PHYSICAL REVIEW D, VOLUME 64, 047501

Naked singularities in higher dimensional Vaidya space-times
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We investigate the end state of the gravitational collapse of a null fluid in higher-dimensional space-times.
Both naked singularities and black holes are shown to be developing as the final outcome of the collapse. The
naked singularity spectrum in a collapsing Vaidya regiéb) gets covered with the increase in dimensions
and hence higher dimensions favor a black hole in comparison to a naked singularity. The cosmic censorship
conjecture will be fully respected for a space of infinite dimension.
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[. INTRODUCTION dimensionality of space-time plays in the context of CCC.
Interestingly, it turns out that as dimension increases, the
Inspired by work in string theory and other field theories, window for naked singularity shrinks. That is, gravity seems
there has been considerable interest in recent times to fin@ get strengthened with an increase in dimensions of space.
solutions of the Einstein equation in dimensions greater thaMve shall first generalize previous space-times. The metric for
four. It is believed that the underlying space-time in the largethis purpose is already knowr2] and we shall call it the
energy limit of Planck energy may have higher dimensiondligher-dimensionalHD) Vaidya metric. It turns out that
than the usual four. At this level, all the basic forces of naturdligher dimensions seem to favor a black hole. This would be
are Supposed to unify and, hence, it would be pertinent irﬁjiscussed in Sec. 1, which will be followed by COHC'Uding
this context to consider solutions of the gravitational fieldremarks.
equation in higher dimensions. Of course this consideration
would be relevant when the usual four-dimensional manifold [l. SINGULARITIES IN HIGHER-DIMENSIONAL
picture of space-time becomes inapplicable. This would per- VAIDYA SPACE-TIMES
haps happen as we approach a singularity, whether in cos-

mology or in gravitational collapse. The metric of collapsing null fluid in the HD case[it2]

Gravitational collapse continues to occupy the center
stage in gravitational research since the formulation of the 2m(v) 2
rage In g _ _ ; — " |dv2+2dp dr+r2dQ?, (1)
singularity theoremg1] and cosmic censorship conjecture (n—1)r(=1) n

(CCQO [2]. The singularity theorems revealed that the occur-

rence of singularities is a generic property of space-times ifvherev e (—,) is the null coordinate that represents ad-

classical general relativityGR). However, these theorems vanced Eddington timer, e[0,%) is the radial coordinate,
say nothing about the detailed features of the singularitiegng

such as their visibility to an external observer as well as their
strength. On the other hand, CCC states that GR contains @)= d ¢ sir? 6;(d 63+ sir? 6,(d63+ - - - +sir? 6,_,d62))
built-in feature that precludes formation of naked singulari-

ties (see Ref[3] for reviews. The CCC remains as one of is a metric on then sphere, andi=D —2, whereD is the
the most outstanding unresolved questions in GR. Howevetotal number of dimensions. The arbitrary functiom(v)
there are many known examples in literature showing thatwhich is restricted only by the energy conditionsepre-
both naked singularities and black holes can form in gravisents the mass at advanced timeThe energy-momentum
tational collapsd4]. The central shell focusing singularity tensor can be written in the form

can be naked or covered depending upon the choice of initial
data. There is a critical branch of solutions, where a transi-

tion from naked singularity to black hole occurs. In particu- Tab=Lr'n(v)kakb 2
lar, gravitational collapse of spherical matter in the form of (n=1)r"

radiation (null fluid) described by the Vaidya metr{&] is ) o

well studied for investigating CC{5—11]. with the null vectork, satisfyingk,= — &3 andk,k®=0. We

The main aim of the paper is to examine what role thehave used the units that fix the speed of light and gravita-
tional constant via @G=c=1. Clearly, for the weak energy
condition to be satisfied, we require that(v) be non-

* Author to whom all correspondence should be directed. Emainegative, where an overdot represents a derivative with re-
address: sgghosh@hotmail.com spect tov. Thus, mass function is a non-negative increasing
"Email address: nkd@iucaa.ernet.in function ofv for imploding radiation.
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TABLE |. Variation of A, and Xy with D.

Critical val )\_1 n—1\n-1 . o n
Dimensions D=n+2) ritical valuerc=—| == angent| Xo=-—
4 18 4
5 1/27 3
6 27/2048 2 6667
/ 256/5000 25
A. Self-similar case The motion near singularity is characterized by the roots of

