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Analytic approximations for three neutrino oscillation parameters and probabilities in matter
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The corrections to neutrino mixing parameters in the presence of matter of constant density are calculated
systematically as series expansions in terms of the mass hierarchyDm21

2 /Dm31
2 . The parameter mapping

obtained is then used to find simple, but nevertheless accurate formulas for oscillation probabilities in matter
including CP effects. Expressions with one to one correspondence to the vacuum case are derived, which are
valid for neutrino energies above the solar resonance energy. Two applications are given to show that these
results are a useful and powerful tool for analytical studies of neutrino beams passing through the Earth mantle
or core: First, the ‘‘disentanglement problem’’ of matter andCP effects inCP asymmetry is discussed and
second, estimations of the statistical sensitivity to theCP terms of the oscillation probabilities in neutrino
factory experiments are presented.

DOI: 10.1103/PhysRevD.64.053003 PACS number~s!: 14.60.Pq, 13.15.1g, 14.60.Lm
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I. INTRODUCTION

With the development of long baseline neutrino bea
passing through the mantle of the Earth, three flavor neut
oscillation with a constant matter profile is presently draw
attention. Some effort has been spared on the exact solu
of the connected cubic eigenvalue problem@1#. However, the
obtained solutions are huge and were up to now only use
computer based calculations. Also approximate solutions
oscillation probabilities and mixing angles have been p
posed for several parameter regions@2#, which are interesting
and useful. The intention of this work is to first derive an
lytic approximations for the mixing parameters in matte1

according to the standard parametrization, which then allo
us to compute all desired quantities such as probabilitie
amplitudes from the known expressions in vacuum by s
stitution. The parameters in matter are calculated in a se
expansion in the small mass hierarchy parametera
ªDm21

2 /Dm31
2 . The obtained results are discussed and t

applied to the appearance channel probabilityP(ne→nm). A
simple solution, which is easy to use, but nevertheless a
rate over a wide parameter range is obtained. No new n
tion is introduced other than the abbreviations known fr
two neutrino oscillation in matter. Furthermore, the res
shows at first sight the convergence to the vacuum cas
small baselines and thus is directly connected to the term
vacuum. The approximate solutions obtained with t
method are a powerful tool for further analytical studies.
demonstrate this, two applications are given. First the
rived expressions are exploited to compute the freque
used quantity calledCP asymmetryACP, which has consid-
erable importance inCP violation studies. The problem i
that matter effects cause contributions toCP asymmetry,

*Email: martin.freund@physik.tu-muenchen.de
1Oscillation in matter can be described by a mapping of the

basic parametersu12, u13, u23, Dm21
2 , Dm31

2 , andd similar to the
well-known two neutrino oscillation formulas in matter.
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which cannot easily be distinguished from intrinsicCP ef-
fects. Here, expressions forACP in matter are given for high
neutrino energies~more precise: lowL/En). The result is
then used to investigate what can be learned from the en
dependence ofACP. The second application gives estimat
of the statistical sensitivity to theCP terms of the oscillation
probabilities in neutrino factory long baseline experimen
Plots are presented, which show the magnitude ofCP effects
at different baselines and beam energies. Contrarily to w
presently can be found in the literature, the here obtai
results indicate strongly that, in general, the low energy
tion is not the best solution to measure effects from theCP
phased. The reason for this discrepancy is discussed.

Throughout this work two assumptions will be mad
First, that the mass hierarchy parameteraªDm12

2 /Dm31
2 ,

which is used as expansion parameter, is small. Consider
example, an atmosphericDm2 of 3.231023 eV2 @3#. For
solar mass differences of large mixing angle~LMA ! scale2

@4# between 1025 eV2 and 1024 eV2, a varies between
0.0031 and 0.031. Second, it will be assumed that the mix
angleu13 is small as indicated by reactor, solar, and atm
spheric experiments. The strongest bound is given by
CHOOZ experiment@5# with sin22u13,0.1. The smallness o
this parameter will be used to classify terms, which appea
the expressions for oscillation probabilities. The mixin
angles u12 and u23 should be chosen from the interva
@0,p/2#.

II. THREE NEUTRINO OSCILLATION IN VACUUM

In vacuum, the neutrino oscillation probabilities are giv
by the well-known formula

x

2The abbreviation ‘‘LMA’’ stands for Large Mixing Angle
Mikheyev-Smirnov-Wolfenstein~MSW! solution to the solar neu-
trino problem. The MSW solution assumes resonance enhance
cillation of neutrinos passing the core of the sun.
©2001 The American Physical Society03-1
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with the abbreviationsJi j
lm
ªUli Ul j* Umi* Um j and D̂ i jªDmi j

2 L/(4E). Here,U is the mixing matrix of the neutrino sector i
standard parametrization form

U5S c12c13 c13s12 e2 ids13

2s12c232eidc12s13s23 c12c232eids12s13s23 c13s23

2eidc12s13c231s12s23 2eids12s13c232c12s23 c13c23
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Since in this work, the hierarchyuDm21
2 u!uDm31

2 u between
the two mass squared differences is exploited, from now
all mass squared differences will always be related to
atmospheric squared mass differenceDm31

2 5..D, Dm21
2

5aD, Dm32
2 5(12a)D, and D̂5DL/(4E). Series expan-

sion up to ordera2 gives the following important terms in
the oscillation probability P(ne→nm)'P01Psin d1Pcosd
1P3:

P05sin2u23sin22u13sin2D̂, ~3a!

