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Discrete flavor symmetries and mass matrix textures
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We show how introducing discrete Abelian flavor symmetries can produce texture zeros in the fermion mass
matrices, while preserving the correct relationships with the low-energy data on quark and lepton masses. We
outline a procedure for defining texture zeros as suppressed entries in Yukawa matrices. These texture zeros can
account for the coexistence of the observed large mixing in atmospheric neutrino oscillations with a hierarchy
in the neutrino masses, and offer the possibility of alignment of the quark and squark mass matrices, thus
giving a solution to the supersymmetric flavor problem. A requirement that the flavor symmetry commutes with
the SU(5) grand unified group can be used to explain the lepton mass hierarchies as well as the neutrino
parameters, including the large mixing observed in the atmospheric neutrino data. We present one such model
that yields a large atmospheric neutrino mixing angle, as well as a solar neutrino mixing angle of orderl
.0.22.
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I. INTRODUCTION

The mechanism that generates the fermion masses is
yet understood. In the standard model~SM! the masses and
mixings are simply parameters that can be adjusted to a
with experiment. One hope is that the Yukawa couplings
the SM can be understood more fully when the theory
embedded in a more fundamental theory, and relations
between masses and mixings might then be establis
Symmetries based on embedding the gauge symmetrie
the SM in larger gauge groups~unified theories! have been
used for a long time and some reasonable mass pattern
be derived which are consistent with experiment. These s
metries have come to be called vertical symmetries to dis
guish them from the horizontal symmetries~or flavor sym-
metries! that relate fermions from the different generation
In this paper we show how discrete Abelian horizontal sy
metries based onZm can account for some of the success
texture patterns.

There are a number of reasons one might want to exte
U(1) flavor symmetry so that it contains an additional d
creteZm component.~A! The additional discrete symmetr
offers a solution to the seemingly inconsistent large mix
observed@1# in the atmospheric neutrino data and a hierarc
in the muon and tau neutrino masses@2#. In models with
supersymmetric Abelian flavor symmetries, largenm2nt
mixing is achieved via a light neutrino mass matrix of t
form @3#

S C B

B AD v2

M
,

A,B,C;O~1!, ~1!

wherev is some electroweak scale vacuum expectation va
andM is the Majorana neutrino mass scale. The eigenva
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are typically the same order of magnitude. It requires a fi
tuning of the order one parametersA, B, and C to achieve
large mixing between neutrinos and widely separated n
trino masses. Grossman, Nir, and Shadmi@2# advocated us-
ing a discrete symmetry to maintain the large mixing an
while achieving very different neutrino masses without fin
tuning. Discrete symmetries had been discussed previo
@4#, but the more recent experimental results indicating la
mixing in the atmospheric~and perhaps solar! neutrino os-
cillations made this technique especially interesting. The
of a discrete flavor symmetry to understand the mass hie
chies and mixing angles for all standard model fermions w
pursued in Refs.@5,6#. Other authors have employed no
Abelian discrete flavor symmetries@7–9# that have both one
and two dimensional representations. This approach is
ticularly well suited for addressing the supersymmetric flav
problem where the first and second generation of superp
ners should have very similar flavor properties and thus
long in the same representation of the flavor group. In t
paper we restrict our attention to Abelian discrete symm
tries. ~B! The phenomenological predictions for quark ma
ratios and Cabibbo-Kobayashi-Maskawa~CKM! matrix ele-
ments can be retained, but the contributions arise from
smaller number of parameters.~C! The process of creating
the baryon asymmetry of the Universe by havi
CP-violating asymmetric decays of heavy neutrinos can
greatly enhanced as a natural consequence of solving i
~A! above@10#. ~D! One can potentially solve the supersym
metric flavor problem by suppressing certain entries in
Yukawa matrices. The mechanism works by aligning t
quark mass matrices with the squark mass-squared mat
@11#, and one does not need to require that the first and
ond generation squarks are degenerate. The mixing ma
for the squark-quark-gluino couplings can be made close
unit matrix, and the undesirable flavor-changing neutral c
rents~FCNCs! are suppressed. The required suppressions
not possible with aU(1) symmetry.

During the last few years, there has been great interes
using new continuous Abelian as well as discrete Abel
and non-Abelian symmetries in the minimal supersymme
©2001 The American Physical Society06-1
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standard model~MSSM! to describe the experimental~phe-
nomenological! data on the fermion masses and mixin
@2,12–23#. Superstring theories appear to haveU(1) symme-
tries and symmetries involving its discrete subgroups a
generic feature. If theU(1) flavor symmetry is gauged the
a general assignment of flavor charges to the fields will
anomalous. One can imagine the anomaly is canceled via
Green-Schwarz mechanism@24#, and one must check
whether the correct relations are satisfied. A convenient w
to ensure that the flavor charges are amenable to cancell
is to have the flavor symmetry commute with theSU(5)
grand unified theory@20#. We present in this paper a mod
with a U(1)3Z2 flavor symmetry with at least four textur
zeros~in the up and down quark Yukawa matrices! that com-
mutes with theSU(5) gauge group.

The paper is organized as follows. In Sec. II we brie
discuss flavor symmetries and how they can in principle
count for the experimentally observed hierarchies in
quark masses and mixing angles. In Sec. III we discuss
possible role of a discrete component in the flavor symme
Section IV then lists the phenomenological requirements
must be met in the quark sector of the standard model
Sec. V a particular model for which the flavor symmet
commutes with anSU(5) grand unified symmetry is pre
sented, and the phenomenology is extended to include
leptons. The consequences for neutrino oscillations and
charged lepton masses are discussed. Finally we presen
conclusions in Sec. VI.

II. FLAVOR SYMMETRIES

The hierarchical structure of the fermion mass matri
hints that there may be a spontaneously broken family s
metry responsible for the suppression of Yukawa couplin
In this paper we employ supersymmetric Abelian horizon
symmetries. These flavor symmetries allow the fermion m
and mixing hierarchies to be naturally generated from n
renormalizable terms in the effective low-energy theory.

