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We show how introducing discrete Abelian flavor symmetries can produce texture zeros in the fermion mass
matrices, while preserving the correct relationships with the low-energy data on quark and lepton masses. We
outline a procedure for defining texture zeros as suppressed entries in Yukawa matrices. These texture zeros can
account for the coexistence of the observed large mixing in atmospheric neutrino oscillations with a hierarchy
in the neutrino masses, and offer the possibility of alignment of the quark and squark mass matrices, thus
giving a solution to the supersymmetric flavor problem. A requirement that the flavor symmetry commutes with
the SU(5) grand unified group can be used to explain the lepton mass hierarchies as well as the neutrino
parameters, including the large mixing observed in the atmospheric neutrino data. We present one such model
that yields a large atmospheric neutrino mixing angle, as well as a solar neutrino mixing angle ok order
=0.22.
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[. INTRODUCTION are typically the same order of magnitude. It requires a fine-
tuning of the order one parametets B, and C to achieve
The mechanism that generates the fermion masses is nigirge mixing between neutrinos and widely separated neu-
yet understood. In the standard mod®M) the masses and trino masses. Grossman, Nir, and ShafiZjiadvocated us-
mixings are simply parameters that can be adjusted to agréfg a discrete symmetry to maintain the large mixing angle
with experiment. One hope is that the Yukawa couplings invhile achieving very different neutrino masses without fine-
the SM can be understood more fully when the theory isuning. Discrete symmetries had been discussed previously
embedded in a more fundamental theory, and relationshipst], but the more recent experimental results indicating large
between masses and mixings might then be establisheghixing in the atmospheri¢and perhaps solaneutrino os-
Symmetries based on embedding the gauge symmetries gfilations made this technique especially interesting. The use
the SM in larger gauge grougsnified theories have been of a discrete flavor symmetry to understand the mass hierar-
used for a long time and some reasonable mass patterns cehiies and mixing angles for all standard model fermions was
be derived which are consistent with experiment. These sympursued in Refs[5,6]. Other authors have employed non-
metries have come to be called vertical symmetries to distinAbelian discrete flavor symmetri¢g—9] that have both one
guish them from the horizontal symmetrigs flavor sym-  and two dimensional representations. This approach is par-
metrieg that relate fermions from the different generations.ticularly well suited for addressing the supersymmetric flavor
In this paper we show how discrete Abelian horizontal sym-problem where the first and second generation of superpart-
metries based o#,, can account for some of the successfulners should have very similar flavor properties and thus be-
texture patterns. long in the same representation of the flavor group. In this
There are a number of reasons one might want to extend gaper we restrict our attention to Abelian discrete symme-
U(1) flavor symmetry so that it contains an additional dis-tries. (B) The phenomenological predictions for quark mass
creteZ,, component(A) The additional discrete symmetry ratios and Cabibbo-Kobayashi-Maska{@KM) matrix ele-
offers a solution to the seemingly inconsistent large mixingments can be retained, but the contributions arise from a
observed1] in the atmospheric neutrino data and a hierarchysmaller number of parameter&C) The process of creating
in the muon and tau neutrino masg&y. In models with  the baryon asymmetry of the Universe by having
supersymmetric Abelian flavor symmetries, largg—v,  CP-violating asymmetric decays of heavy neutrinos can be
mixing is achieved via a light neutrino mass matrix of thegreatly enhanced as a natural consequence of solving issue

form [3] (A) above[10]. (D) One can potentially solve the supersym-
metric flavor problem by suppressing certain entries in the
C B U_2 Yukawa matrices. The mechanism works by aligning the
B A M’ guark mass matrices with the squark mass-squared matrices
[11], and one does not need to require that the first and sec-
A,B,C~0O(1), (1) ond generation squarks are degenerate. The mixing matrix

for the squark-quark-gluino couplings can be made close to a
wherev is some electroweak scale vacuum expectation valuanit matrix, and the undesirable flavor-changing neutral cur-
andM is the Majorana neutrino mass scale. The eigenvaluegents(FCNCS9 are suppressed. The required suppressions are

not possible with &J(1) symmetry.

During the last few years, there has been great interest in
*Electronic address: berger@gluon.physics.indiana.edu using new continuous Abelian as well as discrete Abelian
TElectronic address: siyeon@gluon.physics.indiana.edu and non-Abelian symmetries in the minimal supersymmetric
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standard mode{MSSM) to describe the experimentgdhe-  generated terms for say the down quark Yukawa matrix will
nomenological data on the fermion masses and mixingsbe of order\™i. We will restrict our attention in this paper to
[2,12-23. Superstring theories appear to halgl) symme-  flavor charges for the standard model fields that are non-
tries and symmetries involving its discrete subgroups as aegative. Here texture zeros refer to Yukawa matrix elements
generic feature. If th&J (1) flavor symmetry is gauged then that can be replaced by an exact zero without affecting the
a general assignment of flavor charges to the fields will béeading ordel(in the small parametex) results for the mass
anomalous. One can imagine the anomaly is canceled via tredgenvalues and mixing angles. An analysis of the possible
Green-Schwarz mechanisrfi24], and one must check approaches to explaining the neutrino masses and mixings
whether the correct relations are satisfied. A convenient waysingU (1) symmetries only is given in Ref25).
to ensure that the flavor charges are amenable to cancellation In models whose flavor symmetry contains two distinct
is to have the flavor symmetry commute with tB&J(5) components[U(1)xU(1), U(1)XZ,, etc] one intro-
grand unified theory20]. We present in this paper a model duces[4] two singlet scalarsS, and S,, with horizontal
with a U(1) X Z, flavor symmetry with at least four texture charges
zeros(in the up and down quark Yukawa matrigéisat com-
mutes with theSU(5) gauge group. S,(—1,0, S,(0,-1), ©)

