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Renormalization of an effective light-cone QCD-inspired theory for the pion and other mesons
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The renormalization of the effective QCD Hamiltonian theory for the quark-antiquark channel is performed
in terms of a renormalized or fixed-point Hamiltonian that leads to subtracted dynamical equations. The
fixed-point Hamiltonian gives the renormalization conditions as well as the counterterms that render the theory
finite. The approach is renormalization group invariant. The parameters of the renormalized effective QCD
Hamiltonian come from the pion mass and radius for a given constituent quark mass. The 1s and excited 2s

states ofūq are calculated as a function of the mass of the quarkq being s, c, or b, and compared to the
experimental values.
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I. INTRODUCTION

The effective mass operator equation for the lowest lig
front Fock-state component of a bound system of a cons
ent quark and antiquark of massesm1 and m2, obtained in
the effective one-gluon-exchange interaction approximat
which is our starting point, was reviewed in Ref.@1#. The
breakthrough to simplify this equation in the spin-zero ch
nel was achieved in@2# by formulating the↑↓ model, which
is reduced to

M2c~x,kW'!5FkW'
2 1m1

2

x
1

kW'
2 1m2

2

12x
Gc~x,kW'!

2E dx8dkW'8 u~x8!u~12x8!

Ax~12x!x8~12x8!

3S 4m1m2

3p2

a

Q2
2l D c~x8,kW'8 !, ~1!

whereM is the mass of the bound state andc is the projec-
tion of the light-front wave function in the quark-antiqua
Fock state. The mean four-momentum transfer is@3#

Q2~x,kW' ,x8,kW'8 !52
1

2
@~k12k18!22~k22k28!2#. ~2!

The coupling constanta for the Coulomb-like potential and
l is the bare coupling constant of the Dirac-delta hyperfi
interaction. The Dirac-delta hyperfine potential between c
stituent quarks in Eq.~1! is one aspect of chiral symmetr
breaking in QCD; another one is the constituent quark m
itself. On the light front, chiral symmetry corresponds
helicity conservation, which is broken in the↑↓ model by
the hyperfine potential and by the constituent quark mas
well. The hyperfine interaction, which causes quark helic
flips, is a clear candidate to create the pi-rho mass differe
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The delta function is an approximation to this hyperfine p
tential, which also involves zero modes or vacuum degr
of freedom.

For the purposes of this work, we leave out the ene
transfer in Eq.~2! that leads to additional singularities for th
tridimensional momentum going to infinity that we are n
going to treat here. The effective mass operator of Eq.~1!
acting in the quark-antiquark sector has also been obta
by iterated resolvents, which were derived in@4# and pre-
sented in greater detail in@5#, which allows us to express
systematically the higher Fock-state components of the w
function in functionals of the lower ones. In this way, th
higher Fock-state components can be retrieved from theqq̄
projection, and the full complexity of the QCD theory is
principle described by the effective Hamiltonian acting in t
lowest Fock-state component@4#.

However, the↑↓ model of Eq.~1! is a rather drastic ap
proximation to a severe truncation of the Fock space in
effective theory. The initial truncation of QCD involves on
one-gluon exchange, which keeps Fock states with up toqq̄
plus one gluon, and so the rich nonlinear structure of QCD
not directly present here~this is a ‘‘colored QED’’!. More-
over, the spin dependence and momentum dependence i
hyperfine interaction are greatly simplified to get Eq.~1!.
Also, confinement is absent in the model, but this is no
main drawback, at least for the pion, which is strongly bou
in the constituent picture and has in practice a wave func
confined to short distances.

For convenience, the Sawicki transformation, first deriv
for equal masses@6# and consistently formulated for unequ
masses in Ref.@3#, is applied to Eq.~1! which allows us to
rewrite it in the instant-form momentum basis. It is useful
this case since the momentum transfer is approximated
rotational invariant form given by Eq.~2!,

x~kz!5
~E11kz!

E11E2
, ~3!

and the Jacobian of the transformation of (x,kW') to kW is
©2001 The American Physical Society07-1
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T. FREDERICO AND HANS-CHRISTIAN PAULI PHYSICAL REVIEW D64 054007
dxdkW'5
x~12x!

mrA~k!
dkW , ~4!

with the dimensionless function

A~k!5
1

mr

E1E2

E11E2
~5!

and the reduced massmr5m1m2 /(m11m2). The individual
energies areEi5Ami

21k2 ( i 51,2) andk[ukW u.
The mass operator equation in instant-form moment

variables is given by

M2w~kW !5@E11E2#2w~kW !2E dkW8S 4ms

3p2

a

AA~k!A~k8!Q2

2
l

mrAA~k!A~k8!
D w~kW8!, ~6!

wherems5m11m2, the phase-space factor is included in t
factor 1/AA(k)A(k8) andAx(12x)c(x,kW')5AA(k)w(kW ).

The mass operator equation~6! needs to be regularize
and renormalized in order to give physical results. In R
@2#, the delta function was smeared out to a Yukawa fo
regularizing Eq.~6! and the parameters found from the pio
mass and radius. In principle the size parameter in mom
tum space of the Yukawa potential should be allowed to go
infinity while the physical input is kept constant. To make t
dependence on the size parameter vanish is a nontrivial
which is the purpose of this work. Here we obtain a ren
malized form of the equation for the bound state mass~i!
which is invariant under renormalization group transform
tions, ~ii ! the physical input is given by the pion mass a
radius, and~iii ! there is no regularization parameter.

We are going to apply the recent renormalization te
niques developed in the context nonrelativistic Hamilton
theory @7–9# to Eq. ~6!, since it defines an effective Hami
tonian for the quark-antiquark dynamics. The renormalizeT
matrix is the solution of a subtracted scattering equation,
physical input of which is given by theT matrix at some
reference scalem. The scheme is invariant under a change
the arbitrary scalem and consequently the inhomogeneo
term of the subtracted scattering equation satisfies a re
malization group equation, which expresses the matchin
the theories at the scalesm andm1dm @8#. We will find the
mass of the bound state from the pole of the renormali
scattering matrix defined from the mass operator, Eq.~6!.