Psin d5a sind cosu13sin 2u12sin 2u13sin 2u23sin3D̂,
~3b!

Pcosd5a cosd cosu13sin 2u12sin 2u13sin 2u23

3cosD̂ sin2D̂, ~3c!

P35a2 cos2u23sin22u12sin2D̂. ~3d!

Expanding the oscillatory terms ina means linearization o
the oscillation over the solar mass squared difference. T
gives valid results only foraD̂&1. With todays knowledge
about neutrino masses this does not cause crucial error
neutrino energies above 1 GeV at baselines below appr
mately 10000 km. The two termsPsin d andPcosd , containing
theCP phased, are both of ordera and hence suppressed b
the mass hierarchy. This reflects the fact that CP-effects v
ish when the mass hierarchy becomes large. In additio
the factor sin2u23, the termP0 is similar to the two neutrino
oscillation probability which in matter is expected to sho
the resonant behavior called the MSW effect@6#. The term
P3 is the only term of ordera2, which is not suppressed b
the small mixing angleu13. Hence, it is important to take
this term into account whenu13 is small. If u13 is not too far
away from the CHOOZ bound,P3 can safely be neglected
All other terms of ordera2 are additionally suppressed b
one or more powers ofu13 and are not listed here.
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III. MIXING PARAMETERS IN MATTER

In matter, the effective Hamiltonian in flavor basis
given by

H5
1

2EF US m1
2 0 0

0 m2
2 0

0 0 m3
2
D U†1S A 0 0

0 0 0

0 0 0
D G .

~4!

HereU5U23(u23)U13(u13,d)U12(u12) is the mixing matrix,
which rotates from mass to flavor basis. The second term
generated by matter effects withA52VEn and V
5A2GFne , whereGF is the Fermi coupling constant andne

is the electron density of the matter, which is crossed by
neutrino beam.

The matter term is invariant under rotations in the
subspace. Separating diag(m1

2 ,m1
2 ,m1

2) which, as global
phase, does not contribute to the probability, and using
above defined parameters, the Hamiltonian can be writte
the form

H5
D

2E
U23F U13U12S 0 0 0

0 a 0

0 0 1
D U12

† U13
†

1S A

D
0 0

0 0 0

0 0 0

D G U23
† , ~5!

with
3-2
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UdªS 1 0 0

0 1 0

0 0 eid
D , ~6!

the relations

Ud
†U13~u13,d!Ud5U13~u13,0!, ~7a!
ce

te

05300
Ud
†U12~u12!Ud5U12~u12!, ~7b!

Ud
† diag~a,b,c!Ud5diag~a,b,c! ~7c!

are valid. Inserting the identity matrixUd Ud
† at the appro-

priate places in Eq.~5! gives
~8!
ab-

is
t to
Diagonalization of the real matrix M by Û

ªU23( û23)U13( û13)U12( û12) together with the part which
was factored out gives the complete mixing matrixU8 in
matter:

U85U23~u23! Ud U23~ û23! U13~ û13! U12~ û12!. ~9!

Mixing angles in standard parametrization form.The matrix
U8 must still be brought to the standard form. The matrix

U23~u23!UdU23~ û23!5S 1 0 0

0 C S

0 2eidS* eidC*
D ~10!

with

Cªcosu23cosû232eid sinu23sinû23, ~11a!

Sªcosu23sinû231eid sinu23cosû23
~11b!

can be made real by the phase rotationsbª2argC, g
ªargS, andd8ªargC2argS:3

S 1 0 0

0 e2 ib 0

0 0 2e( id2g)
D U23~u23! Ud U23~ û23!

3S 1 0 0

0 1 0

0 0 e2 id8
D 5S 1 0 0

0 uCu uSu

0 2uSu uCu
D . ~12!

3Using uCu anduSu in Eq. ~12! further restricts the parameter spa

for u23. Sinceu23 is assumed to be close top/4 andû23 in general
is small, this problem is not relevant for the calculations presen
here.
This gives

U85S 1 0 0

0 eib 0

0 0 2e( ig2d)
D S 1 0 0

0 uCu uSu

0 2uSu uCu
D

3Ud8 U13~ û13! Ud8
† U12~ û12! Ud8 . ~13!

The phase rotations on the left and on the right can be
sorbed in the field vectors, yielding thenU8 in standard pa-
rametrization form:

U85U~u238 ! U13~ û13,d8! U12~ û12!. ~14!

This finally means, that the~standard! mixing anglesu138 and

u128 in matter are equal toû13 and û12 which are obtained
from the matrix that diagonalizesM. The matter correction
û23, however, mixes with theCP phased:

u138 5 û13, ~15a!

u128 5 û12, ~15b!

sin2u238 5cos2u23sin2û231sin2u23cos2û23

12 cosd sinu23cosu23sinû23cosû23,

~15c!

sind85sind
sin 2u23

sin 2u238
. ~15d!

Equation~15d! was first found by Toshev@7#. There, a dif-
ferent parametrization is used, which—for oscillations—
equivalent to the standard parametrization. It is importan
d

3-3
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note that the results given up to here are exact results
three neutrino oscillation in matter and do not presume
the mass hierarchy parameter is small.