The idea is quite simple and easily implemented@12#.
There is some fieldS which is charged under aU(1) family
symmetry, and without loss of generality, we can assume
its charge is21. There are terms contributing to effectiv
Yukawa couplings for the quarks,

Qid̄jHdS S

LL
D mi j

1QiūjHuS S

LL
D ni j

, ~2!

and the integer exponentsmi j andni j are easily calculated in
terms of the horizontal symmetry charges of the quark
Higgs fields. The scale,LL , where massive states are int
grated out of the fundamental theory to produce an effec
theory, is assumed to be larger than the vacuum expecta
value ~VEV! ^S& of the singlet scalar field so the parame
^S&/LL is a small one. We henceforth require the Hig
fields to be uncharged under theU(1) family symmetry, then
the exponentmi j is just the sum of the horizontal charge
the fieldsQi and d̄ j . The hierarchy is generated from term
in the superpotential that carry integer chargesmi j ,ni j >0. If
we call the small breaking parameter^S&/LL;l, then the
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generated terms for say the down quark Yukawa matrix w
be of orderlmi j . We will restrict our attention in this paper t
flavor charges for the standard model fields that are n
negative. Here texture zeros refer to Yukawa matrix eleme
that can be replaced by an exact zero without affecting
leading order~in the small parameterl) results for the mass
eigenvalues and mixing angles. An analysis of the poss
approaches to explaining the neutrino masses and mix
usingU(1) symmetries only is given in Ref.@25#.

In models whose flavor symmetry contains two distin
components@U(1)3U(1), U(1)3Zm , etc.# one intro-
duces @4# two singlet scalars,S1 and S2, with horizontal
charges

S1~21,0!, S2~0,21!, ~3!

which in general can have different vacuum expectation v
ues^S1& and^S2&. These can be related to a common expa
sion parameterl by setting

^S1&
LL

;lb,
^S2&
LL

;la. ~4!

In the following we identifyl as the Cabibbo angle, and tak
b51. In general, one can takea5” 1, but for our explicit
models we assumea51. The contributions to the Yukawa
matrices arise from flavor invariant terms in

Qid̄jHdS S1

LL
D mi j S S2

LL
D pi j

1QiūjHuS S1

LL
D ni j S S2

LL
D qi j

. ~5!

It should be understood that there are undetermined o
one coefficients multiplying these terms, and we assume
this paper that these coefficients are sufficiently close to
so as not to influence the hierarchy, i.e., somewhat gre
thanl and somewhat less than 1/l. Formulas for the Yukawa
matrices for the quarks and charged leptons as well as m
matrices for the neutrinos that follow from the Frogga
Nielsen mechanism are given in the Appendix.

If the flavor symmetry isU(1) then there is a charg
assignment in the quark sector that satisfies all the phen
enological requirements detailed in Sec. IV below. This
lution was obtained by many authors@18,26,27#. The up and
down quark Yukawa matrices are

U;S l8 l5 l3

l7 l4 l2

l5 l2 1
D , D;S l4 l3 l3

l3 l2 l2

l 1 1
D . ~6!

The model we present in this paper will give the same p
nomenological predictions as Eq.~6!, but the discrete sym-
metry will suppress certain entries in comparison to
U(1) flavor symmetry pattern shown in Eq.~6!. After in-
cluding a discrete component to the flavor symmetry, a d
ferent SU(5) grand unified model can be constructed~see
Sec. V!.
6-2
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DISCRETE FLAVOR SYMMETRIES AND MASS MATRIX . . . PHYSICAL REVIEW D64 053006
III. DISCRETE ABELIAN GROUPS

In this section we discuss the two possible texture patte
for a 232 matrix, and then show how to put these 232
blocks together to form the realistic case of texture patte
for three generations.

A. Suppressing in 2Ã2 blocks

When the flavor symmetry isU(1), there is a sum rule
among the exponents in any 232 block. For example, the up
quark Yukawa matrix necessarily has the relationship

nii 1nj j 2ni j 2nji 50 ~7!

between the exponents,ni j [qi1uj . The Yukawa matrices
in Eq. ~6! obey this rule, for example. However, these re
tionships between elements of the Yukawa matrices can
avoided if the flavor symmetry has aZm component. We can
illustrate this with a simple example with aZ2 symmetry:
Consider two generations withZ2 flavor charges as follows

QL : qi
Z5~0,1!, ūR : ui

Z5~0,1!, i 51,2, ~8!

where the first number for each field gives the charge for
first generation and the second number gives the charge
the second generation. Then performing theZ2 arithmetic in
constructing the contribution to the Yukawa matrices yiel
in general,

S l [q1
Z

1u1
Z] l [q1

Z
1u2

Z]

l [q2
Z

1u1
Z] l [q2

Z
1u2

Z] D . ~9!

We use brackets around the exponents,@ #, to denote that we
are modding out by two according to theZ2 addition rules. In
the case of the particular choice of charges in Eq.~8! and
taking ^S2&/LL;l

S l0 l1

l1 l0D . ~10!

So this set of charges yields a Yukawa matrix that does
satisfy the rule in Eq.~7!. If one adds in nontrivial contribu-
tions from theU(1) part of the flavor symmetry, one see
that the off-diagonal entries in Eq.~10! are suppressed rela
tive to the expectation from Eq.~7!. For example, assum
that the fields have@in addition to theZ2 assignments in Eq
~10!# the U(1) charge assignments

QL : qi5~3,0!, ūR : ui5~1,0!, i 51,2, ~11!

which, in general, give a contribution to the Yukawa matric

S lq11u1 lq11u2

lq21u1 lq21u2
D . ~12!

The particular choice of charges in Eq.~11! together with
taking ^S1&/LL;l yields the contribution to the Yukaw
matrices from theU(1) charges of the form
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S l4 l3

l1 l0D . ~13!

