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Renormalization of an effective light-cone QCD-inspired theory for the pion and other mesons

T. Frederico
Dep. de Fsica, Instituto Tecnolgico de Aeronatica, Centro Tenico Aeroespacial, 12.228-900 Gdosedos Campos, $aPaulo, Brazil

Hans-Christian Pauli
Max-Planck Institut fu Kernphysik, D-69029 Heidelberg, Germany
(Received 21 March 2001; published 10 August 2001

The renormalization of the effective QCD Hamiltonian theory for the quark-antiquark channel is performed
in terms of a renormalized or fixed-point Hamiltonian that leads to subtracted dynamical equations. The
fixed-point Hamiltonian gives the renormalization conditions as well as the counterterms that render the theory
finite. The approach is renormalization group invariant. The parameters of the renormalized effective QCD
Hamiltonian come from the pion mass and radius for a given constituent quark masss ahd &xcited 2
states oqu are calculated as a function of the mass of the quabeings, c, or b, and compared to the
experimental values.
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[. INTRODUCTION The delta function is an approximation to this hyperfine po-
tential, which also involves zero modes or vacuum degrees
The effective mass operator equation for the lowest light-of freedom.

front Fock-state component of a bound system of a constitu- For the purposes of this work, we leave out the energy
ent quark and antiquark of massas and m,, obtained in  transfer in Eq(2) that leads to additional singularities for the
the effective one-gluon-exchange interaction approximationtridimensional momentum going to infinity that we are not
which is our starting point, was reviewed in R¢L]. The going to treat here. The effective mass operator of E&.
breakthrough to simplify this equation in the spin-zero chan-acting in the quark-antiquark sector has also been obtained
nel was achieved if2] by formulating the] | model, which by iterated resolvents, which were derived[#] and pre-
is reduced to sented in greater detail ifb], which allows us to express
systematically the higher Fock-state components of the wave
function in functionals of the lower ones. In this way, the

P(xK,) higher Fock-state components can be retrieved frongtpe
projection, and the full complexity of the QCD theory is in
Ry , , principle described by the effective Hamiltonian acting in the
_ dx'dk; 6(x")o(1—-x") lowest Fock-state componefat].
VX(1=x)x'(1—x") However, thel | model of Eqg.(1) is a rather drastic ap-
proximation to a severe truncation of the Fock space in the
effective theory. The initial truncation of QCD involves only

one-gluon exchange, which keeps Fock states with ugpqto
plus one gluon, and so the rich nonlinear structure of QCD is
not directly present heréhis is a “colored QED’). More-
over, the spin dependence and momentum dependence in the
hyperfine interaction are greatly simplified to get Edg).
Also, confinement is absent in the model, but this is not a
main drawback, at least for the pion, which is strongly bound

PO 1 'oo 'oo in the constituent picture and has in practice a wave function
Q(x .k X' ki) == 5[(ki—k)"=(ka=k2)"]. (20 confined to short distances.

For convenience, the Sawicki transformation, first derived

) . ) for equal massel6] and consistently formulated for unequal
The coupling constant for the Coulomb-like potential and 1 ,55ses in Ref:3], is applied to Eq(1) which allows us to

A is the bare coupling constant of the Dirac-delta hyperfingeyyrite it in the instant-form momentum basis. It is useful in
interaction. The Dirac-delta hyperfine potential between congis case since the momentum transfer is approximated by a

stituent quarks in Eq(l) is one aspect of chiral symmetry qiational invariant form given by Ed2)
breaking in QCD; another one is the constituent quark mass ’

kK24+m? k2 +m?
+

2 ) —

4m1m2 o )
o MPRD. @

whereM is the mass of the bound state apds the projec-
tion of the light-front wave function in the quark-antiquark
Fock state. The mean four-momentum transfdBis

itself. On the light front, chiral symmetry corresponds to (Eq+k,)
helicity conservation, which is broken in thigl model by x(k,) = —t = 3
the hyperfine potential and by the constituent quark mass as Ei+Es

well. The hyperfine interaction, which causes quark helicity . _
flips, is a clear candidate to create the pi-rho mass differencend the Jacobian of the transformation ®fl(, ) to k is
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.oxX(1-x) . physical input is the pion mass which determines the excited
dxd klzmdk, (4)  states as well as the mass of the other mesons. The physical

' observables of the renormalized effective theory do not de-

with the dimensionless function pend on the subtraction point. In Sec. 1V, the calculation of
the pion charge radius is discussed, and although we have

1 EiE, simplified the spin dependence in the dynamical equation, it

)= ﬁr E,+E, S is important in the evaluation of the radius. For this purpose

we have used an effective pseudoscalar Lagrangian to con-
and the reduced mass,=m;m,/(m;+m,). The individual  struct the spin part of the pion wave function, and turning off
i = 2 k2 (i— —Ik the Coulomb-like interaction we retrieve a well-known result

energies ard; = ym; +k” (i=1,2) andk=|K| pyalid in the soft pion limif 14]. To gain insight we also write

down the expressions where the quark spin is neglected. The

numerical results are presented in Sec. V. We have solved a
nonrelativistic example for a Coulomb plus a Dirac-delta in-
e — teraction compared to a model in which the Dirac delta is
37 JA(K)A(K')Q? substituted by a Yukawa potential. We also show how this
effective theory, including a Dirac delta, can mimic a finite

The mass operator equation in instant-form momentu
variables is given by

4amg a

M2¢<E>=[E1+Ez]2¢<|2>—f dR'(

_ A (K" ©6) range theory, calibrated to the pion mass. Then, we present
m, VAK)A(K') ¢ ' results for the pion charge radius and for the mass of the

excited state, which we identified with the isovector vector
wherems=m; +m,, the phase-space factor is included in themesons. Finally, in Sec. VI, we present our conclusions.
factor LAA(K)A(K") and yX(1—x) (x.k, ) = VA(K) ¢(K).
The mass operator equati@f) needs to be regularized Il. DEFINITIONS

and renormalized in order to give physical results. In Ref. L ) )
[2], the delta function was smeared out to a Yukawa form, For our purposes it is convenient to work in an operator
regularizing Eq(6) and the parameters found from the pion form of Eq. (6):
mass and radius. In principle the size parameter in momen-
tum space of the Yukawa potential should be allowed to go to
infinity while the physical input is kept constant. To make the _ )
dependence on the size parameter vanish is a nontrivial tashnd the free mass operathf, is the sum of the ener&gles of
which is the purpose of this work. Here we obtain a renor-duarks 1 and 2V the Coulomb-like potential, an¥” the
malized form of the equation for the bound state méss Dirac-delta interaction in the nonre!atmstlc limit. The matrix
which is invariant under renormalization group transforma-éléments of these operators are given by
tions, (ii) the physical input is given by the pion mass and
radius, andiii) there is no regularization parameter. 4mg a