Calculation of the eigenvalues and eigenvectors.Hereaf-
ter Â will be used as abbreviation forA/D. Diagonalization
b

f

05300
or
at
of the matrixM leads to the oscillation parameters in matt
Note that M does not include the parametersu23 and d,
which have been factored out. This will simplify the calc
lation of the eigenvalues and eigenvectors ofM consider-
ably:
M5S s13
2 1Â1ac13

2 s12
2 as12c12c13 s13c132as13c13s12

2

as12c12c13 ac12
2 2as12c12s13

s13c132as13c13s12
2 2as12c12s13 c13

2 1as12
2 s13

2
D . ~16!
wo
The invariants of the cubic eigenvalue problem are given

I 15Tr~M !5l11l21l3

5Â111a, ~17a!

I 25
1

2
@Tr~M !2Tr~M2!#l1l21l1l31l2l3

5Â cos2u131a1aÂ~sin2u13sin2u121cos2u12!,
~17b!

I 35Det~M !5l1l2l3

5aÂ cos2u13cos2u12. ~17c!

Solving this system of equations in a series expansion oa
gives the eigenvalues
y
l15

1

2
~Â112Ĉ!1a

~Ĉ112Â cos 2u13!sin2u12

2Ĉ
1O~a2!,

~18a!

l25a cos2u121O~a2!, ~18b!

l35
1

2
~Â111Ĉ!1a

~Ĉ211Â cos 2u13!sin2u12

2Ĉ
1O~a2!,

~18c!

with

Ĉ5A~Â2cos 2u13!
21sin22u13. ~19!

Here, Ĉ is the same square root, which appears in the t
neutrino matter formulas.

Calculating the eigenvectors ofM in orderO(a) gives
v15S sin 2u13

A2Ĉ~Â1Ĉ2cos 2u13!
2

a Â sin2u12sin22u13

2ĈA2Ĉ2~2Â1Ĉ1cos 2u13!

a ~11Â2Ĉ!sin 2u12sinu13

~11Â1Ĉ!A2Ĉ~Â1Ĉ2cos 2u13!

2
sin 2u13

A2Ĉ~2Â1Ĉ1cos 2u13!
2

a Â sin2u12sin22u13

2ĈA2Ĉ2~Â1Ĉ2cos 2u13!

D 1O~a2!, ~20a!

v25S 2
a cosu12sinu12

Âcosu13

1

a~11Â!cosu12sinu12sinu13

Âcos2u13

D 1O~a2!, ~20b!
3-4
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v35S sin 2u13

A2Ĉ~2Â1Ĉ1cos 2u13!
1

a Âsin2u12sin22u13

2ĈA2Ĉ2~Â1Ĉ2cos 2u13!

a ~11Â2Ĉ!sin 2u12sinu13

~11Â1Ĉ!A2Ĉ~2Â1Ĉ1cos 2u13!

sin 2u13

A2Ĉ~Â1Ĉ2cos 2u13!
2

a Âsin2u12sin22u13

2ĈA2Ĉ2~2Â1Ĉ1cos 2u13!

D 1O~a2!. ~20c!
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There is one major problem concerning the calculation of
eigenvalues and eigenvectors, which has to be addres

Throughout the above series expansionÂ was assumed to b
different from zero. This is important as the results giv

above do not hold forÂ50 in which case a different serie
expansion ina would be obtained. This is a general an
important fact. In principle, it is also possible to give resu

for small values ofuÂu, which, however, would fail for larger

uÂu. The reason for this is that there are two different re

nances occurring. One forÂ5a ~solar resonance! and one

for Â5cos 2u13 ~atmospheric resonance!. Each resonance
produces a level crossing of the eigenvalues. To desc
both level-crossings, the correct expression for the eigen
ues are necessary. Being interested in approximative s
tions, one has to distinguish the two above-mentioned ca
In this work the focus is on the caseuÂu.a, which is appro-
priate for neutrino beams above 1 GeV in matter densitie
2.8 g/cm3 ~Earth mantle! or more. However, one must no
expect that the expressions for the mixing parameters in m
ter will show the correct convergence forÂ→0. For Dm21

2

51024 eV2 and 2.8 g/cm3 we find thatÂ.a is valid for
En.0.5 GeV. This lower bound on the neutrino energy d
creases linearly withDm21

2 .
That the results for the eigenvalues and eigenvectors

tained from the series expansion are not good at the r
nanceÂ'1 is another point to mention. However, this do
not have a crucial implication on the obtained results for
parameter mapping and oscillation probabilities. This is
will be discussed later, at the appropriate places.

Construction of Uˆ . It is now possible to constructÛ from
the eigenvectorsv1 , v2, andv3. For this it is necessary to
correctly identify the order and the signs of the eigenvecto
In order to avoid divergences in the expressions for the m
ing angles, it is appropriate to change the order at the re
nanceÂ5cos 2u13:4

4Another strategy would be to chose the order in such a way

in the limit uÂu→0, the correct mixing matrix in vacuum is ob
tained. However, since the expressions for the eigenvectors
eigenvalues are not good in this limit, this is not a feasible solut
here.
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Û5H ~v1v2v3!T for Â,cos 2u13,

~v3v2v1!T for Â.cos 2u13.
~21!

The second point is to bringU8 to a form which is consisten
with the standard parametrization. This is not trivial and h
to be carried out carefully for each of the different cases.
an example, the caseÂ,0 will be considered in detail.