The physical situation here is that of a radial influx of null 2" @lgebraic equation that we derive next. Equat®nupon
fluid in an initially empty region of the higher-dimensional USing EGs(3), turns out to be
Minkowskian space-time. The first shell arrivesrat0 at dr 1
time v=0 and the final abb=T. A central singularity of — = Z[1-aX(D)y, (9)
growing mass is developed at=0. For v<0 we have dv 2
m(v) =0, i.e., higher-dimensional Minkowskian space-time, . . . .
an((lj))for ~T g —0. m(v) is positive definite 'IF')he met- whereX=v/r is the tangent to a possible outgoing geodesic.
ic f U—O t (E)T_' ,Hév\)/ 'dp df >T. h The central shell focusing singularity is at least locally naked
fictorv=vtov=11S /aidya, and forv=> 1 We Nave 4 41 (for previty we have addressed it as naked throughout
the HD Schwarzschild solution. In order to get an analytlcal,[his apey, if and only if there existy (00, which sat-
solution for our HD case, we choose Papex, y 0 Y

isfies
0, v<0,
(n-1) . ) v , dv 2
2m(v)=94 AM(n—1)v (A>0), O=sv<=T, €©)] Xo= Ilim X= lim i lim E:W

my(>0), b>T. r—00—0 r—0v—0' r—0w—0 —AXp 10
With this choice ofm(v) the space-time is self-simil@f 3],
admitting a homothetic killing vector, which is given by the or
Lie derivative AXB—Xo+2=0. (11)

t :an=Eab+ Ebja=20an - (4)
Fab Sab T oba 2 Thus any solutiolX=X,>0 of Eq. (11) would correspond

Let K2=dx?®dk be the tangent vector to a null geodesic,to a naked singularity of the space-time, i.e., to future di-
wherek is an affine parameter. Along with null geodesics, werected null geodesics emanating from the singularity (
have =0,,=0). The smallest sucK, corresponds to the earliest
. ray emanating from the singularity and is called the Cauchy
&Ka=rK;+vK,=C ) horizon of the space-time. K, is the smallest positive root
of Eq.(11), then there are no naked singularities in the region
X<Xq. Hence in the absence of positive real roots, the cen-
= tral singularity is not nake@censoregibecause, in that case,
(6)  there are no outgoing future directed null geodesics from the
singularity. Thus, occurrence of positive real roots implies
that the strong CCC is violated, though not necessarily the
weak CCC. The global nakedness of singularity can then be
e seen by making a junction onto HD Schwarschild space-
— time.
P 2—(vir)+X(v/r)" @ We now examine the condition for occurrence of naked
singularity. With a straight forward calculation it can be
and so the geodesics are completely determined. Radial nhown that Eq(11) always admits two real positive roots for
geodesics of the metrid), by virtue ofK¥ andK', satisfy ~ x<\_, where\, is the critical value of the parametar
deciding the existence of a naked singularity or a black hole.
The values of\; and X, are summarized in Tables | and I
for the variousD.

Thus it follows that singularity will be naked K<\..
Clearly, the above differential equation has a singularity aOn the other hand, if the inequality is reversady \., no
r=0, v=0. The naturda naked singularity or a black hgle naked singularity would form and gravitational collapse
of the collapsing solutions can be characterized by the exiswvould result in a black hole. Note thXg is bounded below
tence of radial null geodesics coming out of the singularity.by the value 2Xy,—2 as\—0 or D—oo,

and writingK=P/r as in Ref[8], we obtain

KrZ{l 2m(v)

~(n—pyr-njar

In Eq. (5), because of Eg¢3), K¥ andK', yields

dr_l

dv 2

2m(v)

C(n—pr-b]’ ®
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TABLE Il. Values of X, for N<\;. KP 2
I|m—2= n-1)’ (15)
Dimensions(D) A<\ Two tangents Xo) k—or 1+(n—2)AXy
5 0.035 2.65512, 3.497 81
6 0.013 2.547 64, 2.806 51 , AnX§—2
7 0.0051 2.452 46, 2.551 46 limk=y= ———>0. (16)
k-0 [1+(n—2)AX{" P2

It is interesting to note thax, decreases significantly as 1hUs along the radial null geodesics, a strong curvature con-
we increase the value @. Thus the spectrum of the naked dition is satisfied and hence it is a strong curvature singular-
singularity gets covered with the introduction of extra di- Ity.
mensiongsee Table)l The two roots in Table Il indicate the

naked singularity window in the slope of the tangent to geo- B. Non-self-similar case
desics emanating from the singularity, which pinches with an | the previous section we showed the occurrence of
increase in dimension. strong curvature naked singularities for the self-similar HD

The degree of inhomogeneity of collapse is definedias vajdya space-times. Self-similarity is a strong geometric
=1/\ (see Ref[10]). Thus, the inhomogeneity factor in- condition on space-time. It may be argued that naked singu-
creases witlD. From the physical point of view, an increase |arity could be an artifact of the self-similarity. It is therefore
in inhomogeneity should favor naked singularity and hencgmportant to investigate the non-self-similar case as well. It
should increase the spectrum. On the other hand, an increaggs peen shown that in 4D naked singularity does occur for
in dimensions also strengthens gravity, which would go ag,gn-self-similar space-timd8,7,8). In this section we wish

