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Next-to-next-to-leading order t¿tÀ production cross section close to threshold
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The threshold behavior of the cross sections(e1e2→t1t2) is analyzed, taking into account the known
higher-order corrections. At present, this observable can be determined to next-to-next-to-leading order in a
combined expansion in powers ofas and fermion velocities.
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I. INTRODUCTION

The Tau-Charm Factory, a high-luminosity (;1033 cm22

s21) e1e2 collider with a center-of-mass energy near t
t1t2 production threshold, has been proposed@1,2# as a
powerful tool to perform high-precision studies of thet lep-
ton, charm hadrons and the charmonium system@3,4#. In
recent years, this energy region has been only partially
plored by the Chinese Beijing Electron Positron Collid
~BEPC! machine (;1031 cm22 s21). The possibility to op-
erate the Cornell Electron Storage Ring~CESR! around the
t1t2 threshold@5# has revived again the interest in Ta
Charm Factory physics@6#.

A precise understanding of thee1e2→t1t2 production
cross section near threshold is clearly required. The accu
experimental analysis of this observable could allow us
improve the present measurement@7# of the t lepton mass.
The cross sections(e1e2→t1t2) has already been ana
lyzed toO(a3) in Refs.@8–10#, including a resummation o
the leading Coulomb corrections.

The recent development of nonrelativistic effective fie
theories of QED~NRQED! and QCD ~NRQCD! @11# has
allowed an extensive investigation of the threshold prod
tion of heavy flavors ate1e2 colliders. The thresholdbb̄

@12–14# and t t̄ @15# production cross sections have be
computed to the next-to-next-to-leading order~NNLO! in a
combined expansion in powers ofas and the fermion veloci-
ties. Making appropriate changes, those calculations ca
easily applied to the study oft1t2 production.

In this paper we will compile and analyze the know
higher-order corrections to thet1t2 production cross sec
tion. Although someO(a4) contributions have not bee
computed yet, the dominant NNLO corrections can be
ready incorporated to the numerical predictions. One
then achieve a theoretical precision better than 0.1%.

The perturbativeO(a3) andO(a4) contributions are dis-
cussed in Sec. II. Section III contains the relevant n
relativistic corrections at low velocities, generatin
O(an/vm) effects. The photon vacuum polarization and t
initial state radiation contributions are accounted for in Se
IV and V, respectively. In Sec. VI, electroweak correctio
are shown to be negligible. The numerical results for
e1e2→t1t2 cross section and our final conclusions a
given in Sec. VII. Some technical details and detailed form
las are relegated to the Appendixes.
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II. THE PERTURBATIVE CALCULATION UP TO O„a4
…

A NNLO analysis of a QED quantity, following perturba
tion theory in the number of loops, implies that contributio
up toO(a4) should be taken into account. Let us review t
terms contributing to the total cross section oft production
in e1e2 annihilation up to this order.

At lowest order in QED, thet leptons are produced b
one-photon exchange in thes-channel, and the total cros
section formula reads

sB~e1e2→t1t2!5
2pa2

3s
v~32v2!, ~1!

wherev5A124M2/s is the velocity of the finalt leptons in
the center-of-mass frame of thee1e2 pair andM[mt is the
t mass.v is an adequate expansion parameter for obse
ables evaluated at energies close to the production thresh
since its value goes to zero as we approach this point. T
makessB vanish in that limit, being the global factorv in
Eq. ~1! of kinematic origin. The quantum numbers of th
t1t2 pair are those of the photon,JPC5122, which corre-
sponds to allowedt1t2 states3S1 and 3D1 in spectroscopic
notation 2S11LJ .

Electromagnetic corrections ofO(a) to sB arise from the
interference between the tree level result and the follow
1-loop amplitudes:

~i! O(a) corrections to thee1e2g vertex,
~ii ! O(a) corrections to thet1t2g vertex,
~iii ! vacuum polarization,
~iv! box diagrams~2-photon production!.
The contributions from~i! and ~ii ! are usually expresse

in terms of the Dirac and Pauli form factors at one loop@16#.
The corrections to the photon propagator~iii ! are divided
into two pieces: the leptonic contribution (l 5e,m,t), which
can be calculated perturbatively in QED, and the hadro
contribution, where QCD corrections make a perturbative
timate at low energies unreliable. The hadronic vacuum
larization can be related to the total cross section of had
production by means of a dispersion relation. Finally, t
interference of the tree-level amplitude with box diagra
~iv! does not contribute to the total cross section, by virtue
Furry’s theorem.

In addition to the above virtual radiative corrections, t
cross section ofO(a3) corresponding to the process of re
photon emission,e1e2→t1t2g, must be added. The
©2001 The American Physical Society01-1
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bremsstrahlung photon can be emitted by the initial or fi
fermion lines, but there is no contribution to the total cro
section from the interference between both sets of diagra
again due to Furry’s theorem. We clearly see that there is
overlap between initial and final state radiative correctio
for the total cross section up toO(a3). A compilation of
analytical expressions for all the terms mentioned abov
found in Ref.@9#.

Let us consider nextO(a2) electromagnetic correction
to the Born cross section. They come from several sourc

~1! Interferences between the one-loop diagrams m
tioned previously. The total cross section contributions fr
interferences between~i!, ~ii ! and~iii ! with box diagrams are
again zero. The first term involving two-photont production
comes from the square amplitude of the box diagrams.

~2! Interferences between the Born term and the follow
two-loop amplitudes: the electron and thet vertex two-loop
corrections, contained in the expressions of the electrom
netic form factors,O(a) corrections to the vacuum polariza
tion, and three-photon production diagrams, for which o
the real part is needed.

~3! The O(a4) bremsstrahlung cross section, comi
from the interference between tree-level and one-loop
grams with one radiated photon, and from tree-level d
grams with two photons attached in any of the fermion lin
corresponding to the processe1e2→t1t2gg. It is no
longer true, at this order, that initial and final state real
diation could not interfere.

