!

7The experimental error in the ground state mass is still lar
dM560.39 GeV@24#.

TABLE III. The masses ofb̄c as predicted in the present pap
(K2O) in comparison with the experimental data.

State
(nL)

M
(K2O)

M̄
~exp.!

State
(nL)

M
(K2O)

M̄
~exp.!

1S 6.322 6.40 2P 6.739
2S 6.895 3P 7.148
3S 7.279 3D 7.013
9-9
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V. V. KISELEV, A. E. KOVALSKY, AND A. I. ONISHCHENKO PHYSICAL REVIEW D 64 054009
where the parameterz has been put in the region ofz
51 –2, where the energy shiftdV has varied slightly by
about 30–40 MeV, which is, on the first hand, a characte
tic uncertainty of potential approach, and on the other ha
it points to a similar form of perturbative potential with th
calculated model potential in the region of distance variati
The dependence of energy shift is represented in Fig. 6.

FIG. 4. The potential of static heavy quarks in QCD~solid line!
in comparison with the perturbative term Eq.~14! at m51.5 GeV
~dashed line! ~up to an additive shift of energy scale!.

FIG. 5. The potential of static heavy quarks in QCD~solid line!
in comparison with the perturbative term Eq.~14! at m52.0 GeV
~dashed line! ~up to an additive shift of energy scale!.
05400
-
d,

.

So, if we redefine the heavy quark masses8 by

mpole~m!b,c5mb,c
V 1 1

2 dV~m!,

the solution of Schro¨dinger equation with the perturbativ
potential andmpole(m) results in the quarkonia masses clo
to the experimental values. Thus, we have matched the
ues of potential massesmV in the QCD potential with the
perturbative pole masses standing in the two-loop calc
tions. We stress that the dependence on the soft scale in
the energy shiftdV(m) and the pole massmpole(m) does not
reflect a nonzero anomalous dimension, since these qu
ties are renormalization group invariants. This scale dep
dence is due to the truncation of perturbative expans
wherein the coefficients in front of powers of coupling co
stant can contain the factorial growth~the renormalon!, so
that even at the scale close to the charmed quark mass
infrared singularity in the running coupling constant of QC
provides the significant custodial scale dependence.

8This redefinition is the indication of perturbative renormalon~see
review in @27#!. Indeed, there are two sources for the deviationdV.
The first is the linear confining term in the potential of static quar
However, it is a small fraction ofdV. The second source is th
infrared singularity in the perturbative running coupling. One c
easily find that subtracting the singular term of the for
;1/(msoft2L) from dV results in a small value slowly dependin
on msoft . In the effective theory for the nonrelativistic heavy quark
the subtraction that connects the pole mass and the threshold
can be calculated explicitly~see@28# and references therein!.

FIG. 6. The value of additive shift of energy scale to match
perturbativem-dependent potential with that of calculated in QC
The solid and dashed lines correspond to the two- and one-
matching. The points give the result of sum rules for bottomoni
in comparison with the dotted curve following from the relatio
between the running and pole masses at scalem.
9-10
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HEAVY QUARK POTENTIAL IN THE STATIC LIMIT OF QCD PHYSICAL REVIEW D 64 054009
Numerically, we estimate the running massesm̄(m̄) in the
MS scheme using the two- and three-loop relations with
pole mass derived in@29,30# and adjusting the scalemsoft to
be equal tom̄. So, in two loops@29# we get

m̄c~m̄c!2 loops51.4060.09 GeV,

m̄b~m̄b!2 loops54.2060.06 GeV,

while the three-loop approximation@30#, which is consistent
with the three-loop evolution of coupling constant, results
slightly smaller masses, especially for the charmed qu
where the uncertainty of estimate increases because of s
ger sensitivity of quantities involved to the scale variation

m̄c~m̄c!3 loops51.1760.10 GeV,

m̄b~m̄b!3 loops54.1560.06 GeV,

which are in agreement with the various estimates in the s
rules onmb @31–34# andmc @35#.9

The uncertainty of estimates is determined by the de
tions in the calculations of heavy quarkonium masses1

2 dM
520 MeV ~as shown in Tables I and II! and the error in the
extraction ofdV mentioned above. The uncertainty in th
running mass of a charmed quark is slightly larger than in
bottom mass since, in addition, its value is more sensitive
a small variation of scale, pole mass and energy shift.