_ We are going to apply the recent ren_orm_alization te_ch- Q JA(K)Q2JAK')
nigues developed in the context nonrelativistic Hamiltonian
thepry[7—9] to Eq. (6), gince it define_s an effective Hamil- 514 the short-range singular interaction
tonian for the quark-antiquark dynamics. The renormalized
matrix is the solution of a subtracted scattering equation, the
physical input of which is given by th& matrix at some <R|V§|E'>=<E|X>A<X||z'>: LL; (9)
reference scalg. The scheme is invariant under a change of m, My JA(K) VA(K")
the arbitrary scalew and consequently the inhomogeneous
term of the subtracted scattering equation satisfies a renofhe phase-space facté(k) is defined by Eq(5), and the
malization group equation, which expresses the matching gfquare momentum transfé” comes from Eq(2). For con-
the theories at the scalgsand .+ du [8]. We will find the  venience in the formal manipulations of the next section, the
mass of the bound state from the pole of the renormalizediorm factor of the separable singular interaction is introduced
scattering matrix defined from the mass operator, (Bg. and defined b)(l?l)()zllx/A(k).

This work is organized as follows. In Sec. Il, the operators  The T matrix is obtained from the Lippman-Schwinger

for the Coulomb-like and for the singular interactions ap-equation
pearing in the mass operator are defined, and the Lippman-
Schwinger equation for th@ matrix related to the given T(M2)=V+V‘5+(V+V5)GE,+)(M2)T(M2), (10)
mass operator is written. In Sec. Ill, we show how to renor-
malize the effective theory defined by the mass operator ifvhereM is the mass of the scattering state and the Green’s
Sec. Il through the definition of a renormalized or fixed-pointfunction with outgoing wave boundary condition is
singular interaction. This procedure is equivalent to using
subtracted scattering equations. We discuss the renormaliza-
tion group invariance of the method. The explicit form of the Gg+)(M2)= 5 7 -
renormalizedT matrix is obtained(the Appendix and the M—=Mptie

(M3+V+V?9)| o)y =M?|¢), (7)

(KIVIK"y=— ®)

11)
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In the next section we will obtain a renormalized form of It is presented here in a general way, where we have dropped

T(M?). the § superscript, just to remind the reader that for a regular
potential Eq.(15) is completely equivalent to the traditional
Il. RENORMALIZATION OF THE EFFECTIVE THEORY Lippman-Schwinger scattering equation.

. ) The renormalized interaction is independent of the sub-
The ideas that have been developed in RETs:9] t0  raction point; i.e., the physics expressed by the renormalized
construct a renormalize@ matrix in nonrelativistic Hamil-  interaction is invariant by changes in the arbitrary renormal-

interaction can be split in a regular potential of finite range

(V) and a Dirac-delta singularity as in E.0). In this case, d

the physical information at the subtraction point will be in- —V2=0, (16)
troduced through the renormalized mass operator as well as du?

all the counterterms that render finite thematrix equation

(10). The physical information at the subtraction point is thequalifying the interaction as the fixed point of E(L6),
T matrix corresponding to the Dirac-delta interaction. Thiswhich implies that thel matrix found from solution of
renormalization approach has been applied in the two-

nucleon system to calculate tAematrix of the one-pion- TR(M2)=V+V3+(V+VR)GEI (M) TR(M?)  (17)
exchange potential, without the necessity of regularization or
form factors[7]. is invariant under dislocations of the subtraction point. Con-
The renormalized interaction is given by sequently, the renormalized coupling constant of the Dirac-
delta interaction changes as the subtraction point moves, ac-
Ve=V+V3, (120 cording to the Callan-Symanzik equation
where the renormalized Dirac-delta interaction is given by
)= T i)
1 dp? RUM oAV (,u2+is—M2)2 RUMLT),
V= Ta(u?) 0
1+ TGS (1?) (18)
1 obtained from Eq(16).
=T2(u?) I Although the renormalized interaction is not well defined
1+Gy () Tr(u?) for singular interactions, the resultifigmatrix obtained by

% solving Eq.(17) is finite. This givesa posteriorijustification

—TO( 2 — G (AT ()", 13 for the formal manipulations used in Eq43) and(17). The

R )ngo[ o (W)Tr(#7)] (13 sum in the expression of the renormalized interactib®
. _ _ _ makes explicit all the counterterms which exactly cancels the
and Ty (u?) is the renormalized matrix of the Dirac-delta infinities in the momentum integrals of the scattering equa-

interaction, with matrix elements given by tion (17), while introducing physical information through the
s o . ) . value of the renormalized strength of the Dirac-delta interac-
(PITR(LA)]A)=(PIX)Nr(1*){x]a), (14 tion. We choosexr(u?), in the following, in accordance

with the physical value of the pion mass. We observe that,

2 - . .
where\ z(u?) is the renormalized strength of the Dlrac-deltainstead of working formally with the operatdt, , we could

interaction at the mass scal€. In the nonrelativistic limit use an ultraviolet momentum cutofh( by defining in this

the form factory(a)=1, and the renormalized interaction way a regularized interaction. After the construction of the

b(.atzoir;]es the Dlralc;-d((ajltg Lntera;g:tlon. The scattering E?uatlc’;—matrix regularized equation one could perform the limit
¥VIrm Ueg;er;;)r:nal:fttla rm re;ra:}c |onr; i?p??rfmm %\?vuhi rr;slc ”e — o0, arriving at the same results as the ones obtained di-
0 —Jl after a fittie rearrangement ot terms, cha .rectly with the use of the renormalized interaction.

the divergent momentum integrals are removed, and it is The solution of the scattering equatiot?) is found by

written as using the two potential formulas in terms of thematrix of
. V 2 .
To(M2) =Tol 12+ Tol w2 G (M2) = GEF)( 42 the regular potentiaV, TY(M*<) and the renormalized ma-
RMD=Tr(uD)+ Tr(p5)[Go (M5 = Go (1] trix of the Dirac-delta interactiofisee the Appendix which
X Tr(M?). (15)  results in

[1+TY(MAGFI (M X)(XI[GE(MA)TV(M?) +1]

AR1<M2>—<X|[1/<M2+is—MS)—1/<u2+ie—MS)]lx>—<xleé*><M?)TV<M2>GB*’<M2>|X>(’ 0
1

TRr(M?)=TY(M?)+

whereTY(M?) is a solution of the Lippman-Schwinger equation
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TV(M?)=V+VG{ (M) TY(M?). (20)