It should be clear from Eq.~5! that the overall contribution to
the Yukawa matrix is the product of the contribution from t
Z2 charges in Eq.~10! and the contribution from theU(1)
charges in Eq.~13! for each element of the Yukawa matrix
For example, here we get the following result for theU(1)
3Z2 flavor symmetry:

U;S l4 l4

l2 l0D . ~14!

So one sees that the off-diagonal entries are suppressed
tive to the expectation in Eq.~13!, and it is not difficult to
convince oneself that this suppression comes entirely fr
the Z2 part of the flavor symmetry.

The relevance of the above example to the present p
is the following. We are interested in determining the ph
nomenological predictions of the Yukawa matrices and th
comparing them to the experimental data. This requires
we diagonalize the Yukawa matrices to determine the eig
values~masses! and the mixing angles~CKM elements! as
explained in the Appendix. In the example we arrived at
Yukawa matrix in Eq.~14!, for which it is immediately clear
that the eigenvalues are of orderl0 andl4, while the mixing
angles inVu

L andVu
R @see Eq.~A2!# are of orderl4 andl2,

respectively. So one notes that the left-handed mixing an
is suppressed byl2 in comparison to the expectation from
U(1) symmetry alone that gives the same mass eigenval
namely,

S l4 l2

l2 l0D . ~15!

One can compare this simple 232 example with the second
and third generations of Eq.~6!. We denote this suppressio
in the following way:

S X 0

0 XD . ~16!

We say that the Yukawa matrix has texture zeros in the
diagonal positions. A texture zero defined in this way is no
true zero, but is negligible to the leading order in the sm
parameterl as far as the mass eigenvalues and the l
handed mixing~diagonalization! angles are concerned. Th
right-handed mixing angle isnot suppressed but this affect
neither the CKM mixing angles nor the mass eigenvalu
The physical observables are the elements of the CKM
trix, Eq. ~A4!, and involve contributions from the diagona
ization of the down-Yukawa matrix as well. So if there is
contribution from the diagonalization of down-Yukawa m
trix of order l, the contribution from the up-Yukawa matri
will be negligible in comparison. In this case we promote t
texture zero to a true phenomenological zero: the contri
tion from the off-diagonal elements of the up-quark Yukaw
matrix does not contribute to the determination of any phy
6-3
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M. S. BERGER AND KIM SIYEON PHYSICAL REVIEW D64 053006
cal observable~quark mass or CKM element! to leading or-
der in the expansion in the small parameterl.

We can also engineer a suppression along the diag
elements of a Yukawa matrix. This case is somewhat trick
than the previous case, so we proceed now to present an
example in the case of just two generations: For theZ2
charges, consider the assignment

QL : qi
Z5~1,0!, d̄R : di

Z5~0,1!, i 51,2, ~17!

and, for theU(1) charges, make the assignment

QL : qi5~3,0!, d̄R : di5~1,0!, i 51,2. ~18!

Then one obtains

S l1 l0

l0 l1D ~19!

for the contribution from theZ2 charges and

S l4 l3

l1 l0D , ~20!

from theU(1) sector. The contributions from the fullU(1)
3Z2 symmetry give the Yukawa matrix,

D;S l5 l3

l1 l1D . ~21!

The eigenvalues of this matrix arel0 andl2 and the mixing
angle for the left-handed diagonalization matrix is of ord
l2. So one can interpret the@1,1# entry of orderl5 as being
phenomenologically irrelevant to leading order in powers
l and the texture zero pattern is

S 0 X

X XD . ~22!

Note that the@2,2# entry is not phenomenologically irrel
evant, and is still denoted byX.

Having generated the Yukawa matricesU and D in Eqs.
~14! and~21!, we can account for phenomenological requi
ments~the full set of experimental data for fermion mass
and mixings is given in the next section!:

mc

mt
;l4,

ms

mb
;l2, uVcbu;l2. ~23!

The mixing angles forU are sinuL
u;l4 and sinuR

u;l2, while
for D they are sinuL

d;l2 and sinuR
d;l0. The leading order

contribution to uVcbu according to Eq.~A4! is then given
entirely by sinuL

d;l2 since sinuL
u is suppressed by a relativ

factor ofl2. The mass eigenvalue ratios in Eq.~23! are prop-
erly accounted for. So phenomenologically viable Yuka
matrices can be found with texture zeros, and these z
reduce the number of unknown order one coefficients
contribute to masses and mixing angles at the leading o
in l.
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An important feature of theU(1)3Z2 flavor symmetry is
that one can achieve different leading order contributions
the left-handed mixing angles inVu

L andVd
L , as shown in the

above example. In a model with aU(1) symmetry, these
mixing angles are determined entirely by the chargesQL

~and notūR and d̄R). So the presence of theZ2 symmetry
allows one to suppress the contribution to the CKM mixin
from either theU or theD matrix.

It is not difficult to generalize the discussion to an arb
trary Zm . The exponents ofl are given by Eq.~9!, and the
conditions satisfied by theZm charges that lead to textur
suppressions are

@qi
Z1ui

Z#1@qj
Z1uj

Z#2@qi
Z1uj

Z#2@qj
Z1ui

Z#56m, m>2,
~24!

where the case1m results in a suppression of the diagon
entries of the 232 matrix, and the case2m results in a
suppression of the off-diagonal entries. We remind the rea
that the square brackets in Eq.~24! indicate a modding by
the integerm.

B. Extending Zm-induced suppressions to 3Ã3 matrices

In the last subsection examples of how to suppress en
in a 232 Yukawa matrix were presented. One can exte
this result to the three generation case by considering 232
blocks. One has three such blocks in the case of three
erations: namely the@2-3#, @1-3# and the@1-2# blocks. One
can build up a texture pattern for a 333 matrix by placing
zeros in the desired positions of these 232 blocks. As dem-
onstrated in the last subsection, in each 232 block, one can
have either a texture zero in the off-diagonal or in a diago
position, but not both at the same time. As an example c
sider the matrix

S 0 0 X

0 X X

X X X
D . ~25!