Note, that the calculations in the framework of sum ru
were performed for theb-quark mass in both the full QCD
@36# and the effective theory of nonrelativistic heavy quar
NRQCD @31–34,37#. The mass extraction of Ref.@37# has
been carried out in the nonrelativistic effective theory
next-to-leading order~NLO!, whereas Refs.@31–34# carried
out next-to-NLO~NNLO! analyses in the same framewor
The calculations in the nonrelativistic effective theory are
calculations in the framework of first principles in QCD
where the results of full QCD are determined in a system
expansion inas and the velocity. In Ref.@36# the analysis
has also been carried out in the nonrelativistic situation,
no systematic expansion inas and the velocity has bee
carried out. That the results for theMS mass obtained in@36#
agree with the other analyses is not understood and req
further examination~see the conclusions of@38#!.

Recently, the charmed quark mass was evaluated from
NRQCD sum rules in@39#, so that the result on the runnin
mass is in a good agreement with the value given above,
There is a recent sum rule extraction@40# of the bottomMS
mass, where the charmed quark mass effects are als
cluded. The estimate of potential approach under consi
ation is in good agreement with this recent SR result.

In @33# the dependence of ‘‘pole’’ mass on the scalemsoft
was explicitly calculated in the NNLO. The uncertainty
mass extraction from the sum rules for bottomonium w

9Note, there is the difference between the usually quoted value

m̄(m̄) andm̄(mpole).
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given by 0.1 GeV for the runningMS mass and 0.06 GeV fo
the low-energy running mass~‘‘kinetic’’ mass!. The result on
the b-quark pole mass depends on both the scale of calc
tions and the order inas of perturbative QCD. To compare
the results in the sum rules with those given in the pres
paper we fix the order inas by the two-loop corrections
Then we have found that, say, atmsoft52.5 GeV the results
of estimates in the perturbative potential approach and in
framework of sum rules are the same within the uncertai
mentioned. So, putting the above value as the matching p
we show the sum rule results in the form of energy shift
Fig. 6. For the sake of representability in Fig. 6 we show
m-dependent ‘‘pole’’ mass extracted in@33# with the uncer-
tainty of dm580 MeV, which is a characteristic inheren
error for the short-distance masses in the analysis of@33#.
Despite the various choices for the normalization of QC
coupling constant~in @33# as

MS(mZ
2)50.118), we see a good

agreement between them dependencies of both the energ
shift in the perturbative potential with respect to the sta
potential of QCD and the variation of perturbative ‘‘pole
mass ofb quark in the sum rules of QCD. As for the one
loop matching of the perturbative potential, we mention on
that the corresponding sum rules in the NLO give the va
of energy shift close to zero atmsoft.2 GeV within the
uncertainty of the method, and this estimate is consis
with the result of potential approach as shown in Fig.
Thus, the energy shift of perturbative potential with the tw
loop matching ofV and MS schemes indicates the form o
QCD potential in agreement with the corresponding s
scale dependence of perturbative pole mass in sum rule
QCD for the bottomonium.

At the moment we can compare the obtainedm depen-
dence of ‘‘pole’’ mass with the relation between the runni
MS mass of heavy quark and the pole mass derived in@41#,
where we find

mpole5m̄~m!S 11c1~m!
as

MS~m2!

4p
1c2~m!S as

MS~m2!

4p
D 2D ,

~41!

with

c1~m!5CF~413L !, ~42!

c2~m!5CFCAS 1111

24
28z~2!24I 3~1!1

185

6
L1

11

2
L2D

2CFTFnf S 71

6
18z~2!1

26

3
L12L2D

1CF
2 S 121

8
130z~2!18I 3~1!1

27

2
L1

9

2
L2D

212CFTF~122z~2!!, ~43!

where I 3(1)5 3
2 z(3)26z(2)ln 2, and L52 ln(m/mpole). At

m5mpole, the result of@29# is reproduced. We check that th
logs in the definitions ofc1,2 can be removed by the expre
sion of running valuesm̄(m) and as