The paper is organized as follows. In Sec. Il we briefly
discuss flavor symmetries and how they can in principle acqich in general can have different vacuum expectation val-

count for the experimentally observed hierarchies in theues(S ) and(S,). These can be related to a common expan-
guark masses and mixing angles. In Sec. Il we discuss th&on pi’:\ramete)\ 'by setting

possible role of a discrete component in the flavor symmetry.
Section IV then lists the phenomenological requirements that

must be met in the quark sector of the standard model. In @N)\B @N)\a (4)
Sec. V a particular model for which the flavor symmetry AL AL '

commutes with arSU(5) grand unified symmetry is pre-

sented, and the phenomenology is extended to include th@ the following we identifyx as the Cabibbo angle, and take
leptons. The consequences for neutrino oscillations and the=1. In general, one can take+ 1, but for our explicit
charged lepton masses are discussed. Finally we present agbdels we assume=1. The contributions to the Yukawa

conclusions in Sec. VI. matrices arise from flavor invariant terms in
II. FLAVOR SYMMETRIES o Sl mj; SZ Pij o Sl Njj 52 jj
. . . . QidjHy oo\a) QUMW AT () ©)
The hierarchical structure of the fermion mass matrices L L L L

hints that there may be a spontaneously broken family sym-
metry responsible for the suppression of Yukawa couplingslt should be understood that there are undetermined order
In this paper we employ supersymmetric Abelian horizontalone coefficients multiplying these terms, and we assume in
symmetries. These flavor symmetries allow the fermion masthis paper that these coefficients are sufficiently close to one
and mixing hierarchies to be naturally generated from nonso as not to influence the hierarchy, i.e., somewhat greater
renormalizable terms in the effective low-energy theory.  than\ and somewhat less tham\1/Formulas for the Yukawa
The idea is quite simple and easily implemenfd@|.  matrices for the quarks and charged leptons as well as mass
There is some fiel® which is charged under @(1) family =~ matrices for the neutrinos that follow from the Froggatt-
symmetry, and without loss of generality, we can assume thaliielsen mechanism are given in the Appendix.
its charge is—1. There are terms contributing to effective  If the flavor symmetry isU(1) then there is a charge
Yukawa couplings for the quarks, assignment in the quark sector that satisfies all the phenom-
enological requirements detailed in Sec. IV below. This so-

— S \Mi — i lution was obtained by many authdrs8,26,27. The up and
Qided(A_L T QiujHy A @) down quark Yukawa matrices are
and the integer exponents; andn;; are easily calculated in A8 AS A3 DD S

terms of the horizontal symmetry charges of the quark and
Higgs fields. The scale), , where massive states are inte- U~ A A" A% D~ A% N2 N2 (6)
grated out of the fundamental theory to produce an effective A A% 1 A1 1

theory, is assumed to be larger than the vacuum expectation

value (VEV) (S) of the singlet scalar field so the parameterThe model we present in this paper will give the same phe-
(S)/AL is a small one. We henceforth require the Higgspnomenological predictions as E¢f), but the discrete sym-
fields to be uncharged under thg1) family symmetry, then metry will suppress certain entries in comparison to the
the exponentn;; E just the sum of the horizontal charge of U(1) flavor symmetry pattern shown in E(f). After in-

the fieldsQ; andd; . The hierarchy is generated from terms cluding a discrete component to the flavor symmetry, a dif-
in the superpotential that carry integer charggs,n;;=0.If  ferent SU(5) grand unified model can be constructege
we call the small breaking paramet€®)/A| ~\, then the Sec. V.
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Ill. DISCRETE ABELIAN GROUPS ()\4 )\3)
(13

In this section we discuss the two possible texture patterns AL ONO)
for a 2X2 matrix, and then show how to put these 2 o
blocks together to form the realistic case of texture patternd should be clear from Ed5) that the overall contribution to

for three generations. the Yukawa matrix is the product of the contribution from the
Z, charges in Eq(10) and the contribution from th&l(1)
A. Suppressing in 2<2 blocks charges in Eq(13) for each element of the Yukawa matrix.

