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Simplified method for trace anomaly calculations ind=6
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We discuss a simplified method for computing trace anomalies in dimengie®Bs It is known that in the
guantum mechanical approach trace anomaliesdimensions are given by al(2+ 1)-loop computation in
an auxiliary 1D sigma model with arbitrary geometry. We show how one can obtain the same information using
a simpler @/2)-loop calculation on an arbitrary geometry supplemented ly/2+1)-loop calculation on the
simplified geometry of a maximally symmetric space.
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Conformal anomalies, also called trace anomalies, have propose is to take advantage of some recent results concern-
variety of applications and are of central importance in stringng trace anomalies. These results guarantee that one may
and quantum field theori¢4]. They arise due to the fact that obtain all but one terms in the anomaly by a simpidoop
the regularization procedure brings in a scale dependendlculation in the 1D nonlinear sigma model with arbitrary
even though the classical theory was scale invariant. In pageometry. Then, the missing part of the anomaly can be iden-
ticular, they appear whenever conformal field theories intified by a (h+ 1)-loop calculation performed in the simpler
even dimensions are considered in a curved backgrbundgeometry of a maximally symmetric space. It is this geom-
However their computation gets more involved as the spacestry which renders the higher loop calculation much easier.
time dimensiond gets bigger. Already fod=6 the compu- Concretely, we first make use of the classification of De-
tation is quite complicated and only recently the anomalieser and Schwimmefr13] that divides trace anomalies into:
for free conformal fields have been completely identifigil  type A which are unique and always proportional to the Eu-
[we recall also that the trace anomalies for a class of supefer topological densitytype B whose number increases with
symmetric (0,2) interacting 6-dimensional conformal fieldthe spacetime dimensions and are made up by local Weyl
theory (CFT) in the largeN limit was obtained i3] using  invariants, andrivial anomalies which can be canceled by
the supergravity dual as dictated by the AdS-CFT corresporthe variation of local counterterms and can be expressed as
dence[4]]. Trace anomalies can be computed efficiently usiotal derivatives. This classification makes it evident that the
ing the quantum mechanical approach[&f6], which re-  simplified geometry of a maximally symmetric space annihi-
quires a o+ 1)-loop calculation in an auxiliary 1D nonlinear lates type B and trivial anomalies, and allows a simpler cal-
sigma model to obtain the trace anomaliesiin2n dimen-  culation of the type A anomaly, as done indeedlid]. In the
sions. The complications fat=6 trace anomalies are seen path integral method the type A anomaly can be obtained by
in this method as the need for calculating up to 4 loops in thé (n+1)-loop calculation for the sigma model on the maxi-
1D sigma model. The latter is laborious even in the newlymally symmetric geometry. The latter simplifies drastically
developed dimensional regularization schefipwhich re-  the calculatior?. Then, inspecting the cohomological analysis
quires finite covariant counterterms oAlBuch a lengthy for trace anomalies id=4 [15] andd=6 [16] one notices
calculation was indeed performed recently{12], confirm-  that the remaining non-trivial part of the trace anomafies
ing the correctness of the dimensional regularization schemgpe B) can be identified by certain terms in the curvature
of the quantum mechanical path integf@l as well as the that are not affected by adding trivial anomalies, and at the
correct value of the trace anomalies identified 2 same time are given by disconnected diagrams in the path

In this paper we wish to discuss a simplified approach tdntegral approach. The latter are identified by a lower loop
obtain trace anomalies =6 (hopefully it may be extended calculation(i.e. atn-loops.

to higher dimensions as well in the futir@he strategy we Let us consider the case of a conformal scalar field in
dimensions
. . . . . 1
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More general background field configurations are also usefully .
considered sometimes. where §=(d—2)/[4(d—1)] and R is the curvature scalar.
°Mode regularizatiori8,5] and time slicing 9] need instead non-
covariant counterterms which render higher loop calculations even
more laborious. See Refl10] for an attempt to computerize the 3t is conceivable that one may devise a way of computing this
time slicing procedure and Refd 1] for the original use of dimen-  path integral exactly, thus deriving a compact formula for a gener-
sional regularization in the infinite propagation time limit. ating functional for type A anomalies.
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Our conventions for the curvature tensors follow from 1 B 1

