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Exact solution to the Seiberg-Witten equation of noncommutative gauge theory
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We derive an exact expression for the Seiberg-Witten map of noncommutative gauge theory. It is found by
studying the coupling of the gauge field to the Ramond-Ramond potentials in string theory. Our result also
proves the earlier conjecture by Liu.
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I. INTRODUCTION

A noncommutative gauge theory can be realized by c
sidering branes in string theory with a constant Nev
Schwarz–Neveu-Schwarz~NS-NS! two-form field @1#. In
@2#, it was shown that there are two equivalent descriptio
of the theory: one in terms of ordinary gauge fieldsAi on a
commutative space and another in terms of noncommuta
gauge fieldsÂi on a noncommutative space whose coor
nates obey the commutation relation

@xi ,xj #52 iu i j . ~1.1!

The map betweenAi andÂi , called the Seiberg-Witten map
is characterized1 by the differential equation with respect t
u,

dÂi~u!52
1

4
du jk@Âj* ~]kÂi1F̂ki!1~]kÂi1F̂ki!* Âi #,

~1.2!

with the initial condition

Âi~u50!5Ai . ~1.3!

Here* is the standard star product,

f ~x!* g~x!5 lim
y→x

expF2 iu i j
]2

]xi]yj G f ~x!g~y!, ~1.4!

and the field strengthF̂ i j is defined as

F̂ i j 5] i Â j2] j Âi1 iÂ i* Âj2 iÂ j* Âi . ~1.5!

The differential equation~1.2! is known as the Seiberg
Witten equation.

There have been several attempts to solve the Seib
Witten equation. In@4#, it was pointed out that the map ca

*Email address: okawa@theory.caltech.edu
†Email address: ooguri@theory.caltech.edu
1As pointed out in@3#, there is a possibility to modify the equatio

by performing field redefinition and gauge transformation.
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be expressed in terms of a functional integral which qu
tizes the Poisson structureũ i j related tou i j by

~ ũ21! i j 5~u21! i j 1] iAj2] jAi . ~1.6!

By perturbatively evaluating the functional integral, one c
obtain the Seiberg-Witten map order by order in a form
power series expansion inu. In @5#, the Seiberg-Witten map
is expressed in terms of the Kontsevich map@6# which re-
lates the star product associated withu i j to the one associ-
ated with ũ i j given by Eq.~1.6!.2 There is a procedure to
compute the Kontsevich map as a formal power series
pansion. The two approaches are related to each other s
the Kontsevich map can be expressed in terms of a fu
tional integral@7# which is similar to the one used in@4#.

One can also try to solve Eq.~1.2! directly order by order
in a power series expansion. The structure of the power
ries is examined in@8,9#. It was shown that it involves the
so-called generalized star products, which also appear in
expansion of the open Wilson line,

E dx* FeikxP expS i E
0

1

Âi~x1 l t!l idt D G , ~1.7!

where

l i5kju
j i , ~1.8!

and * @•••# means that we take the standard star prod
~1.4! in the expansion of the expression in@•••# in powers
of Âi . This suggests that the Seiberg-Witten map can
expressed in terms of the open Wilson line. Based on
observation and the earlier papers@4,5# mentioned in the
above paragraph, it was conjectured in@10# that the~inverse
of! Seiberg-Witten map is given in the momentum space

2The method developed in@5# is also applicable to the case whe
u i j is not constant.
©2001 The American Physical Society09-1
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Fi j ~k![E dx eikx
„] iAj~x!2] jAi~x!…

5E dx* FeikxAdet~12 f̂ u!S 1

12 f̂ u
f̂ D

i j

3P expS i E
0

1

Âi~x1 l t!l idt D G , ~1.9!

where

f̂ i j 5E
0

1

F̂ i j ~x1 l t!dt. ~1.10!

Here we are using the same symbolx to denote both the
commutative~in the first line! and the noncommutative co
ordinates~in the second line!. The path-ordering with respec
to t is implicit in this expression and throughout the rest
the paper. It is clear that Eq.~1.9! obeys the initial condition
~1.3!. To the quadratic order in the power series expansio
u, it was also checked in@10# that Eq. ~1.9! satisfies the
Seiberg-Witten equation.

In this paper, we derive an exact expression for
Seiberg-Witten map. We will discuss the case where
gauge group isU(1). Solving the Seiberg-Witten equation
equivalent to finding a two-formFi j 5Fi j (Âi ;u) which

~a! is gauge invariant,

Fi j ~Âi1] i l̂1 iÂ i* l̂2 i l̂* Âi ;u!5Fi j ~Âi ;u!, ~1.11!

~b! obeys the Bianchi identity for the ordinary gaug
theory:

] iF jk1] jFki1]kFi j 50, ~1.12!