This work is organized as follows. In Sec. II, the operato
for the Coulomb-like and for the singular interactions a
pearing in the mass operator are defined, and the Lippm
Schwinger equation for theT matrix related to the given
mass operator is written. In Sec. III, we show how to ren
malize the effective theory defined by the mass operato
Sec. II through the definition of a renormalized or fixed-po
singular interaction. This procedure is equivalent to us
subtracted scattering equations. We discuss the renorma
tion group invariance of the method. The explicit form of t
renormalizedT matrix is obtained~the Appendix! and the
05400
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physical input is the pion mass which determines the exc
states as well as the mass of the other mesons. The phy
observables of the renormalized effective theory do not
pend on the subtraction point. In Sec. IV, the calculation
the pion charge radius is discussed, and although we h
simplified the spin dependence in the dynamical equation
is important in the evaluation of the radius. For this purpo
we have used an effective pseudoscalar Lagrangian to
struct the spin part of the pion wave function, and turning
the Coulomb-like interaction we retrieve a well-known res
valid in the soft pion limit@14#. To gain insight we also write
down the expressions where the quark spin is neglected.
numerical results are presented in Sec. V. We have solv
nonrelativistic example for a Coulomb plus a Dirac-delta
teraction compared to a model in which the Dirac delta
substituted by a Yukawa potential. We also show how t
effective theory, including a Dirac delta, can mimic a fini
range theory, calibrated to the pion mass. Then, we pre
results for the pion charge radius and for the mass of
excited state, which we identified with the isovector vec
mesons. Finally, in Sec. VI, we present our conclusions.

II. DEFINITIONS

For our purposes it is convenient to work in an opera
form of Eq. ~6!:

~M0
21V1Vd!uw&5M2uw&, ~7!

and the free mass operatorM0 is the sum of the energies o
quarks 1 and 2,V the Coulomb-like potential, andVd the
Dirac-delta interaction in the nonrelativistic limit. The matr
elements of these operators are given by

^kW uVukW8&52
4ms

3p2

a

AA~k!Q2AA~k8!
~8!

and the short-range singular interaction

^kW uVdukW8&5^kW ux&
l

mr
^xukW8&5

l

mr

1

AA~k!

1

AA~k8!
. ~9!

The phase-space factorA(k) is defined by Eq.~5!, and the
square momentum transferQ2 comes from Eq.~2!. For con-
venience in the formal manipulations of the next section,
form factor of the separable singular interaction is introduc
and defined bŷkW ux&51/AA(k).

The T matrix is obtained from the Lippman-Schwinge
equation

T~M2!5V1Vd1~V1Vd!G0
(1)~M2!T~M2!, ~10!

whereM is the mass of the scattering state and the Gree
function with outgoing wave boundary condition is

G0
(1)~M2!5

1

M22M0
21 i«

. ~11!
7-2
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RENORMALIZATION OF AN EFFECTIVE LIGHT-CONE . . . PHYSICAL REVIEW D64 054007
In the next section we will obtain a renormalized form
T(M2).

III. RENORMALIZATION OF THE EFFECTIVE THEORY

The ideas that have been developed in Refs.@7–9# to
construct a renormalizedT matrix in nonrelativistic Hamil-
tonian theory can be applied in the case where the two-b
interaction can be split in a regular potential of finite ran
~V! and a Dirac-delta singularity as in Eq.~10!. In this case,
the physical information at the subtraction point will be i
troduced through the renormalized mass operator as we
all the counterterms that render finite theT-matrix equation
~10!. The physical information at the subtraction point is t
T matrix corresponding to the Dirac-delta interaction. Th
renormalization approach has been applied in the t
nucleon system to calculate theT matrix of the one-pion-
exchange potential, without the necessity of regularization
form factors@7#.

The renormalized interaction is given by

VR5V1VR
d , ~12!

where the renormalized Dirac-delta interaction is given b

VR
d 5

1

11TR
d ~m2!G0

(1)~m2!
TR

d ~m2!

5TR
d ~m2!

1

11G0
(1)~m2!TR

d ~m2!

5TR
d ~m2! (

n50

`

@2G0
~1 !~m2!TR

d ~m2!#n, ~13!

andTR
d (m2) is the renormalizedT matrix of the Dirac-delta

interaction, with matrix elements given by

^pW uTR
d ~m2!uqW &5^pW ux&lR~m2!^xuqW &, ~14!

wherelR(m2) is the renormalized strength of the Dirac-de
interaction at the mass scalem2. In the nonrelativistic limit
the form factorx(q)51, and the renormalized interactio
becomes the Dirac-delta interaction. The scattering equa
with the renormalized interaction appears in a subtrac
form @7–9# after a little rearrangement of terms, in which a
the divergent momentum integrals are removed, and i
written as

TR~M2!5TR~m2!1TR~m2!@G0
(1)~M2!2G0

(1)~m2!#

3TR~M2!. ~15!
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It is presented here in a general way, where we have drop
the d superscript, just to remind the reader that for a regu
potential Eq.~15! is completely equivalent to the traditiona
Lippman-Schwinger scattering equation.

The renormalized interaction is independent of the s
traction point; i.e., the physics expressed by the renormali
interaction is invariant by changes in the arbitrary renorm
ization point. This physical requirement is given by

d

dm2
VR

d 50, ~16!

qualifying the interaction as the fixed point of Eq.~16!,
which implies that theT matrix found from solution of

TR~M2!5V1VR
d 1~V1VR

d !G0
(1)~M2!TR~M2! ~17!

is invariant under dislocations of the subtraction point. Co
sequently, the renormalized coupling constant of the Dir
delta interaction changes as the subtraction point moves
cording to the Callan-Symanzik equation

d

dm2
TR

d ~m2!52TR
d ~m2!

1

~m21 i«2M0
2!2

TR
d ~m2!,

~18!

obtained from Eq.~16!.
Although the renormalized interaction is not well defin

for singular interactions, the resultingT matrix obtained by
solving Eq.~17! is finite. This givesa posteriori justification
for the formal manipulations used in Eqs.~13! and~17!. The
sum in the expression of the renormalized interaction~13!
makes explicit all the counterterms which exactly cancels
infinities in the momentum integrals of the scattering eq
tion ~17!, while introducing physical information through th
value of the renormalized strength of the Dirac-delta inter
tion. We chooselR(m2), in the following, in accordance
with the physical value of the pion mass. We observe th
instead of working formally with the operatorVR

d , we could
use an ultraviolet momentum cutoff (L) by defining in this
way a regularized interaction. After the construction of t
T-matrix regularized equation one could perform the lim
L→`, arriving at the same results as the ones obtained
rectly with the use of the renormalized interaction.

The solution of the scattering equation~17! is found by
using the two potential formulas in terms of theT matrix of
the regular potentialV, TV(M2) and the renormalizedT ma-
trix of the Dirac-delta interaction~see the Appendix!, which
results in
TR~M2!5TV~M2!1
@11TV~M2!G0

(1)~M2!#ux&^xu@G0
(1)~M2!TV~M2!11#

lR
21~m2!2^xu@1/~M21 i«2M0

2!21/~m21 i«2M0
2!#ux&2^xuG0

(1)~M2!TV~M2!G0
(1)~M2!ux&

,

~19!

whereTV(M2) is a solution of the Lippman-Schwinger equation
7-3
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T. FREDERICO AND HANS-CHRISTIAN PAULI PHYSICAL REVIEW D64 054007
TV~M2!5V1VG0
(1)~M2!TV~M2!. ~20!