2-D : : i SPALETITIR . )
r?=P), as the collapse approaches the singularityO.  tq study a similar situation in HD Vaidya space-times.
Among these two trends, the latter seems ultimately to have Here we examine the mass function given by

the upper hand, which results in shrinking of the naked sin-
gularity window for initial data. 2m(v)=(n—1)B0 Dy~ [1-24p8v(« V], (17

Strength of the singularity a>1 andp are constants. This breaks the basic requirement
for self-similarity [13]. This class of solutions for 4D space-
time have been discussed in R¢f59]. As mentioned above,
qhe null radiation shells start imploding @at=0 and the final
shell arrives av =T. The weak energy condition would re-

The strength of singularity, which is the measure of its
destructive capacity, is the most important feature. Followin
Clark and Krdak [15], we consider the null geodesics af-
finely parametrized bk and terminating at shell focusing

singularityr =v=k=0. Then it would be a strong curvature quire
singularity as defined by Tipldi6] if n—1
Tl ————— 18
lim k2= lim k2R, K2KP>0, (12) 28(na—1) (18)

k—0 k—0
It is clear thatv=0, m(v)=0, i.e., we shall have a HD
where R, is the Ricci tensor. It is widely believed that a Minkowskian and foro =T, dm/dv =0, andm(v)=my(T)
space-time does not admit analytic extension through a sin>0 HD Schwarzschild. The radial null geodesics for the
gularity, if it is a strong curvature singularity in the above mass functior{17) can be obtained from E@8) and is given

sense. by r=pBv®. This integral curve meets the singularity with a
Equation(12), with the help of Eqs(2) and(3), and the tangent ar =0, indicating the occurrence of naked singular-
expression foK, can be expressed as ity. The singularity is also globally naked ds/dv >0, with

v increasing. It is straightforward to see that—(1)r("~%

>2m(T) is satisfied along this curve. We finally come to the
(13 question of the strength of the singularity. It is seen that

singularities are strong curvature onlynif{v)~v ™% in the
proach to singularity.

2

o, _ _,| kP
limkey=limna X" —
k—0 k—0 r

Our purpose here is to investigate the above condition alonfP
future directed null geodesics coming out of the singularity.
First, we note that [1l. CONCLUDING REMARKS

In the absence of a rigorous formulation as well as proof
1o X P_C for either version of CCC iderations of vari
L TR = SKI= (2= XX — = = (14) or either version o , considerations of various ex-
r 2r2 2 amples showing occurrence of naked singularities remains
the only tool to study this important problem. In this context,
Using the fact that as singularity is approach&d:0, r one question that could naturally arise is, what happens in
—0, andX—a_ [a root of Eq.(11)] and using LU'Hpital's  higher dimensions that are currently being considered in
rule, we observe view of their relevance for string theory and other field theo-
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ries? Would the examples of naked singularity in 4D go ovembtained here would also be relevant and valid for effective
to HD or not? Our investigation shows that qualitatively thesupergravity theories. It may also be noted that the higher
situation remains similar with monotonic shrinkage of a na-curvature terms in the string theory become important only
ked singularity window with increase in dimensions. In-in the close vicinity of naked singularity when curvatures
crease in dimensions favors a black hole. become divergingly high. That is when singularity is strong
Our main aim was to study the effect of the increase incurvature singularity. That means our analysis of gravita-
dimension of the space on the collapse.[Ascreases, two tional collapse would be relevant and meaningful for the
opposing effects set in; one is an increase in inhomogeneitgffective supergravity theories following from the string
and the other a strengthening of the gravitational field. Theheory. The Vaidya metric in the 4D case has been exten-
former would favor naked singularity while the latter a black sively used to study the formation of naked singularity in
hole. It turns out that in the final analysis, it is the latter thatspherical gravitational collapse. In this paper, we have gen-
has an upper hand and leads to the shrinkage of the nakedalized previous studies to the case of HD Vaidya space-
singularity window. We have employed the Vaidya null ra- times. We have shown that results of gravitational collapse,
diation collapse scenario to study this effect. obtained in 4D Vaidya space-time, also go over to HD
The motivation for higher dimensions clearly comes fromVaidya space-times and essentially retain their physical be-
the string theory in which the effective action involves the havior, i.e., strong curvature naked singularity.
dilaton scalar field or antisymmetric tensor field. The dilaton
field couples nqu_mlr)lmally to the Ricci curvature. It would, ACKNOWLEDGMENTS
however, be trivial in our case, as the scalar curvafre
vanishes for the Vaidya solution. The case for the antisym- S.G.G. would like to thank IUCAA, Pune for the hospi-
metric tensor field would be similar as well. Thus, the resultgality and UGC, Pune for MRP F. No. 23-118/2000RO).
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