The structure of Eq(19) allows one more subtraction in

PHYSICAL REVIEW D64 054007

Tr(p?)=T(u?)+[1+TV(?) G (1)1 x)Nr(1?)
X{xX[[GE () TV (n?) +1]. (30)

the denominator, which turns the convergence of the momen-

tum integral faster in the term wheT&(M?) is present. This
subtraction is appropriate if the potentiahas a Coulomb or
Yukawa form:

(p|V|a)= (21)

7”+|p—q|*

Thus, we define the renormalized strength of the Dirac-delt

interaction at the subtraction point such that

wuﬁ)=ﬁ£<u2>+<x|Gé”w%TVmZ)GEﬁwZ)|)f> )
22

and introduce the physical information in the renormaliZed

matrix (19) through the value ok 5*(u?).
Substituting Eq(22) into Eq. (19), we obtain the renor-
malized T matrix written as

TRr(MA)=TY(M?)+[1+TV(M?)G{(M?)]|x)tr(M?)
X(x|[GSP(MA)TV(M?)+1], (23)

where

tx (M) =Nz (1) — (xI[GV(M2) =GV (u?)]|x),
(24)

and the interacting Green’s function is

GVI(M2)=G{I(M2)+GEI(MATV(M) G (M?).
(25

We use the renormalization condition that at the pion

massM =m_. the T matrix, for m;=m, andm;=m,=mg,
has the bound-state pole; consequently,

tz (m2)=0 (26)
and choosing.=m_, for convenience, which implies that

(27)

The invariance of the renormaliz&dmatrix (23) under dis-
location of the subtraction point just reads as

Ari(m2)=0.

d 2
d—MztR(M )=0 (28

and, from Eq.(28),

A (w2 =N (w?) = (x[GV (w2~ GV(”(MZ)]I)((;-Q)

At the general subtraction poitf*(u?) =Nz (x?), and
the renormalized matrix atu? is given by

The full renormalized interaction can be written in a form
analogous to Eq(13),

vR=TR<MZ>n§O[—Gg“wZ)TRw?)]“, (3D

and with that, one could obtain the equation for the renor-

gwalizedT matrix (17) in the subtracted fornil5), displayed

again below:
Tr(M?)=Tr(u?) + Tr(uA)[GF(M?)—Go(u?) I Tr(M?).

We observe that one could equally well construct the Callan-
Symanzik equation ford/du?) Tr(x?), by performing the
limit of M— u in Eq. (15), finding

%),
(32

d
— T p— E Y
du? r(1) r(m )(,u2+is—M(2))2 r(m

with the boundary condition given by E0). The solution
of Eq. (32) gives the dependence af; on the subtraction
point u as expressed by EQ9).

Now comes a subtle point: It is important to realize the
renormalization condition given by;zl(mi)=0, and con-
sidering Eq.(24), the bare strength of the Dirac-delta inter-
action is given by

M\ pare=L(XIGV(M2) [ X) T(m, o) » (33
where the Green'’s function of the Coulomb-like interaction
is calculated for an equal mass constituent quark and anti-
quark, i.e.,m;=m,=m,=my. The bare coupling constant
in the form given by Eq(33) is sufficient to render finite the
T matrices from Eq.(23) calculated with different quark
masses.

The bound-state masdd, of quark-antiquark states with
also different quark masses is the position of the poles of the
renormalizedT matrix (23), which implies

m; 'tz (Mp) =

1
E<X|Gv(mi)|x>}

(mu ,m;)

1 Vv 2

~ | (XIGT (M) x) =0. (34
r (mq,my)

The zeros oit;al give the position of the zero angular mo-
mentum states of the bound quark-antiquark systems, for dif-
ferent quark masses and excitation. It is easy to imagine that
in the vicinity of a bound state of the Coulomb-like potential,
because of the presence of the pol&if the functiont{z1 is
rapidly varying and it is infinity at the Coulomb bound state,
and because of the change in sign®, it will necessarily
present a zero and a bound state of the whole potential.
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IV. PION CHARGE RADIUS angle diagram which expresses the impulse approximation to

The renormalized effective theory defined by Eqs.Compute the pion electromagnetic current,

(23),(24) with the bound-state mass equati@@#), once the (p“+p!*)F (?)

pion mass is known, has two free parameters: the constituent mormeT

guark mass andu,. the strength of the effective one-.gluon— 2 d%k K+m
exchange potential. The values of and the constituent :|2—2ch A=
guark mass can be found from the pion charge radius and the fz (2m)" [k*—m+ie
p-meson mass. The pion wave function in the effective ,

theory comes from the residue of thematrix, Eq.(23), at X 45 K=pz+m

the pion pole, such that (k—pL)2—m?+ie

_ Ak R _
oK)=\l 39 SO e L

" k—pi-mitis | 39

where . . .
whereF .(g?) is the pion electromagnetic form factor. The

%(E):<E|Go(mi)[lﬂLTV(mi)Go(mi)]|X> (36) pioon m(())mentfl in theﬁinitial ano_l final statgs are defined by
p.=p. andp., =—p, =q,/2 in the Breit frameN.=3

and is the number of colors.
The + component of the current is calculated from Eq.
x(k,) = }Jr ﬁ 37) (39). It is chosen because after integration oker= k°—_k3
2 2E the suppression of the pair diagram is maximal for this com-

_ ponent in the frame wherg* =0 and just the valence wave
from Eq. (3). The absolute normalization of theq Fock  function enters in the form factdt2,13. Although we are
component of the pion wave functid@5) is such that the going to compute the integration in the component of the
asymptotic form is given by the first term of E@6), with moment assuming a constant vertex, one can identify in the
the residue at the pion pole equal to 1. We impose such axpression how the wave function corresponding to the non-

normalization condition to be consistent with the soft pionconstant vertex of Eq:35) should be introduced in the ex-
limit (m,=0) for the electromagnetic form factor when the pression. The result ig2]

Coulomb-type interaction goes to zero, as will be shown be-

low. 2 m? 1
FA(0%)=—— —2ch dxf d?K, M2
A. Including quark spin (2m)° 15 0

(1—X)ﬁy*ﬁ

The pion electromagnetic form factor is obtained from the R .
l+ 2 2 lﬂ’lT(X’KJ_)w’TT(XIKL)!

impulse approximation of the plus component of the current X
(j*=j%+j3 in the Breit frame with momentum transfer

q*=0 andg?=—g? The leptonic decay constant of* (40)
(f,) is a physical quantity which depends directly on the
probability of finding the quark-antiquark Fock state in theW TOR
pion wave function and consequently properly normalizes ifiVe transverse momentum is given by

once the empirical value df_ is given. Computing the pion R .. R

form factor from an effective Lagrangian, described below, Ki=(1=x)(p.—k) =Xk, (41)
the value off . gives the normalization of the form factor. In N .