The structure of Eq.~19! allows one more subtraction i
the denominator, which turns the convergence of the mom
tum integral faster in the term whereTV(M2) is present. This
subtraction is appropriate if the potentialV has a Coulomb or
Yukawa form:

^pW uVuqW &5
1

h21upW 2qW u2
. ~21!

Thus, we define the renormalized strength of the Dirac-d
interaction at the subtraction point such that

lR
21~m2!5l̄R

21~m2!1^xuG0
(1)~m2!TV~m2!G0

(1)~m2!ux&
~22!

and introduce the physical information in the renormalizeT

matrix ~19! through the value ofl̄R
21(m2).

Substituting Eq.~22! into Eq. ~19!, we obtain the renor-
malizedT matrix written as

TR~M2!5TV~M2!1@11TV~M2!G0
(1)~M2!#ux&tR~M2!

3^xu@G0
(1)~M2!TV~M2!11#, ~23!

where

tR
21~M2!5l̄R

21~m2!2^xu@GV(1)~M2!2GV(1)~m2!#ux&,
~24!

and the interacting Green’s function is

GV(1)~M2!5G0
(1)~M2!1G0

(1)~M2!TV~M2!G0
(1)~M2!.

~25!

We use the renormalization condition that at the p
massM5mp the T matrix, for m15m2 andm15mu5md ,
has the bound-state pole; consequently,

tR
21~mp

2 !50 ~26!

and choosingm5mp for convenience, which implies that

l̄R
21~mp

2 !50. ~27!

The invariance of the renormalizedT matrix ~23! under dis-
location of the subtraction point just reads as

d

dm2
tR~M2!50 ~28!

and, from Eq.~28!,

l̄R
21~m82!5l̄R

21~m2!2^xu@GV(1)~m82!2GV(1)~m2!#ux&.
~29!

At the general subtraction pointtR
21(m2)5l̄R

21(m2), and
the renormalizedT matrix atm2 is given by
05400
n-

ta

TR~m2!5TV~m2!1@11TV~m2!G0
(1)~m2!#ux&l̄R~m2!

3^xu@G0
(1)~m2!TV~m2!11#. ~30!

The full renormalized interaction can be written in a for
analogous to Eq.~13!,

VR5TR~m2! (
n50

`

@2G0
(1)~m2!TR~m2!#n, ~31!

and with that, one could obtain the equation for the ren
malizedT matrix ~17! in the subtracted form~15!, displayed
again below:

TR~M2!5TR~m2!1TR~m2!@G0
(1)~M2!2G0~m2!#TR~M2!.

We observe that one could equally well construct the Call
Symanzik equation for (d/dm2)TR(m2), by performing the
limit of M→m in Eq. ~15!, finding

d

dm2
TR~m2!52TR~m2!

1

~m21 i«2M0
2!2

TR~m2!,

~32!

with the boundary condition given by Eq.~30!. The solution
of Eq. ~32! gives the dependence ofl̄R on the subtraction
point m as expressed by Eq.~29!.

Now comes a subtle point: It is important to realize t
renormalization condition given byl̄R

21(mp
2 )50, and con-

sidering Eq.~24!, the bare strength of the Dirac-delta inte
action is given by

mrlbare
21 5@^xuGV(1)~mp

2 !ux&# (mu ,mū) , ~33!

where the Green’s function of the Coulomb-like interacti
is calculated for an equal mass constituent quark and a
quark, i.e.,m15m25mu5md̄ . The bare coupling constan
in the form given by Eq.~33! is sufficient to render finite the
T matrices from Eq.~23! calculated with different quark
masses.

The bound-state massMb of quark-antiquark states with
also different quark masses is the position of the poles of
renormalizedT matrix ~23!, which implies

mr
21tR

21~Mb
2!5F 1

mr
^xuGV~mp

2 !ux&G
(mu ,mū)

2F 1

mr
^xuGV~Mb

2!ux&G
(m1 ,m2)

50. ~34!

The zeros oftR
21 give the position of the zero angular mo

mentum states of the bound quark-antiquark systems, for
ferent quark masses and excitation. It is easy to imagine
in the vicinity of a bound state of the Coulomb-like potentia
because of the presence of the pole inGV, the functiontR

21 is
rapidly varying and it is infinity at the Coulomb bound stat
and because of the change in sign ofGV, it will necessarily
present a zero and a bound state of the whole potential.
7-4
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IV. PION CHARGE RADIUS

The renormalized effective theory defined by Eq
~23!,~24! with the bound-state mass equation~34!, once the
pion mass is known, has two free parameters: the constit
quark mass anda, the strength of the effective one-gluon
exchange potential. The values ofa and the constituen
quark mass can be found from the pion charge radius and
r-meson mass. The pion wave function in the effect
theory comes from the residue of theT matrix, Eq.~23!, at
the pion pole, such that

cp~x,kW'!5A A~k!

x~12x!
wp~kW !, ~35!

where

wp~kW !5^kW uG0~mp
2 !@11TV~mp

2 !G0~mp
2 !#ux& ~36!

and

x~kz!5
1

2
1

kz

2E
, ~37!

from Eq. ~3!. The absolute normalization of theqq̄ Fock
component of the pion wave function~35! is such that the
asymptotic form is given by the first term of Eq.~36!, with
the residue at the pion pole equal to 1. We impose suc
normalization condition to be consistent with the soft pi
limit ( mp50) for the electromagnetic form factor when th
Coulomb-type interaction goes to zero, as will be shown
low.

A. Including quark spin

The pion electromagnetic form factor is obtained from t
impulse approximation of the plus component of the curr
( j 15 j 01 j 3) in the Breit frame with momentum transfe
q150 and q252qW 2. The leptonic decay constant ofp1

( f p) is a physical quantity which depends directly on t
probability of finding the quark-antiquark Fock state in t
pion wave function and consequently properly normalize
once the empirical value off p is given. Computing the pion
form factor from an effective Lagrangian, described belo
the value off p gives the normalization of the form factor. I
this case theqq̄ component of the pion wave function
normalized such that, in the vanishing limit of the Coulom
type interaction, it retrieves the asymptotic form, Eq.~43!
@12#. The coupling of the pion field to the quark field is take
from an effective Lagrangian with pseudoscalar coupl
with the pion quark coupling constant given by th
Goldberger-Treiman@11# relation at the quark level,

Le f f52 i
m

f p
pW •q̄g5tWq, ~38!

and f p593 MeV is the pion weak decay constant.
The general structure of theqq̄ bound state forming the

pion comes from the pseudoscalar coupling, and we will
such spin structure in the computation of the Feynman
05400
.

nt

he
e

a

-

t

it

,

-

g

e
i-

angle diagram which expresses the impulse approximatio
compute the pion electromagnetic current,

~pp
m1pp8

m!Fp~q2!