~c! satisfies the initial condition,

Fi j ~Âi ;u50!5] i Â j2] j Âi . ~1.13!

Modulo freedom of field redefinition and gauge transform
tion, the conditions~a! and~b! are equivalent to the Seiberg
Witten equation since the Bianchi identity~b! means thatFi j
can be expressed asFi j 5] iAj2] jAi for someAi and the
gauge invariance~a! guarantees that, under the noncomm
tative gauge transformation,

Âi→Âi1] i l̂1 iÂ i* l̂2 i l̂* Âi , ~1.14!

Ai transforms as an ordinary gauge field,

Ai→Ai1] il, ~1.15!

for somel which depends onl̂ and Âi . These are exactly
the conditions from which the Seiberg-Witten equation w
derived@2#. The importance of the condition~b! in this con-
text was stressed in@9#.

If we realize the noncommutative gauge theory
p-branes in string theory, the two-formFi j obeying the three
conditions~a!–~c! can be found by identifying the curren
04600
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coupled to the Ramond-Ramond potentialC(p21). The gauge
invariance~a! is manifest if we use the point-splitting regu
larization on the string worldsheet, and the Bianchi ident
~b! is the consequence of the gauge invariance of
Ramond-Ramond potential,

C(p21)→C(p21)1de, ~1.16!

wheree is an arbitrary (p22) form in the bulk. From the
resulting expression forFi j , it is straightforward to verify
that the initial condition~c! is satisfied. The fact that the
initial condition is satisfied is presumably related to the
pological nature of the Ramond-Ramond coupling and
lack of a8 corrections to it.3

When the noncommutative space is 2n dimensional,
namely, when the rank ofu is 2n, the Seiberg-Witten map4

we find from the Ramond-Ramond current is

Fi j ~k!1u i j
21d~k!5

1

Pf~u!
E dx* Feikx~u2u f̂ u! i j

n21

3P expS i E
0

1

Âi~x1 l t!l idt D G .
~1.17!

Here the integral*dx is over the space coordinates on t
brane and is normalized as

E dx5E dx1
•••dx2n

~2p!2n
, ~1.18!

the two-form (u2u f̂ u) i j
n21 in the integrand is defined as

~u2u f̂ u! i j
n21[2

1

2n21~n21!!
e i j i 1i 2••• i 2n22

3E
0

1

dt1„u2uF̂~x1 l t1!u…i 1i 2
•••

3E
0

1

dtn21„u2uF̂~x1 l tn21!u…i 2n23i 2n22,

~1.19!

and the Pfaffian is normalized as

Pf~u!5
1

2nn!
e i 1••• i 2n

u i 1i 2
•••u i 2n21i 2n. ~1.20!

3This result is in contrast with the case of the energy-momen
tensor studied in our earlier paper@11#. There it was shown that the
energy-momentum tensor of the noncommutative theory deri
from the coupling to the bulk graviton does not reduce to the on
the ordinary gauge theory in the limitu→0.

4It is known that a solution to the Seiberg-Witten equation is n
unique. For example, there is the field redefinition ambiguity
mentioned in the above. It would be interesting to find out if th
solution, which naturally comes from the string theory computati
has a special status among all possible solutions.
9-2
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EXACT SOLUTION TO THE SEIBERG-WITTEN . . . PHYSICAL REVIEW D64 046009
Note that the right-hand side of Eq.~1.17! depends only on
Âi(x), u i j and ki . In particular, the combination (u
2u f̂ u) i j

n21/Pf(u) does not depend on the normalization
the e-symbol.

In order to make the logical structure of this paper tra
parent, we will first prove that Eq.~1.17! satisfies the three
conditions~a!–~c! independently of the string theory origi
of the formula. In particular, the proof holds for anyn even
though the string theory computation only works forn<4.
After the proof is completed, we will explain how the sol
tion is found from the string theory computation of th
Ramond-Ramond coupling.

It turns out that the map~1.17! can be re-expressed in th
form ~1.9!. Thus we have also proven the conjecture in@10#.
Since we now have the exact expression for the Seib
Witten map, it may also be possible to find an expression
the Kontsevich map in the case of Eq.~1.6!.

This paper is organized as follows. In Sec. II, we pro
that Eq. ~1.17! satisfies the three conditions~a!–~c! and
therefore gives the Seiberg-Witten map. We also show th
is equivalent to Eq.~1.9! conjectured in@10#. In Sec. III, we
discuss its relation to the coupling of the noncommutat
gauge field to the Ramond-Ramond potentials in str
theory.5 In Sec. IV, we discuss applications and extensions
our result.

After the first version of this paper appeared, we receiv
two papers@12,13#, whose contents overlap with Sec. III o
this paper.