this case theqq component of the pion wave function is @ndK] =K, +(1-x)q, . The free mass operator for tie
normalized such that, in the vanishing limit of the Coulomb-—q is written in terms of the momentum fraction and the
type interaction, it retrieves the asymptotic form, E43) relative perpendicular momentum
[12]. The coupling of the pion field to the quark field is taken

from an effective Lagrangian with pseudoscalar coupling ) Kf+m2
with the pion quark coupling constant given by the Ozx(l—_x)v
Goldberger-Treimafll] relation at the quark level,

Ki+m

here the momentum fraction=(p*—k*)/p*. The rela-

(42

and M is written as a function oK/ . The expression for
m. — .. . .
Lot=—1+—m-qy°7q, (38  the pion form factor gives the standard Drell-Yan formula
fr once the bound-state wave function of the constant vertex

andf_=93 MeV is the pion weak decay constant. model, the asymptotic form, is recognized:

The general structure of thgq bound state forming the . 1
pion comes from the pseudoscalar coupling, and we will use P(XK )= , (43
such spin structure in the computation of the Feynman tri- VX(l—X(mi—M(Z))
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which is the first term of the pion wave function in E§6).

The second term in Eq36) comes from the Coulomb-like
potential,
theory to the pion radius. The other factors in Ef)) comes

from the Melosh rotations of the individual spin wave func-

tion of the quarks.
The pion charge radius from E@LO) in the soft-pion limit

with constant vertex, corresponding to the wave function of

Eq. (43) with m_,=0, gives the well-known result of ,
=[6(d/dg?)F (0%)|q2=0]¥?=3/(27t,) from Ref. [14].
The form factor(40) in the soft-pion limit with constant
vertex, forq?=0, reduces to the expression for [12],

-2 m?
(2m)® fa

=

NCJlLJ dewa(XalzL)u
0 Vx(1-%)

(44)

and implies a contribution from the effective

PHYSICAL REVIEW D64 054007

0.3 k

0.2 A~ ]
@ // J
m e
//
0.1 7 ,
v
4
2
4
1 1 1 I L 1 L Il
0G0 0.2 0. 4E“) 0.8 1.0

FIG. 1. Excited-state binding energg®) as a function of the
ground-state binding energye®) for the nonrelativistic model.

obtained from computation of the leptonic decay transitionattractive Coulomb plus repulsive Yukawa nonrelativistic model of

amplitude of7 ™ with the effective Lagrangiaf@8) and the
wave function given by Eq43).

B. Neglecting quark spin

In order to gain insight into the importance of the inclu-
sion of the quark spin in the computation of the form factor,

we have simplified the numerator of E@0), which is the
result from Dirac algebra, by taking the limit ofi—oc. In

this way the quark spin is neglected and the form facto
reduces to the formula found for scalar particles, and only

the overall normalization, which depends 6n, is main-

tained. The wave function is in the form expressed by Eq

(35 with A(k)=1. With the above approximations the pion
electromagnetic form factor is

Fﬁ(qz)——gf—zN f de d2K | (%, K ) (%K D),
(45)
with relative transverse momentum
Ky =(1=x)(p, —k,)—xk,,

IK}l-F(l—X)aL .

(46)

andK! In case of theqq wave function

the Ref.[10] (solid squares Our numerical calculation of E¢48)
is given by the solid line, and the solution of the effective model,
Eq. (49 (Coulomb plus Dirac-deljais given by the dashed line.

Eq. (40) is undetermined, since the integral diverges. How-
ever, the pion radius is finite with the magnitude of this Fock
component of the pion wave function known from the em-
pirical value of f_, number of colors, and attributed con-

rstltuent quark mass.

To close this section, we observe that our aim is to fit the
strength « of the Coulomb-like potential using the pion
charge radius. For this purpose, we introduce the pion wave
function from Eq.(35) in the form-factor expression, Eq.
(40), and calculate the charge radius. Although the form fac-
tor diverges, the charge radius is finite and fioy=0 and
a=0 it retrieves the soft-pion limit. The pion mass and the
effective Coulomb-like interaction give a correction to the
soft-pion limit, r$°"'=0.58 fm, towards the experimental re-
sult of 0.67 0. 02 fm[15].

V. NUMERICAL RESULTS
A. Test case

We begin this section on the numerical calculations com-

being supposed to be the complete pion wave function, thgaring our results for the-wave bound-state energies which

form factor is written ag1]

1 > -
Fw(q2)=NL dXJ d?Ky (%K) (%K), (47)

and fromF (0)=1 the normalizationVis determined.

The difference between the form factors defined by Eqs.

(45) and (47) is the normalizations of thqa Fock compo-

are consistent with10] for the nonrelativistic Coulomb plus
repulsive Yukawa model:

[e—p?]e(p)

:‘f p{

(p—p')?
(p+p')?

(p—p')%+ 7
—In

(p+p')%+7? #(p").

(48)

nent of the pion wave function. In the first case the normal-

ization is defined byf ., while for the second case thgg
Fock-state component is normalized such #hat0)=1. As
we will see, Eq.(47) gives a too small pion radius, while

In our numerical procedure we checked the results with up to
200 Gaussian-Legendre quadrature points and the interval
—1<z<1 was transformed toQk<« through the variable

from Eg. (45) or (40) the pion radius can be described rea-transformatiork=c(1—z)/(1+z) with c about 1.

sonably. The absolute normalization of the form factor com-

In Fig. 1, we show our results for the first excited state

puted with the inclusion of the quark spin as expressed by(® as a function of the ground stat&? and compare with
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TABLE |. Results forSwave binding energies of the nonrela- 1000 T T ——————T . T
tivistic model of Eq.(48), our calculation witiN=100[C-Y], com-
pared to the effective Coulomb plus Dirac-delta interacfiGrs]. 800
7 eD[C-Y] e? [C-Y] e® [C-6]
0.1 0.1109 0.06781 0.06237 5 600 1
1 0.5119 0.1813 0.1736 2
10 0.9495 0.2449 0.2439 § 400 .
o,
£
the calculation of10] for »=0.1, 1, and 10. For these val- 200 7
ues ofn we present results in Table I. Our precision is about
0.5%, which will suffice for our purposes. Also the calcula- 8 o

tion with the renormalized Coulomb plus Dirac delta is
shown in Fig. 1 and Table I. The calculation with nonrelativ-
istic renormalized model corresponds to finding the zeros of F|G. 2. Pion mass as a function of the strength of the Coulomb
the nonrelativistic form of Eq(34), interactiona. Nonrelativistic model for Coulomb plus Yukawa in-
teraction, m=406 MeV, solid line. Yukawa range parameter
=1330 MeV[2]. The solid square is the calculation of REZ].