MS(m) in terms of
of
9-11
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m̄(mpole) andas
MS(mpole) in Eq. ~41!. Nevertheless, we find

that the explicitm dependence in Eq.~41! repeats the form of
renormalon contribution as we see it in the perturbative
tential, where a similar effect takes place because of both
truncation of perturbative series and the infrared pole in
running coupling constant of QCD. Following Eq.~41!, we
show the value of difference 2(mb

pole(m)2mb) in Fig. 6 at

m̄(m̄)54.3 GeV. We see that, first, the results of QCD su
rules in @33# agree with the values expected from Eq.~41!,
and second, them-dependent shift of pole mass approx
mately coincides with the shift of perturbative potential w
respect to the static QCD potential free off renormalon a
biguity caused by infrared singularity of perturbative co
pling constant at finite energy scale. This fact implies
cancellation of infrared uncertainties. Thus, we can de
the unambiguous pole mass by

m̂pole5mpole~m!2 1
2 dV~m!, ~44!

where we use the pole mass of Eq.~41!. The basis for the
validity of Eq. ~44! was observed in@42#, where in the con-
text of perturbative bottom mass extractions, the cancella
of the leading renormalon atu51/2 of the Borel plane in the
total static perturbative energy of a heavyQQ̄ pair was
shown.

We find that for the bottom quark the defined mass
given by the value of mass extracted from the potential
proach

m̂b
pole'mb

V ,

with the accuracy about 80 MeV.

B. Heavy quark masses and PNRQCD

In this section we discuss the modern development in

theory of heavy quarkoniumQQ̄8 on the basis of effective
theory called PNRQCD@10#, naturally incorporating the po
tential interactions between the heavy quarks and exte
ultrasoft fields in QCD, and compare the PNRQCD resu
with the values of heavy quark masses obtained above in
QCD potential of static quarks.

First, PNRQCD argues that in the heavy quarkonium
nonrelativistic motion of heavy quarks inside the bound st
allows us to introduce three actual physical scales: the he
quark massm, the soft scale of heavy quark momentum i
side the hadronmv, and ultrasoft scale of energymv2, which
are distinctly separated by a small parameterv being the
velocity of heavy quark. After matching with full QCD at
hard scalemhard;m, in NRQCD the hard fields are inte
grated out, which results in the perturbative Wilson coe
cients of OPE in the effective theory, and we deal with t
heavy quarks interacting with the gluons at virtualiti
m fact, soft about mv. In order to consider the heavy qua
fields at lowerm up tomv2 we should introduce the effectiv
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Lagrangian of PNRQCD, where the soft fields are integra
out, and we deal with the potential interaction of hea
quarks and the ultrasoft external gluon fields in the fram
work of multipole expansion. The matching of PNRQC
with NRQCD takes place at a scalem fact;mv. Recently, the
effective theory of vNRQCD was formulated in@11#, using
the velocity renormalization group@43# to match the vN-
RQCD operators with the full QCD at a scale aboutm with
the single-step evolution to a soft scale, which can be eit
mv or mv2. The current status of vNRQCD provides us wi
the one-loop matching of heavy quark potential to orderv2,
i.e., up to spin-dependent 1/m2 terms, which are beyond th
current consideration. Therefore, we concentrate our dis
sion on PNRQCD.

The PNRQCD Lagrangian has the following form:

LPNRQCD5TrH S†S i ]02
P2

4m
2

p2

m
1

p4

4m3
2Vs~r !2

Vs
(1)

m

2
Vs

(2)

m2
1 . . . D S1O†S iD 02

P2

4m
2

p2

m
1

p4

4m3

2V0~r !2
V0

(1)

m
2

V0
(2)

m2
1 . . . D OJ

1gVA~r !Tr$O†r•E S1S†r•EO%

1g
VB~r !

2
Tr$O†r•EO1O†Or•E%2

1

4
Fmn

a Fmna,

~45!

whereP is the momentum associated to the center-of-m
coordinate. In Eq.~45! the 1/m corrections toVA , VB , and
to pure gluonic operators as well as the higher order term
the multipole expansion are not displayed. To the lead
order the singlet and octet operatorsS, O are represented by
the appropriate products of nonrelativistic heavy quark a
antiquark spinors. The matching ofS and O operators with
the NRQCD spinors was done in@10# up to three loops for
both the potentials and the normalization factors in OPE
this Lagrangian the singlet and octet potentialsVs(r ) and
V0(r ) are treated as the corresponding Wilson coefficient
front of bilinear forms inSandO to the leading order in 1/m.
In Ref. @10# the authors show that this definition of stat
quark potential is consistent with the definition in terms
the Wilson loop Eq.~1!.

The other result of PNRQCD is the cancellation of ren
malon ambiguity in the sum of heavy quark pole masses
the potential up to two loops, which is a confirmation
general consideration in QCD, that was first derived in@42#.