Recall that the spectral density ImPem(s) built from the
electromagnetic current of thet leptons collects all final-
state interactions, including both virtual and real radiati
for single-photon production, that is

s̃~e1e2→g* →t1t2!5
48p2a2

3s
Im Pem~s!, ~2!

where the tilde ons distinguishes it from the physical tota
cross section which includes all kind of corrections. Relat
~2! results from a direct application of the optical theore
and is more commonly written as the ratio

Rem~s!5
s̃~e1e2→g* → l 1l 2!

spt
512p Im Pem~s!, ~3!

i.e., normalizings̃ to the point cross sectionspt54pa2/3s.
The ratioRem is well suited for studying the non-relativisti
dynamics of thet1t2 pair, as it fully contains the final-stat
interaction. Therefore, the threshold behavior of the to
cross section will be ruled by the expansion ofRem at low
velocities. The perturbative QED expression ofRem is given
in Appendix A up to NNLO in the combined expansion
powers ofa andv.

As long as we do not care about multiple photon prod
tion of t leptons, nor consider interference between init
and final state radiation, it is possible to factorize the to
cross section as an integration over the product of sepa
pieces, including initial, intermediate and final state corr
tions:
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F~s,w!U 1

11e2Pem~w!
U2

s̃~w!dw. ~4!

The radiation functionF(s,w) @17# describes initial state ra
diation, including virtual corrections, andAs is the total en-
ergy in the center-of-mass frame. The integration emerge
account for the effective energy loss due to photon emiss
from thee1e2 pair. As previously mentioned, Eq.~4! is an
exact relation for the total cross section only up toO(a3),
but it includes the largest corrections coming from the em
sion of an arbitrary number of initial photons, which ca
sizably suppress the total cross section. TheO(a4) contribu-
tions not included in this analysis are those coming fro
two- and three-photon production diagrams, for which
velocity enhancement is expected in the threshold region
so represent pureO(a2) corrections;0.005%, and the in-
terferences between 2-photon Bremsstrahlung diagr
overlapping initial and final state radiation. However, w
shall argue in Sec. III that bremsstrahlung contributions s
at NNNLO in the combined expansion ina and v, and so
they are beyond the scope of our analysis.

III. NON-RELATIVISTIC CORRECTIONS: NRQED

We now focus on the behavior of the total cross section
the region just above the production threshold, where
small velocity of the producedt leptons is another relevan
parameter, in addition toa. The final-statet1t2 interactions
are encoded in the electromagnetic form factors. Written
terms ofv, their expressions at one and two loops@18# show
the existence ofO(a/v) and O(a2/v2) power-like diver-
gences in the limitv→0. This is a general result for an
number of loops: diagrams withn uncrossed photons ex
changed between the produced leptons generate sing
terms proportional to (a/v)n, known as Coulomb singulari
ties, which lead to a breakdown of the QED perturbat
series ina whenv→0. Resummation of such terms is ther
fore mandatory, and it was done a long time ago@19#, result-
ing in the well-known Sommerfeld factor

uCc,E~0!u25
ap/v

12exp~2ap/v !
, ~5!

multiplying the Born cross section~1!. This factor corre-
sponds to the wave function at the origin, the solution of
Schrödinger equation, of two conjugate charged particles
massM interacting through a Coulomb potential for positiv
energiesE5Mv2. The appearance of this factor in the cro
section can be intuitively understood, since the Coulomb
teraction modifies the scattered wave function of the lep
pair. The 1/v behavior of this factor makes the cross secti
at threshold finite.

We clearly see that a NNLO calculation of the cross s
tion in the kinematic region wherea;v has to account for
all terms proportional tov(a/v)n3@1;a;v;a2;av;v2# with
n51,2, . . . . Theleading divergences@i.e., (a/v)n, n.1]
can be treated by using well-known results from no
relativistic quantum mechanics, but a systematic way to c
1-2
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NEXT-TO-NEXT-TO-LEADING ORDERt1t2 PRODUCTION . . . PHYSICAL REVIEW D 64 053001
culate higher-order corrections in this regime, such
(a/v)n3@v,v2,•••#, seems to be far from obvious, at lea
from the point of view of covariant perturbation theory in th
number of loops. An adequate description would come fr
a simplified theory that keeps the relevant physics at
scaleMv;Ma, characteristic of the Coulomb interactio
allowing for a clear and systematic identification of leadi
contributions.

NRQED@11# was designed precisely for this purpose. It
an effective field theory of QED at low energies, applicab
to fermions in non-relativistic regimes, i.e., with typical m
menta p/M;v!1. Interactions contained in the NRQE
Lagrangian@Eq. ~B1!# have a definite velocity counting bu
propagators and loop integrations can also generate po
of v. With appropriate counting rules at hand, one can pr
that all interactions between the non-relativistic pairt1t2

can be described up to NNLO in terms of time-independ
potentials@20#, derived from the low-energy Lagrangian.
can also be shown that the contributions to the total cr
section from diagrams with real photons emitted from
produced heavy leptons begin at NNNLO.1

The key observable to study threshold effects int1t2

production is the 2-point function,Pem(s) calculated at
NNLO. Its fully covariant expression is written as the tim
ordered correlator of two electromagnetic QED currents
the t lepton j m5 t̄gmt:

Rem~q2!5
4p

q2
ImF2 i E d4xeiqx^0uT„j m~x! j m~0!†

…u0&G .

~6!

Inserting the effective low-energy expression for the QE
current, Eq.~B2! into Eq. ~6!, one can arrive at the basi
relation between the spectral density at NNLO and the n
relativistic Green’s functions@22#:

Rem
NNLO~q2!5

6p

M2
ImS C1G~0,0;E!2

4E

3M
Gc~0,0;E! D ,

~7!

with C1 a short distance coefficient to be determined
matching full and effective theory results. The details of t
derivation are found in Appendix B.

The Green’s functionG obeys the Schro¨dinger equation
corresponding to a two-body system interacting through
tentials derived fromLNRQED at NNLO, that means sup
pressed at most bya2,a/M or 1/M2, as dictated by the
counting rules. Such potentials have been calculated in
literature@23–25#, and in configuration space they read

1This result can be explicitly seen by going to the well-know
expression fors(e1e2→ l 1l 2g) at tree level~see e.g.@21#!; the
leading term is }av2, i.e., NNNLO compared to LO terms
;(a/v)n;O(1).
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Vc~r !52
a~ms!

r H 11S a~ms!

4p D @2b1 ln~m̃r !1a1#

1S a~ms!