| dagpaieY (- ) -6~ €1ip)=o,
(49)  tend trivially to the Coulomb value of the first excited state
of 0.25 for the ground-state value of 1, which in fact is ob-

with the nonrelativistic resolvent operaté'™(¢) for nega-  served in Fig. 1 and Table I.
tive energies obtained from the solution of
B. Effective pion model

\% — \%
G'™"(€)=Gg'(e) +Gp'(e)VeG " (e), (50 The effective model of2] corresponds to using the non-

. . .. relativistic phase spacA(k)=1 in Eq. (6) and a smeared
where (p|Vcla)=[7%(|p—q|?)]* and the free resolvent delta interaction of a Yukawa form:
operatorG{'(e)=[e—k?] 71,

In momentum space E@49) is given b . . 4 dk’
pace EGu9) is given by M (k) =[4m*+ 4Fo(K) o | S
T

m
» 1 1
47Tf dp p? - 2m?2 2
e X| s )wﬁx (53)
(k—=k")?  7*+(k—k')?
2 * ) * tc(p!QI_E(n))

+8 . dagq . dp p? (CeM—p?)(—e—c?) which was solved with parameters adjusted to fit the pion

P q mass and the rho-meson mass, resultingiin406 MeV, «

te(p,g; — eV) =0.6904, andy= 1330 MeV|[2]. The value ofy was found

- =0, (51)  from the condition that the first excited bound-state nma§s
(—eD=p?)(~eM=q?) | | i -
satisfy the Strutinsk requirement at the extremum:

ands-wave projected-matrix in Eq.(51) is the solution of d
—m*=0. (54

1. (p—q)? 1J°¢ p _ , _
[ p— However, the pion charge radius calculated according to the
0 P nonrelativistic formula if2] is about one-half of the empiri-
(p—p")2 ta(p’,q€) cal _value. We wiII. confi_rm this fact in the renormalized ef-
xIn L (52)  fective model while using Eq(47) and ¢, from Eq. (36)
(p+p')? e—p'? with A(k)=1 to compute the pion radius.
In Fig. 2, we present our results for the pion mass as a
We solve Eq(49) for n=2 for each givere®). Now, the  function of & for »=1330 MeV. Our agreement with the
motivation for plotting in Fig. 1 the binding energy of the calculation of[2] is within 10%. In Fig. 3, we show results
excited state against the ground-state energy is clear. In Tabfer our calculation of the ground- and excited-state masses
| as well as in Fig. 1, the renormalized model reproducegrom Eq.(53), for a varying andz= 1330 MeV, compared to
with less than 10% accuracy the model results of(B6). In  the renormalized model for the Coulomb plus Dirac-delta
the limit of »— <, the renormalized model should work bet- interaction. In the last case, the bound-state masses of the
ter; however, in the test case of E@8) this limit corre-  pion ground and excitestwave states, are found numerically
sponds to a vanishing Yukawa interaction, and the resultfom the zeros of Eq(34) with the Green’s function of the

1
t [ 1 =———In
c(p.g:e) 272 P4 (p+q)? 7
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Coulomb-like potential obtained from the solution of the in- 820 I S —
tegral scattering equatiai20). In both equations, which de- i

fine the nonrelativistic renormalized model Coulomb plus
Dirac-delta interactionA(k)=1 is used. We have disre-
garded the effect of the energy transferQA of Eq. (2) as

being a short-range effect parametrized by the value of the =
pion mass, which is input in this calculation. In momentum =
space Eq(34) is given by 5
. fmd p? 1 1 g
- _
o "PA(D) m*2—4m?—4p? mi—4m?—4p?
i3 2f°cd i fwd p’ 7600200 400 600 800
™ 0= P——=
0 A(Q) 0 A(p) mpion (MeV)
tV(p q:m* 2) FIG. 3. Mass of the excited state as a function of the ground-
i state pion mass. Nonrelativistic model for Coulomb plus Yukawa
(my?—4m?—4p®)(m?—4m?—4q?) interaction,m=406 MeV, solid line. Strength of the Coulomb po-

tential within 0<a<0.7 and Yukawa range parameter 1330

tV(p,q;mi) MeV [2]. The solid square is the calculation of REZ]. The non-
- (m2 —4m2—4p2)(m2 —4m2—4q2) =0, (59 relativistic effective mode{Coulomb plus Dirac-deljais given by
™ ” the solid circles. The relativistic effective model for the Coulomb
and thes-wave projected matrix in Eq.(55) is plus Dirac-delta interaction is given by the dashed line.
1 R R .
tV(p,q;M2)=f d cog 0)(p|TV(M2)|q>, (56) C. Effective meson model
-1 The bound-state masses of the meson ground and excited
which is the solution of swave states, are found numerically from the zeros of Eq.
(34) with the Green'’s function of the Coulomb-like potential
(p—q)? obtained from solution of the integral scattering equation
am In( 1) (20). The energy transfer i®? in Eq. (2) was neglected.
v M2y= o @ PTaT The renormalized strength of the singular interaction,
M= ba VA(pA@) from Eq. (22, is
o . ’
L8m (= dp” p’ AR (M2)=(x|Go(M2) TV(M2)Go(m?)x),  (58)
3w Jo JA(P)A(p') P
2 V 2 800 T T T T T T T T
N’ t r, ,M
win PP C(PLAGMT) 57 _
(p+p')? M?—4m?*—4p? !
790 | .

the momentum space representation of¢freave projection

of Eq. (20). =
The agreement between the renormalized model and the = 780} ]
smeared delta model is within a fraction of a percent, which .
still improves as the weakly bound limit of the ground state LR
is approached, as shown in Fig. 3. The calculatiof2dfs a E ol i

few percent below ours. The inclusion of the relativistic ]
phase space in the renormalized model of the Coulomb plus
Dirac-delta interaction, Eq34), makes less bound the ex- L
cited state for a given ground-state mass. As the pion mass 0 200 400 600 800
grows the relativistic phase-space effect tends to vanish. Mpion (MeV