) ) For example, here we get the following result for tHé1)
When the flavor symmetry i8)(1), there is a sum rule X Z, flavor symmetry:

among the exponents in any<2 block. For example, the up
quark Yukawa matrix necessarily has the relationship ()\4 )\4)
UN

N2 \0)" (14

nii-i—njj—nij—nji:O (7)

between the exponents;;=g;+u;. The Yukawa matrices So one sees that ths off—diagonal entri.es are suppressed rela-
in Eq. (6) obey this rule, for example. However, these rela-tive to the expectation in E¢13), and it is not difficult to
tionships between elements of the Yukawa matrices can bgonvince oneself that this suppression comes entirely from
avoided if the flavor symmetry hasza, component. We can the Z, part of the flavor symmetry.

illustrate this with a simple example with &, symmetry: The relevance of the above example to the present paper

Consider two generations with, flavor charges as follows: S the following. We are interested in determining the phe-
nomenological predictions of the Yukawa matrices and then

Q: qizz(O,l), UR: uiz=(0,l), i=12, (8 comparing them to the experimental data. This requires that
we diagonalize the Yukawa matrices to determine the eigen-
where the first number for each field gives the charge for th¢alues(massepand the mixing anglesCKM elements as
first generation and the second number gives the charge féxplained in the Appendix. In the example we arrived at the
the second generation. Then performing Hearithmetic in ~ Yukawa matrix in Eq(14), for which it is immediately clear
constructing the contribution to the Yukawa matrices yieldshat the eigenvalues are of ordet and\*, while the mixing

in general, angles inV} andV{ [see Eq(A2)] are of ordem* and\?,
respectively. So one notes that the left-handed mixing angle
[q5+u?]  y [g5+ud] is suppressed by? in comparison to the expectation from a
A1 A1 2 pp p p
;7 R (99  U(1) symmetry alone that gives the same mass eigenvalues:
afazFuil  \[az+uzl namely,
We use brackets around the exponehisto denote that we A4 N2
are modding out by two according to tde addition rules. In N (15

the case of the particular choice of charges in &8).and

taking (Sy)/ A ~\ One can compare this simplex2 example with the second

N0 )1 and third generations of E@6). We denote this suppression
(10) in the following way:

AL N9

So this set of charges yields a Yukawa matrix that does not (16)

satisfy the rule in Eq(7). If one adds in nontrivial contribu-

tions from theU(1) part of the flavor symmetry, one sees \ye say that the Yukawa matrix has texture zeros in the off-
that the off-diagonal entries in E(LO) are suppressed rela- yiaq0nal positions. A texture zero defined in this way is not a

tive to the expectation from Ed7). For example, assume 6 ero, bhut is negligible to the leading order in the small
that the fields hav@in addition to theZ, assignments in Eqg. parameter\ as far as the mass eigenvalues and the left-

(10)] the U(1) charge assignments handed mixing(diagonalizatioh angles are concerned. The
— . right-handed mixing angle isot suppressed but this affects
Qu: 9=(30, ur: u=(1,0, =12 (11) nejther the CKM mixing angles nor the mass eigenvalues.
o ) o . The physical observables are the elements of the CKM ma-
which, in general, give a contribution to the Yukawa matricesyy Eq. (A4), and involve contributions from the diagonal-
ization of the down-Yukawa matrix as well. So if there is a
Nditur )\ dituz I . D
( ) (12) cc_>ntr|but|on from the dlsgo_nallzatlon of down-Yukawa ma-
AG2FUL )\ G2 U2 trix of order \, the contribution from the up-Yukawa matrix
will be negligible in comparison. In this case we promote the
The particular choice of charges in E@.1) together with  texture zero to a true phenomenological zero: the contribu-
taking (S;)/A_~N\ yields the contribution to the Yukawa tion from the off-diagonal elements of the up-quark Yukawa
matrices from theJ(1) charges of the form matrix does not contribute to the determination of any physi-

0 X

<o)
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cal observabléquark mass or CKM elemento leading or-
der in the expansion in the small parameter

PHYSICAL REVIEW D64 053006

An important feature of th&J (1) X Z, flavor symmetry is
that one can achieve different leading order contributions to

We can also engineer a suppression along the diagongie left-handed mixing angles W andV}, as shown in the
elements of a Yukawa matrix. This case is somewhat trickieabove example. In a model with d(1) symmetry, these

than the previous case, so we proceed now to present anothixing angles are determined entirely by the char@gs

example in the case of just two generations: For #e
charges, consider the assignment

Qi af=(10, dg: df=(00), =12, (17)
and, for theU(1) charges, make the assignment
Qu: @=(30, ds: di=(10, i=12. (19
Then one obtains
AL\
()\0 xl) (19
for the contribution from th&, charges and
A3
! .

from theU (1) sector. The contributions from the full(1)
X Z, symmetry give the Yukawa matrix,

o[ )

AL 21)

The eigenvalues of this matrix axé and\? and the mixing

angle for the left-handed diagonalization matrix is of order

\2. So one can interpret tHd,1] entry of order\® as being

phenomenologically irrelevant to leading order in powers o

\ and the texture zero pattern is

¥
< X/ (22)

Note that the[2,2] entry is not phenomenologically irrel-

evant, and is still denoted b¥.
Having generated the Yukawa matriddsand D in Egs.

(and notug anddg). So the presence of th&, symmetry
allows one to suppress the contribution to the CKM mixings
from either theU or the D matrix.

It is not difficult to generalize the discussion to an arbi-
trary Z,,. The exponents ok are given by Eq(9), and the
conditions satisfied by th&,, charges that lead to texture
suppressions are
[af +uf]+[af +uf]-[af +uf]-[af +uf]==m, m=2,

(24)

where the case-m results in a suppression of the diagonal
entries of the X2 matrix, and the case-m results in a
suppression of the off-diagonal entries. We remind the reader
that the square brackets in E@4) indicate a modding by
the integem.

