
PHYSICAL REVIEW D, VOLUME 64, 047701
Simplified method for trace anomaly calculations indÏ6
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We discuss a simplified method for computing trace anomalies in dimensionsd<6. It is known that in the
quantum mechanical approach trace anomalies ind dimensions are given by a (d/211)-loop computation in
an auxiliary 1D sigma model with arbitrary geometry. We show how one can obtain the same information using
a simpler (d/2)-loop calculation on an arbitrary geometry supplemented by a (d/211)-loop calculation on the
simplified geometry of a maximally symmetric space.
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Conformal anomalies, also called trace anomalies, ha
variety of applications and are of central importance in str
and quantum field theories@1#. They arise due to the fact tha
the regularization procedure brings in a scale depende
even though the classical theory was scale invariant. In
ticular, they appear whenever conformal field theories
even dimensions are considered in a curved backgrou1

However their computation gets more involved as the spa
time dimensiond gets bigger. Already ford56 the compu-
tation is quite complicated and only recently the anoma
for free conformal fields have been completely identified@2#
@we recall also that the trace anomalies for a class of su
symmetric (0,2) interacting 6-dimensional conformal fie
theory (CFT6) in the largeN limit was obtained in@3# using
the supergravity dual as dictated by the AdS-CFT corresp
dence@4##. Trace anomalies can be computed efficiently
ing the quantum mechanical approach of@5,6#, which re-
quires a (n11)-loop calculation in an auxiliary 1D nonlinea
sigma model to obtain the trace anomalies ind52n dimen-
sions. The complications ford56 trace anomalies are see
in this method as the need for calculating up to 4 loops in
1D sigma model. The latter is laborious even in the new
developed dimensional regularization scheme@7# which re-
quires finite covariant counterterms only.2 Such a lengthy
calculation was indeed performed recently in@12#, confirm-
ing the correctness of the dimensional regularization sch
of the quantum mechanical path integral@7# as well as the
correct value of the trace anomalies identified in@2#.

In this paper we wish to discuss a simplified approach
obtain trace anomalies ind<6 ~hopefully it may be extended
to higher dimensions as well in the future!. The strategy we

*Email address: bastianelli@bo.infn.it
†Email address: dass@imsc.ernet.in
1More general background field configurations are also usef

considered sometimes.
2Mode regularization@8,5# and time slicing@9# need instead non

covariant counterterms which render higher loop calculations e
more laborious. See Ref.@10# for an attempt to computerize th
time slicing procedure and Refs.@11# for the original use of dimen-
sional regularization in the infinite propagation time limit.
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propose is to take advantage of some recent results conc
ing trace anomalies. These results guarantee that one
obtain all but one terms in the anomaly by a simplern-loop
calculation in the 1D nonlinear sigma model with arbitra
geometry. Then, the missing part of the anomaly can be id
tified by a (n11)-loop calculation performed in the simple
geometry of a maximally symmetric space. It is this geo
etry which renders the higher loop calculation much easi

Concretely, we first make use of the classification of D
ser and Schwimmer@13# that divides trace anomalies into
type A, which are unique and always proportional to the E
ler topological density,type B, whose number increases wit
the spacetime dimensions and are made up by local W
invariants, andtrivial anomalies, which can be canceled b
the variation of local counterterms and can be expresse
total derivatives. This classification makes it evident that
simplified geometry of a maximally symmetric space anni
lates type B and trivial anomalies, and allows a simpler c
culation of the type A anomaly, as done indeed in@14#. In the
path integral method the type A anomaly can be obtained
a (n11)-loop calculation for the sigma model on the max
mally symmetric geometry. The latter simplifies drastica
the calculation.3 Then, inspecting the cohomological analys
for trace anomalies ind54 @15# andd56 @16# one notices
that the remaining non-trivial part of the trace anomalies~i.e.
type B! can be identified by certain terms in the curvatu
that are not affected by adding trivial anomalies, and at
same time are given by disconnected diagrams in the p
integral approach. The latter are identified by a lower lo
calculation~i.e. atn-loops!.

Let us consider the case of a conformal scalar field ind
dimensions

I 5E ddxAg
1

2
~gmn]mf]nf2jRf2! ~1!

where j5(d22)/@4(d21)# and R is the curvature scalar
ly

n
3It is conceivable that one may devise a way of computing t

path integral exactly, thus deriving a compact formula for a gen
ating functional for type A anomalies.
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Our conventions for the curvature tensors follow fro
@¹m ,¹n#Vr5Rmn

r
sVs andRmn5Rms

s
n . We employ a Eu-

clidean signature.
As described in@5# one-loop trace anomalies can be o

tained by computing a certain Fujikawa Jacobian suita
regulated and represented as a quantum mechanical pa
tegral with periodic boundary conditions

E ddxAgs~x!^Tm
m~x!&5 lim

b→0
Tr@s e2bH#

5 lim
b→0

E
PBC

Dx s~x!e2S[x] ~2!