5 i2
m2

f p
2

NcE d4k

~2p!4
trF k”1m

k22m21 i«

3g5
k”2p” p8 1m

~k2pp8 !22m21 i«

3gm
k”2p” p1m

~k2pp!22m21 i«
g5G , ~39!

whereFp(q2) is the pion electromagnetic form factor. Th
pion momenta in the initial and final states are defined
pp

0 5pp8
0 and pW p'8 52pW p'5qW'/2 in the Breit frame.Nc53

is the number of colors.
The 1 component of the current is calculated from E

~39!. It is chosen because after integration overk25k02k3

the suppression of the pair diagram is maximal for this co
ponent in the frame whereq150 and just the valence wav
function enters in the form factor@12,13#. Although we are
going to compute the integration in the2 component of the
moment assuming a constant vertex, one can identify in
expression how the wave function corresponding to the n
constant vertex of Eq.~35! should be introduced in the ex
pression. The result is@12#

Fp~q2!5
2

~2p!3

m2

f p
2

NcE
0

1

dxE d2K'M0
2

3S 11
~12x!qW'•KW '

K'
2 1m2 D cp~x,KW '!cp~x,KW '8 !,

~40!

where the momentum fractionx5(p12k1)/p1. The rela-
tive transverse momentum is given by

KW '5~12x!~pW'2kW'!2xkW' , ~41!

and KW '8 5KW '1(12x)qW' . The free mass operator for theq

2q̄ is written in terms of the momentum fraction and th
relative perpendicular momentum

M0
25

K'
2 1m2

x~12x!
, ~42!

and M08 is written as a function ofK'8 . The expression for
the pion form factor gives the standard Drell-Yan formu
once the bound-state wave function of the constant ve
model, the asymptotic form, is recognized:

cp~x,KW '!5
1

Ax~12x~mp
2 2M0

2!
, ~43!
7-5
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which is the first term of the pion wave function in Eq.~36!.
The second term in Eq.~36! comes from the Coulomb-like
potential, and implies a contribution from the effectiv
theory to the pion radius. The other factors in Eq.~40! comes
from the Melosh rotations of the individual spin wave fun
tion of the quarks.

The pion charge radius from Eq.~40! in the soft-pion limit
with constant vertex, corresponding to the wave function
Eq. ~43! with mp50, gives the well-known result ofr p

5@6(d/dq2)Fp(q2)uq250#1/25A3/(2p f p) from Ref. @14#.
The form factor ~40! in the soft-pion limit with constant
vertex, forq250, reduces to the expression forf p @12#,

f p5
22

~2p!3

m2

f p
NcE

0

1 dx

Ax~12x!
E d2K'cp~x,KW '!,

~44!

obtained from computation of the leptonic decay transit
amplitude ofp1 with the effective Lagrangian~38! and the
wave function given by Eq.~43!.

B. Neglecting quark spin

In order to gain insight into the importance of the incl
sion of the quark spin in the computation of the form fact
we have simplified the numerator of Eq.~40!, which is the
result from Dirac algebra, by taking the limit ofm→`. In
this way the quark spin is neglected and the form fac
reduces to the formula found for scalar particles, and o
the overall normalization, which depends onf p , is main-
tained. The wave function is in the form expressed by
~35! with A(k)51. With the above approximations the pio
electromagnetic form factor is

Fp~q2!5
1

p3

m4

f p
2

NcE
0

1

dxE d2K'cp~x,KW '!cp~x,KW '8 !,

~45!

with relative transverse momentum

KW '5~12x!~pW'2kW'!2xkW' , ~46!

and KW '8 5KW '1(12x)qW' . In case of theqq̄ wave function
being supposed to be the complete pion wave function,
form factor is written as@1#

Fp~q2!5NE
0

1

dxE d2K'cp~x,KW '!cp~x,KW '8 !, ~47!

and fromFp(0)51 the normalizationN is determined.
The difference between the form factors defined by E

~45! and ~47! is the normalizations of theqq̄ Fock compo-
nent of the pion wave function. In the first case the norm
ization is defined byf p , while for the second case theqq̄
Fock-state component is normalized such thatFp(0)51. As
we will see, Eq.~47! gives a too small pion radius, whil
from Eq. ~45! or ~40! the pion radius can be described re
sonably. The absolute normalization of the form factor co
puted with the inclusion of the quark spin as expressed
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Eq. ~40! is undetermined, since the integral diverges. Ho
ever, the pion radius is finite with the magnitude of this Fo
component of the pion wave function known from the e
pirical value of f p , number of colors, and attributed con
stituent quark mass.

To close this section, we observe that our aim is to fit
strength a of the Coulomb-like potential using the pio
charge radius. For this purpose, we introduce the pion w
function from Eq. ~35! in the form-factor expression, Eq
~40!, and calculate the charge radius. Although the form f
tor diverges, the charge radius is finite and formp50 and
a50 it retrieves the soft-pion limit. The pion mass and t
effective Coulomb-like interaction give a correction to th
soft-pion limit, r p

so f t50.58 fm, towards the experimental re
sult of 0.6760.02 fm @15#.

V. NUMERICAL RESULTS

A. Test case

We begin this section on the numerical calculations co
paring our results for thes-wave bound-state energies whic
are consistent with@10# for the nonrelativistic Coulomb plus
repulsive Yukawa model:

@e2p2#w~p!

5
1

pE0

`

dp8
p8

p F ln
~p2p8!2

~p1p8!2
2 ln

~p2p8!21h2

~p1p8!21h2Gw~p8!.

~48!

In our numerical procedure we checked the results with up
200 Gaussian-Legendre quadrature points and the inte
21,z,1 was transformed to 0,k,` through the variable
transformationk5c(12z)/(11z) with c about 1.

In Fig. 1, we show our results for the first excited sta
e (2) as a function of the ground statee (1) and compare with

FIG. 1. Excited-state binding energy (e (2)) as a function of the
ground-state binding energy (e (1)) for the nonrelativistic model.
Attractive Coulomb plus repulsive Yukawa nonrelativistic model
the Ref.@10# ~solid squares!. Our numerical calculation of Eq.~48!
is given by the solid line, and the solution of the effective mod
Eq. ~49! ~Coulomb plus Dirac-delta!, is given by the dashed line.
7-6
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the calculation of@10# for h50.1, 1, and 10. For these va
ues ofh we present results in Table I. Our precision is abo
0.5%, which will suffice for our purposes. Also the calcul
tion with the renormalized Coulomb plus Dirac delta
shown in Fig. 1 and Table I. The calculation with nonrelat
istic renormalized model corresponds to finding the zeros
the nonrelativistic form of Eq.~34!,

E dqW dpW ^qW u@GVnr~2e (n)!2GVnr~2e (1)!#upW &50,

~49!

with the nonrelativistic resolvent operatorGVnr(e) for nega-
tive energies obtained from the solution of

GVnr~e!5G0
nr~e!1G0

nr~e!VCGVnr~e!, ~50!

where ^pW uVCuqW &5@p2(upW 2qW u2)#21 and the free resolven
operatorG0

nr(e)5@e2k2#21.
In momentum space Eq.~49! is given by

4pE
0

`

dp p2F 1

2e (n)2p2
2

1

2e (1)2p2G
18p2E

0

`

dq q2E
0

`

dp p2F tC~p,q;2e (n)!