B. Extending Z,-induced suppressions to ¥ 3 matrices

In the last subsection examples of how to suppress entries
in a 2X2 Yukawa matrix were presented. One can extend
this result to the three generation case by considerii@ 2
blocks. One has three such blocks in the case of three gen-
erations: namely th§2-3], [1-3] and the[1-2] blocks. One
can build up a texture pattern for ax3 matrix by placing
zeros in the desired positions of thesg 2 blocks. As dem-
onstrated in the last subsection, in eack2 block, one can
have either a texture zero in the off-diagonal or in a diagonal

fposition, but not both at the same time. As an example con-

sider the matrix

(29

All the zeros cannot be obtained by assigning charges in the
[1-2] block alone, since this would require the zeros to be in

(14) and(21), we can account for phenomenological require-Poth the diagonal and off-diagonal positions. However this
ments(the full set of experimental data for fermion massestéxture pattern can be obtained by assigning the zero on the

and mixings is given in the next sectjon

mS

Fw\z, [Vep| ~ N2 (23
The mixing angles fotJ are sindl'~\* and singt~\?, while
for D they are sirgf~\? and sindi~\°. The leading order
contribution to|V,,| according to Eq.A4) is then given

entirely by sin&f~)\2 since sing' is suppressed by a relative

factor of\2. The mass eigenvalue ratios in E83) are prop-

diagonal to thg 1-3] block, while off-diagonal zeros can be
assigned to th¢l-2] block. As in the case of only two gen-
erations, one can obtain the texture pattern by considering
only the Z,, component of the flavor symmetry. One can
obtain the required texture in E¢25 whenm=3 by the
following assignment o5 charges:

Q:

The contribution to the & 3 matrix Yukawa matrix from this
Z3 charge assignment is

0?=(2,0,1), ug: Uu*=(2,01), i=1.23, (26

erly accounted for. So phenomenologically viable Yukawa
matrices can be found with texture zeros, and these zeros AL A2 \O
reduce the number of unknown order one coefficients that 2 10 1
contribute to masses and mixing angles at the leading order AT AT A
in \. A0 AT ?

(27)
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The U(1) contributions have not been included yet in Eq.The A8 entry would be generated in th&,1] element(and

(27). While the[2-3] block does not have a suppressing pat-the A ! element can be neglected in comparison, as described
tern, the suppression in tti&-3] block suppresses the diag- above. So a subsequent diagonalization of fie2] block

onal elemenf1,1]. Finally, the[1-2] block suppresses the indicates that texture zeros occur in the off-diagonal ele-

off-diagonal[1,2] and[2,1] elements. ments as
Continuing with our example, if we assign th1) fla- 4
vor charges 0 0 A
_ U~ 0 N A%, (33)
Q.: qi=(6,3,0, ur: u=(630, =123, A2 1
(28)

, , . o In other words, to leading order ik the diagonalization of
to the quark fields, we o_btaln the following contribution t0 {he first matrix in Eq(30) is the same as the diagonalization
the up-type Yukawa matrix, of the matrix in Eq.(33).

By proceeding in this way, one can systematically con-

12 9 6
ATOAT A struct all possible matrices with texture zeros in the desired
PRI D S (29)  positions. The task then is to combine a texture pattern for
A6 A3 1 the up-type Yukawa matrix with another texture pattern for

the down-type Yukawa matrix, and check whether all the
phenomenological requirements can be satisfied. We now
turn to the experimental data for the quark and lepton masses
and mixing angles.

Putting the contributions from both components of the
U(1)x Z5 flavor symmetry together gives the following up-
type Yukawa matrix(after dropping an overall factor of?

which is irrelevant as far as the hierarchy is concemed
IV. PHENOMENOLOGICAL REQUIREMENTS

AL \9 )4 IN THE QUARK SECTOR
U~| A2 A% A2, (30) If one must satisfy the phenomenological constraints with
NN2 1 positive flavor charges, then E¢p) is the solution that re-

sults from aU(1) flavor symmetry. Using & (1) X Z,, fla-

One can always diagonalize matrices arises from Abeliay " symmetry instead will change the exponents by adting

flavor symmetries of the type described here in stdge% in certain elements. The relevant equations for the CKM ma-
by diagonalizing the[2-3] block, followed by the[1-3] trix elements that are valid for this category of matrices are

block, and finally diagonalizing thgl-2] block. The diago- [6]

nalization in the[2-3] block does not produce any texture
zero because?)(M?)/(1)(\*%) as in Eq.(7). Each order one |Vid = ((3—12— di—3d32) - (lj—lz— uis—usz) : (34)
coefficient in the2-3] block plays a role in determining the dzz  dz Uz Uz
leading order diagonalization of that block. However in the .
diagonalization of th¢1-3] block, one notices thdtl,1] el- [Veo| = daat dod3,— Uz, (39
ement (1Y) is suppressed by a factor of ordet compared
to the product of th¢1,3] and[3,1] elements. So to leading Vo) = (ygt dydy— tgg) — (E_lz_ufuﬂ)
order in an expansion iR, the diagonalization of the matrix Uy Uy
in Eq. (30) is the same as a matrix where th&" element is .
replaced with zergand we call such an entry a texture zero X (dagt daadz;— Uzg), (36)
So we have the following matrix whose diagonalization is
equivalent to leading order to the original matrix IVig] = = (dyat dypdt— Uy + (f_n_diadaz)
o .4 dy  dp
0 N A .
U—| e A% a2 (31) X (dagt doad3;— Uzg), (37)
)\4 )\2 1 where d” = DI] /D33 and 822: d22_ d23d32 and TJZZZ Uoo