where on the left hand sideTm
m denotes the trace of th

stress tensorTmn5(2/Ag)(dI /dgmn) of the conformal scalar
ands(x) is an arbitrary function describing an infinitesim
Weyl variation. In the first equality the infinitesimal part o
the Fujikawa Jacobian has been regulated with the confor
scalar field kinetic operatorH52 1

2 ¹22(j/2)R. The limit
b→0 should be taken after removing divergent terms inb
~which is what the renormalization in QFT does!. Thus, it
picks up just theb independent term. Finally, on the righ
hand side the trace is given a representation as a qua
mechanical path integral corresponding to a model w
Hamiltonian H and with periodic boundary condition
~PBC!. Using the dimensional regularization scheme@7# the
path integral requires the action

S@x#5
1

bE21

0

dtF1

2
gmn~x!ẋmẋn1b2@V~x!1VDR~x!#G

~3!

with a scalar potentialV52(j/2)R and the counterterm
VDR5 1

8 R, both needed to reproduce the correct Hamilton
H. As in @7# a ghost action will be used to exponentiate t
nontrivial part of the path integral measure

Sgh5
1

bE21

0

dtF1

2
gmn~x!~aman1bmcn!G ~4!

wheream are bosonic andbm, cm fermionic ghosts.
One can easily eliminate the arbitrary functions(x) from

Eq. ~2! to obtain the local formula

^Tm
m~x!&5 lim

b→0
E

x(21)5x(0)5x
Dx e2S[x][ lim

b→0
Z~b! ~5!

where again the limit has to be understood only as the in
cation of extracting theb independent part of the subseque
expression, while the boundary conditions on the path in
gral identify the initial and final points and keep them fixe

Aiming at exemplifying the proposed method ford<6 we
need the transition amplitudeZ(b) on an arbitrary geometry
up to three loops. This has already been computed and ca
read off from various papers~see e.g.@8,12#!
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Z~b!5
1

~2pb!d/2
expF b

12
~6j21!R1b2S 1

720
~Rmnab

2 2Rmn
2 !

1
1

120
~5j21!¹2RD1O~b3!G . ~6!

Now we need to compute at 4-loops on the simplifi
geometry of a maximally symmetric~MS! space, where the
Riemann tensor is expressed by

Rmnab5b~gmagnb2gmbgna! ~7!

with

b5
R

d~12d!
. ~8!

We find it easier to use Riemann normal coordinates, so
cubic vertices are absent. The expansion of the metric
Riemann normal coordinates around a point~to be called the
origin! is easily obtained by the method explained in@5# and
reads

gmn~x!dxmdxn5Fdmn12~xmxn2dmnxW
2!S b

6
2

16

6!
b2xW2

1
8

7!
b3~xW2!21••• D Gdxmdxn. ~9!

As an aside, we note that it is easy to evaluate recursively
the terms in the expansion and sum them up in a comp
form

gmn~x!dxmdxn5dxW 212(
n51

`
~24b!n~xW2!n21

~2n12!!

3@xW2dxW 22~xW•dxW !2# ~10!

5dxW 21
122bxW22cos~2AbxW2!

2b~xW2!2

3@xW2dxW 22~xW•dxW !2#. ~11!

Using Eq. ~9! into Eqs. ~3! and ~4! produces the required
sigma model action. As usual, after getting the free propa
tors from the quadratic part of the action, one is left to co
pute perturbatively using Wick contractions

Ẑ~b!5
1

~2pb!d/2
expF2b~124j!

R

8G^e2Ŝint& ~12!

with

Ŝint5
1

bE21

0

dtS b

6
2

16

6!
b2xW21

8

7!
b3~xW2!21••• D

3~xmxn2dmnxW
2!~ ẋmẋn1aman1bmcn!

5S41S61S81••• ~13!
1-2
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where the subscripts indicate the power of the quantum fi
appearing in the given vertex. Up to the orderb3 we only
need to compute the following connected diagrams:

^e2Sint&5expF2^S4&2^S6&2^S8&1
1

2
^S4

2&c1^S4S6&c

2
1

6
^S4

3&c1O~b4!G . ~14!

Using Wick contractions and dimensional regularization
find

^S4&52
b

4!
R ^S6&52

b2

5!

~d12!

9d~d21!
R2

^S8&52
b3

7!

~d12!~d14!

15d2~d21!2 R3

^S4
2&c52

b2

4!

1

9d
R2 ~15!

^S4S6&c52
b3

6!

4~d12!

45d2~d21!
R3

^S4
3&c52

b3

6!

2~d224!

3d2~d21!2 R3

so that the full answer reads

Ẑ~b!5
1

~2pb!d/2
expF b

4!
~12j22!R2

b2

6!

~d23!

d~d21!
R2

1
b3

8!

16~d12!~d23!

9d2~d21!2 R31•••G . ~16!

We are now ready to describe concretely our method
d52 there is only the A type of anomaly. It can most eas
be computed at two loops@i.e. orderb in Eq. ~14!# in the
simplified MS geometry. Thus, using the two loop part of E
~16! and settingd52 andj50 gives

^Tm
m~x!&252

1

24p
R ~17!

which is the correct anomaly for a scalar.
In d54 we have insteadj5 1

6 , and the 3-loop calculation
on the MS geometry@i.e. using terms up to orderb2 in the
exponent of Eq.~16!# gives

^Tm
m~x!&4u type A52

1

~2p!2

1

6!