As the vacuum angleu23 was factored out from the be
ginning @Eq. ~8!#, the matter induced change of this mixin
angleû23 will be of ordera. This can be also seen by look
ing at the (m,3) element ofÛ. Furthermore, by looking at the
(e,2)-element, one finds that alsoû12 must be of ordera.
Considering this with the replacementsŝ125a ŝ12

(a) , ŝ23

5a ŝ23
(a) , and ŝ135 ŝ13

(0)1a ŝ13
(a) , one obtains the following

structure forÛ:

Û5S ĉ13 a ĉ13
(0)ŝ12

(a) ŝ13

2a~ ŝ12
(a)1 ŝ13

(0)ŝ23
(a)! 1 a ĉ13

(0)ŝ23
(a)

2 ŝ13 2a~ ŝ12
(a)ŝ13

(0)1 ŝ23
(a)! ĉ13

D
1O~a2!. ~22!

Then, sinû13 and sinû23 can be read off directly fromÛe3 ,
Ûm3 and Ût3:

sinû135
sin 2u13

A2Ĉ~2Â1Ĉ1cos 2u13!

1
a Âsin2u12sin22u13

2ĈA2Ĉ2~Â1Ĉ2cos 2u13!
1O~a2!, ~23!

sinû235a
~11Â2Ĉ!sin 2u12sinu13

2~12Â1Ĉ!cos2u13

1O~a2!.

~24!

To find sinû12, it is now useful to split offû23. The restÛ
5U23

T ( û23) Û8 should now be brought to the form

at

nd
n

3-5
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S ĉ13 a ĉ13
(0)ŝ12

(a) ŝ13

2a ŝ12
(a) 1 0

2 ŝ138 2a ŝ12
(a)ŝ13

(0) ĉ13

D 1O~a2!. ~25!

The mixing angleû12 can then be read off fromÛm18 :

sinû1252
a Ĉ sin 2u12

Â cosu13
A2Ĉ~2Â1Ĉ1cos 2u13!

1O~a2!.

~26!

Parameter mapping.Considering the correct ordering o
the eigenvectors@Eq. ~21!# and following the above de
scribed steps, one can determine the complete param
mapping for all regions of theÂ parameter space. Compris
ing, one obtains the following expressions for the mixi
parameters in matter:

sinu138 5
sin 2u13

A2Ĉ~7Â1Ĉ6cos 2u13!

6
a Â sin2u12sin22u13

2Ĉ2A2Ĉ~6Â1Ĉ7 cos 2u13!
, ~27a!

sinu128 5a
Ĉ sin 2u12

uÂucosu13
A2Ĉ~7Â1Ĉ6cos 2u13!

,

~27b!

sinu238 5sinu231a cosd
Â sin 2u12sinu13cosu23

611Ĉ7Â cos 2u13

,

~27c!

sind85sindS 12a
cosd

tan 2u23

2Â sin 2u12sinu13

611Ĉ7Â cos 2u13
D .

~27d!

Here, in the expressions with choices for the sign, the up
sign holds forÂ,cos 2u13 and the lower sign holds forÂ
.cos 2u13. Higher orders thanO(a) are omitted. To take
into account alsou23 andd, which were factored out at th
beginning, the equations~15a!–~15d! were applied. The ex-
pansion of sind8 given here does not hold foru23→0.

From this parameter mapping it is possible to derive
following quantities:

sin22u138 5
sin22u13

Ĉ2

1a
2Â~2Â1cos 2u13!sin2u12sin22u13

Ĉ4
,

~28a!
05300
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sin 2u128 5a
2Ĉ sin 2u12

uÂucosu13
A2Ĉ~7Â1Ĉ6cos 2u13!

,

~28b!

sin 2u238 5sin 2u23

1a cosd
2Â sin 2u12sinu13cos 2u23

611Ĉ7Â cos 2u13

.

~28c!

For the mass squared differences one obtains

~Dm21
28,Dm31

28,Dm32
28!

5H ~Dm3
2 , Dm2

2 , Dm1
2! for Â,cos 2u13,

~2Dm1
2 ,2Dm2

2 ,2Dm3
2! for Â.cos 2u13,

~29!

with

Dm1
28ªD~l32l2!

5
1

2
~11Â1Ĉ!D

2aDS cos2u122
~211Ĉ1Â cos 2u13!sin2u12

2Ĉ
D ,

~30a!

Dm3
28ªD~l22l1!

5
1

2
~212Â1Ĉ!D

1aDS cos2u122
~11Ĉ2Â cos 2u13!sin2u12

2Ĉ
D ,

~30b!

Dm2
28ªD~l32l1!

5ĈD1a
D~211Â cos 2u13!sin2u12

Ĉ
. ~30c!

Looking at the expressions for the mixing angles in mat
one obtains the following interesting statements.

sin22u138 . In leading order, one finds the well-known res
nant behavior ofu138 familiar from two neutrino oscillation as
MSW resonance. The ordera correction to this leading re
sult is suppressed by two powers ofu13, and hence, is neg
ligibly small. A careful study of the correction indeed show
that it is small and only important if precise results are to
obtained. The expressions foru13 do not show divergence
for uÂu→0 and the vacuum limit is correctly describe
Comparison with numerical results shows an excellent ag
ment even foruÂu,a.
3-6
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sin 2u238 . In leading order, the mixing angleu238 is equal to
the vacuum mixing angle sin 2u23. The ordera correction is
double suppressed byu13 and by cos 2u23 ~whenu23 is close
to p/4). Its proportionality to cosd is caused by the mixing
of the CP-phased with the O(a) correction of u238 @Eq.
~15c!#. The expression foru238 shows the correct behavior fo

uÂu→0 and numerical results are consistent also foruÂu,a.
sin 2u128 . The quantity sin 2u128 is of ordera. For a→0 it

does not reproduce the vacuum parameteru12. But this is not
difficult to understand. Fora50, the first term in the Hamil-
tonian @Eq. ~8!# is invariant under rotations in the 12 su
space. This reflects the fact that fora50 the solar mixing
angle does not influence the oscillation probabilities a
could in principle be chosen arbitrarily. Interesting here
that sin 2u128 , even for large values ofuÂu, is proportional to
a. In leading order of u13 one finds that sin 2u128