—Uy3Ug,. It is understood that there will in general be rela-
Finally we must determine if any of the elements in fhe?]  tive phases between the terms on the right hand sides of Egs.
block are suppressed. Suppose the diagonalization has be@%)—(37), which are the correct forms to evaluate the lead-
performed in thd2-3] and[1-3] blocks. Then the matrix has ing orders for Yukawa matrices of the form considered in this

the form paper.
Taking the expansion parameter to be the Cabibbo angle,
A8 A% 0 A=|V,4, then the experimental constraifiz9]
9 4
AT O (32 |Vud =0.219650.0023, |V, =0.0395+0.0017,

0 0 1 (38
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Vub

=0.08£0.02,
Vcb

on the CKM matrix can be identified in terms of powers\of
by the following?

PHYSICAL REVIEW D64 053006

izes the down-quark Yukawa matri®, is of order one in the
[2-3] block, is retained. This has the important consequence
that, if the lepton charges are related to the down quark
charges by a grand unified theory, then the charged lepton
matrix will require a large mixing between in ti2-3] block

to diagonalize it. This results in a large mixing between the

) 3 w4 Vb ) second and third generation of neutrinos, and can naturally
[Vusd =N, [Vep[ =A% [Vl ~ M7=, \/_cb ~A=A% explain how the atmospheric neutrino mixing can be large
(39 (order ong while the quark mixing between the second and

third generations|V,,|, can be smallorder \?). This has
We consider a model of Yukawa matrices to describe théyeen called the “lopsided” solution to the producing the re-
experimental data satisfactorily if the leading order contribuquired atmospheric neutrino mixing in grand unified models
tion to the CKM elements agrees with EQ9). For [V,y|  [31]. This occurs in all the models necessarily after applying
and|V,/Vp| We accept two values for the exponent of thethe phenomenological requiremerfté.p|~X\2 and mg/m,
leading contribution. The constraint ¢v,,/V,| can be ex-  ~)\2,
pressed in a stronger way at 90% confidence level as\0.25 |n models in which thdJ(1) flavor symmetry is gauged
—0.5\. One also has a constraint on the CKM elements fromand anomalous, one can imagine the anomaly is canceled via
BS— B mixing [29], the Green-Schwarz mechanigi®4]. A convenient way to
ensure that the flavor charges are amenable to cancellation is

|V{,Via| =0.0084+0.0018, (40)  to have the flavor symmetry commute with t8&J(5) grand
L unified theory* In the traditional SU(5) grand unified
which implies that i — .
theory, the field€Q, andug are assigned to tht0 represen-
|Vigl ~ N3, (41  tation, and thedy is assigned to th&* representation. We

_ _ _ have found a texture pattern for the up and down quark
The eigenvalues of the Yukawa matrices are constrained byukawa matrices with four texture zeros for which the flavor
the following requirements from experimental observations:symmetry quantum number assignment commutes with an
SU(5) grand unified gauge group. This texture pattern yields
m ., M , My
—~\% —~\, —~\. (42
m; me My Mg AN 0 0
These phenomenological requirements will be used in the U~| 0 A 2
next section to constrain the Yukawa matrix patterns that can 0 N2 1
successfully reproduce the experimental data.

3 (4,1 2,00 (0,0
V. GRAND UNIFIED MODEL 0 0 X SL 4D (20 (00
. . : : , D~| 0 A N Jug: (4D (20 (0,0,
In this section we derive an assignment of charges in _
U(1)X Z, that has the maximum number of texture suppres- M1 1/dgr (20 (1,0 (0

sions (four) that is consistent with &U(5) grand unified (43
symmetry. Since the flavor symmetry is required to commute _
with SU(5), this means that there must be a common flavorThis assignment has commd(1)xZ, flavor symmetry

charge assignment for all particles in each multiplet ofquantum numbers for th®, andug fields in the10, and a

SU(5). Werestrict our attention to the case oZa symme-
try, since (as described earligiit is the only possibleZ,,

systematic search reveals that no other texture pattern with
four or more texture zeros satisfies this property. Finding an

symmetry that can reproduce a hierarchy in neutrino massesssignment for which the flavor symmetry commutes with

of ordera? [2].

SU(5) allows us to assign flavor charges to the rest of the

First, we have found that all the solutions from the SU(5) multiplets, namely the charged leptons and neutrinos.