In the other study performedy=0.6904 was kept un- FIG. 4. Mass of the excited state as a function of the ground-
changed, while varying; between 350 and 1350 MeV. The gtate pion mass. Nonrelativistic model for Coulomb plus Yukawa
results for the excited bound-state mass against the grounglieraction,m=406 MeV, solid line. Strength of the Coulomb po-
state mass are shown in Fig. 4. The renormalized Coulomintial «=0.6904 and Yukawa range parameter withir< £
plus Dirac-delta calculation agrees within a fraction of a per-<1350 MeV. The solid square is the calculation of R&fl. The
cent with the smeared Dirac-delta calculation. The I’e|atiViSﬂonre|ativistic effective modd{:oulomb plus Dirac-del])a's given
tic phase space in the renormalized interaction makes thigy the solid circles. The relativistic effective model for the Cou-
excited state less bound for a given ground-state mass. lomb plus Dirac-delta interaction is given by the dashed line.
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FIG. 5. Inverse renormalized strengtl;il(mfr) in units ofm, as

a function of the Coulomb intensity potential parametdor a pion FIG. 6. Pion wave function¢) with arbitrary normalization as

mass of 140 MeV. Nonperturbative calculati@olid line) and first- @ function of momentum in units of quark mass. Calculations per-

order perturbative calculatioflashed ling see the text for an ex- formed withA(k) =1. Pion model wave function model of E@O0)

planation. for «=0.6904 andn=406 MeV (solid line), first-order perturba-
tive calculation from Eq(61) (short-dashed line asymptotic form

with the condition, Eq.27), at the physical pion mass is Ed.(62) (dotted ling, and fit from Eq.(63) (dashed ling

shown in Fig. 5 fom=406 MeV and compared to the per-

turbative calculation In [2], the pion wave-function eigenfunction of the effec-
tive square mass operator of the Coulomb plus Yukawa
Az (M2 per=(X|Go(MZ)VGo(m2)| x), (590  model, Eq.(53), was approximated by the following analyti-
cal form:
with V from Eq. (8) and TV the solution of Eq.(20). For
values ofa below 0.2 the agreement between the perturba- . N
tive and nonperturbative calculations of the renormalized @(p)= YENL (63
strength is quite good, giving confidence to our numerical (1+p*/p3)
calculations. ) ) o o
The wave functionp. of the pion from Eq.(36) in mo- where N is an arbitrary normalization and the fit is per-
mentum space is written as formed for «=0.6904, 7=1330 MeV, andm=406 MeV,
and p,=515 MeV is adjusted to the numerical solution of
1 Eqg. (53.
e-(p)= The various nonrelativistic models of the pion wave func-
m2 —4m?—4p® | VA(p) tion, with A(k)=1, are plotted in Fig. 6. In this figure, a

comparison betwee@,,, ¢.|pert 2, andc,o‘,j’T is performed.

o0 2 \% c 2
+27TJ dq q t(p.g:mz) . (60)  The model parameters ane=0.6904 andn=406 MeV and
o JA(Q) m2—4m?—4p? the normalization is arbitrary. The perturbative calculation
reproducesp..(p) for p belowm. The asymptotic wave func-
The first-order perturbative pion wave function is tion ¢2(p) overestimatesy,(p), as it should be for an at-
tractive Coulomb-type interaction, and for smallit ap-
1 1 proaches the nonperturbative eigenfunction. The analytical
¢”(p)|pe"_ m m?2 — 4m?— 4p? approximation works quite good for momentum up to about
i 1.5m. More results on the pion wave function are shown in
(p—q)? Fig. 7, where the results féx(k) = 1 with the full calculation
8m (= dq q ln(p+q)2 are compared. The effect éf(p) diminishes the magnitude
x| 1+ _aJ hd of ¢(p), as one could anticipate from E@O). Also we plot
3w Jo A(d) P m2—4m?—4p?/ ¢.(p) for «=0.18 andm=386 MeV, which is above the

61) curve of the previous case due to the decrease of the Cou-
lomb attraction(this parameter fits the empirical pion ra-

form asymptotic form dominates, as the second term of (BQ)
tends to zero faster than the first one.
) 1 1 We are going to compute the pion radius in the effective
©%(p)= 5 T (62)  renormalized model of the pion using Eq40), (45), and
A(p) mz—4m°—4p (47). In the last two cases, the pion wave function from Eq.
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FIG. 8. Pion charge radius as a function of the strergtf the
Coulomb potential. Quark mass of 406 MeV. Results for &q):
nonperturbative calculation of the wave functi¢solid line) and
first-order perturbative calculatiofdashed ling Results for Eq.
(45 and wave function obtained with(k)=1 (solid line with
triangles. Results for Eq(47) with the wave function obtained with
(60) with A(k) =1 is used. The pion wave function is known aA(k)=1: nonperturbative calculation of the wave functitsolid
from Egs.(35) and(60) from which the charge radius includ- ine with dotg and first-order perturbative calculatiédashed line
ing the effect of quark spin is obtained from integration bywith dots.

Gaussian quadrature of the difference

FIG. 7. Pion wave-functiong) as a function of momentum in
units of quark mass. Pion model far=0.6904 andn=406 MeV,
calculation with Eq(60) (dashed ling consideringA(k)=1 (solid
line). Results fora=0.18 andm=386 MeV (dotted ling.

A(k)

AF (9% =F (9% —F,(0), (64) Y%K | per= x(1—x) =K (66)

pert

obtained from Eq.(40), and the pion radius is calculated

from is also shown in Fig. 8. Consistent with the strength calcula-

tion presented in Fig. 5, we observe that fobelow 0.2 the
perturbative calculations match the nonperturbative results.
r/z The results for the scalar quarks form factors witfrom
q2=0

.=

d
6— AF.(9%) (65  Eq. (60) calculated in the effective renormalized theory for
dq A(k)=1 are also shown in Fig. 8. The calculationrgfwith
Eqg. (45) shows values above the ones calculated with Eq.
In the case the quark spin is neglected, two possibilities of47). Which are too small compared to the empirical value,
the calculation of the pion radius are considered: one througifdicating the importance of the physical normalization of
Eq. (45) in which only the spin factors are simplified in the the qq Fock component of the wave function usifig. We
limit of the quark mass being infinity, while the normaliza- also performed a first-order perturbative calculatiom pfor
tion is defined as in Eq(40), known from the empirical the wave function normalized to 1. The agreement between
value off . and the number of colors. The second possibilitythe perturbative and nonperturbative calculations is reason-

is to declare normalized to 1 they Fock component of the  able fora below 0.2. _ _
pion wave function and use the formula for the form factor in_ The plot of the pion charge radius against the mass of the
which the quark has no spin, E(@7). first excited state is shown in Fig. 9. For decreasing values of