A new feature appears by the consideration of three-lo
leading log matching ofV and MS schemes. So, for the
distance-dependent running coupling the result reads off
9-12
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aV~1/r 2,m!5aMS~1/r 2!H 11~a112gEb0!
aMS~1/r 2!

4p

1FgE~4a1b012b1!1S p2

3
14gE

2 Db0
2

1a2GaMS
2

~1/r 2!

16p2
1

CA
3

12

aMS
3

~1/r 2!

p
ln rmJ ,

~46!

where the two-loop contribution was taken from@7,8# and it
coincides with Eq.~14!, of course. However, the three-loo
term leads to the explicit dependence on the scale in
perturbative PNRQCD calculations, which has to be
pected from the general note on the infrared singularity
served by Appelquist, Dine, and Muzinich@12#, that was
rederived in PNRQCD by supplementing a certain infra
subtraction. This dependence was considered in@10# for two
cases, when the scales of confinementLQCD and binding
energymv2 have the arrangements:~a! LQCD@mv2 or ~b!
mv2@LQCD. If ~a!, the singlet potential of static quarks su
fers from the nonperturbative effects, and it can be trea
only after introduction of some model dependent terms co
ing from the ultrasoft gluons, which form the gluon sea
the heavy quarkonium, so that the sea has its excitations,
the characteristic excitation energy of gluelumps should
place the scalem, this results in the scale-independent no
perturbative potential.10 If ~b!, the potential is purely pertur
bative. However, calculating the physical quantities such
the masses of bound states, we have to take into accoun
contributions coming from the perturbative ultrasoft gluo
with the virtualities less thanm, which can produce a
m-dependent shift of energy, which should be cancelled w
the m dependence in the potential Eq.~46! and, probably, in
the heavy quark masses. In both cases, the perturbative
culations of singlet potential11 explicitly indicate the neces
sity of taking into account the gluon degrees of freed
inside the heavy quarkonium. As was noted in@10#, appar-
ently, this feature is characteristic for the non-Abelian the
@see the factor ofCA in front of the log term in Eq.~46!#.

To our opinion, this dependence of potential on the ult
soft gluon fields~the infrared singularity in terms of Ap
pelquist, Dine and Muzinich! inside the heavy quarkonium
naturally indicates the formation of gluon string between
heavy quarks at long distances. Indeed, expression~45! was
derived under the following arrangement of scales:r 21

;mv, mv2,m,mv. So, if we put

m5
u

r
2sr ,

10Possible nonpotential terms are discussed in@10#.
11We are not concerned about the octet potential of static quark

the present consideration, although some qualitative conclus
could be straightforwardly generalized from the singlet state to
octet one.
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m2v2
,

then, perturbatively expanding in the small parametersr , we
get the linear correction to the potential in PNRQCD, so t

DVPNRQCD5Dk•r ,

where

Dk5
CFCA

3

12p
aMS

4 s

u
'

CA
3

12p
aMS

3 s,

so that we have dropped the scale dependence of the s
coupling constant, since it is beyond the accuracy un
study, and we have substituted the Coulomb relation for
quark velocity inside the bound stateu'CFaMS to the given
order. Numerically, for the charmed quarks this perturbat
contribution could be on the order ofDk;0.1 GeV2. Thus,
we can motivate the relation between the nonperturba
string and the three-loop scale dependent term in the
RQCD potential.

Indifferently of the arrangement for the confinement a
binding energy scales, the introduction of such a str
should remove the explicit dependence of full potential
the scale. This has been done above by introduction of
unifiedb function of coupling in the V scheme. This solutio
of the problem qualitatively agrees with the consideration
PNRQCD since, first, in the perturbative regime the con
bution of the log term is negligibly small as we see for t
linear confining term of the potential at short distances, a
second, at long distances the nonperturbative confining t
is essential, where the string tension is the natural phys
scale. In the static potential of QCD given above we do
consider possible ‘‘nontrivial’’ excitations with the broke
string geometry, where the break point moves on the str
with the speed of light. Such excitations would correspond
hybrid states with the gluelumps. Thus, we find that the Q
potential of static quarks in the form offered in the prese
paper has no conflicts with the current status of PNRQC