5a sin 2u12/uÂu. There appears a divergence foruÂu→0.
The result is unphysical foruÂu&a, which reflects the prob-
lem that the level crossing at the solar resonance is not
rectly described. SinceuÂu is proportional to the neutrino
energyEn , sin 2u128 is suppressed not only by the mass hi
archy, but also by large neutrino energies.

CP-phased. The correction to theCP phased in matter is
triple suppressed by the mass hierarchya, u13, and
tan212u23. For sin22u2351, theCP phased is not changed
~in ordera). The invariance of sind sin 2u23 under variations
of the matter densityr @Eq. ~15d!# is an exact result, which is
independent from the approximations made.

IV. CP VIOLATION: JCP IN MATTER

From the vacuum case it is known that the quantityJCP

5ImJi j
lm drives the strength ofCP violating effects. In

vacuum, it is given by

8JCP5sind cosu13sin 2u12sin 2u13sin 2u23. ~31!

Application of the parameter mapping@Eqs.~27!# givesJCP8
in matter:

sind8cosu138 sin 2u128 sin 2u138 sin 2u238

5
a

uÂuĈ cos2u13

sind cosu13sin 2u12sin 2u13sin 2u23

1O~a2!. ~32!

One thus finds the important and simple result

JCP8 5
a

uÂuĈ cos2u13

JCP . ~33!

Compare this result with earlier results given in Ref.@13#.
Applying this result to

JCP8 Dm128 Dm318 Dm328 5JCPD3a1O~a2!, ~34!
05300
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the Harrison-Scott invariance JCP8 Dm128 Dm318 Dm328
5JCPDm12Dm31Dm32 @8# can be verified.

It is important to notice that also in matter allCP violat-
ing effects are proportional to the mass hierarchya. In
vacuum, the suppression ofCP effects through the mas
hierarchy is obtained from the smallness of the solar m
splitting, which isaD. In matter, the mass hierarchy is lifted
but the mass hierarchy suppression is retrieved in sin 2u128 ,
which is proportional toa, and thus, leads to a mass hiera
chy suppression ofJCP8 .

Another interesting point to notice is the factor 1/Ĉ,
which leads to an MSW-like resonant enhancement ofJCP8 in
matter. It can thus be expected that theCP termsPsin d and
Pcosd will benefit from the MSW-resonance in the same w
as the leading two neutrino termP0 does.

V. THE ne\nµ APPEARANCE PROBABILITY

Having presented the parameter mapping in matter, i
now possible to start from the ordinary vacuum expressi
@Eq. ~1!# in order to derive the oscillation probabilities i

matter. TheJi j
lm8 as series expansion ina take the following

shape:

ReJ12
em852cosd8sinu128 cos2u138 sinu138 cosu238 sinu238

2sin2u128 cos2u238 1O~a3!, ~35a!

ReJ13
em852cosd8sinu128 cos2u138 sinu138 cosu238 sinu238

2sin22u138 sin2u238 1O~a3!, ~35b!

ReJ23
em85cosd8sinu128 cos2u138 sinu138 cosu238 sinu238

1O~a3!, ~35c!

Im J12
em852Im J13

em85Im J23
em8

5cosd8sinu128 cos2u138 sinu138 cosu238 sinu238

1O~a3!. ~35d!

Even though in general the calculations were performed o
up to ordera a closer look ata2-terms proves to be impor
tant. Each second term of ReJ12

em8 in Eq. ~35! is of ordera2.
Sinceu128 is not suppressed byu13, these terms give a non
negligible contribution to the overall oscillation probabilit
This ordera2sin0u13 contribution, which will be identified
with theP3 term in vacuum@Eqs.~3a!# is important for small
values ofu13. It is possible to show without explicit calcu
lation of all ordera2 terms of the parameter mapping that n
further terms of this kind exist. All othera2 terms in the
oscillation probability will at least be suppressed by o
power ofu13.

Inserting the expression for the mixing parameters in m
ter together with the abbreviationD̂5D(L/4E) gives the fol-
lowing list of terms contributing to the oscillation probabilit
P(ne→nm):
3-7
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P05sin2u23

sin22u13

Ĉ2
sin2~D̂Ĉ!, ~36a!

Psin d5
1

2
a

sind cosu13sin 2u12sin 2u13sin 2u23

ÂĈcosu13
2

sin~ĈD̂ !

3$cos~ĈD̂ !2cos~~11Â!D̂ !%, ~36b!

Pcosd5
1

2
a

cosd cosu13sin 2u12sin 2u13sin 2u23

ÂĈcosu13
2

sin~ĈD̂ !

3$sin~~11Â!D̂ !7 sin~ĈD̂ !%, ~36c!

P152a
12Âcos 2u13

Ĉ3
sin2u12sin22u13sin2u23D̂

3sin~2D̂Ĉ!1a
2Â~2Â1cos 2u13!