All the zeros cannot be obtained by assigning charges in
@1-2# block alone, since this would require the zeros to be
both the diagonal and off-diagonal positions. However t
texture pattern can be obtained by assigning the zero on
diagonal to the@1-3# block, while off-diagonal zeros can b
assigned to the@1-2# block. As in the case of only two gen
erations, one can obtain the texture pattern by conside
only the Zm component of the flavor symmetry. One ca
obtain the required texture in Eq.~25! when m53 by the
following assignment ofZ3 charges:

QL : qi
Z5~2,0,1!, ūR : ui

Z5~2,0,1!, i 51,2,3, ~26!

The contribution to the 333 matrix Yukawa matrix from this
Z3 charge assignment is

S l1 l2 l0

l2 l0 l1

l0 l1 l2
D . ~27!
6-4
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DISCRETE FLAVOR SYMMETRIES AND MASS MATRIX . . . PHYSICAL REVIEW D64 053006
The U(1) contributions have not been included yet in E
~27!. While the@2-3# block does not have a suppressing p
tern, the suppression in the@1-3# block suppresses the diag
onal element@1,1#. Finally, the @1-2# block suppresses th
off-diagonal@1,2# and @2,1# elements.

Continuing with our example, if we assign theU(1) fla-
vor charges

QL : qi5~6,3,0!, ūR : ui5~6,3,0!, i 51,2,3,
~28!

to the quark fields, we obtain the following contribution
the up-type Yukawa matrix,

S l12 l9 l6

l9 l6 l3

l6 l3 1
D . ~29!

Putting the contributions from both components of t
U(1)3Z3 flavor symmetry together gives the following up
type Yukawa matrix~after dropping an overall factor ofl2

which is irrelevant as far as the hierarchy is concerned!:

U;S l11 l9 l4

l9 l4 l2

l4 l2 1
D . ~30!

One can always diagonalize matrices arises from Abe
flavor symmetries of the type described here in stages@28#,
by diagonalizing the@2-3# block, followed by the @1-3#
block, and finally diagonalizing the@1-2# block. The diago-
nalization in the@2-3# block does not produce any textu
zero because (l2)(l2)/(1)(l4) as in Eq.~7!. Each order one
coefficient in the@2-3# block plays a role in determining th
leading order diagonalization of that block. However in t
diagonalization of the@1-3# block, one notices that@1,1# el-
ement (l11) is suppressed by a factor of orderl3 compared
to the product of the@1,3# and @3,1# elements. So to leading
order in an expansion inl, the diagonalization of the matrix
in Eq. ~30! is the same as a matrix where thel11 element is
replaced with zero~and we call such an entry a texture zero!.
So we have the following matrix whose diagonalization
equivalent to leading order to the original matrix

U;S 0 l9 l4

l9 l4 l2

l4 l2 1
D . ~31!

Finally we must determine if any of the elements in the@1-2#
block are suppressed. Suppose the diagonalization has
performed in the@2-3# and@1-3# blocks. Then the matrix ha
the form

S l8 l9 0

l9 l4 0

0 0 1
D . ~32!
05300
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The l8 entry would be generated in the@1,1# element~and
thel11 element can be neglected in comparison, as descr
above!. So a subsequent diagonalization of the@1-2# block
indicates that texture zeros occur in the off-diagonal e
ments as

U;S 0 0 l4

0 l4 l2

l4 l2 1
D . ~33!

In other words, to leading order inl the diagonalization of
the first matrix in Eq.~30! is the same as the diagonalizatio
of the matrix in Eq.~33!.

By proceeding in this way, one can systematically co
struct all possible matrices with texture zeros in the desi
positions. The task then is to combine a texture pattern
the up-type Yukawa matrix with another texture pattern
the down-type Yukawa matrix, and check whether all t
phenomenological requirements can be satisfied. We n
turn to the experimental data for the quark and lepton mas
and mixing angles.

IV. PHENOMENOLOGICAL REQUIREMENTS
IN THE QUARK SECTOR

If one must satisfy the phenomenological constraints w
positive flavor charges, then Eq.~6! is the solution that re-
sults from aU(1) flavor symmetry. Using aU(1)3Zm fla-
vor symmetry instead will change the exponents by addinm
in certain elements. The relevant equations for the CKM m
trix elements that are valid for this category of matrices
@6#

uVusu5S d12

d̃22

2
d13d32

d̃22
D 2S u12

ũ22

2
u13u32

ũ22
D , ~34!

uVcbu5d231d22d32* 2u23, ~35!

uVubu5~d131d12d32* 2u13!2S u12

ũ22

2
u13u32

ũ22
D

3~d231d22d32* 2u23!, ~36!

uVtdu52~d131d12d32* 2u13!1S d12

d̃22

2
d13d32

d̃22
D

3~d231d22d32* 2u23!, ~37!

where di j 5Di j /D33 and d̃225d222d23d32 and ũ225u22
2u23u32. It is understood that there will in general be rel
tive phases between the terms on the right hand sides of
~34!–~37!, which are the correct forms to evaluate the lea
ing orders for Yukawa matrices of the form considered in t
paper.

Taking the expansion parameter to be the Cabibbo an
l5uVusu, then the experimental constraints@29#

uVusu50.219660.0023, uVcbu50.039560.0017,
~38!
6-5
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M. S. BERGER AND KIM SIYEON PHYSICAL REVIEW D64 053006
UVub

Vcb
U50.0860.02,

on the CKM matrix can be identified in terms of powers ofl
by the following:1

uVusu;l, uVcbu;l2, uVubu;l32l4, UVub

Vcb
U;l2l2.

~39!