4p D 2Fb1
2S 4 ln2~m̃r !1

p2

3 D12~2b1a1

1b2!ln~m̃r !1a2G J , ~8!

VBF~r!5
a~ms!p

M2
d (3)~r!1

a~ms!

2M2r
F“21

1

r 2
r~r“ !“G

2
a~ms!

2M2 FS2

r 3
23

~Sr!2

r 5
2

4p

3
~2S223!d (3)~r!G

1
3a~ms!

2M2r 3
LS, ~9!

VAn~r!5
a~ms!p

M2
S2d (3)~r!. ~10!

VKi~r!52
“

4

4M3
. ~11!

Here a(ms) denotes the electromagnetic coupling const
renormalized in theMS̄ scheme at the scalems[mso f t . The
latter is the renormalization scale set for theO(a) and
O(a2) corrections to the Coulomb potential~8!, as deter-
mined in @23# and @24#, respectively. Note that these corre
tions involve ultraviolet divergent light fermion loops (mf
!M ), which cannot be accurately described within NRQE
The scalem̃ is equal tomso f te

gE, with gE the Euler constant,
and the rest of coefficients in Eq.~8! take the values

b152
4

3
nl , b2524nl , ~12!

a152
20

9
nl , a252S 55

3
216z3Dnl1S 20

9
nl D 2

. ~13!

The constantsb1 and b2 are the one- and two-loop coeffi
cients of the QED beta function in theMS̄ scheme defined a

d ln a

d ln m2
5b~a!5b1

a

4p
1b2S a

4p D 2

1••• . ~14!

The number of active lepton flavorsnl would be equal to two
for interactingt ’s. If quark loops are included we shoul
substitute nl→nf[(nl1Nc(qQq

2), Qq being the electro-
magnetic charge of the quarkq ~with mass lower thanM ).

The Breit-Fermi potentialVBF ~see e.g.@25#! has been
written in terms of the total spinS and angular momentumL
of the lepton pair. At NNLO, the heavy leptons are on
produced in tripletS-wave states, so we just need to consid
the corresponding projection of theVBF potential@i.e., make
1-3
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S252 andL50 in Eq. ~9!#. VAn is a NNLO piece derived
from the first contact term written inLNRQED, Eq. ~B1!,
which reproduces the QED tree levels-channel diagram for
the processl 1l 2→ l 1l 2. In QCD this diagram connectsqq̄
color-octet states, so this piece is not present in recent pa
devoted to threshold electromagnetic quark producti
whereqq̄ pairs can only be produced in color-singlet stat
Finally, the term~11! is the first relativistic correction to the
kinetic energy.

The Green’s function at NNLO will therefore satisfy th
Schrödinger equation2

S 2
“

2

M
2

“

4

4M3
1Vc~r!1VBF~r!1VAn~r!2ED G~r,r8,E!

5d (3)~r2r8!. ~15!

A solution of Eq.~15! must rely on numerical or perturbativ
techniques. In the QED case, a significant difference betw
both approaches is not expected, beinga such a small
parameter.3 Consequently we will follow the perturbative ap
proach, using recent results by Hoang, Penin and ot
@13,22,26#, who calculated the NLO and NNLO correction
to the Green’s function analytically, via the Rayleig
Schrödinger time-independent perturbation theory around
known LO Coulomb Green’s function:

G~x,y;E!5Gc~x,y;E!1dG~x,y;E!,

dG~x,y;E!52E d3zGc~x,z;E!~H2H0!Gc~z,y;E!1•••

52E d3zGc~x,z;E!S 2
“

4

4M3
1VBF~z!1VAn~z!

1Vc
(1)~z!1Vc

(2)~z!D Gc~z,y;E!1•••

5dKi,BFG1dAnG1d1
NLOG1d2G

1d1
NNLOG1•••. ~16!

Here H052“

2/M1Vc
LO(r ) is the pure Coulomb Hamil-

tonian. We refer the reader to Appendix C for complete
pressions ofGc and the differentdG’s, as calculated in the
literature, and for a full discussion about the regularizat
procedure. Let us just quote here that the Sommerfeld fa
~5!, which appears in the LO cross section, can be ea

2Note that the Green’s function built from the NNLO potentia
also resums higher order contributions, like those diagrams with
insertion of more than one NNLO potential term.

3Although for heavy quarks the numerical solution of the Sch¨-
dinger equation has been shown to have more stable NLO
NNLO corrections, we should note that higher-order terms not
der control are being resummed, some of which are cutoff dep
dent @15#.
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recovered from the basic relation~7!, if one reminds the
spectral representation of the Green’s function

G~r,r8;E!5(
n

Cn~r!Cn* ~r8!

En2E2 i e
1E d3k

~2p!3

Ck~r!Ck* ~r8!

Ek2E2 i e
,

~17!

with Cn(r) the bound state’s wave functions (En,0), and
Ck(r) corresponding to eigenfunctions ofH with Ek
5k2/M.0. The LO spectral density is proportional to th
imaginary part of the Coulomb Green’s function, and s
from Eq.~17!, proportional touCc,E(0)u2, i.e. to the solution
at the origin of the Schro¨dinger equation with the LO Cou
lomb potential.

Finally, the short distance coefficientC1 must be fixed.
The ‘‘direct matching procedure’’@27# allows a straightfor-
ward determination ofC1 by comparing the NNLO non-
relativistic expression~7! with the result~A1! for Rem, cal-
culated in full QED keeping terms up toO(a2) and NNLO
in the velocity expansion. The short distance coefficientC1
is then expressed as a perturbative series ina(mhard),

C1~M ,mhard ,m f ac!511S a~mhard!

p D c1
(1)

1S a~mhard!

p D 2

c1
(2)~mhard ,m f ac!

1•••, ~18!

where we have anticipated thatc1
(1) does not depend on an

scale. The renormalization pointmhard , chosen foraMS̄ in
the short distance coefficient, need not be equal to that g
erning the perturbative expansions of the correlators,mso f t ,
which only contains long-distance physics.4 The result of the
matching reads@22#

c1
(1)524

c1
(2)5p2Fk2

4

3p2
nf ln

M2

mhard
2

2
1

6
ln

M2

m f ac
2 G , ~19!

with

k5F 1

p2 S 39

4
2z3D1

4

3
ln 22

35

18G1F4

9 S 11

p2
21D G

1nfF 11

9p2G . ~20!