U(1) X Z, flavor symmetry that satisfy the quark sector phe-

nomenology have the following property: th& 2] entry and
the[3-3] entry of the down quark Yukawa matrif, are the

The texture pattern given by E@3) has the following
feature: The CKM mixind V| arises from contributions of
order A? from the diagonalizations of both the and D

same order of magnitude. If the flavor symmetry is embedyYukawa matrices. All other CKM mixing angles|\(,,
ded in a grand unified model, the charged lepton Yukawav |, and|V,4|) arise solely from théd Yukawa matrix.
matrix will be given by the transpose Y. Then the feature

of Eq. (6), that the right-handed mixing matrix that diagonal- ————

°The mixed standard modél(1) anomalies can be canceled en-
tirely by the Green-Schwarz mechanism if tH¢1) chargesX sat-
There are renormalization scaling factors that relate the experisfy the relations trK T, Tp)otr(T,T,) and tr(x?Y)=0 whereT,
mental data at the electroweak scale, B@), to the relationships at are the standard model generators. These relations are satisfied au-
the high scalg30]. tomatically if theU(1) charges respect tHeU(5) symmetry.
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Given the quantum number assignment in E4f), we  masses are of roughly the same order of magnitude. The

can extend the model to encompass the leptons. Thedield Super-Kamiokande dafd] suggest that
fills out the 10 representation, and the left-handed lepton 2 3 2 . y
doublet,L, , fills out the 5* representation, so they should Amp~2.2<10°7° eV, sirf26,~1, (48)

have the quantum number assignments where the subscripts indicate the generations of neutrinos

i— 1 2 3 involved in the mixing(we assume the mixing is betweep

o andv ., and not some sterile neutrino

er: (41 (20 (0,0 The solar neutrino flux can be explained by one of three
L: (20 (L0 (0,0). (44) distinct solutions. Two of these involve matter-enhanced

[Mikheyev-Smirnov-WolfensteifMSW)] oscillation while

These assignments dictated by the &) can be compared the third involvgs vacuum oscillatior(_S/O). The two MSW
against constraints obtained from experiment for masses argplutions are differentiated by the size of the mixing angle,
mixings in the lepton sector. The first phenomenological conS© one is usually called the small mixing ang&MA) solu-
straints we consider involve the charged leptons. Using th&0n, and the other is called the large mixing angi&A)
U(1)XZ, quantum numbers in Eq44), one immediately solution. The values required for the mixing parameters in
obtains the charged lepton Yukawa matigee the Appendix each of these three cases are shown in the table below:
for formulasg,

AmZ, [eV?] Sirg 26,
7 4 2
>‘6 "3 A MSW(SMA) 5% 10 6x 103
m=~{ A° N° N |, (45 MSW(LMA) 2x10°° 0.8
A A VO 8x10 1t 0.8

The MSW solutions can be obtained wittZa horizontal
symmetry[2,6,10. If the neutrino masses are arranged in a
hierarchy, then the best fit to the data is

As desired thé¢2,3] and[3,3] elements are the same order of
magnitude. This yields the mass ratios

m m
L N2 e __\4 2
—E\2, —~\4 46 Am .
m N 49 2o\, singie, @9
Am3,
which are consistent with the experimental constraints after ]
including renormalization group scaliig0].2 and either
Next consider the light neutrino mass matrix. There are .
g sin@7,~\2, (50)

two possibilities that were discussed previously in Réf.
First the light neutrino mass matrix might not have SUP-¢or the SMA solution. or

pressed entries arising from ti® component of the flavor '

symmetry, in which case the light neutrino mass matrix is sin6%,~\°, (51)
simply given by Eq.(A13), whereL; in this case is simply

the sum of theU(1) andZ, quantum numbers of the rel- for the LMA solution. If noZ, symmetry is operative, one
evant lepton doublet field,, . For the charge assignments in gets a light neutrino mass as in E@\13), and if L,=Lg,

Eq. (44), this gives there is no natural explanation for the hierarchy in the masses
of m,, andm, . As explained in Refs[6,10], this can be

AN N3 _
3 2 .2 v3 remedied by assigning the right-handed neutrino fields
m,~| A% A% A A (47)  [singlets ofSU(5)] the following Z, charges:(0,0,). The
A3 N2 A2 particularU(1) assignment for the fieldsg; does not affect

o _ . ~ the light neutrino mass matrix. In this case, [Be] element
The remaining constraints on leptons involve the neutrinaf the m, matrix is enhanced by a factar 2, giving
masses and mixings. The most interesting aspect of the neu-

trino data is that the atmospheric neutrino mixing appears to MO N

be large, perhaps even maximal. As mentioned earlier, it is m~| A3 A2 a2 U2 (52)
difficult to understand a hierarchical pattern for the neutrino g 3 o AL’