~2e (n)2p2!~2e (n)2q2!

2
tC~p,q;2e (1)!

~2e (1)2p2!~2e (1)2q2!
G50, ~51!

ands-wave projectedT-matrix in Eq.~51! is the solution of

tC~p,q;e!5
1

2p2

1

pq
ln

~p2q!2

~p1q!2
1

1

pE0

`

dp8
p8

p

3 ln
~p2p8!2

~p1p8!2

tC~p8,q;e!

e2p82
. ~52!

We solve Eq.~49! for n52 for each givene (1). Now, the
motivation for plotting in Fig. 1 the binding energy of th
excited state against the ground-state energy is clear. In T
I as well as in Fig. 1, the renormalized model reprodu
with less than 10% accuracy the model results of Eq.~48!. In
the limit of h→`, the renormalized model should work be
ter; however, in the test case of Eq.~48! this limit corre-
sponds to a vanishing Yukawa interaction, and the res

TABLE I. Results forS-wave binding energies of the nonrela
tivistic model of Eq.~48!, our calculation withN5100@C-Y#, com-
pared to the effective Coulomb plus Dirac-delta interaction@C-d#.

h e (1) @C-Y# e (2) @C-Y# e (2) @C-d#

0.1 0.1109 0.06781 0.06237
1 0.5119 0.1813 0.1736

10 0.9495 0.2449 0.2439
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tend trivially to the Coulomb value of the first excited sta
of 0.25 for the ground-state value of 1, which in fact is o
served in Fig. 1 and Table I.

B. Effective pion model

The effective model of@2# corresponds to using the non
relativistic phase spaceA(k)51 in Eq. ~6! and a smeared
delta interaction of a Yukawa form:

mp
2 w~kW !5@4m214k2#w~kW !2

4

3p2
aE dkW8

m

3S 2m2

~kW2kW8!2
1

h2

h21~kW2kW8!2D w~kW8!, ~53!

which was solved with parameters adjusted to fit the p
mass and the rho-meson mass, resulting inm5406 MeV, a
50.6904, andh51330 MeV@2#. The value ofh was found
from the condition that the first excited bound-state massmp*
satisfy the Strutinsk requirement at the extremum:

d

dh
mp* 50. ~54!

However, the pion charge radius calculated according to
nonrelativistic formula in@2# is about one-half of the empiri
cal value. We will confirm this fact in the renormalized e
fective model while using Eq.~47! and wp from Eq. ~36!
with A(k)51 to compute the pion radius.

In Fig. 2, we present our results for the pion mass a
function of a for h51330 MeV. Our agreement with th
calculation of@2# is within 10%. In Fig. 3, we show result
for our calculation of the ground- and excited-state mas
from Eq.~53!, for a varying andh51330 MeV, compared to
the renormalized model for the Coulomb plus Dirac-de
interaction. In the last case, the bound-state masses o
pion ground and exciteds-wave states, are found numerical
from the zeros of Eq.~34! with the Green’s function of the

FIG. 2. Pion mass as a function of the strength of the Coulo
interactiona. Nonrelativistic model for Coulomb plus Yukawa in
teraction, m5406 MeV, solid line. Yukawa range parameterh
51330 MeV@2#. The solid square is the calculation of Ref.@2#.
7-7
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Coulomb-like potential obtained from the solution of the i
tegral scattering equation~20!. In both equations, which de
fine the nonrelativistic renormalized model Coulomb p
Dirac-delta interaction,A(k)51 is used. We have disre
garded the effect of the energy transfer inQ2 of Eq. ~2! as
being a short-range effect parametrized by the value of
pion mass, which is input in this calculation. In momentu
space Eq.~34! is given by

4pE
0

`

dp
p2

A~p! F 1

mp*
224m224p2

2
1

mp
2 24m224p2G

18p2E
0

`

dq
q2

AA~q!
E

0

`

dp
p2

AA~p!

3F tV~p,q;mp*
2!

~mp*
224m224p2!~mp*

224m224q2!

2
tV~p,q;mp

2 !

~mp
2 24m224p2!~mp

2 24m224q2!
G50, ~55!

and thes-wave projectedT matrix in Eq.~55! is

tV~p,q;M2!5E
21

1

d cos~u!^pW uTV~M2!uqW &, ~56!

which is the solution of

tV~p,q;M2!5
4m

3p2

a

pq

ln
~p2q!2

~p1q!2

AA~p!A~q!

1
8m

3p
aE

0

` dp8

AA~p!A~p8!

p8

p

3 ln
~p2p8!2

~p1p8!2

tV~p8,q;M2!

M224m224p2
, ~57!

the momentum space representation of thes-wave projection
of Eq. ~20!.

The agreement between the renormalized model and
smeared delta model is within a fraction of a percent, wh
still improves as the weakly bound limit of the ground sta
is approached, as shown in Fig. 3. The calculation of@2# is a
few percent below ours. The inclusion of the relativis
phase space in the renormalized model of the Coulomb
Dirac-delta interaction, Eq.~34!, makes less bound the ex
cited state for a given ground-state mass. As the pion m
grows the relativistic phase-space effect tends to vanish

In the other study performed,a50.6904 was kept un-
changed, while varyingh between 350 and 1350 MeV. Th
results for the excited bound-state mass against the gro
state mass are shown in Fig. 4. The renormalized Coulo
plus Dirac-delta calculation agrees within a fraction of a p
cent with the smeared Dirac-delta calculation. The relativ
tic phase space in the renormalized interaction makes
excited state less bound for a given ground-state mass.
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C. Effective meson model

The bound-state masses of the meson ground and ex
s-wave states, are found numerically from the zeros of
~34! with the Green’s function of the Coulomb-like potenti
obtained from solution of the integral scattering equat
~20!. The energy transfer inQ2 in Eq. ~2! was neglected.

The renormalized strength of the singular interactio
from Eq. ~22!, is

lR
21~mp

2 !5^xuG0~mp
2 !TV~mp

2 !G0~mp
2 !ux&, ~58!

FIG. 3. Mass of the excited state as a function of the grou
state pion mass. Nonrelativistic model for Coulomb plus Yuka
interaction,m5406 MeV, solid line. Strength of the Coulomb po
tential within 0,a,0.7 and Yukawa range parameterh51330
MeV @2#. The solid square is the calculation of Ref.@2#. The non-
relativistic effective model~Coulomb plus Dirac-delta! is given by
the solid circles. The relativistic effective model for the Coulom
plus Dirac-delta interaction is given by the dashed line.

