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Exact solution to the Seiberg-Witten equation of noncommutative gauge theory
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We derive an exact expression for the Seiberg-Witten map of noncommutative gauge theory. It is found by
studying the coupling of the gauge field to the Ramond-Ramond potentials in string theory. Our result also
proves the earlier conjecture by Liu.
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[. INTRODUCTION be expressed in terms of a functional integral which quan-
tizes the Poisson structud related to6'! by

A noncommutative gauge theory can be realized by con-
sidering branes in string theory with a constant Neveu-
Schwarz—Neveu-SchwarNS-NS two-form field [1]. In (79_1)11:(9_1)”+(9iAj—r?in- (1.6)
[2], it was shown that there are two equivalent descriptions
of the theory: one in terms of ordinary gauge fieldlson a
commutative space and another in terms of noncommutativBy perturbatively evaluating the functional integral, one can

gauge fieldsA; on a noncommutative space whose coordi-obtain the Seiberg-Witten map order by order in a formal

nates obey the commutation relation power series expansion i In [5], the Seiberg-Witten map
o ) is expressed in terms of the Kontsevich nj&p which re-
[X' x]=—ig". (1.1)  lates the star product associated with to the one associ-

i ated with' @ given by Eq.(1.6).2 There is a procedure to
The map betweeA; andA,, called the Seiberg-Witten map, compute the Kontsevich map as a formal power series ex-
is characterizeldby the differential equation with respect to pansion. The two approaches are related to each other since
0, the Kontsevich map can be expressed in terms of a func-
tional integral[ 7] which is similar to the one used [@].
- 1 A . ~ a ~ One can also try to solve E¢L.2) directly order by order
OA(0)=— 25‘9 [Aj* (dAi+Fii) + (kA + Fri) * A, in a power series expansion. The structure of the power se-
(1.2  ries is examined ii8,9]. It was shown that it involves the
so-called generalized star products, which also appear in the
with the initial condition expansion of the open Wilson line,

A(6=0)=A,. 1.3 )
dxx | el*p f Ai(x+In)lidr||, 1.
Herex is the standard star product, f 1€ exp(l 0 (x+m) T) @9
9P
f(X)*g(X)=$ILnXexr{—I9” X 7y f(x)g(y), 1.4  where
and the field strength;; is defined as I'=k; 0", (1.8

I’iij:aiAj_&in‘f‘iAi*Aj_iAj*Ai. (15)
and *[---] means that we take the standard star product
The differential equation(1.2) is known as the Seiberg- (1.4) in the expansion of the expression[in- -] in powers
Witten equation. of A;. This suggests that the Seiberg-Witten map can be
There have been several attempts to solve the Seibergxpressed in terms of the open Wilson line. Based on this
Witten equation. Ir{4], it was pointed out that the map can observation and the earlier papdés5] mentioned in the
above paragraph, it was conjectured 1] that the(inverse

of) Seiberg-Witten map is given in the momentum space by
*Email address: okawa@theory.caltech.edu

TEmail address: ooguri@theory.caltech.edu —_—
!As pointed out i3], there is a possibility to modify the equation _2_The method developed %] is also applicable to the case when
by performing field redefinition and gauge transformation. 0" is not constant.
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» coupled to the Ramond-Ramond poten@4? ). The gauge
Fij(k)EJ dx €°(g;Aj(X) — 9;A(X)) invariance(a) is manifest if we use the point-splitting regu-
larization on the string worldsheet, and the Bianchi identity

, _ 1 . (b) is the consequence of the gauge invariance of the
=f dx*{e'kx\/de(l—fa)(l—faf) Ramond—RamondqpotentiaI, o
! CP-D_clP-D e, (1.16
1
><Pexp(if Ai(X+|T)|'dT)], (1.9  wheree is an arbitrary p—2) form in the bulk. From the
0 resulting expression foF;;, it is straightforward to verify
that the initial condition(c) is satisfied. The fact that the
initial condition is satisfied is presumably related to the to-
1 pological nature of the Ramond-Ramond coupling and the
j ﬁij(x+|q-)dq-_ (1.10  lack of @' corrections to it
0 When the noncommutative space is1 2limensional,
namely, when the rank of is 2n, the Seiberg-Witten mép
we find from the Ramond-Ramond current is

where

:f\ijz

Here we are using the same symboto denote both the
commutative(in the first lin@ and the noncommutative co-
ordinateqin the second ling The path-ordering with respect 1
to r is implicit in this expression and throughout the rest of  Fij(K) + 6;; *8(k) = WJ dx*
the paper. It is clear that E(L.9) obeys the initial condition
(1.3). To the quadratic order in the power series expansion in (1. ,
6, it was also checked ifil0] that Eq.(1.9) satisfies the XPGXF(IJ Ai(X+|T)|'dT>
Seiberg-Witten equation. 0