Ĉ4

3sin2u12sin22u13sin2u23sin2~D̂Ĉ!, ~36d!

P25a
711Ĉ6Â cos 2u13

2Ĉ2Â cos2u13

cosu13sin 2u12sin 2u13

3sin 2u23sin2~D̂Ĉ!, ~36e!

P35a2
2Ĉ cos2u23sin22u12

Â2cos2u13~7Â1Ĉ6cos 2u13!

3sin2S 1

2
~11Â7Ĉ!D̂ D . ~36f!

The probabilityP( n̄e→ n̄m) can be obtained from the prob
ability P(ne→nm) by flipping the sign of thePsin d term. In
all expressions with two possibilities for the sign, the upp
sign is valid forÂ,cos 2u13 and the lower sign is valid for
Â.cos 2u13. The Â-dependent prefactors ofP1 ,P2, andP3
expanded inu13 give

12Â cos 2u13

Ĉ3
56

1

~Â21!2
1O~u13

2 !,

2Â~2Â1cos 2u13!

Ĉ4
52

2Â

~Â21!3
1O~u13

2 !,

711Ĉ6Â cos 2u13

2Ĉ2Â cos2u13

5O~u13
2 !,

2Ĉ

cos2u13~7Â1Ĉ6cos 2u13!
511O~u13

2 !.

Thus,P1 is quadratic in sinu13 andP2 even of third order in
u13. Therefore,P1 andP2 are negligibly small compared t
05300
r

Psin d and Pcosd . The termP3 is important, since it is the
only term, which is not suppressed byu13. It was stated
before that in some cases the expressions for the eigenva
and eigenvectors are not good at the resonanceÂ
5cos 2u13. This problem stems from the second order
u13. On the level of probabilities, this deficiency is small a
only visible in thePcosd term for large values ofu13. It turns
out that neglecting the subleading terms, which are
source of this problem, gives very accurate results also
Â5cos 2u13. This modification can be applied to both th
Pcosd term and thePsin d term:

Psin d5a
sind cosu13sin 2u12sin 2u13sin 2u23

ÂĈcosu13
2

3sinĈD̂sinD̂ sinÂD̂, ~37a!

Pcosd5a
cosd cosu13sin 2u12sin 2u13sin 2u23

ÂĈcosu13
2

3sinĈD̂cosD̂ sinÂD̂. ~37b!

Neglecting all subleading terms inu13, the relevant terms
P0 , Psin d , Pcosd , andP3 take the following simple shapes

P05sin2u23

sin22u13

~Â21!2
sin2@~Â21!D̂#, ~38a!

Psin d5a
sind cosu13sin 2u12sin 2u13sin 2u23

Â~12Â!

3sin~D̂ !sin~ÂD̂ !sin@~12Â!D̂#, ~38b!

Pcosd5a
cosd cosu13sin 2u12sin 2u13sin 2u23

Â~12Â!

3cos~D̂ !sin~ÂD̂ !sin@~12Â!D̂#, ~38c!

P35a2
cos2u23sin22u12

Â2
sin2~ÂD̂ !. ~38d!

It is evident that in the limit of small baselines,D̂→0, these
expressions converge to the results in vacuum@Eqs. ~3a!–
~3d!#. A numerical study shows that the precision loss of E
~38a!–~38d! compared to Eqs.~36a!–~36f! is only relevant
for the largest allowed values of sin22u13 near the CHOOZ
bound~0.1!. The precision loss is mainly caused by the a
proximations made inP0. The termP3 contributes to the
overall probability only for smallu13, and hence, does no
suffer an appreciable accuracy loss in the form given in
~36d!. Figure 1 shows a comparison of the analytic resu
obtained here with the results obtained from a numer
study. Note that the combined contributions from Eq.~36a!,
Eqs. ~37a!, ~37b!, and Eq.~38d! are identical to the resul
obtained by Cerveraet al. @9# @Eq. ~16!#. A similar approach
has been discussed in Ref.@10#. However, Eq.~16! of Ref.
@10# does not cover the case of very smallu13, since it does
not include order (Dm21

2 /Dm31
2 )2 corrections.
3-8
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FIG. 1. Analytical results
~dashed and dotted lines! com-
pared to numerical results~solid
line! for the oscillation probability
P(ne→nm) in matter (2.8 g/cm3)
as function of the neutrino energy
Negative energies correspond
antineutrinos. The dashed lin
uses the expressions~36a!–~36c!,
~36e!. The dotted line was ob-
tained from Eqs.~38a!–~38d!. The
calculation was performed for the
baselineL57000 km with d50,
bimaximal mixing and three val-
ues of sin22u13 ~0.1, 0.01, 0.001!.
The squared mass differences a
Dm31

2 53.231023 eV2 andDm21
2

5131024 eV2.
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VI. APPLICATIONS

A. Validity region of the low L ÕEn approximation in matter

Frequently, the lowL/En limit is used to simplify com-
plex calculations or derive power laws for neutrino rates.
vacuum, it is well known that this approximation is valid fo

D̂&1 ⇒ En*4.0 GeVS Dm31
2

3.2•1023 eV2D S L

1000 kmD .

~39!