[V,,V,]V’=R, .V’ andR,,=R,,’,. We employ a Eu- Z(,B):—ex;{—(Gg— 1)R+,82(—(R2 —R2)

clidean signatlﬁe. oot (2mp)¥2 7112 7207 mnen e
As described if5] one-loop trace anomalies can be ob- 1

tained by computing a certain Fujikawa Jacobian suitably +-—(5&— 1)V2R)+O(ﬁ3)} (6)

regulated and represented as a quantum mechanical path in- 120

tegral with periodic boundary conditions Now we need to compute at 4-loops on the simplified

geometry of a maximally symmetrid¢S) space, where the

j ddx\/acr(x)<T“#(x)>= lim Tr o e 1] Riemann tensor is expressed by
B—0
Rmnab™ P(Imanb— ImbIna) (7)
=lm | Dxo(x)e ™ (2 with
B—0J PBC
R
where on the left hand sidé”, denotes the trace of the b= d(1—-d)" ®

stress tensoTW=(2/\/§)(5llég“”) of the conformal scalar
and o (x) is an arbitrary function describing an infinitesimal We find it easier to use Riemann normal coordinates, so that
Wey! variation. In the first equality the infinitesimal part of cubic vertices are absent. The expansion of the metric in
the Fujikawa Jacobian has been regulated with the conformdiemann normal coordinates around a pgiotbe called the
scalar field kinetic operatoH = — V2 (£/2)R. The limit  origin) is easily obtained by the method explained5hand
B—0 should be taken after removing divergent termsgin reads
(which is what the renormalization in QFT dgeFhus, it

picks up just theB independent term. Finally, on the right MmN — _ o2 E_ 1_6 272
hand side the trace is given a representation as a quantum Gmr(X)AXTAXT=] i+ 2 (XX ik )(6 6! b*
mechanical path integral corresponding to a model with

Hamiltonian H and with periodic boundary conditions + Eb3(§2)2+ ) ) dxMdx". 9)
(PBC). Using the dimensional regularization schefigthe 7!

path integral requires the action , - .
As an aside, we note that it is easy to evaluate recursively all

1 the terms in the expansion and sum them up in a compact
59 O0XX"+ BV(X) + Vor(X)] form

1 (o
-5 o

() . Z (—4b)"(x®)nt
Fmn(X)AXTdX"= dX2+2 D, ((2+2))|
with a scalar potentiaV=—(£&/2)R and the counterterm nmt '

Vpr= 3R, both needed to reproduce the correct Hamiltonian % [)gzd—;(z_ (X- d_})z] (10)
H. As in [7] a ghost action will be used to exponentiate the

nontrivial part of the path integral measure e 1—2b§2—cos(2\/ﬁ)

= X =
170 [1 2b(x?)?
Sghz—f dt zgw(x)(af‘a%b“c”) (4) o o
BJ-1 X [X20%%— (X-d%)2]. (1)
wherea* are bosonic an®*, c* fermionic ghosts. Using Eq.(9) into Egs.(3) and (4) produces the required
One can easily eliminate the arbitrary functie(x) from  sigma model action. As usual, after getting the free propaga-
Eq. (2) to obtain the local formula tors from the quadratic part of the action, one is left to com-
pute perturbatively using Wick contractions
(T (X)) = lim J Dxe M=1limz(B) (5 N 1 F{ Rl -
—0dx(-1)=x(0)=x 0 Z(B)=———exg — B(1—4&) = (e Sint 12
B B (B) (2mB) B(1-48) gi(e7m)  (12)

where again the limit has to be understood only as the indiy

cation of extracting thg independent part of the subsequent

expression, while the boundary conditions on the path inte- . 1o b 16 . 8 R

gral identify the initial and final points and keep them fixed. Smt:,Ej dt(g— gbzXZﬁL ﬂbg(xz)2Jr o
Aiming at exemplifying the proposed method fib< 6 we -t ' '

need the transition amplitud®&(8) on an arbitrary geometry XX — S X2 (X" + aMa + pMch
up to three loops. This has already been computed and can be (XmXn = Imx")( )
read off from various papersee e.g[8,12]) =S, +Sg+Sg+ - - (13
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where the subscripts indicate the power of the quantum fields 1
appearing in the given vertex. Up to the org&t we only E4=RAnar— 4Rt RZ:ERZ- (19
need to compute the following connected diagrams:
Now, the most general expression fod 4race anomalies
was obtained through a cohomological analysi$lif] and

1
(e Sty = ex;{ —(S)—(Se)—(Sg)+ §<8421>c+<8486>c reads

1 1 1
—g<5431>c+0(,34)}- (14) <T”M(X)>4:W gr(@EatcCHdiRr) (20

. , . : , L where C is the square of the Weyl tensor representing the
Using Wick contractions and dimensional regularization Weype B anomaly

find

1
B B (d+2) C=Rfnar~ 2Rmn+ 3R? (21)
(So=—71R (=~S5rgqa-1) _ _ N o
andJR is the unique trivial anomaly. Clearly a modification
£ (d+2)(d+4) of the trivial :_;momaly_ cannot change the coeﬁicient oflﬂ"n_a
(Sg)=—5 =77 R° term appearing implicitly in Eg(20). At the same time this
7! 15d°(d—1) coefficient can be produced by disconnected diagrams only.
In fact, no index contraction signaling a connection through
a propagator appears between the two factors of the curva-
ture tensors belonging each to a separate vertex. Thus, the
coefficient of theR? term is directly identified by a lower
B 4(d+2) loop calculation, namely a 2-loop calculation on an arbitrary
3 geometry(order 8). Said differently, it is clear from Eq6)
that for generic manifolds an explicR?> dependence can
only come from the lineaR terms in the exponent. ld