In this paper, we derive an exact expression for the 1.19
Seiberg-Witten map. We will discuss the case where th
gauge group i&J(1). Solving the Seiberg-Witten equation is
equivalent to finding a two-fornfk;; = Fij(Ai ;) which

(a) is gauge invariant, f dxt. .. dx2n

e [ S0

(27T)2n

e (o—oto) "

l:f—|ere the integraldx is over the space coordinates on the
brane and is normalized as

R o . , (1.18
(b) obeys the Bianchi identity for the ordinary gauge the two-form @—676)}™" in the integrand is defined as

theory:
y 1

_pfp e -
(9iij+(9iji+r7kFij=0, (112) (0 0f0)|J - 2n71(n_1)!6'1'1'2""2n—2

(c) satisfies the initial condition, 1 R o
XJ d7(0— OF(x+17p)0)'1'2. ..
0

F”(A|,0:0):(9|AJ_(9]A| (113)
1 R . )
Modulo freedom of field redefinition and gauge transforma- XJ dr,_1(6— OF (X+17,_1)6f)'2n-3'2n-2,
tion, the conditionga) and(b) are equivalent to the Seiberg- 0
Witten equation since the Bianchi identitly) means thak;; (1.19

can be expressed &5;=0;A;—d;A; for someA; and the o )
gauge invariancéa) guarantees that, under the noncommu-and the Pfaffian is normalized as
tative gauge transformation,

e e Pi(0)= or—e€i....i, 012 gln-tlan, (1.20
A=A +aN+iA*R—iR*A, (1.14 2"t e

A; transforms as an ordinary gauge field,

3This result is in contrast with the case of the energy-momentum
tensor studied in our earlier pagdrl]. There it was shown that the
) ~ ~ energy-momentum tensor of the noncommutative theory derived
for some\ which depends on andA;. These are exactly rom the coupling to the bulk graviton does not reduce to the one in
the conditions from which the Seiberg-Witten equation wasne ordinary gauge theory in the limft—0.
derived([2]. The importance of the conditiaft) in this con- 41t is known that a solution to the Seiberg-Witten equation is not
text was stressed if9]. unique. For example, there is the field redefinition ambiguity we

If we realize the noncommutative gauge theory Onmentioned in the above. It would be interesting to find out if this

p-branes in string theory, the two-fork; obeying the three solution, which naturally comes from the string theory computation,
conditions(a)—(c) can be found by identifying the current has a special status among all possible solutions.

Ai—>Ai+(?i)\, (115)

046009-2



EXACT SOLUTION TO THE SEIBERG-WITTEN . .. PHYSICAL REVIEW 4 046009

Note that the right-hand side of E(L.17) depends only on A. Bianchi identity

Ai(x), 67 and k. In particular, the combination & In order to prove the Bianchi identity, it is useful to intro-
— of e)ﬂ‘lle(e) does not depend on the normalization of duce the following currents of ranks2

the e-symbol.

In order to make the logical structure of this paper trans- I is(k) = 1 f dx
parent, we will first prove that Eq1.17) satisfies the three " Pf(6)
conditions(a)—(c) independently of the string theory origin
of the formula. In particular, the proof holds for anyeven
though the string theory computation only works fo4.
After the proof is completed, we will explain how the solu- .
tion is found from the string theory computation of the - a1
Ramond-Ramond coupling. XfodT“(a OF (x-+1my) 6)'ze-112d

It turns out that the mafl.17) can be re-expressed in the
form (1.9). Thus we have also proven the conjecturg1if]. % P ex;{ | flAi(xHr)I‘dr)
Since we now have the exact expression for the Seiberg- 0
Witten map, it may also be possible to find an expression for
the Kontsevich map in the case of EG.6). Here the indices$,, . . . ,ios are totally antisymmetrized with