The factorization scalem f ac is introduced to separate lon
and short distance contributions in the process of regular
tion ~see Appendix C for details!.

e

nd
-
n-

4Differences are relevant when NNLO corrections are conside
1-4
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IV. VACUUM POLARIZATION

We now turn over intermediate state corrections in f
mula ~4!. For a complete NNLO description ofs(e1e2

→t1t2), two-loop corrections to the photon propagat
should be included. Despite having calculated the final s
observableRem in the modified minimal subtraction (MS̄)
scheme, we can exploit the fact that the piecee2/@1
1e2Pem(s)# is a renormalization group invariant, and s
evaluate these set of corrections in theon-shell scheme,
where decoupling of heavy fermions is naturally imp
mented. Theon-shell renormalized vacuum polarizatio
function is defined as

Pem
ren~q2!5Pem~q2!2Pem~0!. ~21!

The light lepton contributions to the vacuum polarizati
are the standard 1- and 2-loop perturbative expressions@28#:

e2Pe,m~q2!5S a

p DP (1)~q2!1S a

p D 2

P (2)~q2!1O~a3!,

~22!

with

P (1)~q2!5 (
i 5e,m

1

3 F5

3
2 lnS 2

q2

mi
2D 1

6mi
2

q2
1OS mi

4

q4 D G ,

~23!

P (2)~q2!5 (
i 5e,m

1

4 F5

6
24z32 lnS 2

q2

mi
2D

212
mi

2

q2
lnS 2

q2

mi
2D 1OS mi

4

q4 D G , ~24!

where we have only retained the relevant terms in the li
ml

2!q2 (ml are the pole light-lepton masses!. For thet con-
tribution in the threshold vicinityq2*4M2, resummation of
singular terms in the limitv→0 is mandatory. Under the
assumptiona;v, it is clear that we need to know NLO
contributions toPt(q

2), which means retaining uniquelyGc

and d1
NLOG in Eq. ~16! but performing the direct matchin

not only for the imaginary part but also for the real part@up
to O(a)]:

e2Pt
NLO~q2!5

2pa

M2
C1„Gc~0,0;E!1d1

NLOG~0,0;E!…1ah1

1a2h2 . ~25!

The one-loop coefficientC1 was already obtained in Eq
~19!, and h1 ,h2 are fixed by demanding equality betwee
RePt calculated in full QED and expression~25!. We get

h15
8

9p
,

05300
-

r
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h25
1

4p2 S 32
21

2
z3D1

11

32
2

3

4
ln21

1

2
ln

M

m f ac
.

~26!

In the hadronic sector, a perturbative estimate of
vacuum polarization in terms of free quarks is unreliab
since strong interactions at low energies become n
perturbative. An alternative approach consists of relating
hadronic vacuum polarization with the total cross sect
s(e1e2→g* →had), by using unitarity and the analyticity
of Phad(s):

Phad~s!5
s

pE4mp
2

`

dt
Im Phad~ t !

t~ t2s2 i e!

5
s2

16p3a2E4mp
2

`

dt
s~e1e2→had!

t~ t2s2 i e!
. ~27!

Usually,s(e1e2→g* →had) is conveniently parametrized
and the unknown parameters fitted to experimental meas
ments or else related to phenomenological constants. In
paper we will make use of a parameter-free formula
s(e1e2→g* →had) in the low-energy region, where th
non-perturbative effects are more important, and the per
bative result for the high energy part. Below 1 GeV, t
electromagnetic production of hadrons is dominated by thr
resonance (JPC5122) and its decay to two charged pion
The photon mediatedp1p2 production cross section at
center-of-mass energyAs is written as

s~e1e2→p1p2!5
pa2

3s S 12
4mp

2

s D 3/2

uF~s!u2, ~28!

with F(s) being the pion electromagnetic form factor defin
as

^p1p2u j mu0&5F~s!~pp22pp1!m.

In the isospin limit, only theI 51 part of the quark electro
magnetic currentj m5Quūgmu1Qdd̄gmd survives. An ana-
lytic expression for the pion isovectorial form factor wa
obtained in Ref.@29# using resonance chiral theory@30# and
restrictions imposed by analyticity and unitarity. The s
obtainedF(s), which provides an excellent description o
experimental data up to energies of the order of 1 GeV, re

F~s!5
M r

2

M r
22s2 iM rGr~s!

3expH 2s

96p2f p
2
ReA~mp

2 /s,mp
2 /M r

2!J , ~29!

whereGr(s) is theoff-shellwidth of ther meson@31#,
1-5
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Gr~s!5
M rs

96p f p
2 u~s24mp

2 !sp
3

52
M rs

96p2f p
2 Im@A~mp

2 /s,mp
2 /M r

2!#, ~30!

and

A~mp
2 /s,mp

2 /M r
2!5 ln~mp

2 /M r
2!1

8mp
2

s
2

5

3
1sp

3 lnS sp11

sp21D ,

~31!

sp[A124mp
2 /s.

Formula~28! will be integrated in~27! up to an upper bound
sr;1 GeV2. For the integration region abovesr , we use
the perturbative results of ImPhad:

e2Im Pu,d,s~s!5 (
q5u,d,s

NcQq
2 a

3 F11
as

p G , ~32!

for light quarks, in the zero mass limit, and

e2ImPc,b~s!5 (
q5c,b

u~s24mq
2!NcQq

2 a

3 H S 11
2mq

2

s D
3A12

4mq
2

s
1

as

p
CFF3

4
19

mq
2

s
1

mq
4

s2

3S 5

2
218ln

mq
2

s D G J , ~33!

for the b andc quarks.5 In both ~32! and ~33! the first QCD
loop correction to the quark vacuum polarization has b
added, withas the strong coupling constant. This simplifie
description is good enough to achieve an accuracy be
than 0.1% for thee1e2→t1t2 cross section.

As a test of our method to calculate the hadronic vacu
polarization, we have computed its contribution to the ru
ning of a at the scaleAs5MZ , and compared it with the
results of recent analyses devoted to this subject@32,33#. In
the on-shell scheme the evolution of the electromagne
coupling constant due to hadron polarization is commo
defined as

a~s!5
a

12Dhada~s!

with

Dhada~s!524paRe@Phad~s!2Phad~0!#.