However, in our opinion the problem can be much deep
The static potential, introduced by the Wilson loop, is ren
malization group invariant, and it does not contain any se
ration between the potential gluons and the ultrasoft glu
forming the sea, since it gives the total energy of dynami
fields. In contrast, the PNRQCD introduced the singlet p
tential as the Wilson coefficient in front of the four qua
operator, so that it intrinsically operates with the separat
of potential and sea, as well as the nonrelativistic qua
which act as sources, so that some gluons with virtuali
greater thanm are considered as emitted, while others w
virtualities less thanm are included in the origin of sources
and the gluons with virtualities aboutmv mediate the poten-
tial interaction. Generally, this separation of heavy quar

in
ns
e
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V. V. KISELEV, A. E. KOVALSKY, AND A. I. ONISHCHENKO PHYSICAL REVIEW D 64 054009
potential gluons, and sea gluons in the operator product
pansion can involve nonzero anomalous dimensions for
singlet PNRQCD-potential. This fact does not contradict
OPE basis, but it reflects the point that the static potentia
the Wilson loop generally differs from the PNRQCD pote
tial. In addition, the ultrasoft gluon sea introduced in P
RQCD in terms of multipole interaction with local extern
chromoelectric and chromomagnetic fields is not a local
ject, indeed.

A point should be considered on the linear confining te
of potential. In@10# a model of infrared behavior was use
so that at long distances between the heavy quarks the u
soft correction was derived in the form of constant ene
shift dV0 and quadratic terms2r 2. The corresponding con
clusion was drawn to stress that the linear term could app
in a more complicated case of infrared behavior. We show
the previous sections how this confinement regime can
reached.

Recently, several papers@44,45# were devoted to the cal
culations of ground states in the heavy quarkonia in the w
combining the PNRQCD potential with the nonperturbat
corrections to the binding energy as they were produced
the multipole expansion of QCD@16# in the form of PN-
RQCD explicitly shown in Eq.~45!. Reference@44# does not
strictly estimate the gluon condensate effects in the multip
expansion, and it presents purely perturbative results. It
lows the perturbative ground state mass technique as a
definition that leads to the cancellation of theu51/2 renor-
malon that was considered in the approach of upsilon exp
sion introduced by Hoanget al. in @46#. So, in @44# the per-
turbative mass of theBc meson was calculated on the base
perturbative expansion for the static potential with the le
ing approximation in the form of Coulomb wave function
As we see above the perturbative potential suffers from
renormalon ambiguity. In order to remove this depende
on the choice of scalem in the potential, the authors of@44#
calculated the masses ofJ/c andY in the same technique a
the same pointm and inverted the problem on the hea
quark masses by equalizing the perturbative masses
ground states in the charmonium and bottomonium to
measured values. This procedure leads to them-dependent
pole masses of heavy quarks as expressed by the seri
as(m). We expect that such a procedure could cancel
renormalon with an accuracy of about 50 MeV in the mass
hadron. As a results, the perturbative mass ofBc has quite a
stable value

Mpert~Bc!5632629
129 MeV, ~47!

in the range of 1.2,m,2.0 GeV, which should be com
pared with the results in Table III and the range ofm de-
scribed above in the study of matching the perturbative
tential with the full QCD potential. The authors of@44# did
not present them-dependent heavy quark masses. Nevert
less, due to the almost coinciding estimates ofBc mass in Eq.
~47! and Table III, we expect that this dependence should
given by the form ofdV(m).

In Ref. @45# the same technique for the perturbative co
tribution with the account for both the gluon condensate c
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rections in the multipole expansion of QCD and a sm
as

5logas term, was used to extract the heavy quark mas
The authors determined the ‘‘pole’’ mass, which is scale
pendent, indeed, by puttingm5CFasmQ in the potential. As
we understand, they introduced the mass suffered from
renormalon and got

mb55022658 MeV,

which is greater than we determine in the current prese
tion. The reason is quite evident. It is the energy sh
dV(m). The runningMS mass quoted in@45# is about 260
MeV greater than we find in the same order inas for the
relation between the pole and running masses. The differe
becomes unessential by using the three-loop matching of
masses in@45#, however, the same correction will also d
crease the value obtained in the spectroscopy with the
QCD potential. Thus, to our opinion the values of hea
quark masses given in@45# should be kept with a large care

Finally, in @47# the dependence of potential on the fini
heavy quark masses was considered. This dependence i
to the smooth variation of the number of active flavors in t
expressions for the coefficients of the perturbativeb function
as well as in the matching coefficients ofaV . As we have
described above we use the step-like change of active fla
number, which infers implicit model dependence, which
practically unavoidable in the case under study.