The results for the pion charge radius as a function of the, the pion charge radius diminishes and consistently the
strength @ of the Coulomb-like interaction, Eq(8), are excited-state mass increases; i.e., this state becomes less
shown in Fig. 8. For _=0.67 fm we founda=0.18 using bound. It is clear from this figure that to simultaneously fit
Eq. (40). Our calculations obtain the pion charge radius fromthe radius and the mass of the rho me&68 MeV) we are
the relativistic expressiof0) which is known to give about ©bliged to use a different quark mass from the value of 406
twice the nonrelativistic radiy€.2]. The attractive Coulomb- MeV. For comparison we also show the results from Eg.
like interaction increases the radius over the soft-pion limit(45)- ) ) ) o
with a=0 which is below its experimental value. In that  The experimental pion radius of 0.60.02 fm is fitted
sense consistency is found with the effective theory whichvith m,=m;=386 MeV and«=0.18, resultingr ,=0.67
has an attractive Coulomb-like interaction. The repulsionf™ and the mass of the singlestate of 768 MeV. The

would be completely inconsistent with the pion radius. singlet-% excited state mass of theu system is identified
The pion charge radius obtained from first-order perturbawith the p-meson mass in the present effective QCD model.
tive calculations of the pion wave function We remind the reader that for a given pion mass, the free
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FIG. 9. Pion charge radius as a function of the mass of the FIG. 10. The difference between the masses of the excited and

excited qa state for a constrained pion mass of 140 MeV. Theground state of thaq system as a function of the ground-state mass

strenathe is within the range of Fia. 6 and the quark mass is 40aln the effective relativistic model. The quark mass is varied in the
gihe ge ot ™g. a . range between 386 and 5000 MeV. The other quark mass is fixed to
MeV. Results for Eq.(40) (solid line) and for Eq.(45) with the . S o a
. . R = S . ) 386 MeV. Calculations witha=0.18 (solid line) and a=0.5
wave function obtained consideriny(k)=1 (solid line with tri- ; . .
angles (dashed ling The experimental values from Table Il are given by
gles. the solid circles.

model parameters are twa:and the constituent quark mass. mass. As we have seen in Table II, the difference is under-
As was mentioned at the beginning of Sec. IV, they are fitteGigtimated fora=0.18 above the kaon mass. Fee 0.5 the
through the values of the pion charge radius and rho-mesogyperimental data are reproduced. This is in fact reasonable
mass. Then, the quark mass is varied to form mesons witlj e think that« should on average increase with the size
one up antiquark together with strange, charm, or bottomycaje, indicating a confining behavior, which is stronger for

quarks. The masses of the constituent quarks were within thg,o heavy mesons since they are less bound than the pion and
range of 500—-5000 MeV. The results are shown in Table lkhe kaon.

and compared to the experimental data. The singéettdtes
are identified with the lowest-mass vector mesons states,
since the Dirac-delta interaction is the effective hyperfine VI. CONCLUSION
interaction, the reason for the splitting between the pseudo-
scalar and vector mesons. Although in the singlet channel thﬁ]
hyperfine interaction is attractive, which is not valid for the
spin-1 mesons, we believe that the Dirac-delta interactio
parametrizes the short-range physics beyond that by taki
care of the empirical value of the pion mass.

It is clear that the split between the heavy-meson mass

The essential development made in this work is the renor-
alization of the effective QCD-inspired Hamiltonian theory
with a singularity at zero range and its consequent applica-
lion to the pion and other mesons. The method is an example
N the Hamiltonian renormalization procedure and it is
equivalent to a subtracted equation for the transition matrix.
e physical renormalization condition is given to the two-

W'I! not be adjusted n the present calculation tersmall. rticle model at the subtraction point and in the cases dis-
This is reasonable, since these mesons are weakly bound aggssed here it is the ground-state binding energy or mass.

';_he wavs fu?ctltt_)r} sprfads OUtt In the reglgnl WP;]ereIdtht;a COMrhe treatment is shown to be renormalization group invari-
Inement potential, not present in our moael, should De My 1 o independent of the arbitrary subtraction point. This
portant. In Fig. 10, we study the difference of the excited-

i independence is expressed by a fixed-point Hamiltonian that
and ground-state masses as a function of the ground—statgc?ings physical input to the theory—the pion mass or

ground-state binding energy—as well as the necessary coun-
TABLE Il. Results for Swave meson masses: singlet-1 terterms that render all the momentum integrations finite.

(M{'$) and singlet-3 (M{7;) and experimental valuesv({'s:s)). First, we have studied in an example the renormalization
All masses in MeV.a=0.18. method applied to a two-body model with a Coulomb plus

= o ) 29 29 Dira_lc-delta interaction, where we have ca_lcu_lated the
qq My ma Mbi  Mbexpr M M expt excited-state energy for a given ground-state binding energy.

ud 386 386 140 =7*:140 768 p:768

The results are compared to calculations with a Coulomb

. plus repulsive Yukawa interaction and the renormalized
us 386 500 511 K494 882 K*:892 model reproduces with less than 10% accuracy the model
uc 386 1500 1852 D%:1865 1882 D*°:2007 results of Eq(48). The success of this result drives us to the

ub 386 5000 5375 B*:5279 5383 B*:5325 solution of the renormalization problem of thé model[2].
The effective mass operator equation in temodel, Eq.
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(1), has as eigenstate the lowest Fock-state comporept ( known result valid in the soft-pion limitL4]. We also com-

of the light-cone wave function of a meson bound system oPared the values far, obtained with expressions where the
constituent quarks or dressed quaffikst to be confused with quark spin is neglected and the wave function normalized to
the bare quark This model picks out one particular aspect of 1. We pointed out the necessity of the correct normalization
the gluon exchange between quarks, namely, the strong &@f the wave function of thg | model according to thé
traction of the spin-spin interaction in the singlet channel.value to be able to fit ., which is reminiscent of the fact
Previously[2], the renormalization was carried out by first thatf . andr . are closely related in the light-front phenom-
regularizing the Dirac-delta interaction through a Yukawaenology[12].

form and then its parameter was found by the Strutinsky The experimental pion radius of 0.60.02 fm was fitted
requirement that the mass of the excited state be stationadith m,=m;=386 MeV and «=0.18, resulting inr .