We consider a model of Yukawa matrices to describe
experimental data satisfactorily if the leading order contrib
tion to the CKM elements agrees with Eq.~39!. For uVubu
and uVub /Vcbu we accept two values for the exponent of t
leading contribution. The constraint onuVub /Vcbu can be ex-
pressed in a stronger way at 90% confidence level as 0.l
20.5l. One also has a constraint on the CKM elements fr
Bd

02B̄d
0 mixing @29#,

uVtb* Vtdu50.008460.0018, ~40!

which implies that

uVtdu;l3. ~41!

The eigenvalues of the Yukawa matrices are constrained
the following requirements from experimental observatio

mc

mt
;l4,

mu

mc
;l4,

ms

mb
;l2,

md

ms
;l2. ~42!

These phenomenological requirements will be used in
next section to constrain the Yukawa matrix patterns that
successfully reproduce the experimental data.

V. GRAND UNIFIED MODEL

In this section we derive an assignment of charges
U(1)3Z2 that has the maximum number of texture suppr
sions ~four! that is consistent with aSU(5) grand unified
symmetry. Since the flavor symmetry is required to comm
with SU(5), this means that there must be a common fla
charge assignment for all particles in each multiplet
SU(5). Werestrict our attention to the case of aZ2 symme-
try, since ~as described earlier! it is the only possibleZm
symmetry that can reproduce a hierarchy in neutrino ma
of orderl2 @2#.

First, we have found that all the solutions from th
U(1)3Z2 flavor symmetry that satisfy the quark sector ph
nomenology have the following property: the@3,2# entry and
the @3-3# entry of the down quark Yukawa matrix,D, are the
same order of magnitude. If the flavor symmetry is emb
ded in a grand unified model, the charged lepton Yuka
matrix will be given by the transpose ofD. Then the feature
of Eq. ~6!, that the right-handed mixing matrix that diagona

1There are renormalization scaling factors that relate the exp
mental data at the electroweak scale, Eq.~38!, to the relationships a
the high scale@30#.
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izes the down-quark Yukawa matrix,D, is of order one in the
@2-3# block, is retained. This has the important conseque
that, if the lepton charges are related to the down qu
charges by a grand unified theory, then the charged lep
matrix will require a large mixing between in the@2-3# block
to diagonalize it. This results in a large mixing between t
second and third generation of neutrinos, and can natur
explain how the atmospheric neutrino mixing can be la
~order one! while the quark mixing between the second a
third generations,uVcbu, can be small~order l2). This has
been called the ‘‘lopsided’’ solution to the producing the r
quired atmospheric neutrino mixing in grand unified mod
@31#. This occurs in all the models necessarily after apply
the phenomenological requirementsuVcbu;l2 and ms /mb
;l2.

In models in which theU(1) flavor symmetry is gauged
and anomalous, one can imagine the anomaly is canceled
the Green-Schwarz mechanism@24#. A convenient way to
ensure that the flavor charges are amenable to cancellati
to have the flavor symmetry commute with theSU(5) grand
unified theory.2 In the traditional SU(5) grand unified
theory, the fieldsQL andūR are assigned to the10 represen-
tation, and thed̄R is assigned to the5* representation. We
have found a texture pattern for the up and down qu
Yukawa matrices with four texture zeros for which the flav
symmetry quantum number assignment commutes with
SU(5) grand unified gauge group. This texture pattern yie

U;S l8 0 0

0 l4 l2

0 l2 1
D

D;S 0 0 l3

0 l2 l2

l 1 1
D QL : ~4,1! ~2,0! ~0,0!

ūR : ~4,1! ~2,0! ~0,0!

d̄R : ~2,0! ~1,0! ~0,1!

.

~43!

This assignment has commonU(1)3Z2 flavor symmetry
quantum numbers for theQL and ūR fields in the10, and a
systematic search reveals that no other texture pattern
four or more texture zeros satisfies this property. Finding
assignment for which the flavor symmetry commutes w
SU~5! allows us to assign flavor charges to the rest of
SU(5) multiplets, namely the charged leptons and neutrin

The texture pattern given by Eq.~43! has the following
feature: The CKM mixinguVcbu arises from contributions o
order l2 from the diagonalizations of both theU and D
Yukawa matrices. All other CKM mixing angles (uVusu,
uVubu, anduVtdu) arise solely from theD Yukawa matrix.

ri-

2The mixed standard modelU(1) anomalies can be canceled e
tirely by the Green-Schwarz mechanism if theU(1) chargesX sat-
isfy the relations tr(XTaTb)}tr(TaTb) and tr(X2Y)50 whereTa

are the standard model generators. These relations are satisfie
tomatically if theU(1) charges respect theSU(5) symmetry.
6-6
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Given the quantum number assignment in Eq.~43!, we
can extend the model to encompass the leptons. The fielēR
fills out the 10 representation, and the left-handed lept
doublet,LL , fills out the 5* representation, so they shou
have the quantum number assignments

i 5 1 2 3

ēR : ~4,1! ~2,0! ~0,0!

LL : ~2,0! ~1,0! ~0,1!. ~44!

These assignments dictated by the Eq.~43! can be compared
against constraints obtained from experiment for masses
mixings in the lepton sector. The first phenomenological c
straints we consider involve the charged leptons. Using
U(1)3Z2 quantum numbers in Eq.~44!, one immediately
obtains the charged lepton Yukawa matrix~see the Appendix
for formulas!,

ml 6;S l7 l4 l2

l6 l3 l

l4 l3 l
D v1 . ~45!

As desired the@2,3# and@3,3# elements are the same order
magnitude. This yields the mass ratios

mm

mt
;l2,

me

mt
;l4, ~46!

which are consistent with the experimental constraints a
including renormalization group scaling@30#.3

Next consider the light neutrino mass matrix. There
two possibilities that were discussed previously in Ref.@6#.
First the light neutrino mass matrix might not have su
pressed entries arising from theZ2 component of the flavor
symmetry, in which case the light neutrino mass matrix
simply given by Eq.~A13!, whereLi in this case is simply
the sum of theU(1) andZ2 quantum numbers of the re
evant lepton doublet field,LL . For the charge assignments
Eq. ~44!, this gives

mn;S l4 l3 l3

l3 l2 l2

l3 l2 l2
D v2

2

LL
. ~47!