FIG. 4. Mass of the excited state as a function of the grou
state pion mass. Nonrelativistic model for Coulomb plus Yuka
interaction,m5406 MeV, solid line. Strength of the Coulomb po
tential a50.6904 and Yukawa range parameter within 0,h
,1350 MeV. The solid square is the calculation of Ref.@2#. The
nonrelativistic effective model~Coulomb plus Dirac-delta! is given
by the solid circles. The relativistic effective model for the Co
lomb plus Dirac-delta interaction is given by the dashed line.
7-8
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with the condition, Eq.~27!, at the physical pion mass i
shown in Fig. 5 form5406 MeV and compared to the pe
turbative calculation

lR
21~mp

2 !upert5^xuG0~mp
2 !VG0~mp

2 !ux&, ~59!

with V from Eq. ~8! and TV the solution of Eq.~20!. For
values ofa below 0.2 the agreement between the pertur
tive and nonperturbative calculations of the renormaliz
strength is quite good, giving confidence to our numeri
calculations.

The wave functionwp of the pion from Eq.~36! in mo-
mentum space is written as

wp~p!5
1

mp
2 24m224p2 S 1

AA~p!

12pE
0

`

dq
q2

AA~q!

tV~p,q;mp
2 !

mp
2 24m224p2D . ~60!

The first-order perturbative pion wave function is

wp~p!upert5
1

AA~p!

1

mp
2 24m224p2

3S 11
8m

3p
aE

0

` dq

A~q!

q

p

ln
~p2q!2

~p1q!2

mp
2 24m224p2

D ,

~61!

and for a50 the pion wave function has the asympto
form

wp
0 ~pW !5

1

AA~p!

1

mp
2 24m224p2

. ~62!

FIG. 5. Inverse renormalized strengthlR
21(mp

2 ) in units ofmr as
a function of the Coulomb intensity potential parametera for a pion
mass of 140 MeV. Nonperturbative calculation~solid line! and first-
order perturbative calculation~dashed line!; see the text for an ex
planation.
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In @2#, the pion wave-function eigenfunction of the effe
tive square mass operator of the Coulomb plus Yuka
model, Eq.~53!, was approximated by the following analyt
cal form:

wp
a ~pW !5

N
~11p2/pa

2!2
, ~63!

where N is an arbitrary normalization and the fit is pe
formed for a50.6904,h51330 MeV, andm5406 MeV,
and pa5515 MeV is adjusted to the numerical solution
Eq. ~53!.

The various nonrelativistic models of the pion wave fun
tion, with A(k)51, are plotted in Fig. 6. In this figure,
comparison betweenwp , wpupert , wp

a , andwp
0 is performed.

The model parameters area50.6904 andm5406 MeV and
the normalization is arbitrary. The perturbative calculati
reproduceswp(p) for p belowm. The asymptotic wave func
tion wp

0 (p) overestimateswp(p), as it should be for an at
tractive Coulomb-type interaction, and for smallp it ap-
proaches the nonperturbative eigenfunction. The analyt
approximation works quite good for momentum up to abo
1.5m. More results on the pion wave function are shown
Fig. 7, where the results forA(k)51 with the full calculation
are compared. The effect ofA(p) diminishes the magnitude
of w(p), as one could anticipate from Eq.~60!. Also we plot
wp(p) for a50.18 andm5386 MeV, which is above the
curve of the previous case due to the decrease of the C
lomb attraction~this parameter fits the empirical pion ra
dius!. We point also that, for very high momentum, again t
asymptotic form dominates, as the second term of Eq.~60!
tends to zero faster than the first one.

We are going to compute the pion radius in the effect
renormalized model of the pion using Eqs.~40!, ~45!, and
~47!. In the last two cases, the pion wave function from E

FIG. 6. Pion wave function (w) with arbitrary normalization as
a function of momentum in units of quark mass. Calculations p
formed withA(k)51. Pion model wave function model of Eq.~60!
for a50.6904 andm5406 MeV ~solid line!, first-order perturba-
tive calculation from Eq.~61! ~short-dashed line!, asymptotic form
Eq. ~62! ~dotted line!, and fit from Eq.~63! ~dashed line!.
7-9
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~60! with A(k)51 is used. The pion wave function is know
from Eqs.~35! and~60! from which the charge radius includ
ing the effect of quark spin is obtained from integration
Gaussian quadrature of the difference

DFp~q2!5Fp~q2!2Fp~0!, ~64!

obtained from Eq.~40!, and the pion radius is calculate
from

r p5F6
d

dq2
DFp~q2!U

q250
G 1/2

. ~65!

In the case the quark spin is neglected, two possibilities
the calculation of the pion radius are considered: one thro
Eq. ~45! in which only the spin factors are simplified in th
limit of the quark mass being infinity, while the normaliz
tion is defined as in Eq.~40!, known from the empirical
value of f p and the number of colors. The second possibi
is to declare normalized to 1 theqq̄ Fock component of the
pion wave function and use the formula for the form factor
which the quark has no spin, Eq.~47!.

The results for the pion charge radius as a function of
strength a of the Coulomb-like interaction, Eq.~8!, are
shown in Fig. 8. Forr p50.67 fm we founda50.18 using
Eq. ~40!. Our calculations obtain the pion charge radius fro
the relativistic expression~40! which is known to give abou
twice the nonrelativistic radius@12#. The attractive Coulomb-
like interaction increases the radius over the soft-pion li
with a50 which is below its experimental value. In th
sense consistency is found with the effective theory wh
has an attractive Coulomb-like interaction. The repuls
would be completely inconsistent with the pion radius.

The pion charge radius obtained from first-order pertur
tive calculations of the pion wave function

FIG. 7. Pion wave-function (w) as a function of momentum in
units of quark mass. Pion model fora50.6904 andm5406 MeV,
calculation with Eq.~60! ~dashed line!, consideringA(k)51 ~solid
line!. Results fora50.18 andm5386 MeV ~dotted line!.
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cp~x,kW'!upert5A A~k!

x~12x!
wp~k!U

pert

~66!

is also shown in Fig. 8. Consistent with the strength calcu
tion presented in Fig. 5, we observe that fora below 0.2 the
perturbative calculations match the nonperturbative resu

The results for the scalar quarks form factors withw from
Eq. ~60! calculated in the effective renormalized theory f
A(k)51 are also shown in Fig. 8. The calculation ofr p with
Eq. ~45! shows values above the ones calculated with
~47!, which are too small compared to the empirical valu
indicating the importance of the physical normalization
the qq̄ Fock component of the wave function usingf p . We
also performed a first-order perturbative calculation ofr p for
the wave function normalized to 1. The agreement betw
the perturbative and nonperturbative calculations is reas
able fora below 0.2.

The plot of the pion charge radius against the mass of
first excited state is shown in Fig. 9. For decreasing value
a, the pion charge radius diminishes and consistently
excited-state mass increases; i.e., this state becomes
bound. It is clear from this figure that to simultaneously
the radius and the mass of the rho meson~768 MeV! we are
obliged to use a different quark mass from the value of 4
MeV. For comparison we also show the results from E
~45!.