II. PROOF

In this section, we will prove that Eq.~1.17! obeys the
three conditions~a!–~c! for the Seiberg-Witten map. Th
gauge invariance~a! is manifest because of the use of t
open Wilson line@14–16#. We will show that it also satisfies
the Bianchi identity~b! and the initial condition~c!.
04600
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A. Bianchi identity

In order to prove the Bianchi identity, it is useful to intro
duce the following currents of rank 2s:

Ji 1••• i 2s~k!5
1

Pf~u!
E dx

* FeikxE
0

1

dt1„u2uF̂~x1 l t1!u…[ i 1 ,i 2
•••

3E
0

1

dtn„u2uF̂~x1 l tn!u…i 2s21 ,i 2s]

3P expS i E
0

1

Âi~x1 l t!l idt D G . ~2.1!

Here the indicesi 1 , . . . ,i 2s are totally antisymmetrized with
a factor of 1/(2s)! for each term. For noncommutative gaug
theory in 2n dimensions, the Seiberg-Witten map~1.17! can
be written as

Fi j ~k!1u i j
21d~k!52

1

2n21~n21!!
e i j i 1••• i 2n22

3Ji 1••• i 2n22~k!. ~2.2!

Therefore, to prove that the left-hand side of Eq.~2.2! obeys
the Bianchi identity, it is sufficient to show that these cu
rents are conserved,

ki 1
Ji 1••• i 2s~k!50. ~2.3!

The conservation law can be proven by performing in
gration by parts in thet-integrals in Eq.~2.1!. Before de-
scribing a proof for generals, it would be instructive to show
how it works fors51 ands52. Whens51,
t of the
kiE dx* FeikxE
0

1

dt8„u2uF̂~x1 l t8!u…i j P expS i E
0

1

Âi~x1 l t!l idt D G
5E dx* FeikxE

0

1

dt8~ l j2u j i F̂ i i 8l
i 8!P expS i E

0

1

Âi~x1 l t!l idt D G
5 iu j j 8E dx] j 8* FeikxP expS i E

0

1

Âi~x1 l t!l idt D G
50. ~2.4!

Here we decomposed the factor in the second line as follows:

l j2u j i F̂ i i 8l
i 85 iu j j 8~ ik j 81 i ] j 8Âi 8l

i 8!1u j j 8l i 8Di 8Âj 8 , ~2.5!

and used the identity that

5In the course of this work, we were informed of a work in progress by S. Das and N.V. Suryanarayana on some aspec
Ramond-Ramond currents.
9-3
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E dx* FeikxE
0

1

dt8l i 8Di 8Âj 8~x1 l t8!PexpS i E
0

1

Âi~x1 l t!l idt D G50, ~2.6!

which was shown in~B.4! in @11#.
To prove the current conservation fors52, we use the following identity:

E dx* FeikxE
0

1

dt1l i
„F̂ i j ~x1 l t1!2u i j

21
…E

0

1

dt2O~x1 l t2! PexpS i E
0

1

Âi~x1 l t!l idt D G
52 i E dx* FeikxE

0

1

dt8D jO~x1 l t8!P expS i E
0

1

Âi~x1 l t!l idt D G . ~2.7!

The conservation law fors52,

kiE dx* FeikxE
0

1

dt1„u2uF̂~x1 l t1!u…i [ jE
0

1

dt2„u2uF̂~x1 l t2!u…k,l ] P expS i E
0

1

Âi~x1 l t!l idt D G50, ~2.8!

follows from this by settingO5F̂kl2ukl
21 and using the Bianchi identity

D jF̂kl1DkF̂l j 1DlF̂ jk50 ~2.9!

for F̂. What remains is to show Eq.~2.7!. This follows from the following two identities. The first one is

E dx* FeikxE
0

1

dt1l iDiÂj~x1 l t1!E
0

1

dt2 O~x1 l t2!P expS i E
0

1

Âi~x1 l t!l idt D G
5E dx* FeikxE

0

1

dt8@Âj ,O#~x1 l t8!P expS i E
0

1

Âi~x1 l t!l idt D G , ~2.10!

which can be derived from~B.5! in @11#. The second one is

E dx* FeikxE
0

1

dt1$2kj2 l i] j Âi~x1 l t1!%E
0

1

dt2O~x1 l t2!P expS i E
0

1

Âi~x1 l t!l idt D G
52 i E dx* FeikxE

0

1

dt8] jO~x1 l t8!P expS i E
0

1

Âi~x1 l t!l idt D G , ~2.11!

where we performed integration by parts onÂi . By combining Eqs.~2.10! and ~2.11! using

l iDiÂj2 l i] j Âi2kj5 l i~ F̂ i j 2u i j
21!, ~2.12!

we obtain the identity~2.7!.
To give a proof of the conservation law~2.3! for generals, it is most convenient to use the matrix theory language@17–19#.