As for the lattice simulations in QCD for the releva
problem, a review can be found in Ref.@48#. We emphasize
only that the lattice potential of static quarks is close to w
is given by the Cornell model. A modern review of phenom
enological potential models can be found in the lectures@49#.
The finite mass effects in the nonrelativistic bound states
recently considered at next-to-leading order in@50# and@51#.
A next-to-next-to-leading order analysis of light quark ma
effects in the heavy nonrelativisticQQ̄ systems was given in
@40#. Some applications of PNRQCD to the heavy quarko
were done in@52#.

C. Leptonic constants

In the static approximation for the heavy quarks the c
culation of leptonic constants for the heavy quarkonia w
the two-loop accuracy involves the matching of leptonic c
rents in NRQCD with the currents of full QCD,

Jn
QCD5Q̄gnQ, J n

NRQCD5x†sn
'f,

with the relativistic quark fieldsQ and their nonrelativistic
two-component limits of antiquarkx and quarkf, sn

'5sn

2vn(s•v), andv is the four velocity of heavy quarkonium
so that

Jn
QCD5K~mhard;m fact!•J n

NRQCD,

where the scalemhard determines the normalization point fo
the matching of NRQCD with full QCD, whilem fact refers to
the point of perturbative calculations in NRQCD. Using t
matching of potential for the static quarks in QCD with th
9-14
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HEAVY QUARK POTENTIAL IN THE STATIC LIMIT OF QCD PHYSICAL REVIEW D 64 054009
two-loop perturbative potential, we argue that the most
propriate choice of scale relevant to the charmonium
bottomonium is

m fact5msoft51.3–2 GeV. ~48!

For the heavy quarkonium composed by quarks of the s
flavor the Wilson coefficientK is known up to the two-loop
accuracy@53,33,54,55#

K~mhard;m fact!512
8

3

as
MS~mhard!

p

1S as
MS~mhard!

p
D 2

c2~mhard;m fact!, ~49!

andc2 is explicitly given in@54,55#. The additional problem
is the convergency of Eq.~49! at the fixed choice of scales
So, puttingmhard5(122)mb and Eq.~48! we find a good
convergency of QCD corrections for the bottomonium a
estimate its leptonic constant defined by

^0uJn
QCDuY,l&5en

l f YMY ,

wherel denotes the polarization of vector stateen , so that

f Y5685630 MeV,

while the experimental value is equal tof Y
exp5690

613 MeV @9#.
As we can see in Fig. 7 the variation of hard scale

broad limits leads to the existence of a stable point, wh
the result is slowly sensitive to such variation. The stabi
occurs atmsoft'2.6 GeV, where the perturbative potential

FIG. 7. The value of leptonic constant for the vector grou
state of bottomonium vs the soft scale. The dashed line repres
the choice ofmhard52mb , while the solid line representsmhard

5mb . The horizontal shaded band gives the experimental limit
05400
-
d

e

d

re

still close to the potential of static quarks at the distan
characteristic for the 1S level of b̄b.

The estimate of leptonic constant for the charmoniumJ/c
is more sensitive to the choice of factorization scale. Inde
the size of this system,̂r c̄c(1S)&'0.42 fm, makes more
strict constraints onm fact'1.3–1.5 GeV, since at highe
scales the perturbative potential significantly deviates fr
the potential of static quarks in QCD in the region of bou
c̄c states, while at lower scales the perturbative potentia
two loops does not match the QCD potential in all of t
form. Another problem is the energy shiftdV(m)
51.0–1.2 GeV, which essentially renormalizes the p
mass of charmed quark,mc

pole51.968–2.068 GeV. This
shift does not perturb the mass of the ground state, but
significant for the value of wave function at the origin. S
following the well-adjusted scaling relation for the lepton
constants@56#, we putP(m)5kC(0)mc

pole(m)/mc and use it
in the calculations of the leptonic constant.12 We get

f J/c5400635 MeV,

to compare with the experimental valuef J/c
exp5409

615 MeV.
In Fig. 8 we see that again the stability point can

reached in the variation ofmhadr at a reasonable value o
msoft'1.35 GeV. However, the stability takes place in t
narrow region ofmhadr close to the charm quark mass.