The remaining constraints on leptons involve the neutr
masses and mixings. The most interesting aspect of the
trino data is that the atmospheric neutrino mixing appear
be large, perhaps even maximal. As mentioned earlier,
difficult to understand a hierarchical pattern for the neutr
masses, since large mixing should result when the neut

3The largest scaling effect results from the additional running n
essary to reach the muon and the electron mass scales so tha
can relate the Yukawa couplings to the physical masses of
charged leptons. The scaling of the Yukawa coupling ratios th
selves is negligibly small.
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masses are of roughly the same order of magnitude.
Super-Kamiokande data@1# suggest that

Dm23
2 ;2.231023 eV2, sin22u23

n ;1, ~48!

where the subscripts indicate the generations of neutr
involved in the mixing~we assume the mixing is betweennm
andnt , and not some sterile neutrino!.

The solar neutrino flux can be explained by one of th
distinct solutions. Two of these involve matter-enhanc
@Mikheyev-Smirnov-Wolfenstein~MSW!# oscillation while
the third involves vacuum oscillations~VO!. The two MSW
solutions are differentiated by the size of the mixing ang
so one is usually called the small mixing angle~SMA! solu-
tion, and the other is called the large mixing angle~LMA !
solution. The values required for the mixing parameters
each of these three cases are shown in the table below:

Dm1x
2 @eV2# sin2 2u1x

MSW(SMA) 531026 631023

MSW(LMA) 231025 0.8
VO 8310211 0.8

The MSW solutions can be obtained with aZ2 horizontal
symmetry@2,6,10#. If the neutrino masses are arranged in
hierarchy, then the best fit to the data is

Dm12
2

Dm23
2

;l4, sinu23
n ;l0, ~49!

and either

sinu12
n ;l2, ~50!

for the SMA solution, or

sinu12
n ;l0, ~51!

for the LMA solution. If noZ2 symmetry is operative, one
gets a light neutrino mass as in Eq.~A13!, and if L25L3,
there is no natural explanation for the hierarchy in the mas
of mnm

and mnt
. As explained in Refs.@6,10#, this can be

remedied by assigning the right-handed neutrino fieldsn̄Ri
@singlets ofSU(5)# the following Z2 charges:~0,0,1!. The
particularU(1) assignment for the fieldsn̄Ri does not affect
the light neutrino mass matrix. In this case, the@3,3# element
of the mn matrix is enhanced by a factorl22, giving

mn;S l4 l3 l3

l3 l2 l2

l3 l2 1
D v2

2

LL
, ~52!

for the charge assignment in Eq.~44!.
The neutrino mixing matrix is

S 1 l l

l 1 1

l 1 1
D . ~53!

-
one
e
-
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The solar mixing angle is predicted to be of orderl, falling
in between the optimal value for the LMA solution (l0) and
the SMA solution (l2). Equation~6! yields a solar mixing
angle of orderl3, so the presence of theZ2 symmetry has
the effect in the neutrino sector of enhance the mixing of
first generation to the second and third generations by a
tor l22. Several unknown order-one coefficients combine
produce the matrix in Eq.~52!, so it is not necessarily incon
sistent with the MSW solutions.

In the models described here, one can achieve alignm
of the quark mass matrices and the squark mass-squared
trices by certain positioning of texture zeros in the qua
Yukawa matrices. This alignment can solve the SUSY fla
problem by making it possible to simultaneously diagonal
the quark mass matrices and the quark-squark-gluino c
pling, thereby avoiding the dangerous flavor-changing c
plings. In particular, in the models we are discussing he
one can achieve this alignment if there are texture zero
the down quark Yukawa matrix,D, in the @1,2# and @2,1#
elements, and in either the@1,3# or @3,2# elements, and in
either the@1,2# or @3,1# elements. This is easily seen to be t
case after a quick inspection of Eqs.~34!–~37!: in this case
the Cabibbo angle,uVusu, arises to leading order solely in th
up quark Yukawa matrix,U. The texture patterns that achiev
this alignment occur when the down-quark Yukawa mat
has texture zeros in the positions given by the patterns

S X 0 0

0 0 X

0 X X
D ~54!

S 0 0 X

0 X 0

X 0 X
D ~55!

which have the off-diagonal elements in the@1-2# block dou-
bly suppressed. The off-diagonal suppression in the@1-3#
block in the case of pattern Eq.~54! or the@2-3# block in the
case of the pattern Eq.~55! need to be doubly suppresse
which is impossible. So one cannot achieve the quark-squ
alignment in the context of aU(1)3Z2 flavor symmetry. On
the other hand, one can employ the idea of supersymm
breaking through an anomalous flavor symmetry@32,33# to
the grand unified model presented in this section. One
obtain reasonable suppression of the flavor-changing eff
provided the first and second generation sparticles are in
multi-TeV range@19–21#.

VI. CONCLUSION

We have shown that if the fermion mass matrices
dictated by an Abelian family symmetry, one can obtain
phenomenologically successful texture pattern by employ
additionalZm horizontal symmetries. This four-texture ze
model has a flavor symmetry that commutes with an SU~5!
grand unified theory with the usual assignment of particle
the 5* and 10 representations. When the quantum numb
are extended to the lepton sector, the charged lepton m
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ratios were correctly predicted and a large mixing an
naturally arises to explain the atmospheric neutrino data
mixing angle of orderl arises to explain the solar neutrin
oscillation data.