The noncommutative gauge theory with a commutative time coordinatet and 2n noncommutative space coordinatesxi ( i
51, . . . ,2n) can be constructed from matrix theory by setting the matrix variablesXi in the form

Xi5xi1u i j Â j~x!, ~2.13!

wherexi obeys the commutation relation,

@xi ,xj #52 iu i j . ~2.14!

Formulas in noncommutative gauge theory can then be expressed in the matrix theory language according to the m@20#

@Xi ,Xj #52 i ~u i j 2u i i 8F̂ i 8 j 8u
j 8 j !, ~2.15!

eikX5* FeikxP expS i E
0

1

Âi~x1 l t!l i D G ,

046009-4
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tr~••• !5
1

Pf~u!
E dx* @•••#,

with l i5kju
j i . For a more precise description of the map between gauge invariant operators of matrix theory a

noncommutative gauge theory, see@21#.6

Following the rule~2.15!, we can express the currents~2.1! in noncommutative gauge theory using the matrix the
variables as

J~k!5tr~eikX!,

Ji j ~k!5 i tr~@Xi ,Xj #eikX!,

Ji j lm~k!5
i 2

3E0

1

dt tr~@Xi ,Xj #ei tkX@Xl ,Xm#ei (12t)kX!1
i 2

3E0

1

dt tr~@Xi ,Xl #ei tkX@Xm,Xj #ei (12t)kX!

1
i 2

3E0

1

dt tr~@Xi ,Xm#ei tkX@Xj ,Xl #ei (12t)kX!,

A

Ji 1••• i 2n~k!5
i n~n21!!

~2n!! E
0

1

dt1E
t1

1

dt2•••E
tn22

1

dtn21tr~@Xi 1,Xi 2#ei t1kX@Xi 3,Xi 4#

3ei (t22t1)kX
•••@Xi 2n21,Xi 2n#ei (12tn21)kX!1„@~2n!! 21# more terms to antisymmetrize the indices….

~2.16!

This facilitates our proof of the conservation law:

ki 1
Ji 1••• i 2s~k!50. ~2.17!

In order to prove the conservation law in the matrix theory language, we will make use of the cyclicity of the
tr(AB)5tr(BA). A care is needed here since this does not necessarily hold for infinite dimensional matrices. For exam
the backgroundXi5xi which gives rise to a noncommutative gauge theory from matrix theory, we have

@xi ,xj #52 iu i j . ~2.18!

Therefore tr(xixj )5tr(xjxi) is obviously untrue here. Fortunately, the conservation law can be proven under the w
assumption about the cyclicity of the trace as

tr~@Xi ,Xj #O!5tr~O@Xi ,Xj # !, tr~eikXO!5tr~OeikX!, ~2.19!

for anyO generated by any number of commutators@Xi ,Xj # and exponentialseik8X with a possibility of a single insertion o
Xi . This holds forXi considered in this paper.@Xi5xi1u i j Â j (x) and we are allowed to perform integration by parts onÂj .#

As a warmup, let us repeat the proof fors51 ands52 using the matrix theory language. Fors51, we can show the
conservation for matricesXi satisfying Eq.~2.19! as follows:

kiJ
i j ~k!5tr~@ ikX,Xj #eikX!5E

0

1

dt tr~ei tkX@ ikX,Xj #ei (12t)kX!5tr~@eikX,Xj # !50. ~2.20!

For s52, we need to perform the integration by parts int as

6See also the formula~A6! given in the Appendix.
046009-5
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kiJ
i j lm~k!5

i

3E0

1

dt tr~ei (12t)kX@ ikX,Xj #ei tkX@Xl ,Xm# !1~2 more terms!

52
i

3E0

1

dt
d

dt
tr~ei (12t)kXXjei tkX@Xl ,Xm# !1~2 more terms!

52
i

3
tr~XjeikX@Xl ,Xm#2eikXXj@Xl ,Xm# !1~2 more terms!

52
i

3
tr~†@Xl ,Xm#,Xj

‡eikX!1~2 more terms!

50. ~2.21!

To go from the fourth to the fifth line, we used the cyclicity of the trace. The last line follows from the Jacobi identity
One can easily see that each step in Eqs.~2.20! and ~2.21! has a corresponding step in the proof~2.4!–~2.12! using the

gauge theory variables. If one wishes, one can also re-express the proof for arbitrarys in the following using the gauge theor
variables, although the use of matrix theory variables substantially simplifies the proof.