masses, since large mixing should result when the neutrino P

for the charge assignment in E@4).
The neutrino mixing matrix is
3The largest scaling effect results from the additional running nec-
essary to reach the muon and the electron mass scales so that one 1 N A
can relate the Yukawa couplings to the physical masses of the N 11 (53
charged leptons. The scaling of the Yukawa coupling ratios them- )
selves is negligibly small. Al 1
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The solar mixing angle is predicted to be of orderfalling  ratios were correctly predicted and a large mixing angle
in between the optimal value for the LMA solution) and  naturally arises to explain the atmospheric neutrino data. A
the SMA solution §2). Equation(6) yields a solar mixing mixing angle of ordei arises to explain the solar neutrino
angle of orden3, so the presence of th&, symmetry has oscillation data.
the effect in the neutrino sector of enhance the mixing of the Discrete flavor symmetries can suppress entries in the
first generation to the second and third generations by a factukawa matrices and offer the potential of a solution to the
tor A 2. Several unknown order-one coefficients combine tasupersymmetric flavor problem. A judicious choice of texture
produce the matrix in E¢52), so it is not necessarily incon- zeros can render the quark mass matrices and the squark
sistent with the MSW solutions. mass-squared matrices simultaneously diagonalizable,
In the models described here, one can achieve alignmeitihereby eliminating some strongly constrained flavor-
of the quark mass matrices and the squark mass-squared ntranging couplings. However, we find that this solution can-
trices by certain positioning of texture zeros in the quarknot be obtained in a model with a single symmetry and
Yukawa matrices. This alignment can solve the SUSY flavoisatisfy all the othefmasses and mixinggphenomenological
problem by making it possible to simultaneously diagonalizerequirements. However the quantum number assignments
the quark mass matrices and the quark-squark-gluino cowsan be compatible through suppression of flavor-changing
pling, thereby avoiding the dangerous flavor-changing coueffects when supersymmetry breaking is mediated by the
plings. In particular, in the models we are discussing hereanomalous flavor symmetry.
one can achieve this alignment if there are texture zeros in
the down quark Yukawa matrixD, in the [1,2] and [2,1]
elements, and in either tHd,3] or [3,2] elements, and in
either the[1,2] or [3,1] elements. This is easily seen to be the  This work was supported in part by the U.S. Department
case after a quick inspection of Eq84)—(37): in this case  of Energy under Grant No. DE-FG02-91ER40661.
the Cabibbo angldV,4, arises to leading order solely in the
up quark Yukawa matrixJ. The texture patterns that achieve
this alignment occur when the down-quark Yukawa matrix

has texture zeros in the positions given by the patterns In this appendix we review the formulas for Yukawa and
mass matrices that result from Abelian horizontal symmetries
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APPENDIX

X 0 0 with and without a discrete component. Let tH€1) quark

0 0 X (54) charges be given by

0 X X — — _ _ _ _
QLl QL2 QLS UR]_ uRZ UR3 de dRZ dR3

0 0 X a1 a2 ds ug U us d; d, ds

0 X 0 (55 Then the up and down quark Yukawa matricesandD are

X 0 X given by

which have the off-diagonal elements in flie2] block dou- Nd1tur  pdrtup )\ ditus

bly suppressed. The off-diagonal suppression in [thé]

+ + +
block in the case of pattern E(p4) or the[2-3] block in the U~| A% \f2rt )%t

case of the pattern Eq55) need to be doubly suppressed, AG3TUL \GaTUz )\ d3*ls

which is impossible. So one cannot achieve the quark-squark

alignment in the context of @(1)X Z, flavor symmetry. On NOi+dr  pOr+dy )y ap+ds

the other hand, one can employ the idea of supersymmetry

breaking through an anomalous flavor symmégg,33 to D~| Nd2tdi \G2"d2 \Gtds ] (A1)
the grand unified model presented in this section. One can N\d3Td1  )ds+dz )\ dztds

obtain reasonable suppression of the flavor-changing effects

provided the first and second generation sparticles are in the . . ,
multi-TeV range[19—21]. hl? is understood that these matrices have unknown coeffi-

cients multiplying each element. The contributions to each
element arise from a different operator in Eg), so they are
V1. CONCLUSION in general independent of each other. Since these coefficients
We have shown that if the fermion mass matrices aréi'€ not correlated there is no reason to expect the Yukawa
dictated by an Abelian family symmetry, one can obtain amatrices to have a zero eigenvalue. _
phenomenologically successful texture pattern by employing 10 compare the predictions of flavor symmetries to these
additional Z,,, horizontal symmetries. This four-texture zero Phenomenological constraints, one has to relate the CKM
model has a flavor symmetry that commutes with an(sU
grand unified theory with the usual assignment of particles to
the 5* and 10 representations. When the quantum numbers “We use the notatioa~b to indicate thaia andb are the same
are extended to the lepton sector, the charged lepton massdler in\.
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elements to the entries in the Yukawa matrices. The Yukawand for the neutrino Dirac mass matrix

matricesU andD can be diagonalized by biunitary transfor-
mations

udg=yLuvRT, (A2)
DY9=V5DVET, (A3)

The CKM matrix is then given by
v=VivhT (A4)

The left-handed transformation matrice§ and Vj can be
defined in terms of three successive rotations in (&),
(1,3 and(1,2 sectors. These rotation angles of the transfor
mation matrices can be expressed in terms of the elements
the Yukawa matrices as followg,28]:

* *
Ugp Uil Ugg(Ugpt UUs))

st=—
127 ~ ~ 2 ~
Upp  |u3y U2z
U13U35(U%s+ UgoU3y)
N Tx |2 ! (AS)
luz,

S13=Uggt UgqU3;+ Ug(U3p+ UZoUss)

+ Uq3U3;(Upgt UppUizy), (A6)
Sp3= Upgt UpaUi3y, (A7)

where u;; is thei,jth component of the up quark Yukawa
matrix, U/(U) 33, andU,,= UyolUss— U3z, There are corre-
sponding expressions for th;ﬁ in terms of the components
of the down quark Yukawa matrixp [which are slightly
more complicated due to the fact that 23) sector mixing
in V(T might be of order ong Clearly contributions to the