5At the energy scales oft production theb quark has not been
considered in the particle content of the effective theory, but we
include it when runninga to s5MZ

2 . The contribution of the top
quark to Eq.~27! starts atAs.350 GeV, so it is highly suppresse
by the t2 factor in the denominator.
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At the scaleMZ we getDhada(MZ
2)31045268, to be com-

pared with the valuesDhada(MZ
2)3104528067 and

Dhada(MZ
2)31045276.361.6, obtained in@32# and@33#, re-

spectively. Our simple estimate only deviates by 4% a
3%, respectively, from those analyses. Considering thatPhad
modifies s(e1e2→t1t2) near threshold by roughly 1%
our result has a global uncertainty smaller than 0.1% for
total cross section.

Let us just mention that the theoretical description of t
vector form factor of the pion has been improved in a rec
paper@34# using a model-independent parametrization t
can fairly reproduce experimental data coming frome1e2

→p1p2 up to higher energies,As&1.2 GeV. With such
results, we would gain knowledge on the hadronic contrib
tion to vacuum polarization, but its numerical effect on o
final estimate would not be relevant, considering the imp
tant features of the hadronic spectrum we are leaving ou
using naive QCD perturbation theory fromAs;1.2 GeV up-
wards.

V. INITIAL STATE RADIATION

In this section we collect the radiative corrections
single-photon annihilation of the initiale1e2 pair. These
include both virtual and real photon radiation, all of whic
are needed atO(a2) in a formal NNLO analysis of
s(e1e2→t1t2). However, for the emission of soft photon
~i.e. photons whose energy do not exceed an experime
resolutionDE!As), it is a well-known feature that the ex
pansion parameter is nota but (a/p)log(s/me

2)log(E/DE),
which may be quite large, making it necessary to retain
terms of the expansion with respect to it. It is possible
perform such resummation by using an approach based
the structure functions formalism@17#. In this technique, the
effect of initial state radiation is accounted for by convolu
ing the cross section without initial radiative corrections w
structure functions for electrons and positrons, in analo
with a Drell-Yan process in QCD. In the leading logarithm
approximation@i.e. when only terms containing a factorL
[ log(s/me

2) with each power ofa are retained# this formal-
ism allows us to represent the cross section in the form~4!:

s~s!5E
0

2DE/As
dxF~x,s!U 1

11e2P~s8!
U2

s̃~s8!, ~34!

with the ‘‘available’’ center-of-mass energy after bremsstra
lung loss defined ass85s(12x), and the radiation function

F~x,s!5bxb21F11
a

p S p2

3
2

1

2D1
3

4
b

2
b2

24S 1

3
L12p22

37

4 D G2bS 12
1

2
xD

1
1

8
b2F4~22x!ln

1

x

2
~113~12x!2!

x
ln~12x!261xG , ~35!

b5
2a

p
~L21!.

ll
1-6
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The total cross section, at the kinetic energy above thres
E5As22M , is evaluated by convoluting the photon
mediated cross section oft1t2 production without initial
radiative corrections with a weight functionF describing
such radiation effects, from an energyE down to E8.E
2DE. The functionF(x,s) becomes larger asx→0, i.e., for
E8&E, and it strongly decreases as thex variable grows.

Besides the leading (a/p)nLn terms, expression~35! also
includes allO(a) terms exactly. The analysis of higher-ord
terms, not included inF(x,s), is shown in@17# to go beyond
0.1% accuracy for the interval of energies 0.2 GeV,As
,10 GeV. We shall use Eq.~35! to evaluate initial state
corrections to the total cross section.

VI. ELECTROWEAK CORRECTIONS

The small corrections arising fromt production through a
Z boson can be easily incorporated in our basic formula~34!.
Electroweak production of heavy quarks, including thresh
effects, has already been studied in previous papers@35,36#.
The trivial part comes from the vector couplings of theZ
current, which just add a term proportional toRem(s) to the
total cross section:

s̃g* ,Zvec* ~s!5sptF122
s

s2Mz
2 vevt1S s

s2Mz
2D 2

3@ve
21ae

2#vt
2GRem~s!, ~36!

wherev l andal are the neutral-current couplings of charg
leptons,

ve,m,t5
2114 sin2 uW

4 sinuW cosuW
, ~37!

ae,m,t5
21

4 sinuW cosuW
. ~38!

At the t1t2 threshold, electroweak corrections are at le
suppressed by terms ofO(8mt

2/MZ
2);331023 with respect

to photon mediated production. Because of the further s
pression induced by the couplingsve5vt;0.05, these elec
troweak corrections represent a contribution below 0.000
to the total cross section, and therefore they will not be c
sidered for our purposes.

The non-trivial part of the electroweak corrections com
from the axial couplings of theZ boson with the non-
relativistic final state fermions. For such contributions o
needs to expand the QCD axial-vector current in terms
proper NRQED currents and then to construct the co
sponding non-relativistic correlator, which is already
NNLO contribution describing thet1t2 system in aP-wave
triplet state @35,36#. However, it is suppressed b
O(16mt

4/MZ
4), so fully negligible in our analysis.
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VII. FINAL RESULTS FOR s„e¿eÀ\t¿tÀ
…

We now use formulas collected in previous sections
analyze the behavior ofs(e1e2→t1t2) at threshold ener-
gies. Some of the parameters appearing in the differ
pieces take the following values:

~a! The t mass, extracted from@37#, is mt51777.03
60.30 MeV.

~b! The two-loop running of the electromagnetic couplin

constant, defined in theMS̄ scheme, is needed to evalua
a(mso f t) and a(mhard), which show up in the non-
relativistic correlator and in the short-distance coefficie
respectively. The 1- and 2-loop coefficients of theb-function
were already given in Eq.~12!. The reference value for the
QED running coupling has been chosen by the relat
aMS̄(me

2)5a, with a51/137.036 the ordinary fine structur
constant.