Now we are ready to prove the conservation law for arbitrarys.7 In the original form of the current in~2.16!, the indices
i 1 ,i 2 , . . . ,i 2s are totally antisymmetrized. However, we can always bring one of themi 1 to the first using the cyclic symmetr
of the t-integral form, while the rest of the indicesi 2 ,i 3 , . . . i 2n are still totally antisymmetrized. One of the terms appea
in Eq. ~2.17! is then

2 i E
0

1

dt1E
t1

1

dt2•••E
tn22

1

dtn21tr ei (12tn21)kX@ ikX,Xi 2#ei t1kX@Xi 3,Xi 4#ei (t22t1)kX@Xi 5,Xi 6#ei (t32t2)kX
•••@Xi 2n21,Xi 2n#

5 i E
0

1

dt1E
t1

1

dt2•••E
tn22

1

dtn21S d

dt1
1

d

dt2
1•••1

d

dtn21
D tr ei (12tn21)kXXi 2ei t1kX

3@Xi 3,Xi 4#ei (t22t1)kX@Xi 5,Xi 6#ei (t32t2)kX
•••@Xi 2n21,Xi 2n#

52 i E
0

1

dt2E
t2

1

dt3•••E
tn22

1

dtn21 tr ei (12tn21)kXXi 2@Xi 3,Xi 4#ei t2kX@Xi 5,Xi 6#ei (t32t2)kX
•••@Xi 2n21,Xi 2n#

1 i E
0

1

dt1E
t1

1

dt2•••E
tn23

1

dtn22 tr Xi 2ei t1kX@Xi 3,Xi 4#ei (t22t1)kX
•••e(12tn22)@Xi 2n21,Xi 2n#. ~2.22!

In the last step, we used the formula derived using the integration by parts:

E
0

1

dt1E
t1

1

dt2•••E
tn22

1

dtn21S d

dt1
1

d

dt2
1•••1

d

dtn21
D f ~t1 ,t2 , . . . ,tn21!

52E
0

1

dt2E
t2

1

dt3•••E
tn22

1

dtn21f ~0,t2 , . . . ,tn21!1E
0

1

dt1E
t1

1

dt2•••E
tn23

1

dtn22 f ~t1 ,t2 , . . . ,tn22 ,1!,

~2.23!

wheref is an arbitrary function oft1 ,t2 , . . . ,tn21. Using the antisymmetry in the indices,i 2 ,i 3 , . . . ,i 2n , we can rewrite Eq.
~2.22! as follows:

2 i E
0

1

dt2E
t2

1

dt3•••E
tn22

1

dtn21tr†Xi 2,@Xi 3,Xi 4#‡ei t2kX@Xi 5,Xi 6#ei (t32t2)kX
•••@Xi 2n21,Xi 2n#ei (12tn21)kX. ~2.24!

This vanishes because of the Jacobi identity.
We have proven the conservation of the current~2.1!. Thus Eq.~2.2! satisfies the Bianchi identity.

7The following proof also resolves the question raised in@22# regarding the gauge invariance of the Ramond-Ramond couplings
extends the earlier work@23# on conservation of currents in matrix theory.
046009-6



n,

l

ase

ive

EXACT SOLUTION TO THE SEIBERG-WITTEN . . . PHYSICAL REVIEW D64 046009
B. Initial condition

Since the conditions~a! and~b! are equivalent to the Seiberg-Witten equation~1.2!, we now have a solution to the equatio
modulo field redefinition and gauge transformation. What remains to verify is the initial condition~c!. Although we can check
this directly by expanding the map~1.17! in powers ofu, it is more useful to rewrite Eq.~1.17! in such a way that the initia
condition is manifest. In this process, we find that Eq.~1.17! is equivalent to Eq.~1.9!, therefore proving the conjecture in@10#.

To see the relation between Eqs.~1.17! and ~1.9!, let us first show the identity

1

Pf~u!
~u2u f̂ u! i j

n212Adet~12 f̂ u!S 1

12 f̂ u
f̂ D

i j

5
1

Pf~u!
u i j

21Pf~u2u f̂ u!. ~2.25!

This can be shown by writing the two terms on the left-hand side of the equation as

1

Pf~u!
~u2u f̂ u! i j

n215
1

Pf~u!
Pf~u2u f̂ u!S 1

u2u f̂ u
D

i j

, ~2.26!

and8

Adet~12 f̂ u!S 1

12 f̂ u
f̂ D

i j

5
1

Pf~u!
Pf~u2u f̂ u!S 1

u2u f̂ u
u f̂ D

i j

, ~2.27!

and taking the difference of the two. Therefore we find

1

Pf~u!
E dx* Feikx~u2u f̂ u! i j

n21P expS i E
0

1

Âi~x1 l t!l idt D G
5E dx* FeikxAdet~12 f̂ u!S 1

12 f̂ u
f̂ D

i j

P expS i E
0

1

Âi~x1 l t!l idt D G
1u i j

21 1

Pf~u!
E dx* FeikxPf~u2u f̂ u!P expS i E

0

1

Âi~x1 l t!l idt D G . ~2.28!