with respect to the variation of the regularization parameter=0.67 fm and the mass of the singles-2tate of 768 MeV.
The step forward in this work was the use of the renormal\We remind the reader that the pion mass is input in the renor-
ization group invariant approach, in which the regularizationmalized model calculation. The singles-2xcited-state mass
parameter is not necessary to solve the model. All the shorbf theuu system was identified with the-meson mass in the
range physics is parametrized by one parameter: the renosresent effective QCD model. We stress that in the singlet
malized strength of the Dirac-delta interaction, which is de-channel the hyperfine interaction is attractive, which is not
termined by the mass of the pion. We showed that the resultgg|id for the spin-1 channel of the vector mesons. Once the
for the mass of the excited state obtained vyith the renorma!hyperﬁne part is substituted by a potential that does not dis-
ized model and the smeared delta regularized model are #hguish between spin-1 and spin-0 states, the identification

agreement within a fraction of a percent, for the sameyim, the physics of chiral symmetry breaking is strictly lost.
ground-stgte mass, Wh'Ch was varied either by changing thﬁowever, we believe that the Dirac-delta interaction param-
Coulomb interaction intensity or the Yukawa range. The CON%trizes the short-range physics, which is brought to the

cordar&cetstull mproves ?}S (;[hez”\:veal;lfy ?Oufn?h“m'tl Otf th(.amodel by the empirical value of the pion mass. In essence,
ground state 1S approached. 1he €eflect of the relaliviSug, ¢ being too naive, in order to fit the pion charge radius

Bhase dsﬁ)tac.e tm th?. ren(I)Ern;zzllzed LnOdtil of thi %outlotmbf plL\ﬁ/ith success and with reasonable parameters, it was essential
irac-delta interaction, Eq34), makes the excited state, for hat (i) the Coulomb-like interaction battractiveand(ii) the

agiven ground-stqte mass, less bound. This difference ten wrmalizationof the form factor be consistent with the em-
to vanish as the pion becomes weakly bound. pirical f._ value
- .

The various models of thgq Fock component of the pion ~ \wjith respect to the masses of the ground state of the pseu-
light-cone wave function, considerim(k) =1 and the rela-  doscalar and vector mesons with one up antiquark together
tivistic phase spacA(k) from Eq.(5)], were calculated and with strange, charm, or bottom quarks, which were calcu-
compared with the analytical form and perturbative resultiated as a function of the constituent quark mass, the results
We obtained the reduced wave functipy, Eq.(60), solu-  ere in qualitative agreement with the data for 0.18. We
tion of the renormalized | model, ¢|pert, EQ. (61), the  tried a better fit of this data, since it was clear that the split
analytical forme?, Eq. (63), and the asymptotic forp2.,  between the heavy-meson masses would not be adjusted in
Eq. (62). We have used model parameters-0.6904 and the present calculation far small. This, in fact, seems rea-
m=406 MeV [2]. Although for p below m all the calcula- sonable, since these mesons are weakly bound and the
tions are reasonably consistent, the high-momentum tail iguarks can be found in a region where the confinement po-
dominated by the asymptotic wave functiep’i,(p), which  tential, not present in our model, is important. The difference
overestimatese .(p), as it should be for an attractive between the vector and pseudoscalar mesons masses for the

Coulomb-type interaction, and for smallit approaches the sameqq pair is underestimated far=0.18 above the kaon
nonperturbative eigenfunction, as well as for very high mo-mass. We found that for=0.5 the experimental data are
mentum. The analytical approximation works quite good forreproduced. This gives us some hope that it is possible to
momentum up to about In§ however, it does not have the refine the| model to include more physics than initially
asymptotic tail for high momentum. The relativistic phasethought. In regard to this extension, it is reasonable to think
space diminishes the magnitude ofp) as clearly seen in  that o should on average increase with the size scale, indi-
Eq. (60). cating a confining behavior, which we found stronger for the
The calculation of the pion charge radius was performetheavy mesons since they are less bound than the pion and the
in the renormalized effective QCD-inspired Hamiltonian kaon. In short, a reasonable description of the physics of the
theory with Eqgs.(36) and (40), and although we have sim- pjon and other scalar and vector mesons was found, taking

plified the spin dependence in the dynamical equation, it isnto account the simplicity of the renormalized effective
important in the evaluation of the radius. For this purpose Weight-cone QCD-inspired theory.

have used an effective pseudoscalar Lagrangian to construct
the spin part of the pion wave function; it gives the absolute
normalization of the lowest Fock component of the light-
cone wave function in terms of the weak decay constant

the constituent quark mass, and the number of colors. Turn- We thank ECT for kind hospitality during the “Interna-
ing off the Coulomb-like interaction, we retrieved the well- tional Workshop on Relativistic Dynamics and Few-Hadron
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APPENDIX: DERIVATION OF THE RENORMALIZED
T MATRIX

In this appendix, the solution of E¢L7) to find the renor-
malized T matrix, Eq.(19), is performed in detail. We want
to solve Eq.(17):

TR(MA)=V+V2+(V+ VG (MA)TR(M?). (Al)

The regular part of the potenti®l is defined by Eq(8) and
the renormalized singular interaction is given by E§3),
rewritten as a matrix equation

V=M= DXOA (2 {XIGE (1) V2,

(A2)
which has the solution
Va=1x)vr(#?)(xl, (A3)
with the function
vR(#?)=r(W))+(XIGE (WD) (Ad)

(XIGSP (M) TR(M?) =

mentum integrals which exactly cancel such infinities in Eq.

(Al). It is enough for the formal manipulations that will

come. However, one could equally well introduce a cutoff in

Egs.(Al) and(A4), and perform the limit of the cutoff going

to infinity just after the solution of EAL), in which all the

necessary cancellations happen and the limit is finite.
Next, Eq.(Al) is rewritten as

[1-VG{I(M?)]TR(M?)

=VH+VR+VRGEI(M)TR(M?),  (AS)
and inverting the operator in the left-hand using the regtlar
matrix, TY(M?), solution of Eq.(20), one has

TR(MA)=TY(M?)+[1+ TV (MG (M?)]| x)vr(u?)

X(xI[GEV(MA)TR(M?)+1]. (AB)

The “bra” function (x|G{”(M?)Tx(M?) has to be cal-
culated in order to find the renormaliz8dmatrix. We mul-
tiply Eq. (A6) by (x|G{(M?) on both sides, and solving it
we get

(xIGE (M2 TV(M2) + (x| GV (M?)| v () x|

where the regular potential resolvent is

The “bra” function of Eq. (A7) is introduced back into EA6), and with a little algebra one finds

, (A7)
1—(x|GYI(M?)| x)vr(p4?)

GYI(M?) =G (M?)+ GV (M TV (M) GE (M), (A8)

[1+TY(MA)GE (M) ] XN XI[GE(MA)TV(M?) +1] A9

TR(M?)=TY(M?)+

vt

2) = (x|GY(M?)| x)

which, after introducing EqA4) and the explicit form of the resolvent of EGA8), results in the renormalizeédmatrix of Eq.

(19.
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