~c! The first QCD perturbative correction to the vacuu
polarization of free quarks is proportional to the strong co
pling constantas @see Eqs.~32! and ~33!#. At the energy
scale oft production, it is appropriate to choosemt as the
normalization point for as ; the corresponding value i
as(mt

2)50.3560.03 @38#.
~d! The dependence on the various renormalization sc

mso f t , mhard and m f ac is very small. The most pronounce
one comes from variations on the scalemso f t governing the
combined expansion ina andv of the NRQED correlators.
The logarithms of this scale overMv, which show up in the
non-relativistic Green’s functions, suggest takingmso f t
;Mv;Ma.13 MeV to minimize the size of the NLO an
the NNLO corrections. In fact, in the range 10 Me
,mso f t, 100 MeV the sensitivity to changes in this scale
reduced, and we have the smallest NLO and NNLO corr
tions toRem, varying in the whole range by less than 0.15
and 0.08%, respectively. The residual dependences on
other two scales are fully negligible.

The need for performing resummations of the lead
non-relativistic terms (a/v)n@v,va,v2, . . . # is evidenced in
Figs. 1 and 2. The spectral densityRem, calculated in both
QED and NRQED, is displayed in Fig. 1 as a function of t
t velocity. The QED tree-level result vanishes asv→0 due
to the phase space velocity in formula~1!, which is cancelled
by the firstv21 term appearing in theO(a) correction, mak-
ing the cross section at threshold finite. More singular ter
near threshold,v22,v23, . . . arising in higher-order correc
tions completely spoil the expected good convergence of
QED perturbative series in the limitv→0. This breakdown
is clearly seen in the behavior of theO(a2) correction to the
QED spectral density in Fig. 1. This is no longer the case
the effective theory perturbative series, whose converge
improves as we approach the threshold point, as show
Fig. 2~a!, and higher-order corrections reduce the pertur
tive uncertainty inherent to any series truncated at a fin
order. In the whole energy range displayed in Fig. 2~a!, the
differences between the NNLO, NLO and LO results a
below 0.8%, which indicates that the LO result, i.e. the So
merfeld factor, contains the relevant physics to describe
threshold region, although NLO and NNLO correctio
1-7
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FIG. 1. The spectral densityRem at low ve-
locities in both QED and NRQED.
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would be needed for more accurate descriptions of the t
cross section.

We can safely assume that the NNLO result for the sp
tral density has a theoretical uncertainty below 0.1% for
ergies close enough to threshold. At larger energies, the
leading contributions gain importance and the converge
of the double series ina andv is poorer, due to the highe
powers of the velocity which are not taken into account. T
is the opposite behavior to that of the usual perturba
QED expansion, Fig. 2~b!, where the series convergence im
proves as we move far away the threshold.

Adding the intermediate and initial state corrections
have a complete description of the total cross section
t1t2 production, as shown in Fig. 3. Coulomb interacti
between the producedt ’s, governed by the parametera/v,
becomes essential right within a few MeV above the thre
old, and the effects have to be taken into account to all ord
in this parameter, making the total cross section finite in t
region. Initial state radiation effectively reduces the availa
center-of-mass energy fort production, lowering in this way
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the total cross section. We can verify that this reduction
mains at higher energies above threshold by examining
4. A maximum energy for the soft photons,DE560 MeV,
has been chosen to perform the integration~34!.

We should emphasize that NNLO corrections do n
modify the predicted behavior of the LO and NLO cro
section as calculated in previous works@8,9#, but are essen-
tial to improve the accuracy of experimental fits with high
precision data and, even more important, to guarantee
the truncated perturbative series at NLO gets small cor
tions from higher-order terms. In this way, we have sho
that the theoretical uncertainty of our analysis ofs(e1e2

→t1t2) is lower than 0.1%, being the main sources of er
our estimates of the hadronic contribution to vacuum po
ization and of the initial state radiation. The former could
easily improved using similar techniques to those applied
estimatea(MZ), but at the energy pointAs52mt , including
fits to s(e1e2→hadrons) data, and the latter, being dete
tor dependent, should be accurately monitored and their
fects correctly implemented in data analyses. Neverthel
FIG. 2. Relative sizes of corrections toRem(s) as calculated in~a! NRQED and~b! QED.
1-8
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the statistical uncertainty of the most recent experiment
still much larger than the theoretical one due to low statist
and we should wait for future machines to improve it.
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APPENDIX A

The expression of the two-loop spectral density as ca
lated in perturbative QED and up to NNLO in the veloci
expansion (ṽ[AE/M ) reads@18#

R2loop QED
NNLO 5F3

2
ṽ2

17

16
ṽ31O~ ṽ4!G1

a~mh!

p F3p2

4
26ṽ

1
p2

2
ṽ21O~ ṽ3!G1a2~mh!H p2

8ṽ
1

3

2

3F221nfS 1

6
ln

4ṽ2M2

mhard
2

2
5

18D G
1S 49p2

192
1

3

2
k22nf

1

p2
ln

M2

mhard
2

2 ln ṽ D
3 ṽ1O~ ṽ2!J . ~A1!

FIG. 3. The total cross sections(e1e2→t1t2) at threshold: at
tree level~solid line!; plus NNLO corrections to final state interac
tion, Eq. ~2! ~dashed line!; and also including radiative correction
from the initial e1e2 state and from vacuum polarization, Eq.~4!
~dash-dotted curve!.
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The constantk has already been defined in Eq.~20!. The
renormalization point in theMS̄ scheme has been chose
equal tomhard , andM denotes the pole mass.

APPENDIX B

The NRQED Lagrangian relevant for our analysis read

LNRQED5
1

2
~E22B2!1c†F iD t1c2

D2

2M
1c4

D4

8M3
1•••

1
cFe

2M
s•B1

cDe

8M2
~D•E2E•D!1

cSe

8M2
i s~D3E

2E3D!1•••Gc2
d1e2

4M2
~c†ss2x* !~xTs2sc!

2
d2

M2
~c†s2x* !~xTs2c!1

d3e2

6M4 H ~c†ss2x* !

3FxTs2sS 2
i

2
DI D 2

cG1H.c.J 1•••. ~B1!