Next we show

1

Pf~u!
E dx* FeikxPf~u2u f̂ u!P expS i E

0

1

Âi~x1 l t!l idt D G5d~k!. ~2.29!

Note that the left-hand side is the Ramond-Ramond current of the maximum rank 2n,

1

Pf~u!
E dx* FeikxPf~u2u f̂ u!P expS i E

0

1

Âi~x1 l t!l idt D G5
1

2nn!
e i 1••• i 2n

Ji 1••• i 2n~k!. ~2.30!

To prove Eq.~2.29!, it is simplest to use the matrix theory representation~2.16!. We will show the currentJi 1••• i 2n(k) of the
maximum rank9 is invariant under an arbitrary infinitesimal variation of the matrix variable near the backgroundXi5xi with
@xi ,xj #52 iu i j , namely, it is topological. Once it is shown, we can evaluate the left-hand side of Eq.~2.29! at the background
Xi5xi which corresponds toÂi(x)50 and find

1

Pf~u!
E dx* FeikxPf~u2u f̂ u!P expS i E

0

1

Âi~x1 l t!l idt D G5
1

Pf~u!
E dx* @eikxPf~u!#5d~k!. ~2.31!

Now let us prove that the right-hand side of Eq.~2.30! is indeed topological. It is instructive to consider the simplest c
of n51 first,

8We define the sign of the square root,Adet(12 f̂ u), so that it agrees with that of Pf(u2u f̂ u)/Pf(u).
9In this paper, we are setting all the scalar fields to be zero. ThusJi 1••• i 2n(k) is the current of the maximum rank for the noncommutat

gauge theory in (2n11) dimensions.
046009-7
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d tr~e i j @Xi ,Xj #eikX!5e i j trS 2@dXi ,Xj #eikX1E
0

1

dt@Xi ,Xj #ei tkXikmdXmei (12t)kXD
5~2e i j ikm1 ik ie jm!trS dXiE

0

1

dtei tkX@Xj ,Xm#ei (12t)kXD
50. ~2.32!

To go from the second to the third line, we used the cyclicity of the trace. In the last line, we used the identity
dimensions,

2e i j e
j l 1e jme jmd i

l50. ~2.33!

In general, we have

e i 1••• i 2n
E

0

1

dt1E
t1

1

dt2•••E
tn22

1

dtn21d tr~@Xi 1,Xi 2#ei t1kX
•••@Xi 2n21,Xi 2n#ei (12tn21)kX!

5~2nki 2n
e i i 1••• i 2n21

1kie i 1i 2••• i 2n
!e i 1••• i 2nE

0

1

dt0E
t0

1

dt1•••E
tn22

1

dtn21

n

~2n!!
e i

18••• i
2n8

3tr~dXiei t0kX@Xi 18,Xi 28#ei (t02t1)kX
•••@Xi 2n218 ,Xi 2n8 #ei (12tn21)kX!

50. ~2.34!

In the last line, we used the identity in 2n dimensions:

2ne i i 1••• i 2n21
e i 1••• i 2n21 j1e i 1••• i 2n

e i 1••• i 2nd i
j50. ~2.35!

Thus we have proven that the right-hand side of Eq.~2.30! is topological. Combining Eqs.~2.28! and ~2.31!, we find

1

Pf~u!
E dx* Feikx~u2u f̂ u! i j

n21P expS i E
0

1

Âi~x1 l t!l idt D G
2E dx* FeikxAdet~12 f̂ u!S 1

12 f̂ u
f̂ D

i j

P expS i E
0

1

Âi~x1 l t!l idt D G5u i j
21d~k!. ~2.36!
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Therefore, the conjectured expression~1.9! agrees with Eq.
~1.17!. This completes the proof that Eq.~1.17! gives an
exact Seiberg-Witten map.

III. RELATION TO THE RAMOND-RAMOND COUPLING

In Sec. II, we have proven that Eq.~1.17! satisfies the
conditions~a!–~c!. Now we would like to explain the string
theoretical origin of the formula. As we mentioned in th
Introduction, we found the expression for the Seiberg-Wit
map ~1.17! by studying the coupling of noncommutativ
gauge theory realized onp-branes to the Ramond-Ramon
(p21)-form in the bulk. The dual of the Ramond-Ramo
currentJi 1••• i p21 on the (p11)-dimensional world volume is
a two-form. It is clear that this two-form must be invaria
under the noncommutative gauge transformation, and th
obeys the condition~a!. The condition~b! is satisfied since
the coupling should also be invariant under the Ramo
Ramond gauge transformationC(p21)→C(p21)1de. If we
assume that there is noa8 correction to the Ramond
04600
n

it

-

Ramond coupling, we can expect that the two-form is rela
to the field strengthFi j of the commutative variable as fol
lows @24–27#:

E C(p21)`~F1u21!. ~3.1!

