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Naked singularities in higher dimensional Vaidya space-times
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We investigate the end state of the gravitational collapse of a null fluid in higher-dimensional space-times.
Both naked singularities and black holes are shown to be developing as the final outcome of the collapse. The
naked singularity spectrum in a collapsing Vaidya region~4D! gets covered with the increase in dimensions
and hence higher dimensions favor a black hole in comparison to a naked singularity. The cosmic censorship
conjecture will be fully respected for a space of infinite dimension.
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I. INTRODUCTION

Inspired by work in string theory and other field theorie
there has been considerable interest in recent times to
solutions of the Einstein equation in dimensions greater t
four. It is believed that the underlying space-time in the la
energy limit of Planck energy may have higher dimensio
than the usual four. At this level, all the basic forces of nat
are supposed to unify and, hence, it would be pertinen
this context to consider solutions of the gravitational fie
equation in higher dimensions. Of course this considera
would be relevant when the usual four-dimensional manif
picture of space-time becomes inapplicable. This would p
haps happen as we approach a singularity, whether in
mology or in gravitational collapse.

Gravitational collapse continues to occupy the cen
stage in gravitational research since the formulation of
singularity theorems@1# and cosmic censorship conjectu
~CCC! @2#. The singularity theorems revealed that the occ
rence of singularities is a generic property of space-time
classical general relativity~GR!. However, these theorem
say nothing about the detailed features of the singulari
such as their visibility to an external observer as well as th
strength. On the other hand, CCC states that GR contai
built-in feature that precludes formation of naked singula
ties ~see Ref.@3# for reviews!. The CCC remains as one o
the most outstanding unresolved questions in GR. Howe
there are many known examples in literature showing t
both naked singularities and black holes can form in gra
tational collapse@4#. The central shell focusing singularit
can be naked or covered depending upon the choice of in
data. There is a critical branch of solutions, where a tra
tion from naked singularity to black hole occurs. In partic
lar, gravitational collapse of spherical matter in the form
radiation ~null fluid! described by the Vaidya metric@5# is
well studied for investigating CCC@6–11#.

The main aim of the paper is to examine what role
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dimensionality of space-time plays in the context of CC
Interestingly, it turns out that as dimension increases,
window for naked singularity shrinks. That is, gravity seem
to get strengthened with an increase in dimensions of sp
We shall first generalize previous space-times. The metric
this purpose is already known@12# and we shall call it the
higher-dimensional~HD! Vaidya metric. It turns out that
higher dimensions seem to favor a black hole. This would
discussed in Sec. II, which will be followed by concludin
remarks.

II. SINGULARITIES IN HIGHER-DIMENSIONAL
VAIDYA SPACE-TIMES

The metric of collapsing null fluid in the HD case is@12#

ds252F12
2m~v !

~n21!r (n21)Gdv212dv dr1r 2dVn
2 , ~1!

wherevP(2`,`) is the null coordinate that represents a
vanced Eddington time,r P@0,̀ ) is the radial coordinate
and

dV25du1
2 sin2 u1~du2

21sin2 u2~du3
21•••1sin2 un21dun

2!!

is a metric on then sphere, andn5D22, whereD is the
total number of dimensions. The arbitrary functionm(v)
~which is restricted only by the energy conditions!, repre-
sents the mass at advanced timev. The energy-momentum
tensor can be written in the form

Tab5
n

~n21!r n
ṁ~v !kakb ~2!

with the null vectorka satisfyingka52da
v andkaka50. We

have used the units that fix the speed of light and grav
tional constant via 8pG5c51. Clearly, for the weak energy
condition to be satisfied, we require thatṁ(v) be non-
negative, where an overdot represents a derivative with
spect tov. Thus, mass function is a non-negative increas
function of v for imploding radiation.

il
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TABLE I. Variation of lc andX0 with D.

Dimensions (D5n12)
Critical valuelc5

1

n S n21

2n D n21

TangentS X05
2n

n21D
4 1/8 4
5 1/27 3
6 27/2048 2.6667
7 256/5000 2.5
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A. Self-similar case

The physical situation here is that of a radial influx of n
fluid in an initially empty region of the higher-dimension
Minkowskian space-time. The first shell arrives atr 50 at
time v50 and the final atv5T. A central singularity of
growing mass is developed atr 50. For v,0 we have
m(v)50, i.e., higher-dimensional Minkowskian space-tim
and forv.T, ṁ(v)50, m(v) is positive definite. The met
ric for v50 to v5T is HD Vaidya, and forv.T we have
the HD Schwarzschild solution. In order to get an analyti
solution for our HD case, we choose

2m~v !5H 0, v,0,

l~n21!v (n21)~l.0!, 0<v<T,

m0~.0!, v.T.