The lepton and antilepton are described by the Pauli spin
c andx, respectively. Antilepton bilinears and higher-ord
operators have been omitted. The first line in Eq.~B1! is
related to the kinetic term of the QED Lagrangian, with t
bilinear c terms coming from the expansion of the lepto
relativistic energy up toO(1/M3). The second line terms
reproduce the electromagnetic couplings of the leptons w
photons of energy lower thanM. Four fermion operators dis
played in latter lines reproduce production and annihilat
of an l 1l 2 pair in anS-wave singlet (d2) or triplet (d1 and
d3) state. Additional interaction terms between photon fie
should be introduced to simulate fermion loops. The sho
distance coefficientsci ,di must be determined following the

FIG. 4. Initial radiation effects in the total cross sectio
s(e1e2→t1t2) up to energies around 100 MeV above thresho

(v.0.2); the dashed line representss̃(e1e2→t1t2), which does
not include radiative corrections from initial state, as defined in
~2!.
1-9
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matching procedure up to a certain order ina, in order to
absorb infinities arising in calculations beyond tree level.

Which interactions are to be kept for a given precision~in
a andv;p/M ) is dictated by counting rules. The presen
of two dynamical scales in the theory, the fermions thr
momentum.Mv, and their kinetic energies.Mv2, makes
the NRQED counting rules more involved than in most
fective field theories. While the factors ofa in a specific
diagram can be read off from vertex coefficients, powers ov
are also generated by internal propagators and loop inte
tions. There has been a hard discussion during recent y
on how to organize calculations within NRQED/NRQCD
a systematic expansion inv @39#, especially in the context o
dimensional regularization. The situation seems to be cl
fied with the new formulation proposed in Refs.@40,41#. In a
cutoff scheme power counting rules for the velocity had be
previously derived by Labelle@20# using time ordered per
turbation theory together with the Coulomb gauge to se
rate the ‘‘soft’’ photons~with energyEg.Mv) from the ‘‘ul-
trasoft’’ ones (Eg.Mv2). Although quite troublesome fo
calculations beyond NNLO in the velocity expansion, the
rules give the order inv of diagrams containing only sof
photons by simple dimensional analysis. Following the
rules one proves that the latter diagrams are all we nee
describe low-energy interaction between the pair of fermi
up to NNLO. Moreover, soft photons have an energy in
pendent propagator and therefore all interactions up
NNLO can be described in terms of potentials, this bein
highly non-trivial result that cannot be derived in the conte
of full QED covariant perturbation theory.6

The effectivegt1t2 coupling seen by the non-relativisti
leptons is given by the expansion of the QED current
terms of the operators of the low-energy theory:

j NR
k ~x!5b1~c†skx!~x!2

b2

6M2 Fc†skS 2
i

2
DJ D 2

xG~x!1•••.

~B2!

We have only quoted the terms that are needed at NN
The first piece is a dimension-three current while the sec
has dimension-five and it is already of NNLO, as dictated
counting rules@20# due to the presence of the 1/M2 factor.
Notice that both pieces have quantum numbers3S1. There is
another dimension-five current, describing3D1 t1t2 pro-
duction which, however, would not contribute to the NNL
cross section because the correlator of the product of a3S1
current and a3D1 one vanishes. The Wilson coefficients
the NRQED 3S1 current encode the effects of the ha
modes that have been integrated out. The coefficientb1
needs to be known at ordera2, while b251 at NNLO. In-
serting expansion~B2! into the correlation function~6! leads
to the NRQED expression of the ratioRem at NNLO:

6In terms of diagrams this statement means that only ladder
grams with Coulomb-like photons and contact interactions with v
tex factors up to NNLO contribute. Crossed ladder graphs van
for soft photons.
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Rem
NNLO~q2!5

4p

q2
ImS C1@A1~E!#2

1

6M2
C2@A2~E!# D ,

~B3!

where

A152 i E d4xeiqx^0uT~c†sx•x†sc!u0&, ~B4!

A252 i E d4xeiqx^0uTFc†sx•x†sS 2
i

2
DI D 2

c

1H.c.G u0&. ~B5!

The short distance coefficients readC15(b1)2 and C251.
The correlatorsA1 andA2 contain the non-relativistic inter
actions derived from the NRQED Lagrangian. Such inter
tions, at NNLO, are purely described by instantaneous
tentials, similar to those used in familiar quantum mechan
Therefore, once the lepton pair is created by the exte
current with relative momentumk and until it is annihilated,
the four point function describing their evolution reduces to
Schrödinger Green function for a two-body system with k
netic energyE5As22M , see Fig. 5. The exact relation fo
A1 reads

A1~E!5TrE d3k

~2p!3E d3k8

~2p!3
sG̃~k,k8;E!s

56@ lim
r ,r 8→0

G~r,r8;E!#, ~B6!

where we have used the identity Tr(s•s)53 Tr(I)56. One
can check that Eq.~B6! gives the right proportionality facto
betweenA1 andG just considering the free case. There is
extra factor coming from the different normalizations of t
relativistic and the non-relativistic quantities.

For theA2 correlator we have

A2~E!5TrE d3k

~2p!3E d3k8

~2p!3
~k21k82!G̃c~k,k8;E!

526~“ r
21“ r 8

2
!Gc~r,r8;E!ur ,r 8→0 . ~B7!

As A2 is already of NNLO, only the Green’s function for th
Coulomb potential shall be considered. Relation~B7! can be

a-
r-
h

FIG. 5. Graphical representation of the NRQED vector-curr
correlator diagrams: the lepton pairl 1l 2 is created and annihilated
by the couplingc†sx in ~B4!, and all the intermediate diagrams o
the l 1l 2 non-relativistic NNLO interaction are resummed in th
Green’s functionG(E).
1-10
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further simplified by using the Schro¨dinger equation~15!,
retaining just the LO piece ofVc(r ). For the imaginary part
we have

2
“ r

2

M
Im Gc~r,r8;E!5@E2Vc

LO~r !#Im Gc~r,r8;E!

5S E1
a

r D Im Gc~r,r8;E!. ~B8!

In the limit r ,r 8→0, the terma/r ImGc represents an ultra
violet divergence which must be regularized. Following t
direct matching procedure@27# to fix the value of the shor
distance coefficientC1 allows us to drop power-like diver
gences, such asa/r ImGcur→0, which must cancel with simi-
lar ultraviolet divergences inC1 in the final expression for
the total cross section. Therefore we can safely substi
Im A2 by 12EMGc(r,r8;E)ur ,r 8→0 in ~B3! to get the com-
plete relation between the spectral density at NNLO and
non-relativistic Green’s functions:

Rem
NNLO~q2!5

6p

M2
ImS C1G~0,0;E!2

4E

3M
Gc~0,0;E! D ,

~B9!

where we have expanded the relationq25(2M1E)2 to first
order inE/2M , which is already a NNLO contribution.