Discrete flavor symmetries can suppress entries in
Yukawa matrices and offer the potential of a solution to t
supersymmetric flavor problem. A judicious choice of textu
zeros can render the quark mass matrices and the sq
mass-squared matrices simultaneously diagonaliza
thereby eliminating some strongly constrained flav
changing couplings. However, we find that this solution ca
not be obtained in a model with a singleZ2 symmetry and
satisfy all the other~masses and mixings! phenomenological
requirements. However the quantum number assignm
can be compatible through suppression of flavor-chang
effects when supersymmetry breaking is mediated by
anomalous flavor symmetry.
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APPENDIX

In this appendix we review the formulas for Yukawa a
mass matrices that result from Abelian horizontal symmet
with and without a discrete component. Let theU(1) quark
charges be given by

QL1 QL2 QL3 ūR1 ūR2 ūR3 d̄R1 d̄R2 d̄R3

q1 q2 q3 u1 u2 u3 d1 d2 d3

Then the up and down quark Yukawa matrices,U andD are
given by4

U;S lq11u1 lq11u2 lq11u3

lq21u1 lq21u2 lq21u3

lq31u1 lq31u2 lq31u3

D ,

D;S lq11d1 lq11d2 lq11d3

lq21d1 lq21d2 lq21d3

lq31d1 lq31d2 lq31d3

D . ~A1!

It is understood that these matrices have unknown coe
cients multiplying each element. The contributions to ea
element arise from a different operator in Eq.~5!, so they are
in general independent of each other. Since these coeffici
are not correlated there is no reason to expect the Yuk
matrices to have a zero eigenvalue.

To compare the predictions of flavor symmetries to the
phenomenological constraints, one has to relate the C

4We use the notationa;b to indicate thata andb are the same
order inl.
6-8
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elements to the entries in the Yukawa matrices. The Yuka
matricesU andD can be diagonalized by biunitary transfo
mations

Udiag5Vu
LUVu

R† , ~A2!

Ddiag5Vd
LDVd

R† . ~A3!

The CKM matrix is then given by

V[Vu
LVd

L† . ~A4!

The left-handed transformation matricesVu
L and Vd

L can be
defined in terms of three successive rotations in the~2,3!,
~1,3! and~1,2! sectors. These rotation angles of the transf
mation matrices can be expressed in terms of the elemen
the Yukawa matrices as follows@4,28#:

s12
u 5

u12

ũ22

1
u11u21*

uũ22* u2
2

u13~u321u23* u22!

ũ22

2
u11u31* ~u23* 1u32u22* !

uũ22* u2
, ~A5!

s13
u 5u131u11u31* 1u12~u32* 1u22* u23!

1u11u21* ~u231u22u32* !, ~A6!

s23
u 5u231u22u32* , ~A7!

where ui j is the i , j th component of the up quark Yukaw
matrix, U/(U)33, andũ225u22u332u23u32. There are corre-
sponding expressions for thesi j

d in terms of the component
of the down quark Yukawa matrix,D @which are slightly
more complicated due to the fact that the~2,3! sector mixing
in Vd

R might be of order one#. Clearly contributions to the
CKM matrix elements can come from a number of terms.
this paper we are interested in determining only the lead
order contribution~s! to the CKM angles and the fermio
masses.

Assume now that the lepton fields have charges und
U(1) family symmetry

ēR1 ēR2 ēR3 l L1 l L2 l L3 n̄R1 n̄R2 n̄R3

E1 E2 E3 L1 L2 L3 N1 N2 N3

~A8!
All the flavor charges are non-negative so holomorphic ze
do not play a role. The only suppressed entries will ar
because of a discrete component in the flavor symmetry v
mechanism described below.

Given lepton doublet chargesLi and right-handed neu
trino chargesNi one has the following pattern for th
charged lepton matrix

ml 6;S lL11E1 lL11E2 lL11E3

lL21E1 lL21E2 lL21E3

lL31E1 lL31E2 lL31E3

D v1 , ~A9!
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and for the neutrino Dirac mass matrix

mD;S lL11N1 lL11N2 lL11N3

lL21N1 lL21N2 lL21N3

lL31N1 lL31N2 lL31N3

D v2 . ~A10!

We have defined there the VEVs of the Higgs coupling to
down- and up-type quarks to bev1 andv2, and one usually
defines tanb5v2 /v1. To determine the neutrino mixing
angles one rotates to a basis where the charged lepton m
is diagonal. This will give a contribution to the mixing in th
light neutrino species. The relevant mixing contributing
atmospheric neutrino oscillations comes from the right ha
side of the charge lepton matrix,lL21E3/lL31E3.

The Majarona mass matrix is obtained from the charge
the right-handed neutrino flavor chargesNi and a heavy
scale we lable asLL ,

MN;S l2N1 lN11N2 lN11N3

lN11N2 l2N2 lN21N3

lN11N3 lN21N3 l2N3

D LL . ~A11!

Then one obtains the following form for the light neutrin
mass matrix via the seesaw formula

mn5mD

1

MN
mD

T , ~A12!

wheremD is the neutrino Dirac mass matrix. Then@2,25#,

mn;S l2L1 lL11L2 lL11L3

lL11L2 l2L2 lL21L3

lL11L3 lL21L3 l2L3

D v2
2

LL
. ~A13!

If L25L3 one can obtainO(1) mixing in the 2-3 sector@3#.
On the other hand, one fails to get a mass hierarchy betw
the second and third generation, since the two mass ei
values for the second and third generations are both of o
l2L3.

A discrete Abelian family symmetry can be employed
enhance or suppress masses and mixing angle relative t
predictions obtained when the family symmetry is the co
tinuousU(1) symmetry, and this idea was pursued further
specific models@5,6#. The discreteZm symmetry can result in
the enhancement of entries in the light neutrino mass ma
@2#, and this enhancement is compatible with the neutr
seesaw mechanism@10,6#. For example, if theU(1) quan-
tum numbers in Eq.~A8! are replaced byU(1)3Z2 quantum
numbers,L3→(L321,1) and N3→(N321,1) so that the
charges for the lepton fields are
6-9
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ēR1 ēR2 ēR3 l L1 l L2 l L3 n̄R1 n̄R2 n̄R3

~E1,0! ~E2,0! ~E3,0! ~L1,0! ~L2,0! ~L321,1! ~N1,0! ~N2,0! ~N321,1! ~A14!
en

rs
c
,

eri-

ned.

the
Then one finds that

MN;S l2N1 lN11N2 lN11N3

lN11N2 l2N2 lN21N3

lN11N3 lN21N3 l2N322
D LL , ~A15!

so that

~MN!21

;S l22N1 l2N12N2 l2N12N312

l2N12N2 l22N2 l2N22N312

l2N12N312 l2N22N312 l22N312
D LL

21 .