This paper is organized as follows. In Sec. I, we provea factor of 1/(3)! for each term. For noncommutative gauge
that Eq. (1.17) satisfies the three condition®—(c) and theory in 2n dimensions, the Seiberg-Witten méh17) can
therefore gives the Seiberg-Witten map. We also show that ibe written as
is equivalent to Eq(1.9) conjectured if10]. In Sec. Ill, we
discuss its relation to the coupling of the noncommutative

*

(1 R -
e'kao dri(6— OF (x+ 1) Olivi2. ..

. (2.1

gauge field to the Ramond-Ramond potentials in string Fij(k)+ 0515(‘(): o 2" 1(n—1)! €iji - +ign_2
theory? In Sec. IV, we discuss applications and extensions of '
our result. X Ji1rian-2(k). (2.2

After the first version of this paper appeared, we received
two paperq 12,13, whose contents overlap with Sec. Il of Therefore, to prove that the left-hand side of E2}2) obeys
this paper. the Bianchi identity, it is sufficient to show that these cur-

rents are conserved,
Il. PROOF o
kilJ'l""ZS(k)zo. (2.3

In this section, we will prove that Eq1.17) obeys the
three conditions(a)—(c) for the Seiberg-Witten map. The The conservation law can be proven by performing inte-
gauge invariancéa) is manifest because of the use of the gration by parts in ther-integrals in Eq.(2.1). Before de-
open Wilson lind 14—-16. We will show that it also satisfies scribing a proof for genera it would be instructive to show
the Bianchi identity(b) and the initial condition(c). how it works fors=1 ands=2. Whens=1,

kiJ dxx
:f dX*

:|0“’f dXO"J'/*

) 1 . - 1, '
e'kXJ dr’(H—0F(x+|r’)t9)”Pexp(iJ’ Ai(x+lr)l'd7”
0 0

. 1 ) R . 1, .
e'ka’O dT’(ll—aleiirll )P eX[{ifo Ai(X+|’T)|IdT>

. 1, )
e'p exp( ij Ai(x+lr)l'd7->
0

=0. (2.9

Here we decomposed the factor in the second line as follows:
=gl E 1 =il ik +iop Al + 611 DA (2.5

and used the identity that

SIn the course of this work, we were informed of a work in progress by S. Das and N.V. Suryanarayana on some aspect of the
Ramond-Ramond currents.
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J dx*

which was shown inB.4) in [11].
To prove the current conservation fe+ 2, we use the following identity:

J dx*

=0, (2.6

) 1 o, ~ 1, .
e'kXJ dr'l Di,Aj,(x+IT’)Pex;<if Ai(x+lr)l'd7)
0 0

eikledT|i(|§__(x+|7)_‘9fl)fld7' O(x+11,) Pex iJlA-(X+I7')|idT
o 1 ij 1 ij 0 2 2 0 i

1 1, _
:—if dx* e'kxf dT'Dj(’)(x+I7-’)Pex;(if Ai(x+lr)l'd7-) . 2.7
0 0
The conservation law fos=2,
. 1 N (1 n 1, .
kif dx* e'ka dr(6— 0F(x+|71)9)'[1f dry(6— 0F(x+|rz)6’)k*']Pexp<if Ai(x+I7)I'dT) =0, (2.8
0 0 0
follows from this by settingD=F,,— 6,,* and using the Bianchi identity
Dj'ek|+Dk|E|j+D||Ejk:0 (29)
for F. What remains is to show E¢2.7). This follows from the following two identities. The first one is
) 1 A 1 1, )
f dxx e'kxf drll'DiAj(x+Irl)f dTZO(erIrz)Pexp(if Ai(x+lr)l'dr>
0 0 0
. 1 “ 1, )
=fdx* e'kxf dr’[Aj,O](x+Ir’)Pexp(if Ai(x+lr)l'dr) , (2.10
0 0
which can be derived fronB.5) in [11]. The second one is
ol o 1 1. _
f dxx e'kxf drl{—kj—l'&in(x+lrl)}f dTZO(X-HTQ)PeX[{iJ' Ai(x+|7')|'d7')
0 0 0
o 1, _
=—if dxx e'kxf dr’&#’)(xﬂr’)Pex;{iJ Ai(x+lr)l'd7-) , (2.11
0 0
where we performed integration by parts An By combining Eqs(2.10 and(2.11) using

we obtain the identity(2.7).