APPENDIX C

The well-known Coulomb Green’s function@42#, solution
of the LO Hamiltonian, at the origin reads (ṽ[AE/M )

Gc
r ~0,0;E!5

M2

4p H i ṽ2a~ms!F lnS 2 i
M ṽ
m f ac

D 1g

1CS 12 i
a~ms!

2ṽ
D G J , ~C1!

whereC(z)5(d/dz)logG(z) and G(z) is the EulerG func-
tion. The superscript ‘‘r’’ stands for ‘‘renormalized,’’ since i
05300
te

e

the short distance limitr ,r 8→0 the Coulomb Green’s func
tion, and some of thedG, have 1/r and log(r) divergent
terms. Following the lines of previous papers@22,43# power-
like divergences are subtracted and ultraviolet logarithm
terms are regularized by introducing a cutoffm f and hence
subtracting the energy-independent part. However, the im
nary part ofGc has no ultraviolet divergent terms, so the
would not contribute to the total cross section. This is n
longer the case for the correctionsdKi,BFG and dAnG, and
their ~imaginary part! residual dependence on them f-scale
will be canceled with the scale dependence of the coeffic
C1, which is determined using the ‘‘direct matching proc
dure’’ @27# described at the end of Sec. III. We quote t
result for dKi,BFG @CF→1,TF→1 andCA→0 for the U~1!
group# @22#:

dKi,BFG~0,0;E!5
a~ms!M

2

4p H i
5

8

ṽ3

a~ms!
22ṽ2F lnS 2 i

M ṽ
m f ac

D
1g1CS 12 i

a~ms!

2ṽ
D G

1 i
11

16
a~ms!ṽC8S 12 i

a~ms!

2ṽ
D J

1
4p

3

a~ms!

M2 Gc
r ~0,0,E!2. ~C2!

The integration for theVAn potential is trivial, and the
resulting~renormalized! correctiondAnG reads

dAnG~0,0;E!522
a~ms!p

M2 Gc
r ~0,0,E!2. ~C3!

The O(a) correction to the Coulomb potential,Vc
(1)(r ),

must be iterated twice because it is a NLO contribution. T
corresponding correctionsd1

NLOG and d1
NNLOG have been

calculated in@13# and@26#, respectively. The details of thei
calculation can be found therein. Their final expressio
read:
d1
NLOG~0,0;E!5S a~ms!

4p D 2

M2H (
m50

`

F2~m!~m11!$C0
11@L~v !1C~m12!#C1

1%22 (
m51

`

(
n50

m21

F~m!F~n!
n11

m2n
C1

1

12 (
m50

`

F~m!$C0
11@L~v !22g2C~m11!#C1

1%1L~v !C0
11S 2gL~v !1

1

2
L~v !2DC1

1J , ~C4!

and
1-11
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d1
NNLOG~0,0;E!5 i S a~ms!

4p D 2a~ms!
2

4p

M2

2v S (
m50

`

H3~m!~m11!$C0
11@C~m12!1L~v !#C1

1%2

22 (
m51

`

(
n50

m21
n11

m2n
C1

1H H2~m!H~n!FC0
11S C~m12!1L~v !2

1

2

1

m2nDC1
1G

1H~m!H2~n!FC0
11S C~n12!1L~v !2

1

2

n11

~m2n!~m11! DC1
1G J

12~C1
1!2S (

m52

`

(
l 51

m21

(
n50

l 21

H~m!H~n!H~ l !
n11

~ l 2n!~m2n!
1 (

m52

`

(
n51

m21

(
l 50

n21

H~m!H~n!H~ l !
l 11

~n2 l !~m2n!

1 (
n52

`

(
m51

n21

(
l 50

m21

H~m!H~n!H~ l !
~ l 11!~m11!

~n11!~n2 l !~n2m!D D ~C5!

with

F~m!5
i

2~m11!

a~ms!

v S m112 i
a~ms!

2v D 21

, ~C6!

L~v !52 lnS 22i
Mv
ms

D , ~C7!

and finally

H~m!5S m112 i
a~ms!

2v D 21

.

The constantsC0
1, C1

1 are defined in terms ofb1 ~14!:

C0
15a112b1g,

C1
152b1 . ~C8!

The iteration of theO(a2) piece,Vc
(2)(r ), was also computed in@13#:

d2G~0,0;E!5S a~ms!

4p D 2 a~ms!M
2

4p H (
m50

`

F2~m!$~m11!@C0
21L~v !C1

21L2~k!C2
2#1~m11!C~m12!@C1

212L~v !C2
2#

1I ~m!C2
2%12 (

m51

`

(
n50

m21

F~m!F~n!S 2
n11

m2n
@C1

212L~v !C2
2#1J~m,n!C2

2D12 (
m50

`

F~m!$C0
21L~v !C1

2

1@L2~v !1K~m!#C2
22@2g1C~m11!#@C1

212L~v !C2
2#%1L~v !C0

21S 2gL~v !1
1

2
L2~v ! DC1

21N~v !C2
2J ,

~C9!
with the functionsI (m),J(m,n),K(m),N(v) defined as

I ~m!5~m11!S C2~m12!2C8~m12!1
p2

3

2
2

~m11!2D22~C~m11!1g!,
05300
J~m,n!52
n11

m2n S C1~m2n!2
1

n11
12g D12

m11

m2n

3@C~m2n11!2C~m11!#,

K~m!52@C~m11!1g#21C8~m11!2C2~m11!

12g2,
1-12
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N~v !5S g1
p2

6 DL~v !2gL2~v !1
1

3
L3~v !,

and the constants

C0
25S p2

3
14g2D1b1

212~b212b1a1!g1a2 ,
.

.

,

ry

/

c-
-

.

A

hy

05300
C1
252~b212b1a1!18b1

2g,

C2
254b1

2 .

None of the above mentioned CoulombdG corrections
have energy-dependent ultraviolet terms on their imagin
part, so no matching is necessary for them.
s.

ys.
,

,’’
l
er-
Pe-

,
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