ALiFAND \LitNz ) LitA3

A2t Lot )\ LatA3

M~ (A10)

)\L3+./\/1 )\L3+N2 )\L3+N3

We have defined there the VEVs of the Higgs coupling to the
down- and up-type quarks to kig andv,, and one usually
defines ta=v,/v,. To determine the neutrino mixing
angles one rotates to a basis where the charged lepton matrix
is diagonal. This will give a contribution to the mixing in the
Jight neutrino species. The relevant mixing contributing to
gfmospheric neutrino oscillations comes from the right hand
side of the charge lepton matrix-2"Es/\'3*Es,

The Majarona mass matrix is obtained from the charges of
the right-handed neutrino flavor chargd§ and a heavy
scale we lable ad |,

}\2/\/’]_ )\N1+N2 )\N1+N3

MNN )\N1+N2 7\2/\/2 )\N2+N3 AL- (All)

)\N1+./\/3 )\N2+./\/3 )\2/\/3

Then one obtains the following form for the light neutrino
mass matrix via the seesaw formula

m,,:mDM—NmB, (A12)

wheremp is the neutrino Dirac mass matrix. ThEx,25],

CKM matrix elements can come from a number of terms. In

this paper we are interested in determining only the leading

order contributiofs) to the CKM angles and the fermion
masses.

Assume now that the lepton fields have charges under
U(1) family symmetry

€r1 €ry €rs L1 12 113 VR VR PRs
Ei E; E3 Ly Ly Lg N N N

(A8)
All the flavor charges are non-negative so holomorphic zero

do not play a role. The only suppressed entries will arise
because of a discrete component in the flavor symmetry via §

mechanism described below.

Given lepton doublet chargds; and right-handed neu-
trino chargesA; one has the following pattern for the
charged lepton matrix

)\L1+E1 )\L1+E2 )\L1+E3

m|i"‘" )\L2+E1 )\L2+E2 )\L2+E3 (Ag)

ALatEr  z\LstEz )\LatEs

)\ZLl )\L1+L2 )\L1+L3

v
m,,~ )\L1+L2 )\2L2 )\L2+L3 _2 (A13)

L

a )\L1+L3 )\L2+L3 )\2L3

If L,=L3 one can obtai®(1) mixing in the 2-3 sectof3].

On the other hand, one fails to get a mass hierarchy between

the second and third generation, since the two mass eigen-

ngLues for the second and third generations are both of order
3

§ A discrete Abelian family symmetry can be employed to

nhance or suppress masses and mixing angle relative to the

predictions obtained when the family symmetry is the con-

tinuousU (1) symmetry, and this idea was pursued further in

specific model$§5,6]. The discret&,, symmetry can result in

the enhancement of entries in the light neutrino mass matrix

[2], and this enhancement is compatible with the neutrino

seesaw mechanisiii0,6]. For example, if théJ(1) quan-

tum numbers in EQA8) are replaced by (1) X Z, quantum

numbers,L;— (L3;—1,1) and AV3—(N3;—1,1) so that the

charges for the lepton fields are
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€r1 €r2

ER3 ILl |L2
(Ello) (EZIO) (E310) (Lllo) (LZ!O)
Then one finds that
)\2/\/1 )\Nﬁ/\fz )\/\/1+/\/'3
M N~ )\/\/'1+N2 )\2./\/2 )\N2+./\/3 AL! (A15)
ANVITNg )\ Mot N )\ 2N3-2
so that
(My) ™t
)\—2./\/1 )\_Nl_NZ )\—Nl—N3+2
~ )\*N]_*/\/z )\*ZNZ )\*NZ*N3+2 AEl .
A7N17N3+2 A7N27N3+2 )\72/\/3+2
(A16)

PHYSICAL REVIEW D64 053006

I3 VR1

VR2 VR3
(L3=1D) (M,0) (N2,0) (N3—1,D) (A14)
[
AL1TANL Lt A, PERAE
Mp~ )\L2+./\/1 )\L2+./\/2 )\L2+N3 vs. (Al?)
)\L3+N1 )\L3+N2 )\L3+N3—2

The light neutrino mass matrix in EA13) is modified so
that only the 3-3 entry is enhanced,

)\2L1 )\L1+L2 )\L1+L3

m~| Atttz A2 platls U2 (A18)

)\L1+L3 )\L2+L3 )\2L3—2

The charged lepton mass matrix, £E49), and hence a large
mixing angle is needed to diagonalize fl2e3] block. So the

So the effect of the discrete symmetry in our case is to enlarge mixing observed in the atmospheric neutrino experi-

hance the 3-3 entry of thily matrix, and thereby alter the

ments is accounted for, while the hierarchy of oriéiin the

results for the third row and the third column on the inversesecond and third generation neutrino masses is obtained.
matrix, (My) " *. The 3-3 component of the neutrino Dirac Generalizing to a discrete symmetzy, rather thanZ, can
mass matrix is also enhanced by the discrete symmetry, goeserve the large neutrino mixing while enhancing the

that Eqg.(A10) is modified to be

heaviest neutrino mass by a factor™.
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