To give a proof of the conservation lai@.3) for generals, it is most convenient to use the matrix theory langujdge-19.
The noncommutative gauge theory with a commutative time coordinatel 2n noncommutative space coordinates(i
=1,...,2) can be constructed from matrix theory by setting the matrix varia¥ldés the form

X'=x+ 61 A;(x), (2.13
wherex' obeys the commutation relation,
[X,x]=—i6". (2.14

Formulas in noncommutative gauge theory can then be expressed in the matrix theory language according td2@ije map

[X,XI]=—i(81—6""F; 61'), (2.15

) 1, :
e p exp( if Ai(x+lr)l')
0
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1
tr(...)_%f dx*[...]'

with I'—k 6. For a more precise description of the map between gauge invariant operators of matrix theory and the
noncommutatlve gauge theory, §e4].6

Following the rule(2.15, we can express the current.l) in noncommutative gauge theory using the matrix theory
variables as

J(k)=tr(e'),

Ji(k)=itr([X,x11e'*%),

y iZ (1 oo . P21 . . o
J'Jlm(k)z Ef thr([X',Xj]e'TkX[X',Xm]e'(l_T)kX)+ §J thr([Xl,Xl]elTkX[Xm,XJ]el(l_T)kx)
0 0

P2

1< (1 . . ) .
+§j thr([X',Xm]e'T"x[Xl,X']e'(l_T)kX),
0

i"(n—1)!

Jivin(k) = (2] fdrlf drp- - f 2dTn_ltr([Xil,Xi2]eileX[Xi3,Xi4]

x @ (127 TIKX. T XT2n-1, Xi2n]e! (2= 7n-0KX) 4 ([ (2n)! — 1] more terms to antisymmetrize the indixes
(2.19

This facilitates our proof of the conservation law:
ki, J't""125(k) =0. (2.17

In order to prove the conservation law in the matrix theory language, we will make use of the cyclicity of the trace,
tr(AB)=tr(BA). A care is needed here since this does not necessarily hold for infinite dimensional matrices. For example, in
the backgroun&'=x" which gives rise to a noncommutative gauge theory from matrix theory, we have

[X,xI]=—i6". (2.18

Therefore trg'x)) =tr(x)x') is obviously untrue here. Fortunately, the conservation law can be proven under the weaker
assumption about the cyclicity of the trace as

tr([X', X11O)=tr(O[ X', X]]), tr(e**O)=tr(Oe*¥), (2.19

for any O generated by any number of commutatox$, X/ ] and exponentials’ X with a possibility of a single insertion of

X!. This holds forX' considered in this papeiX'=x'+ 6A;(x) and we are allowed to perform integration by partsign]
As a warmup, let us repeat the proof fe=1 ands=2 using the matrix theory language. F&=1, we can show the
conservation for matriceX' satisfying Eq.(2.19 as follows:

ki J'U (k) =tr([ikX,X1]e**) = fldrtr(eiTkx[ikX,Xj]e‘(l’T)kX)=tr([eikX,Xi])=0. (2.20
0

Fors=2, we need to perform the integration by partsrias

6See also the formuléA6) given in the Appendix.
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) i1 . o
k1M (k)= §f drtr(el PRk X, X1 1e ™ X', X™]) + (2 more terms

0
i ! d 1(1—7)kXyr] al TKX vl

=-3 dfd—Ttr(e'( NXxiei kX X! X™])+(2 more terms

0

i o ) .

=— §tr(xJ e[ X! XM — e *XI[ X!, XM])+ (2 more terms

S %tr([[x',xm],xi]eikx)ﬂz more terms

=0. (2.2

To go from the fourth to the fifth line, we used the cyclicity of the trace. The last line follows from the Jacobi identity.

One can easily see that each step in Eg20 and (2.21) has a corresponding step in the pr@af4)—(2.12 using the
gauge theory variables. If one wishes, one can also re-express the proof for asiitréing following using the gauge theory
variables, although the use of matrix theory variables substantially simplifies the proof.