~3!

With this choice ofm(v) the space-time is self-similar@13#,
admitting a homothetic killing vector, which is given by th
Lie derivative

Łjgab5ja;b1jb;a52gab . ~4!

Let Ka5dxa/dk be the tangent vector to a null geodes
wherek is an affine parameter. Along with null geodesics,
have

jaKa5rK r1vKv5C ~5!

and writingKv5P/r as in Ref.@8#, we obtain

Kr5F12
2m~v !

~n21!r (n21)G P

2r
. ~6!

In Eq. ~5!, because of Eqs.~3!, Kv andKr , yields

P5
2C

22~v/r !1l~v/r !n
~7!

and so the geodesics are completely determined. Radial
geodesics of the metric~1!, by virtue ofKv andKr , satisfy

dr

dv
5

1

2 F12
2m~v !

~n21!r (n21)G . ~8!

Clearly, the above differential equation has a singularity
r 50, v50. The nature~a naked singularity or a black hole!
of the collapsing solutions can be characterized by the e
tence of radial null geodesics coming out of the singular
04750
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The motion near singularity is characterized by the roots
an algebraic equation that we derive next. Equation~8!, upon
using Eqs.~3!, turns out to be

dr

dv
5

1

2
@12lX(n21)#, ~9!

whereX[v/r is the tangent to a possible outgoing geodes
The central shell focusing singularity is at least locally nak
@14# ~for brevity we have addressed it as naked through
this paper!, if and only if there existsX0P(0,̀ ), which sat-
isfies

X05 lim
r→0v→0

X5 lim
r→0v→0

v
r

5 lim
r→0v→0

dv
dr

5
2

12lX0
(n21)

~10!

or

lX0
n2X01250. ~11!

Thus any solutionX5X0.0 of Eq. ~11! would correspond
to a naked singularity of the space-time, i.e., to future
rected null geodesics emanating from the singularityv
50,r 50). The smallest suchX0 corresponds to the earlies
ray emanating from the singularity and is called the Cauc
horizon of the space-time. IfX0 is the smallest positive roo
of Eq. ~11!, then there are no naked singularities in the reg
X,X0. Hence in the absence of positive real roots, the c
tral singularity is not naked~censored! because, in that case
there are no outgoing future directed null geodesics from
singularity. Thus, occurrence of positive real roots impl
that the strong CCC is violated, though not necessarily
weak CCC. The global nakedness of singularity can then
seen by making a junction onto HD Schwarschild spa
time.

We now examine the condition for occurrence of nak
singularity. With a straight forward calculation it can b
shown that Eq.~11! always admits two real positive roots fo
l<lc , where lc is the critical value of the parameterl
deciding the existence of a naked singularity or a black ho
The values oflc andX0 are summarized in Tables I and
for the variousD.

Thus it follows that singularity will be naked ifl<lc .
On the other hand, if the inequality is reversed,l.lc , no
naked singularity would form and gravitational collap
would result in a black hole. Note thatX0 is bounded below
by the value 2,X0→2 asl→0 or D→`.
1-2
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It is interesting to note thatlc decreases significantly a
we increase the value ofD. Thus the spectrum of the nake
singularity gets covered with the introduction of extra d
mensions~see Table I!. The two roots in Table II indicate the
naked singularity window in the slope of the tangent to g
desics emanating from the singularity, which pinches with
increase in dimension.

The degree of inhomogeneity of collapse is defined am
[1/l ~see Ref.@10#!. Thus, the inhomogeneity factor in
creases withD. From the physical point of view, an increas
in inhomogeneity should favor naked singularity and hen
should increase the spectrum. On the other hand, an incr
in dimensions also strengthens gravity, which would go
r (22D), as the collapse approaches the singularityr 50.
Among these two trends, the latter seems ultimately to h
the upper hand, which results in shrinking of the naked s
gularity window for initial data.

Strength of the singularity

The strength of singularity, which is the measure of
destructive capacity, is the most important feature. Follow
Clark and Królak @15#, we consider the null geodesics a
finely parametrized byk and terminating at shell focusin
singularityr 5v5k50. Then it would be a strong curvatur
singularity as defined by Tipler@16# if

lim
k→0

k2c5 lim
k→0

k2RabK
aKb.0, ~12!

where Rab is the Ricci tensor. It is widely believed that
space-time does not admit analytic extension through a
gularity, if it is a strong curvature singularity in the abov
sense.

Equation~12!, with the help of Eqs.~2! and ~3!, and the
expression forKv, can be expressed as

lim
k→0

k2c5 lim
k→0

nlXn22FkP

r 2 G 2

. ~13!

Our purpose here is to investigate the above condition al
future directed null geodesics coming out of the singular
First, we note that

dX

dk
5

1

r
Kv2

X

r
Kr5~22X1lXn!