The experimental pion radius of 0.6760.02 fm is fitted
with mu5mū5386 MeV anda50.18, resultingr p50.67
fm and the mass of the singlet-2s state of 768 MeV. The
singlet-2s excited state mass of theūu system is identified
with the r-meson mass in the present effective QCD mod
We remind the reader that for a given pion mass, the f

FIG. 8. Pion charge radius as a function of the strengtha of the
Coulomb potential. Quark mass of 406 MeV. Results for Eq.~40!:
nonperturbative calculation of the wave function~solid line! and
first-order perturbative calculation~dashed line!. Results for Eq.
~45! and wave function obtained withA(k)51 ~solid line with
triangles!. Results for Eq.~47! with the wave function obtained with
A(k)51: nonperturbative calculation of the wave function~solid
line with dots! and first-order perturbative calculation~dashed line
with dots!.
7-10



s.
te
s

wi
om
t

te
n
d

l t
e

tio
ki

s

a
o
im
d

st

er-

able
ze
for

and

or-
ry
ica-
ple
is
rix.
o-
dis-
ass.
ri-

his
that
or
oun-
.
ion
us
the
rgy.
mb
ed
del

he

th

he
06

and

ss
the
d to

y

RENORMALIZATION OF AN EFFECTIVE LIGHT-CONE . . . PHYSICAL REVIEW D64 054007
model parameters are two:a and the constituent quark mas
As was mentioned at the beginning of Sec. IV, they are fit
through the values of the pion charge radius and rho-me
mass. Then, the quark mass is varied to form mesons
one up antiquark together with strange, charm, or bott
quarks. The masses of the constituent quarks were within
range of 500–5000 MeV. The results are shown in Table
and compared to the experimental data. The singlet-2s states
are identified with the lowest-mass vector mesons sta
since the Dirac-delta interaction is the effective hyperfi
interaction, the reason for the splitting between the pseu
scalar and vector mesons. Although in the singlet channe
hyperfine interaction is attractive, which is not valid for th
spin-1 mesons, we believe that the Dirac-delta interac
parametrizes the short-range physics beyond that by ta
care of the empirical value of the pion mass.

It is clear that the split between the heavy-meson mas
will not be adjusted in the present calculation fora small.
This is reasonable, since these mesons are weakly bound
the wave function spreads out in the region where the c
finement potential, not present in our model, should be
portant. In Fig. 10, we study the difference of the excite
and ground-state masses as a function of the ground-

FIG. 9. Pion charge radius as a function of the mass of

excited qq̄ state for a constrained pion mass of 140 MeV. T
strengtha is within the range of Fig. 6 and the quark mass is 4
MeV. Results for Eq.~40! ~solid line! and for Eq.~45! with the
wave function obtained consideringA(k)51 ~solid line with tri-
angles!.

TABLE II. Results for S-wave meson masses: singlet-1s
(Mb,th

(1s)) and singlet-2s (Mb,th
(2s)) and experimental values (Mb,expt

(1s,2s)).
All masses in MeV.a50.18.

q̄q m1 m2 Mb,th
(1s) Mb,expt

(1s) Mb,th
(2s) Mb,expt

(2s)

ūd 386 386 140 p6:140 768 r:768

ūs 386 500 511 K6:494 882 K* :892

ūc 386 1500 1852 D0:1865 1882 D* 0:2007

ūb 386 5000 5375 B6:5279 5383 B* :5325
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mass. As we have seen in Table II, the difference is und
estimated fora50.18 above the kaon mass. Fora50.5 the
experimental data are reproduced. This is in fact reason
if we think thata should on average increase with the si
scale, indicating a confining behavior, which is stronger
the heavy mesons since they are less bound than the pion
the kaon.

VI. CONCLUSION

The essential development made in this work is the ren
malization of the effective QCD-inspired Hamiltonian theo
with a singularity at zero range and its consequent appl
tion to the pion and other mesons. The method is an exam
of the Hamiltonian renormalization procedure and it
equivalent to a subtracted equation for the transition mat
The physical renormalization condition is given to the tw
particle model at the subtraction point and in the cases
cussed here it is the ground-state binding energy or m
The treatment is shown to be renormalization group inva
ant, i.e., independent of the arbitrary subtraction point. T
independence is expressed by a fixed-point Hamiltonian
brings physical input to the theory—the pion mass
ground-state binding energy—as well as the necessary c
terterms that render all the momentum integrations finite

First, we have studied in an example the renormalizat
method applied to a two-body model with a Coulomb pl
Dirac-delta interaction, where we have calculated
excited-state energy for a given ground-state binding ene
The results are compared to calculations with a Coulo
plus repulsive Yukawa interaction and the renormaliz
model reproduces with less than 10% accuracy the mo
results of Eq.~48!. The success of this result drives us to t
solution of the renormalization problem of the↑↓ model@2#.

The effective mass operator equation in the↑↓ model, Eq.

e
FIG. 10. The difference between the masses of the excited

ground state of theq̄q system as a function of the ground-state ma
in the effective relativistic model. The quark mass is varied in
range between 386 and 5000 MeV. The other quark mass is fixe
386 MeV. Calculations witha50.18 ~solid line! and a50.5
~dashed line!. The experimental values from Table II are given b
the solid circles.
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T. FREDERICO AND HANS-CHRISTIAN PAULI PHYSICAL REVIEW D64 054007
~1!, has as eigenstate the lowest Fock-state componentq̄q)
of the light-cone wave function of a meson bound system
constituent quarks or dressed quarks~not to be confused with
the bare quark!. This model picks out one particular aspect
the gluon exchange between quarks, namely, the strong
traction of the spin-spin interaction in the singlet chann
Previously@2#, the renormalization was carried out by fir
regularizing the Dirac-delta interaction through a Yuka
form and then its parameter was found by the Strutin
requirement that the mass of the excited state be statio
with respect to the variation of the regularization parame
The step forward in this work was the use of the renorm
ization group invariant approach, in which the regularizat
parameter is not necessary to solve the model. All the sh
range physics is parametrized by one parameter: the re
malized strength of the Dirac-delta interaction, which is d
termined by the mass of the pion. We showed that the res
for the mass of the excited state obtained with the renorm
ized model and the smeared delta regularized model ar
agreement within a fraction of a percent, for the sa
ground-state mass, which was varied either by changing
Coulomb interaction intensity or the Yukawa range. The c
cordance still improves as the weakly bound limit of t
ground state is approached. The effect of the relativi
phase space in the renormalized model of the Coulomb
Dirac-delta interaction, Eq.~34!, makes the excited state, fo
a given ground-state mass, less bound. This difference t
to vanish as the pion becomes weakly bound.