Now we are ready to prove the conservation law for arbitsahyn the original form of the current ifi2.16), the indices
i1,02, ... ,lo are totally antisymmetrized. However, we can always bring one of ihemthe first using the cyclic symmetry
of the r-integral form, while the rest of the indicesg,is, . . .i,, are still totally antisymmetrized. One of the terms appeared
in Eqg. (2.17) is then

1 1 1
_iJ dle dry- - - J dr,_gtre' = m-DkX[jk X, X2]e! kN X3, X14]e! (72~ "KX[ X1 X6]e! (73~ 2)KX. .. [ XT2n-1 Xi2n]
0 1

-2

1 1
:|f d’TlJ’ d’Tz"'
0 T

X [ X3, X14]e! (2= 7IKX[ 15 Xi6]e! (73~ 2)kX. .. [ Xi2n-1 Xi2n]

1 d d d : o
o — — .+ r |(177-n_1)kXX|2 iT kX
J'Tn_szn l(dTl de dTn—l t € €

1 1 1
— _If dTZf d7'3' . J' dTn_ltrei(l*rn,l)kXXiz[Xig,xi‘l]eiTsz[XisyxiG]ei(TgfTz)kX. . .[XiZn,l,Xin]]
0 Ty

n-2

1 1 1 L . . . - -
+if dTlf dry- - j dTn_ztrx'ze'lex[)('s,)('4]e'(72*71)kx. . .e(lf‘fn—z)[)('zn—l,)('zn]. (2.22
0 T1

-3

In the last step, we used the formula derived using the integration by parts:

1 1 1
f dTlf de"'f d’Tn_l
0 1 Th-2

1 1 1 1 1 1
:_f def dT3"'f dTn—lf(OlTZ""lTn—l)+f dTlf de"'f dTn_zf(Tl,Tz, ...,Tn_z,l),
0 ) -2 0 m Th-3
(2.23

wheref is an arbitrary function of, 75, ... ,7,_1. Using the antisymmetry in the indicés,is, . . . ,i»,, We can rewrite Eq.
(2.22 as follows:

d d
d_7_l+d_7.2+ et dTnl)f(Tl,sz e :Tn—l)

1 1 1
—if def d73.--f drn_qtr[X'2,[ X3, X14]]e' 2 X5, X6]e! (73~ 72kX. . [ Xi2n-1 Xi2n]el(2~n-DkX (2 24
0 ™ Th—2

This vanishes because of the Jacobi identity.
We have proven the conservation of the currght). Thus Eq.(2.2) satisfies the Bianchi identity.

"The following proof also resolves the question raised2d] regarding the gauge invariance of the Ramond-Ramond couplings and
extends the earlier work23] on conservation of currents in matrix theory.
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B. Initial condition

Since the condition&) and(b) are equivalent to the Seiberg-Witten equatitr?), we now have a solution to the equation,
modulo field redefinition and gauge transformation. What remains to verify is the initial cong@ijiohithough we can check
this directly by expanding the map.17) in powers of@, it is more useful to rewrite Eq1.17) in such a way that the initial
condition is manifest. In this process, we find that Blql7) is equivalent to Eq(1.9), therefore proving the conjecture[ih0].

To see the relation between Eq$.17) and(1.9), let us first show the identity

S (60— 0f ) \/detl—fe)(%“f
ij

05 Pi(o— 0t ). (2.25

1
Pf(6) 1-fo | PRO)

This can be shown by writing the two terms on the left-hand side of the equation as

1
60— 0t o —Pf(6— 0f 0 , 2.2
picay "~ 10 g )(0—0f0>” (220
and’
\/detl—fe)( ! | =——Pf(6— 9f9)( af) (2.27
1-f6 ' Pf(0) — 0t ' ’ '
and taking the difference of the two. Therefore we find
1
ikx n—1 ; A i
Pf(a)f dx*| e"*(0— 6f6) Pexr<|f0 Ai(x+17)l dT”
. = 1 . 1, )
= f dx*{e'kx Vde(l_fa)(l—%af P exp( [ f Ai(x+1 T)l'dT) ]
— N 0
ij
1 1 ikx f; A i
+6; Wf dxx| e"™Pf(6— 6f6)Pex;{|f0 Ai(x+17)l dr) . (2.28
Next we show
1 . . 1, )
—f dx*| e**Pf(9— 6F 6) P ex if A(x+Inl'd7| |= (k). (2.29
Pf(6) 0
Note that the left-hand side is the Ramond-Ramond current of the maximum mnk 2
1 ikx f; A i Pq- i
Wf dxx| e Pf(G—HfH)PeX[{IfOAi(X+|T)| dT) :ﬁeil“'iZnJl an(k). (2.30