2

2 1 2
(Si)e== 727 9gR (15

(S4Sg)c=— 61 250%(d—1)

3 2
<§> - '8_ 2d°-4) 5 =4 this term is absent. Since this cannot come from trivial
4/c 6! 3d°(d—1)? anomalies one can conclude that
so that the full answer reads c=3(r-a) (22)

and hencec=32. Thus, the complete trace anomaly foda
B B> (d-3) _, =4 conformal scalar reads

~ 1
Z(,B):(ZW—B)CUZGX[{E(].%—Z)R— a d(d—1) R

B° 16(d+2)(d—3)
8! 9d%(d—1)2

“ 1 1 3
(T u(X)>4=—2(2W) 51l ~3Eat5CJ (23

(16)
Now, let us address theé=6 case. In this spacetime di-

) mensionst = and the 4-loop computaticiorder8%) on the
We are now ready to describe concretely our method. Ins geometry presented above produces

d=2 there is only the A type of anomaly. It can most easily

be computed at two loop@.e. orderg in Eq. (14)] in the - oo o= 1 iiRg__ 1 15,
simplified MS geometry. Thus, using the two loop part of Eq. (T#,.(0) )6l iype a= (27)% 81135 (2m)°381 726
(16) and settingd=2 andé=0 gives (24
1 where in the last equality we have used the following topo-
(TH (X)) o=— HR (17) logical density evaluated on the MS geometry:
T
Ee=— 6m1n1m2n2m3n3€a1b1a2b2a3b3lenlalbl

which is the correct anomaly for a scalar.

In d=4 we have insteag= %, and the 3-loop calculation «R™M2 . RMNs. . — 1_6R3
on the MS geometryi.e. using terms up to ordgs? in the azby a3b3™ 757
exponent of Eq(16)] gives

(25

The general expression ofd6trace anomalies can be ob-

11 1 11 tained from a cohomological analydi$7,16 and is of the
M = — [ — = — -
<T M(X)>4|typeA W 61 12R W 61 2E4 form
(18)

1 1
<Taa> = (ZT)S g(aEG‘F Cll 1+ Czl 2+ C3| 3
where in the second equality we have used the topological '
Euler density evaluated on the MS geometry +trivial anomalie$ (26)
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with the three Weyl invariants given by
1= Ca\manmianiabj

— mn, i ab
|2_ Cab Cmnlcij

(27)

6
l= cmab[< V25— 4R+ —

5 R4 | C"3PC+ trivial anomalies,

where C,pmn IS the Weyl tensor in 6 dimensions and the
coefficientsa,c,,c,,c3 will depend on the particular model

considered. Now, it is important to recall that the specific

expressions of the trivial anomalies have been recently foun
in [16]. Consulting those resulisee, in particular, Table |

one notices that the coefficients of the three structures

R%,RRZ,,,RR: ., Can never be modified by adding trivial

anomalies. At the same time those structures can be obtain%&d
by disconnected diagrams only. Thus, it suffices to use thg
results at the 3rd-loop order on an arbitrary geometry to fix

them.
For the case of the conformal scalar field we use (Bj.
and obtain

1 1
<T“ﬂ(X)>e=(2—TF)3 g(rlR3+r2RR|2nn+r3Rer1mab
+ other structures (28

with r,=7/225 andr;=—r,=14/15. Since these coeffi-
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T2)= t 1 5E |+5|+2| 29
< a>_W8| 72 6 3 1 3 2 3] ( )

The general formulas relating the various coefficients are

4

1
Co= 5 (—408a+300 1 +16r,~195) (30)
d 5
C3= - §(24a—15|’1—r2)

Before closing, it is amusing to note that on the three
hereS® [i.e. on the group manifold aBU(2)] the higher

er corrections in Eq(16) vanish. In fact, the transition
mplitude onS® is known exactly{18]. From our path inte-
gral perspective this amplitude is saturated by the two loop
correction given in Eq(16).

We have discussed a simplified method for computing
trace anomalies id<6. Apart from some amusing path in-
tegral computations on maximally symmetric spaces, our
main results are Eq$22) and(30). It would be interesting to
extend this method to higher dimensions. The main problem
is to analyze how trivial anomalies may affect the structure
of type B anomalies il=8. This is at present unknown. On
the other hand, it is fortunate that most recent applications,

cients must correspond to the sum of the type A and Bsuch as the search for Gtheorem in higher dimensions,

anomalies only, one finds with simple linear algebra

concern mostly the type A anomalies.
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