With the use of Eqs.~38a!–~38d!, it is possible to extend this
argument to the presence of matter. Note that in the osc
tory terms, which are linearized in the smallD̂ approxima-
tion, there now also appear the termsÂD̂, which must be
small. In this product, the dependences on the energyEn and
the mass squared differenceDm31

2 cancel. Hence, in addition
to relation~39!, a direct limit on the baselineL, which only
depends on the matter densityr is obtained:

ÂD̂&1 ⇒ L&3700 kmS r

2.8 g/cm3D 21

. ~40!
f
.
u

on
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B. CP-asymmetry in matter at small L ÕEn

CP-violation studies frequently focus on the fundamen
quantity calledCP-asymmetryACP :

ACP5
P~ne→nm!2P~ n̄e→ n̄m!

P~ne→nm!1P~ n̄e→ n̄m!
. ~41!

In vacuum, being proportional to sind, ACP is a direct mea-
sure for intrinsicCP violation. SinceACP is a ratio of prob-
abilities, it has the important advantage that, on the leve
rates, systematic experimental uncertainties to a large de
cancel out. However, matter effects also create fakeCP
asymmetry, which spoils measurements of the intrinsicCP
violation induced byd. The problem to distinguish these tw
different sources ofCP violation is often called the ‘‘disen-
tanglement problem.’’ In a typical long baseline neutrino e
periment, the strength of matter inducedCP effects reaches
the strength of intrinsicCP effects at baselines around 100
km.

Using the above derived approximative solutions for t
appearance probabilityP(ne→nm), it is possible to calculate
the smallD̂ limit of ACP . For bimaximal mixing (u235u12
5p/4) ACP is given by
ACP'
2D̂ sin 2u13cosu13~aD̂Â cosd23a sind12D̂Â sinu13!

3~a212a cosu13sin 2u131sin22u13!
;

1

En
. ~42!
-

o

The approximation is valid in the regime given by Eqs.~39!
and ~40!. This limit is helpful to describe the behavior o
ACP for higher neutrino energies at not too long baselines
is interesting to notice that in principle the leading contrib

tion to ACP in D̂ has its origin in the sind term. At first sight,
this would suggest to distinguish this intrinsic contributi
It
-

from matter contribution of orderD̂2 by the energy depen
dence ofACP . However, taking into account thatÂ itself is
proportional toEn , it turns out that all terms in Eq.~42! have
the same energy dependence 1/En . To summarize: In leading
order in D̂, the CP asymmetry in matter is proportional t
1/En . The coefficient, which describes the 1/En-energy de-
3-9
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FIG. 2. Dependence of the high energy limit of theCP asymmetry on theCP phased for bimaximal mixing. On the ordinate is plotte
the value ofEnACP in GeV, which should be energy independent in the lowL/En approximation. The solar mass splitting was chosen at
upper edge of the LMA-MSW solutionDm21

2 5131024 eV2 and the atmospheric mass splitting was varied in the Super-Kamiok
allowed 90% confidence interval 3.231023,Dm31

2 ,3.631023 eV2. The calculation was performed for a baseline of 1000 km.
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pendence ofACP for high energies is sensitive to both, ma

ter effectsÂ and intrinsicCP effects fromd. At high ener-
gies, the quantityEnACP is predicted to be constant in th
energy spectrum and this characteristical quantity could g
direct access to theCP phased. This is demonstrated in Fig
2, which shows the value ofEnACP as function of the
CP-phased at different values of sin22u13. Since EnACP
does not vary with the energy, this simple analysis is t
good approximation independent from the energy distri
tion of the neutrino beam. It is of course questionable if, i
real experiment, in the constant regime ofEnACP , there are
enough neutrino events to measure. Also this method ca
replace a full and detailed statistical analysis of the comp
neutrino energy spectrum.

C. Strength of the CP terms Psin d and Pcosd

The two subleading terms~36b! and~36c! currently raise
considerable interest as they contain information about
CP-phased of the neutrino sector. Today, much effort
spent on the study ofCP-violating effects in neutrino oscil-
lation experiments@11#. One can try a simple approach
this problem by using the here obtained analytic results
would, for example, be interesting to know, how strong t
information ond inherent to the appearance oscillation pro
ability is. To quantify this, one can look at the relative ma
nitude of uPsin d1Pcosd u compared to the statistical fluctua
tionsAP01P3 in the background signal~provided the errors
are Gaussian!. To obtain statistical meaningful numbers, t
estimation should be performed at the level of event ra
expected in a real experiment, e.g., a neutrino factory l
baseline experiment. Typically, flux times cross sections o
neutrino factory beam@12# scales asEn

3/L2. A neutrino fac-
tory of 20 GeV muon energy and 1020 useful muon decays
per year produces 54800nm-events in a 10 kton detector a
1000 km distance~assuming measurements in the appe
ance channel!. As a statistical estimate the following rati
could be chosen:
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S5A54800S Em

20 GeVD
3S L

1000 kmD 22 uPsin d1Pcosdu

AP01P3

.

~43!

The value of S gives the number of standard deviatio
~‘‘ s ’s’’ ! at which theCP signal is distinct from the ‘‘back-
ground.’’ Figure 3 show the contour lines 1s, 2s, 3s, and
4s of S in the L-Em parameter plane. The plots were pr
duced with a running average matter density matched to
baselineL. It is interesting to note that in most of theL-Em

parameter space, there is no obvious decrease of the sta
cal sensitivity toCP effects for increasing beam energyEm

as often quoted in the literature. To study this point in mo
detail, it is helpful to derive the lowL/En @Eq. ~39!# scaling
laws for S in the cases sind51 and cosd51:

Ssin d;
L

AEm

and Scosd;AEm. ~44!