P

2r 2
5

C

r 2
. ~14!

Using the fact that as singularity is approached,k→0, r
→0, andX→a1 @a root of Eq.~11!# and using L’Hôpital’s
rule, we observe

TABLE II. Values of X0 for l,lc .

Dimensions~D! l,lc Two tangents (X0)

4 0.11 2.970 86, 6.120 05
5 0.035 2.655 12, 3.497 81
6 0.013 2.547 64, 2.806 51
7 0.0051 2.452 46, 2.551 46
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lim
k→0

kP

r 2
5

2

11~n22!lX0
(n21)

, ~15!

and hence Eq.~13! gives

lim
k→0

k2c5
4nlX0

(n22)

@11~n22!lX0
(n21)#2

.0. ~16!

Thus along the radial null geodesics, a strong curvature c
dition is satisfied and hence it is a strong curvature singu
ity.

B. Non-self-similar case

In the previous section we showed the occurrence
strong curvature naked singularities for the self-similar H
Vaidya space-times. Self-similarity is a strong geomet
condition on space-time. It may be argued that naked sin
larity could be an artifact of the self-similarity. It is therefor
important to investigate the non-self-similar case as well
has been shown that in 4D naked singularity does occur
non-self-similar space-times@3,7,8#. In this section we wish
to study a similar situation in HD Vaidya space-times.

Here we examine the mass function given by

2m~v !5~n21!b (n21)va(n21)@122abv (a21)#, ~17!

a.1 andb are constants. This breaks the basic requirem
for self-similarity @13#. This class of solutions for 4D space
time have been discussed in Refs.@7,9#. As mentioned above
the null radiation shells start imploding atv50 and the final
shell arrives atv5T. The weak energy condition would re
quire

Ta21,
n21

2b~na21!
. ~18!

It is clear thatv50, m(v)50, i.e., we shall have a HD
Minkowskian and forv5T, dm/dv50, andm(v)5m0(T)
.0 HD Schwarzschild. The radial null geodesics for t
mass function~17! can be obtained from Eq.~8! and is given
by r 5bva. This integral curve meets the singularity with
tangent atr 50, indicating the occurrence of naked singula
ity. The singularity is also globally naked asdr/dv.0, with
v increasing. It is straightforward to see that (n21)r (n21)

.2m(T) is satisfied along this curve. We finally come to th
question of the strength of the singularity. It is seen th
singularities are strong curvature only ifm(v);v (n21) in the
approach to singularity.

III. CONCLUDING REMARKS

In the absence of a rigorous formulation as well as pr
for either version of CCC, considerations of various e
amples showing occurrence of naked singularities rema
the only tool to study this important problem. In this conte
one question that could naturally arise is, what happen
higher dimensions that are currently being considered
view of their relevance for string theory and other field the
1-3
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BRIEF REPORTS PHYSICAL REVIEW D 64 047501
ries? Would the examples of naked singularity in 4D go o
to HD or not? Our investigation shows that qualitatively t
situation remains similar with monotonic shrinkage of a n
ked singularity window with increase in dimensions. I
crease in dimensions favors a black hole.

Our main aim was to study the effect of the increase
dimension of the space on the collapse. AsD increases, two
opposing effects set in; one is an increase in inhomogen
and the other a strengthening of the gravitational field. T
former would favor naked singularity while the latter a bla
hole. It turns out that in the final analysis, it is the latter th
has an upper hand and leads to the shrinkage of the n
singularity window. We have employed the Vaidya null r
diation collapse scenario to study this effect.

The motivation for higher dimensions clearly comes fro
the string theory in which the effective action involves t
dilaton scalar field or antisymmetric tensor field. The dilat
field couples nonminimally to the Ricci curvature. It woul
however, be trivial in our case, as the scalar curvatureR
vanishes for the Vaidya solution. The case for the antisy
metric tensor field would be similar as well. Thus, the resu
f
d,

,

y

.
.
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obtained here would also be relevant and valid for effect
supergravity theories. It may also be noted that the hig
curvature terms in the string theory become important o
in the close vicinity of naked singularity when curvatur
become divergingly high. That is when singularity is stro
curvature singularity. That means our analysis of grav
tional collapse would be relevant and meaningful for t
effective supergravity theories following from the strin
theory. The Vaidya metric in the 4D case has been ext
sively used to study the formation of naked singularity
spherical gravitational collapse. In this paper, we have g
eralized previous studies to the case of HD Vaidya spa
times. We have shown that results of gravitational collap
obtained in 4D Vaidya space-time, also go over to H
Vaidya space-times and essentially retain their physical
havior, i.e., strong curvature naked singularity.
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