12Solving the Schro¨dinger equation with the shifted masses a
potential, we check that this mass dependence of wave functio
valid with the accuracy better than 6%, so we putk50.95.

nts
FIG. 8. The value of leptonic constant for the vector grou

state of charmonium vs the soft scale. Shaded region is restricte
the dashed line representing the choice ofmhard51.07mc and by the
solid line with mhard50.93mc . The horizontal shaded band give
the experimental limits. The additional curves givemhard51.26mc

~dashed line! andmhard50.87mc ~solid line!.
9-15
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V. V. KISELEV, A. E. KOVALSKY, AND A. I. ONISHCHENKO PHYSICAL REVIEW D 64 054009
At present, the matching condition for the heavy quark
nium composed by the quarks of different flavors,b̄c, is
known to one loop, only@56,57#. So, for the pseudoscala
state we have

K~mhard;m fact!512
as

MS~mhard!

p S 22
mb2mc

mb1mc
ln

mb

mc
D ,

~50!

which is independent of the factorization scale. The mat
ing of perturbative potential to the one-loop accuracy w
the QCD potential of static quarks atr;0.3–0.4 fm relevant
to the ground state ofBc meson@58#, is rather questionable
since the deviation in the forms of potentials is quite sizab
In addition we have to posem fact5mhard, because we canno
distinguish these scales, while the nonzero anomalous
mension to two loops is not taken into account. Neverthel
we can putmhard51.3–1.8 GeV and neglectdV, which is
beyond the actual control in the one-loop accuracy. Inde
as we see in Fig. 6 the one loop value of energy shift for
matching of perturbative and QCD potentials is quite sm
at the large virtualities about 2 GeV, and it can be neglec
while at smaller virtualities the form of perturbative potent
is close to that given by QCD only in the short range
distancesr 50.1–0.25 fm, hence, the results on the mat
ing are not reliable for extracting the heavy quark mas
from the parameters of bound states. So, we estimate

f Bc
5400645 MeV,

to compare with the estimates in the SR, wheref Bc

SR5400

625 MeV @56,59#.
Finally, we present the ratios of leptonic constants for

excitednS levels of b̄b and c̄c in Table IV in comparison
with the experimental data. We see that the predictions ar
good agreement with the measured values. For complete
we also predict the constant of 2S level in theb̄c system

f Bc(2S)5280650 MeV,

which agrees with the scaling relation@56#.
Thus, we have analyzed the estimates following from

potential of static quarks in QCD for the masses of qua
and heavy quarkonia as well as for the leptonic consta
and found both in good agreement with the experimen
data available and the consistency with the QCD sum ru

TABLE IV. The ratios of leptonic constants for the heav
quarkonia as predicted in the present paper (K2O) in comparison
with the experimental data.

f c(nS)
2 / f c

2
QCD,
(K2O) Exp. f Y(nS)

2 / f Y
2

QCD
(K2O) Exp.

2S 0.55 0.4860.07 2S 0.47 0.4760.03
3S 0.32 0.2560.06 3S 0.34 0.3660.02
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IV. CONCLUSIONS

We have derived the potential of static heavy quarks
QCD on the base of known limits at short and long distanc
the asymptotic freedom to the three-loop accuracy, and
confinement regime. The inputs of potential are the coe
cients of perturbativeb function, the matching ofMS
scheme with the V scheme of potential, the normalization
running coupling constant of QCD atm25mZ

2 , and the slope
of Regge trajectories, determining the linear term in the
tential. Thus, the approach by Buchmu¨ller and Tye has been
modified in accordance with the current status of pertur
tive calculations.

In the static limit the two-loop improvement of Coulom
potential results in the significant correction to theb function
for the effective charge,Db/b;10% as shown in Fig. 3
This correction is important for the determination of critic
values of charge, i.e., the value in the intermediate reg
between the perturbative and nonperturbative regimes. M
over, the two-loop matching condition and the three-lo
running of coupling constant normalized by the data at
high energy ofmZ determine the region of energetic scale f
changing the regimes mentioned above. This scale stro
correlates with the data on the mass spectra of heavy qua
nia. So, it is connected with the splitting of masses betw
the 1S and 2S levels. We stress that the consistent consid
ation of two-loop improvement gives the appropriate va
of effective Coulomb coupling constant as it was fitted in t
Cornell model of potential. This is achieved in the prese
paper in contrast with the one-loop consideration by Bu
müller and Tye, who found the value ofLQCD inconsistent
with the current normalization at high energies. So, the tw
loop improvement gives the correct normalization of effe
tive Coulomb exchange at the distances characteristic for
average separation between the heavy quarks inside
heavy quarkonium and determines the deviations at s
distancesr ,0.08 fm ~see Fig. 2!, which is important in the
calculations of leptonic constants related with the wave fu
tions at the origin.