Indeed, for thePsin d term, the statistical sensitivity shoul
decrease as 1/AEm. However, the validity region of the low
L/En approximation, according to Eq.~39!, is En

*(4,12,20) GeV forL5(1000,3000,5000) km. In the lef
plot of Fig. 3 it can be seen that roughly at these energieS
shows a plateau where its maximal value is reached.
argument in favor of small energies thus only holds for ve
small baselines around 1000 km and smaller. The sensiti
to the Pcosd term increases asAEm. Hence, in the case o
large cosd, high beam energies are favored to extract inf
mation on theCP phased. In conclusion, the difference o
the result presented here and statements being found in
literature has two sources. First, usually only the explici
CP violating partPsin d of the oscillation probability is as-
3-10
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FIG. 3. 1s, 2s, 3s, and 4s contour lines of the quantityS @Eq. ~43!# in the L-Em parameter plane. Light shading indicates no sig
and dark shading indicates strong signal. The left plot studies only thePsin d term. The plot in the middle displays the strength of thePcosd

term. The right plot, which combines both terms should give the best approximation to more complex studies. Note that no energy
was used in this crude model. The calculations were performed withd5p/2 ~left!, d50 ~middle!, d5p/4 ~right!, bimaximal mixing, and
sin22u1350.01. The mass squared differences areDm31

2 53.231023 eV2 andDm21
2 5131024 eV2.
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sumed to give theCP signal.5 Second, the high energy ap
proximation to the oscillation probabilities is often applie
without careful consideration of its validity region.

VII. CONCLUSIONS

The purpose of this work was to find approximate analy
expressions for the neutrino mixing parameters and osc
tion probabilities in the presence of matter. It was stated
being interested in approximate solutions it is difficult
describe both the solar and the atmospheric resonance a
same time. Therefore, this work is restricted to energ
above the solar resonance according to

uÂu*uau ⇒ En*0.45 GeVS Dm21
2

1024 eV2D S 2.8 g/cm3

r D .

~45!

For this regime, the complete parameter mapping@Eqs.~27!#
was given as series expansion in the small mass hiera
parametera5Dm21

2 /Dm31
2 . It was shown, that the change o

the CP phased in matter is triple suppressed by the ma
hierarchy, the mixing angleu13 and by u23 being close to
maximal. Furthermore, it was shown that in ord
Dm21

2 /Dm31
2 , the relevant contribution to the parameter ma

ping is the correction ofu12 in matter. The derived paramete
mapping was used to compute theP(ne→nm) appearance
oscillation probability in matter. Effort was made to fin

5Frequently, the need for explicit detection of an asymmetry
tween the twoCP-conjugated channels is stressed and matter
fects are considered as background, which prevents such mea
ments. The attitude taken here is, however, different: The goa
any experiment is the limitation of the allowed parameter space
d, which does not necessarily presume the detection of explicitCP
violation. Hence, thePcosd contribution has the same status as t
Psin d term and matter effects have to be included in the theoret
model, which is fitted to the experimental data.
05300
c
a-
at

the
s

hy

-

simple solutions, which hold over a wide parameter ran
and are easy to compare with the results known fr
vacuum oscillation. An answer, which in the author’s po
of view fulfills all these requirements is the following set
terms@Eqs.~38!# contributing toP(ne→nm):

P05sin2u23

sin22u13

~Â21!2
sin2@~Â21!D̂#,

Psin d5a
sind cosu13sin 2u12sin 2u13sin 2u23

Â~12Â!

3sin~D̂ !sin~ÂD̂ !sin@~12Â!D̂#,

Pcosd5a
cosd cosu13sin 2u12sin 2u13sin 2u23

Â~12Â!

3cos~D̂ !sin~ÂD̂ !sin@~12Â!D̂#,

P35a2
cos2u23sin22u12

Â2
sin2~ÂD̂ !,

with D̂5Dm31
2 L/(4En) and Â5A/Dm31

2 52VEn /Dm31
2 .

This gives qualitatively good results for baselines at wh
the oscillation over the small~solar! mass squared differenc
can safely be linearized:6

aD̂&1 ⇒ L&8000 kmS En

GeVD S 1024 eV2

Dm21
2 D . ~46!
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6Of course, it is also possible to give results, which are not limi
by this baseline restriction. However, this approximation is ve
helpful to obtain simple results.
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To obtain high precision results for large values ofu13, it is
recommended not to neglect subleadingu13 effects. The cor-
responding terms toP(ne→nm) are given by Eqs.~36a!–
~36c!, ~36f!. Results for the antineutrino channel are alwa
obtained by flipping the signs ofPsin d and Â.

Using the derived approximations to the oscillation pro
ability, it was shown that from relation~40! a stringent limit
on the baselineL can be derived, up to which the smallL/En

approximation in matter is valid. Then, using this appro
mation, an expression for theCP-asymmetryACP in matter
was given, which demonstrates that, for high neutrino en
gies, ACP is decreasing proportional to 1/En . It was pro-
posed that measuring this energy-dependence could he
obtain information on theCP phased. Last, it was demon-
strated that estimations on the experimental sensitivity to
ps
.

-

n

D
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CP terms in P(ne→nm) can be given. The here obtaine
results do not favor low neutrino energies for th
CP-violation search. The reason for the discrepancy betw
this result and statements, which can presently be foun
the literature, were discussed. These topics were discu
only briefly and mainly serve as demonstrations of the ap
cability of the derived formulas.
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