If that is the case, the condition~c! should also hold. This
was our motivation for Eq.~1.17!.

The couplings of noncommutative gauge theory to clos
string states in the bulk can be derived in various differ
ways. One approach is to evaluate disk amplitudes on ap
brane with a background of NS-NS two-form field and ta
the Seiberg-Witten limit. In@11#, the energy-momentum ten
sor of the noncommutative theory was derived in this w
Alternatively, one can start with matrix theory@17# ~i.e.,
many D0 branes instead of a Dp brane!, compute the cou-
pling of the bulk fields to the matrix variables, and evalua
it in the background which gives rise to the noncommutat
gauge theory on a Dp brane @17–19#. This approach was
9-8
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EXACT SOLUTION TO THE SEIBERG-WITTEN . . . PHYSICAL REVIEW D64 046009
suggested in@28# and was carried out explicitly in@21# in the
case of the coupling to the bulk graviton, where it was fou
to give the same result as that obtained using the first
proach@11#.

Here we will adopt the second approach since the curr
coupled to the Ramond-Ramond potentials have alre
been studied in matrix theory@29–31#.10 For our purpose, it
is sufficient to have the currents coupled to the space-t
components of the Ramond-Ramond potential,C0i 1••• i p

,

where the index 0 is for the timelike coordinate andi
51, . . . ,9 are for thespacelike coordinates in the type II
string theory. The relevant couplings deduced in@29–31# are
of the form

E dt Str„C0~ t,X!1C0i j ~ t,X!@Xi ,Xj #

1C0i jkl ~ t,X!@Xi ,Xj #@Xk,Xl #1•••…. ~3.2!

Here Xi are matrix coordinates, and the symmetrized tra
Str is defined by expandingC0i 1••• i p

(t,X) in powers ofX’s

and totally symmetrize them together with@Xi ,Xj #, each of
which is treated as one unit in the symmetrization. In
momentum basis, the currents coupled to the Ramo
Ramond potentials can be read off from Eq.~3.2! as

J~k!5Str~eikX!,

Ji j ~k!5 i Str~@Xi ,Xj #eikX!,

A

Ji 1••• i 2s~k!5
i s

~2s!!
Str~@Xi 1,Xi 2#•••@Xi 2s21,Xi 2s#eikX!

1„@~2s!! 21# more terms to antisymmetrize

the indices…. ~3.3!

We should point out that the symmetrized traces in E
~3.2! and ~3.3! make sense only whenX’s are trace class
operators since they are defined by expandingC0i 1••• i p

(X) in

powers of X’s before taking the trace. IfX’s are infinite
dimensional, a trace of powers ofX’s may not be well-
defined, though a trace ofeikX may still exist. In fact, this is
the case whenXi5xi1u i j Â j (x) with @xi ,xj #52 iu i j .

On the other hand, the currents~2.16! we used in Sec. II
make sense even whenX’s are of the form Xi5xi

1u i j Â j (x). Moreover, they agree with Eq.~3.3! when X’s
are finite dimensional. In fact, ifO1•••On and X are trace
class operators, one can prove

10In the case of constant Ramond-Ramond potentials, the coup
to noncommutative gauge fields was studied in@32#.
04600
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Str~O1•••OneikX!5E
0

1

dt1E
t1

1

dt2•••E
tn22

1

dtn21

3tr~O 1ei t1kXO2•••O nei (12tn21)kX!

1„@~n21!! 21# more terms to

symmetrizeO i ’s…. ~3.4!

Here the symmetrized trace Str on the left-hand side is
fined by expandingeikX in powers ofX’s and symmetrizing
them withO1•••On . On the other hand, the symmetrizatio
on the right-hand side exchangesO1•••On only. The equiva-
lence~3.4! for n52 has been proven in our previous pap
@21#. A general proof for arbitraryn is given in the appendix
of this paper. As shown in@21#, the t-integral expressions
such as Eq.~2.16! naturally arise from disk amplitudes of
single closed string state and an arbitrary number of o
string states. In this case,t1 , . . . ,tn are identified as loca-
tions of the open string vertex operators on the boundary
the worldsheet disk. In@21#, this is shown explicitly for the
coupling of X’s to the graviton in the bulk. We expect th
situation is the same for the coupling to the Ramon
Ramond potentials. This is the string theory origin of t
formula ~2.1!.