The various models of theq̄q Fock component of the pion
light-cone wave function, consideringA(k)51 and the rela-
tivistic phase space@A(k) from Eq.~5!#, were calculated and
compared with the analytical form and perturbative res
We obtained the reduced wave functionwp , Eq. ~60!, solu-
tion of the renormalized↑↓ model, wpupert , Eq. ~61!, the
analytical formwp

a , Eq. ~63!, and the asymptotic formwp
0 ,

Eq. ~62!. We have used model parametersa50.6904 and
m5406 MeV @2#. Although for p below m all the calcula-
tions are reasonably consistent, the high-momentum ta
dominated by the asymptotic wave functionwp

0 (p), which
overestimateswp(p), as it should be for an attractiv
Coulomb-type interaction, and for smallp it approaches the
nonperturbative eigenfunction, as well as for very high m
mentum. The analytical approximation works quite good
momentum up to about 1.5m; however, it does not have th
asymptotic tail for high momentum. The relativistic pha
space diminishes the magnitude ofw(p) as clearly seen in
Eq. ~60!.

The calculation of the pion charge radius was perform
in the renormalized effective QCD-inspired Hamiltonia
theory with Eqs.~36! and ~40!, and although we have sim
plified the spin dependence in the dynamical equation,
important in the evaluation of the radius. For this purpose
have used an effective pseudoscalar Lagrangian to cons
the spin part of the pion wave function; it gives the absol
normalization of the lowest Fock component of the ligh
cone wave function in terms of the weak decay constantf p ,
the constituent quark mass, and the number of colors. T
ing off the Coulomb-like interaction, we retrieved the we
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known result valid in the soft-pion limit@14#. We also com-
pared the values forr p obtained with expressions where th
quark spin is neglected and the wave function normalized
1. We pointed out the necessity of the correct normalizat
of the wave function of the↑↓ model according to thef p

value to be able to fitr p , which is reminiscent of the fac
that f p andr p are closely related in the light-front phenom
enology@12#.

The experimental pion radius of 0.6760.02 fm was fitted
with mu5mū5386 MeV and a50.18, resulting in r p

50.67 fm and the mass of the singlet-2s state of 768 MeV.
We remind the reader that the pion mass is input in the ren
malized model calculation. The singlet-2s excited-state mass

of theūu system was identified with ther-meson mass in the
present effective QCD model. We stress that in the sing
channel the hyperfine interaction is attractive, which is n
valid for the spin-1 channel of the vector mesons. Once
hyperfine part is substituted by a potential that does not
tinguish between spin-1 and spin-0 states, the identifica
with the physics of chiral symmetry breaking is strictly los
However, we believe that the Dirac-delta interaction para
etrizes the short-range physics, which is brought to
model by the empirical value of the pion mass. In essen
without being too naive, in order to fit the pion charge rad
with success and with reasonable parameters, it was esse
that ~i! the Coulomb-like interaction beattractiveand~ii ! the
normalizationof the form factor be consistent with the em
pirical f p value.

With respect to the masses of the ground state of the p
doscalar and vector mesons with one up antiquark toge
with strange, charm, or bottom quarks, which were cal
lated as a function of the constituent quark mass, the res
were in qualitative agreement with the data fora50.18. We
tried a better fit of this data, since it was clear that the s
between the heavy-meson masses would not be adjuste
the present calculation fora small. This, in fact, seems rea
sonable, since these mesons are weakly bound and
quarks can be found in a region where the confinement
tential, not present in our model, is important. The differen
between the vector and pseudoscalar mesons masses fo
sameq̄q pair is underestimated fora50.18 above the kaon
mass. We found that fora50.5 the experimental data ar
reproduced. This gives us some hope that it is possible
refine the↑↓ model to include more physics than initiall
thought. In regard to this extension, it is reasonable to th
that a should on average increase with the size scale, in
cating a confining behavior, which we found stronger for t
heavy mesons since they are less bound than the pion an
kaon. In short, a reasonable description of the physics of
pion and other scalar and vector mesons was found, ta
into account the simplicity of the renormalized effectiv
light-cone QCD-inspired theory.
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APPENDIX: DERIVATION OF THE RENORMALIZED
T MATRIX

In this appendix, the solution of Eq.~17! to find the renor-
malizedT matrix, Eq.~19!, is performed in detail. We wan
to solve Eq.~17!:

TR~M2!5V1VR
d 1~V1VR

d !G0
(1)~M2!TR~M2!. ~A1!

The regular part of the potentialV is defined by Eq.~8! and
the renormalized singular interaction is given by Eq.~13!,
rewritten as a matrix equation

VR
d 5ux&lR~m2!^xu2ux&lR~m2!^xuG0

~1 !~m2!VR
d ,

~A2!

which has the solution

VR
d 5ux&vR~m2!^xu, ~A3!

with the function

vR~m2!5@lR~m2!1^xuG0
~1 !~m2!ux&#21. ~A4!
s

05400
sThe functionvR(m2) contains the divergences in the m
mentum integrals which exactly cancel such infinities in E
~A1!. It is enough for the formal manipulations that wi
come. However, one could equally well introduce a cutoff
Eqs.~A1! and~A4!, and perform the limit of the cutoff going
to infinity just after the solution of Eq.~A1!, in which all the
necessary cancellations happen and the limit is finite.

Next, Eq.~A1! is rewritten as

@12VG0
(1)~M2!#TR~M2!

5V1VR
d 1VR

d G0
(1)~M2!TR~M2!, ~A5!

and inverting the operator in the left-hand using the regulaT
matrix, TV(M2), solution of Eq.~20!, one has

TR~M2!5TV~M2!1@11TV~M2!G0
(1)~M2!#ux&vR~m2!

3^xu@G0
(1)~M2!TR~M2!11#. ~A6!

The ‘‘bra’’ function ^xuG0
(1)(M2)TR(M2) has to be cal-

culated in order to find the renormalizedT matrix. We mul-
tiply Eq. ~A6! by ^xuG0

(1)(M2) on both sides, and solving i
we get
^xuG0
(1)~M2!TR~M2!5

^xuG0
(1)~M2!TV~M2!1^xuGV(1)~M2!ux&vR~m2!^xu

12^xuGV(1)~M2!ux&vR~m2!
, ~A7!

where the regular potential resolvent is

GV(1)~M2!5G0
(1)~M2!1G0

(1)~M2!TV~M2!G0
(1)~M2!. ~A8!

The ‘‘bra’’ function of Eq. ~A7! is introduced back into Eq.~A6!, and with a little algebra one finds

TR~M2!5TV~M2!1
@11TV~M2!G0

(1)~M2!#ux&^xu@G0
(1)~M2!TV~M2!11#

vR
21~m2!2^xuGV(1)~M2!ux&

, ~A9!

which, after introducing Eq.~A4! and the explicit form of the resolvent of Eq.~A8!, results in the renormalizedT matrix of Eq.
~19!.
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