1

12
R252

1

~2p!2

1

6!

1

2
E4

~18!

where in the second equality we have used the topolog
Euler density evaluated on the MS geometry
04770
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E4[Rmnab
2 24Rmn

2 1R25
1

6
R2. ~19!

Now, the most general expression for 4d trace anomalies
was obtained through a cohomological analysis in@15# and
reads

^Tm
m~x!&45

1

~2p!2

1

6!
~aE41cC1dhR! ~20!

where C is the square of the Weyl tensor representing
type B anomaly

C[Rmnab
2 22Rmn

2 1
1

3
R2 ~21!

andhR is the unique trivial anomaly. Clearly a modificatio
of the trivial anomaly cannot change the coefficient of theR2

term appearing implicitly in Eq.~20!. At the same time this
coefficient can be produced by disconnected diagrams o
In fact, no index contraction signaling a connection throu
a propagator appears between the two factors of the cu
ture tensors belonging each to a separate vertex. Thus
coefficient of theR2 term is directly identified by a lower
loop calculation, namely a 2-loop calculation on an arbitra
geometry~orderb). Said differently, it is clear from Eq.~6!
that for generic manifolds an explicitR2 dependence can
only come from the linearR terms in the exponent. Ind
54 this term is absent. Since this cannot come from triv
anomalies one can conclude that

c53~r 2a! ~22!

and hencec5 3
2 . Thus, the complete trace anomaly for ad

54 conformal scalar reads

^Tm
m~x!&45

1

~2p!2

1

6!S 2
1

2
E41

3

2
CD . ~23!

Now, let us address thed56 case. In this spacetime d
mensionsj5 1

5 and the 4-loop computation~orderb3) on the
MS geometry presented above produces

^Tm
m~x!&6u type A52

1

~2p!3

1

8!

2

135
R352

1

~2p!3

1

8!

5

72
E6

~24!

where in the last equality we have used the following top
logical density evaluated on the MS geometry:

E6[2em1n1m2n2m3n3
ea1b1a2b2a3b3Rm1n1

a1b1

3Rm2n2
a2b2

Rm3n3
a3b3

5
16

75
R3. ~25!

The general expression of 6d trace anomalies can be ob
tained from a cohomological analysis@17,16# and is of the
form

^Ta
a&5

1

~2p!3

1

8!
~aE61c1I 11c2I 21c3I 3

1trivial anomalies! ~26!
1-3
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BRIEF REPORTS PHYSICAL REVIEW D 64 047701
with the three Weyl invariants given by

I 15CamnbC
mi jnCi

ab
j

I 25Cab
mnCmn

i j Ci j
ab ~27!

I 35CmabcS ¹2dn
m24Rn

m1
6

5
Rdn

mDCnabc1trivial anomalies,

where Cabmn is the Weyl tensor in 6 dimensions and th
coefficientsa,c1 ,c2 ,c3 will depend on the particular mode
considered. Now, it is important to recall that the spec
expressions of the trivial anomalies have been recently fo
in @16#. Consulting those results~see, in particular, Table I!
one notices that the coefficients of the three structu
R3,RRmn

2 ,RRmnab
2 can never be modified by adding trivia

anomalies. At the same time those structures can be obta
by disconnected diagrams only. Thus, it suffices to use
results at the 3rd-loop order on an arbitrary geometry to
them.

For the case of the conformal scalar field we use Eq.~6!
and obtain

^Tm
m~x!&65

1

~2p!3

1

8!
~r 1R31r 2RRmn

2 1r 3RRmnab
2

1other structures! ~28!

with r 157/225 and r 352r 2514/15. Since these coeffi
cients must correspond to the sum of the type A and
anomalies only, one finds with simple linear algebra
y

ys

ys
,

hu
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^Ta
a&5

1

~2p!3

1

8!S 2
5

72
E62

28

3
I 11

5

3
I 212I 3D . ~29!

The general formulas relating the various coefficients are

c15
4

3
~168a14r 219r 3!

c25
1

3
~2408a1300r 1116r 2219r 3! ~30!

c352
5

3
~24a215r 12r 2!.

Before closing, it is amusing to note that on the thr
sphereS3 @i.e. on the group manifold ofSU(2)# the higher
order corrections in Eq.~16! vanish. In fact, the transition
amplitude onS3 is known exactly@18#. From our path inte-
gral perspective this amplitude is saturated by the two lo
correction given in Eq.~16!.

We have discussed a simplified method for comput
trace anomalies ind<6. Apart from some amusing path in
tegral computations on maximally symmetric spaces,
main results are Eqs.~22! and~30!. It would be interesting to
extend this method to higher dimensions. The main prob
is to analyze how trivial anomalies may affect the structu
of type B anomalies ind>8. This is at present unknown. O
the other hand, it is fortunate that most recent applicatio
such as the search for aC-theorem in higher dimensions
concern mostly the type A anomalies.
m
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