To prove EQq.(2.29), it is simplest to use the matrix theory representati@i6. We will show the currenﬂil“'iZH(k) of the
maximum ranR is invariant under an arbitrary infinitesimal variation of the matrix variable near the backghdend with
[x',x)]=—i86", namely, it is topological. Once it is shown, we can evaluate the left-hand side ¢2.E§). at the background

X'=x" which corresponds té(x)=0 and find

%f dxx

Now let us prove that the right-hand side of Ef.30 is indeed topological. It is instructive to consider the simplest case
of n=1 first,

— 1 * ika =5(k
—Wf dx [e P(B)]—(S( ) (2.3)

e“Pf(9— 6f )P ex;{ [ flAi(xHr)lidT)
0

8We define the sign of the square ro&lﬁ—jet(l—?e), so that it agrees with that of Ri¢- of 0)/Pf(0).
%In this paper, we are setting all the scalar fields to be zero. Thus'zn(k) is the current of the maximum rank for the noncommutative
gauge theory in (8+1) dimensions.
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Str(e;[ X, x1]e¥) = eijtl’< 2[ X', XiTel*+ J dA X!, XI1e ik, oXMe! (1~ kX
0

:(Zfijikm+ikifjm)tr

5xi fldTeiTkX[XJ ,Xm]ei(l_T)kx)
0

=0. (2.32

To go from the second to the third line, we used the cyclicity of the trace. In the last line, we used the identity in two
dimensions,

2€ijéj|+6jm€jm5::0. (2.33

In general, we have
1 1 1 o _ S
€, i, f dTlf dry- - f d7n_8tr([ X', X'2]e' kX, .. [ Xi2n-1 Xi2n] e (1~ mn-1)kX)
"Jo 1 -2

=(2nk;, € ...i, T kifiliz...i2n)€i1'"iZ“foldToLlodTl' - f:]sznl(z%)!fiin-ién
Xtr(6X €l Tokx[xii'xié]ei(ro—Tl)kx. . _[Xiénfl,xién]ei(lfTn,l)kX)
=0. (2.39
In the last line, we used the identity im2limensions:
2ne .. € iangl=0. (2.3

el iy e
iy

“ion-1 2n

Thus we have proven that the right-hand side of @030 is topological. Combining Eqg2.28 and(2.31), we find

%J' dx*

—f dx*[eikxx/de(l—fe)(%m?

_ . 1, .
e*X(—ofo)j P exp( if Ai(x+IT)|'dr>
0

Pexp(ifolAi(xﬂr)ﬂdT)]=0515(k). (2.36)
ij

Therefore, the conjectured expressidn9) agrees with Eq. Ramond coupling, we can expect that the two-form is related
(1.17. This completes the proof that E¢L.17 gives an to the field strengtl;; of the commutative variable as fol-
exact Seiberg-Witten map. lows [24-27:

lll. RELATION TO THE RAMOND-RAMOND COUPLING f CP=UA(F+671). (3.1

In Sec. Il, we have proven that EqL.17) satisfies the
conditions(a)—(c). Now we would like to explain the string If that is the case, the conditioft) should also hold. This
theoretical origin of the formula. As we mentioned in the was our motivation for Eq(1.17).
Introduction, we found the expression for the Seiberg-Witten The couplings of noncommutative gauge theory to closed
map (1.17) by studying the coupling of noncommutative string states in the bulk can be derived in various different
gauge theory realized op-branes to the Ramond-Ramond ways. One approach is to evaluate disk amplitudes opa D
(p—1)-form in the bulk. The dual of the Ramond-Ramond brane with a background of NS-NS two-form field and take
currentd't " "'e=1 on the (+ 1)-dimensional world volume is  the Seiberg-Witten limit. In11], the energy-momentum ten-
a two-form. It is clear that this two-form must be invariant sor of the noncommutative theory was derived in this way.
under the noncommutative gauge transformation, and thus Alternatively, one can start with matrix theof\ll7] (i.e.,
obeys the conditiorfa). The condition(b) is satisfied since many DO branes instead of apCbrang, compute the cou-
the coupling should also be invariant under the Ramondpling of the bulk fields to the matrix variables, and evaluate
Ramond gauge transformatid®® Y—C(P~D+de. If we it in the background which gives rise to the noncommutative
assume that there is ne’ correction to the Ramond- gauge theory on a | brane[17-19. This approach was
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suggested if28] and was carried out explicitly if21] in the , 1 1 1

case of the coupling to the bulk graviton, where it was found Str(O;- - 'One'kx)ZJ dTlf demf drn_y

to give the same result as that obtained using the first ap- 0 e n-2

proach[11]. Xtr(© €KX, .. 0 e (17 m-kX)
Here we will adopt the second approach since the currents

coupled to the Ramond-Ramond potentials have already +((n—=1)!'=1] more terms to

been studied in matrix theofi29—31.1° For our purpose, it
is sufficient to have the currents coupled to the space-time
components of the Ramond-Ramond potentﬁbil...ip,

where the index 0 is for the timelike coordinate and
=1,...,9 are for thespacelike coordinates in the type IIA
string theory. The relevant couplings deduce@2@-31] are
of the form

symmetrize?;’s). (3.9

Here the symmetrized trace Str on the left-hand side is de-
fined by expanding'** in powers ofX’s and symmetrizing
them withO; - - - O,. On the other hand, the symmetrization
on the right-hand side exchang®s- - - O, only. The equiva-
lence(3.4) for n=2 has been proven in our previous paper
o [21]. A general proof for arbitrary is given in the appendix
f dt Str(Co(t,X) + Cojj (1, X)[ X', X'] of this paper. As shown ifi21], the r-integral expressions
o such as Eq(2.16 naturally arise from disk amplitudes of a
+COW(t,X)[X',XJ][Xk,X']+ ) (32 single closed string state and an arbitrary number of open
string states. In this casey, ... ,r, are identified as loca-
Here X' are matrix coordinates, and the symmetrized tracedions of the open string vertex operators on the boundary of
Str is defined by expandin@ml...ip(t,X) in powers ofX's  the worldsheet disk. Ih21], this is shown explicitly for the
and tota”y Symmetrize them together W[tb(i,xj], each of COUpIing of X's to the graViton in the bulk. We expect the
which is treated as one unit in the symmetrization. In thesituation is the same for the coupling to the Ramond-
momentum basis, the currents coupled to the RamondRamond potentials. This is the string theory origin of the
Ramond potentials can be read off from KE8.2) as formula (2.1).

J(k)=Str(e'*X),
IV. DISCUSSION
() — i vwi1aikX
P =1 Su([X, X7 1em), In this paper, we proved that E(L.17) satisfies the con-
ditions (a)—(c) for the Seiberg-Witten map. We also showed
that it is equivalent to Eq(1.9 and therefore proved the
conjecture in10].
is o _ o The exact Seiberg-Witten map can be used to understand
(25),Str([X'l,X'2]- - [Xizs-1,XI2s]e'kX) the relation between the commutative and noncommutative
' descriptions of D-branes with a strong NS-NS two-form
+([(2s)! —1] more terms to antisymmetrize field. For example, it may be possible to study the noncom-
. mutative solitong33] in the language of the commutative
the indice$. (33 yariables.
In this paper, we set all the scalar fields to be zero and
We should point out that the symmetrized traces in Eqsfocused on the Seiberg-Witten map betwedf(x) and
(3.2 and (3.3) make sense only wheK’s are trace class A (). |t is straightforward to include these in the analysis.

operators since they are defined by expan@gg. i (X) N \ye can also add commutative dimensions by starting from
powers of X's before taking the trace. IK's are infinite  many Dp branes withp>0 rather than DO branes and by
dimensional, a trace of powers &fs may not be well-  ysing the results ifi30] and[31] about the Ramond-Ramond
defined, though a trace ef** may still exist. In fact, this is coupling of these branes.
the case whelX' =x'+ #A;(x) with [x',x)]=—i 6.