Other corrections to the potential of heavy quarks are c
nected with the finite mass effects and cannot be treate
the framework of static approximation. For example, t
spin-dependent forces, relativistic corrections, and spec
non-Abelian potential terms13 in the heavy quarkonium
should be taken in the analysis of mass spectra. A magni
of leading nonstatic corrections can be evaluated by the c
acteristic shifts of levels due to the hyperfine splitting
S-wave levels in the heavy quarkonia.14 So, we conserva-
tively evaluate the uncertainty of heavy quark mass anal
dm.80 MeV.

Thus, the non-Abelian term of potentialas
2/r 2, say, has

the factors in the form of 1/mQ , and it is equal to zero in the
static limit mQ→`, while the uncertainty in the heavy quar

13They have the form ofas
2/r 2 with the factor given by the inverse

heavy quark masses.
14The splitting is about 100 MeV or less.
9-16
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HEAVY QUARK POTENTIAL IN THE STATIC LIMIT OF QCD PHYSICAL REVIEW D 64 054009
masses due to the omission of such terms is estimated in
paragraph above. Formally, if we consider the perturba
theory for the calculation of bound state levels in the hea
quarkonium with the Coulomb functions taken as the lead
approximation, which is not a scope of our considerati
then the mentioned non-Abelian potential contributes in
same order inas as the two-loop corrections to the matchin
of perturbative static potential;as

4 , since the averaging o
1/r 2 results in theas

2mQ
2 factor. However, the two-loop ef

fects are important for the consistent consideration of st
potential and the high energy normalization, i.e., these c
rections are significant in the running of effective charge
the potential from the high energies to the scale relevan
the heavy quark bound states even in the static limit, wh
the nonstatic contributions can be consistently neglecte
the numerical analysis. We see that our consideration is c
sistent in the static approximation, which we have addres
in the present paper.

The matching of two-loop perturbative potential with th
QCD potential of static quarks has been performed to
estimates of heavy quark masses, which can be comp
with the results of QCD sum rules. Good agreement betw
two approaches has been found.

The recent determinations of heavy quark masses in R
@32–34# were done in the framework of QCD sum rule
which is a systematic approach, indeed. It is based on
separation of the short-distance region from the nonpertu
tive effects at some values of parameters defining the sch
of calculations in the sum rules. In this approach the nonp
turbative terms are given in the form of quark-gluon cond
sates contributing with corresponding Wilson coefficie
calculated at short distances, as was shown in@37#, a numeri-
cal contribution of gluon condensate term in the sum rule
negligibly small in comparison with the perturbative pa
However, it would be incorrect to think that these expli
contributions suppressed in some region of parameters
the only terms caused by the nonperturbative infrared
namics of QCD. Indeed, neglecting the condensate terms
find that the perturbative correlators suffer from the renorm
lon ambiguity, which implies that the perturbative expans
in series ofas is asymptotic, and the summation of seri
depends on the method used. The physical reason for
s.
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divergency and ambiguity is the infrared singularity in t
QCD coupling constant. This singularity is regularized
introducing the threshold mass parameters free of renor
lon. Such an approach is independent of any assumption
the gluon condensate, since generally the pole mass re
malon and the gluon condensates are different issues.

The perturbative pole mass used in the QCD sum rule
not a well defined quantity, and some relevant quantities
introduced in Refs.@32–34#. These quantities are constructe
from the perturbative pole mass of heavy quark with spec
infrared subtractions, which are treated independently of
quark-gluon condensates. These constructions are autho
pendent, though the authors of subtracted masses gave
physical motivations, which are more or less strict, but ju
tified. These infrared subtractions imply the introduction
infrared regulators.

In the present paper the unifiedb function for the effec-
tive charge in the potential is considered, and its definit
supposes the infrared stability. Thus, we see that the ana
of heavy quark masses in both the QCD sum rules and
tential approach involves the consideration of relevant
fects caused by the infrared dynamics of QCD, although
explicit constructive procedures are certainly different, b
they have similar inherent uncertainties.

The calculated mass spectra of heavy quarkonia and
leptonic constants of vectornS levels are in agreement with
the measured values. The characteristics of theBc meson
have been predicted.
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