~A16!

So the effect of the discrete symmetry in our case is to
hance the 3-3 entry of theMN matrix, and thereby alter the
results for the third row and the third column on the inve
matrix, (MN)21. The 3-3 component of the neutrino Dira
mass matrix is also enhanced by the discrete symmetry
that Eq.~A10! is modified to be
05300
-

e

so

mD;S lL11N1 lL11N2 lL11N3

lL21N1 lL21N2 lL21N3

lL31N1 lL31N2 lL31N322
D v2 . ~A17!

The light neutrino mass matrix in Eq.~A13! is modified so
that only the 3-3 entry is enhanced,

mn;S l2L1 lL11L2 lL11L3

lL11L2 l2L2 lL21L3

lL11L3 lL21L3 l2L322
D v2

2

LL
. ~A18!

The charged lepton mass matrix, Eq.~A9!, and hence a large
mixing angle is needed to diagonalize the@2-3# block. So the
large mixing observed in the atmospheric neutrino exp
ments is accounted for, while the hierarchy of orderl2 in the
second and third generation neutrino masses is obtai
Generalizing to a discrete symmetryZm rather thanZ2 can
preserve the large neutrino mixing while enhancing
heaviest neutrino mass by a factorl2m.
he-

@1# The Super-Kamionkande Collaboration, Y. Fukuda,et al.,

Phys. Rev. Lett.81, 1562~1998!.
@2# Y. Grossman, Y. Nir, and Y. Shadmi, J. High Energy Phys.10,

007 ~1998!; Y. Nir and Y. Shadmi,ibid. 05, 023 ~1999!.
@3# Y. Grossman and Y. Nir, Nucl. Phys.B448, 30 ~1995!.
@4# M. Leurer, Y. Nir, and N. Seiberg, Nucl. Phys.B398, 319

~1993!; B420, 468 ~1994!.
@5# M. Tanimoto, Phys. Lett. B456, 220 ~1999!.
@6# M. S. Berger and K. Siyeon, Phys. Rev. D62, 033004~2000!.
@7# Z. Berezhiani and A. Rossi, Nucl. Phys.B594, 113 ~2001!; Q.

Shafi and Z. Tavartkiladze, Phys. Lett. B487, 145 ~2000!; A.
Aranda, C. D. Carone, and R. F. Lebed,ibid. 474, 170 ~2000!.

@8# L. J. Hall and H. Murayama, Phys. Rev. Lett.75, 3985~1995!;
C. D. Carone, L. J. Hall, and H. Murayama, Phys. Rev. D53,
6282 ~1996!.

@9# P. H. Frampton and O. C. Kong, Phys. Rev. Lett.77, 1699
~1996!.

@10# M. S. Berger, Phys. Rev. D62, 013007~2000!.
@11# Y. Nir and N. Seiberg, Phys. Lett. B309, 337 ~1993!.
@12# C. D. Froggatt and H. B. Nielsen, Nucl. Phys.B147, 277

~1979!.
@13# L. E. Ibanez, Phys. Lett. B303, 55 ~1993!.
@14# L. Ibanez and G. G. Ross, Phys. Lett. B332, 100 ~1994!.
@15# P. Binetruy and P. Ramond, Phys. Lett. B350, 49 ~1995!; P.

Binetruy, S. Lavignac, and P. Ramond, Nucl. Phys.B477, 353
~1996!.
@16# Y. Nir, Phys. Lett. B354, 107 ~1995!.
@17# H. Dreiner, G. K. Leontaris, S. Lola, G. G. Ross, and C. Sc

ich, Nucl. Phys.B436, 461 ~1995!.
@18# P. Binetruy and E. Dudas, Nucl. Phys.B442, 21 ~1995!; E.

Dudas, S. Pokorski, and C. A. Savoy, Phys. Lett. B356, 45
~1995!; E. J. Chun and A. Lukas,ibid. 387, 99 ~1996!; N.
Irges, S. Lavignac, and P. Ramond, Phys. Rev. D58, 035003
~1998!.

@19# R. N. Mohapatra and A. Riotto, Phys. Rev. D55, 1138~1997!;
55, 4262~1997!.

@20# A. E. Nelson and D. Wright, Phys. Rev. D56, 1598~1997!.
@21# R.-J. Zhang, Phys. Lett. B402, 101 ~1997!.
@22# G. K. Leontaris and J. Rizos, Nucl. Phys.B567, 32 ~2000!.
@23# G. Altarelli and F. Feruglio, Phys. Lett. B451, 388 ~1999!.
@24# M. Green and J. Schwarz, Phys. Lett.149B, 117 ~1984!.
@25# S. Lola and G. G. Ross, Nucl. Phys.B553, 81 ~1999!.
@26# J. K. Elwood, N. Irges, and P. Ramond, Phys. Rev. Lett.81,

5064 ~1998!.
@27# N. Irges, Phys. Rev. D59, 115008~1999!.
@28# L. J. Hall and A. Rasin, Phys. Lett. B315, 164 ~1993!.
@29# Particle Data Group, C. Casoet al., Eur. Phys. J. C3, 1 ~1998!.
@30# V. Barger, M. S. Berger, and P. Ohmann, Phys. Rev. D47,

1093 ~1993!; 47, 2038~1993!.
@31# S. Barr, hep-ph/0003101.
@32# G. Dvali and A. Pomarol, Phys. Rev. Lett.77, 3728~1996!.
@33# P. Binétruy and E. Dudas, Phys. Lett. B389, 503 ~1996!.
6-10