On the other hand, the curren®.16 we used in Sec. I

Jivies(k) =

make sense even wheX’s are of the form Xi:Xi ACKNOWLEDGMENTS

+ 6"A;(x). Moreover, they agree with Eq3.3) when X’s

are finite dimensional. In fact, i0,- - - O, and X are trace We would like to thank John Schwarz, Mark Wise and
class operators, one can prove Edward Witten for discussions. H.O. thanks the Institute for
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APPENDIX: 7-ORDERED INTEGRAL =SYMMETRIZED TRACE

In this appendix, we will prove the equivalent®4) of the symmetrized trace and theordered tracé!
First let us perform the- integrals in Eq(3.4) explicitly. For any operator®,,0,, ... ,0On,

1 1 1 . X . .
jo dTlf d7-2. .. f dTmiltrOle' lexoze'(TZ_Tl)kX. .. Omile'(fmfl_fmfz)kxo mel(l_Tmfl)kx
71 Tm-2

e [ [ g [ gy o e
= OdT1 . dr, drj--- drf,_q1trO.e'm

0 0
X O € kX ‘Omileir;n,lkxo mei(l—fi—ré—.--—r,’n,l)kx
S o[t 1
2,2, 2, fen ) e [T ey
Xr O4(i 71k X) 210, (i 75k X)22- - - O 1 (i 7 1 kX) 210 (i(1— 7] — 7h— - - - — 7 )kX)?m
v . L | | | |
:alZZO 322:0 . azo T S ——— tr O1(1kX)210,(ikX)2- - - O, 1(ikX)2m-10,(ik X)@m
© 1 N nN=pg N=p1—p2 N=p1=P2= " ~Pm-2
TR D o e e g, TOikon
X Op(1kX)P2. - - Op_1(ikX)Pm-10,(ik X)"~P1~ P2~ Pm-1, (A1)

Here we changed the integration variables in the first step as

r__ r__ ! —
TI=T1, Tp=T2~ 71, ° Tpme1=Tm—1" Tm-2. (A2)

and used the following formula in performing thé integrals:

[Cant [ ar [T e a1y
f;?;i I;(Z‘;l " .' rii’:]_ll)fg ) for ay,ay, ... am_1,8>0. (A3)
On the other hand, since
St (ikX)"010,- - - O]
1 N N-ppn-p;—p;  N—=P1—Pr— P2
= rmoDt plzo pZZZO ngZO e pgio NI trO5(ikX)PLO,(ikX)P2- - - O 1 (ik X)Pm-1
X Op(ikX)"7P17P27"Pm-14 ([ (m—1)! — 1] more terms to symmetrize if,,05, ... ,0n), (A4)
where Str is the symmetrized trace with respecKi@,, . ..,0,,, we can write

st{e**0,0,- -0 =Zis ikX)"0,0,---O
tfe 10, ml 2 t (iIkX)"0,0, ml

1 1 1 . . ) )
— fo dTlf de. . f dTm_ltl’Ole' leXOzel(Tz_Tl)kX‘ . Om_lel(rm,l—Tm,z)kXO mel(l—rm,l)kX
71 Tm-2

+((m—1)!—1] more terms to symmetrize (A5)

MWwe assume that the symmetrized trace is well-defined. This means that, if we define the symmetrized trace in terms of a power series
expansion inX’s, X must be trace class operators.
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Here we made use of the cyclicity of the trace. Therefore, we have shown the equivalence of the two expg@Ssiand
(2.16. Furthermore, we can show that

1 1 1 1 1 1 . .
exp(if d7kX f drlol-.-f dTmom}zf drlf d72-~-f A7 1trO 1€/ KX el (T2 kX
0 0 0 ™

0 Tm—2

tr

X Oy 1€/ m-17Tm-2KX() @l (1= 7 1)kX
+((m—1)! — 1] more terms to symmetriye
=St e**0,0,- - - O], A6)

where the operators areordered in the first line. This formula is the generalizatio2y in [21] to the case where more than
two operators are inserted and useful when we transform the cufeént '2n (2.16) to the form(2.1) used in the noncom-
mutative gauge theory.
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