IV. DISCUSSION

In this paper, we proved that Eq.~1.17! satisfies the con-
ditions ~a!–~c! for the Seiberg-Witten map. We also showe
that it is equivalent to Eq.~1.9! and therefore proved the
conjecture in@10#.

The exact Seiberg-Witten map can be used to unders
the relation between the commutative and noncommuta
descriptions of D-branes with a strong NS-NS two-for
field. For example, it may be possible to study the nonco
mutative solitons@33# in the language of the commutativ
variables.

In this paper, we set all the scalar fields to be zero a
focused on the Seiberg-Witten map betweenAi(x) and

Âi(x). It is straightforward to include these in the analys
We can also add commutative dimensions by starting fr
many Dp branes withp.0 rather than D0 branes and b
using the results in@30# and@31# about the Ramond-Ramon
coupling of these branes.
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APPENDIX: t-ORDERED INTEGRAL ÄSYMMETRIZED TRACE

In this appendix, we will prove the equivalence~3.4! of the symmetrized trace and thet-ordered trace.11

First let us perform thet integrals in Eq.~3.4! explicitly. For any operatorsO1 ,O2 , . . . ,Om ,

E
0

1

dt1E
t1

1

dt2•••E
tm22

1

dtm21tr O 1ei t1kXO 2ei (t22t1)kX
•••Om21ei (tm212tm22)kXO mei (12tm21)kX

5E
0

1

dt18E
0

12t18dt28E
0

12t182t28dt38•••E
0

12t182•••2tm228
dtm218 tr O 1ei t18kX

3O 2ei t28kX
•••Om21ei tm218 kXO mei (12t182t282•••2tm218 )kX

5 (
a150

`

(
a250

`

••• (
am50

` E
0

1

dt18E
0

12t18dt28•••E
0

12t182•••2tm228
dtm218

1

a1!a2! •••am!

3tr O1~ i t18kX!a1O2~ i t28kX!a2
•••Om21~ i tm218 kX!am21Om~ i ~12t182t282•••2tm218 !kX!am

5 (
a150

`

(
a250

`

••• (
am50

`
1

~a11a21•••1am1m21!!
tr O1~ ikX!a1O2~ ikX!a2

•••Om21~ ikX!am21Om~ ikX!am

5 (
n50

`
1

~n1m21!! (
p150

n

(
p250

n2p1

(
p350

n2p12p2

••• (
pm2150

n2p12p22•••2pm22

tr O1~ ikX!p1

3O2~ ikX!p2
•••Om21~ ikX!pm21Om~ ikX!n2p12p22•••pm21. ~A1!

Here we changed the integration variables in the first step as

t185t1 , t285t22t1 , ••• tm218 5tm212tm22 , ~A2!

and used the following formula in performing thet8 integrals:

E
0

1

dt18E
0

12t18dt28•••E
0

12t182•••2tm228
dtm218 t18

a121t28
a222

•••tm218 am2121~12t182t282•••2tm218 !b21

5
G~a1!G~a2!•••G~am21!G~b!

G~a11a21•••1am211b!
for a1 ,a2 , . . . ,am21 ,b.0. ~A3!

On the other hand, since

Str@~ ikX!nO1O2•••Om#

5
1

~n1m21!! (
p150

n

(
p250

n2p1

(
p350

n2p12p2

••• (
pm2150

n2p12p22•••2pm22

n! trO1~ ikX!p1O2~ ikX!p2
•••Om21~ ikX!pm21

3Om~ ikX!n2p12p22•••pm211„@~m21!! 21# more terms to symmetrize inO2 ,O3 , . . . ,Om…, ~A4!

where Str is the symmetrized trace with respect toX, O1 , . . . ,Om , we can write

Str@eikXO1O2•••Om#5 (
n50

`
1

n!
Str@~ ikX!nO1O2•••Om#

5E
0

1

dt1E
t1

1

dt2•••E
tm22

1

dtm21tr O 1ei t1kXO 2ei (t22t1)kX
•••Om21ei (tm212tm22)kXO mei (12tm21)kX

1„@~m21!! 21# more terms to symmetrize… . ~A5!

11We assume that the symmetrized trace is well-defined. This means that, if we define the symmetrized trace in terms of a pow
expansion inX’s, X must be trace class operators.
046009-10



n

EXACT SOLUTION TO THE SEIBERG-WITTEN . . . PHYSICAL REVIEW D64 046009
Here we made use of the cyclicity of the trace. Therefore, we have shown the equivalence of the two expressions~3.3! and
~2.16!. Furthermore, we can show that

trFexpS i E
0

1

dtkXD E
0

1

dt1O1•••E
0

1

dtmOmG5E
0

1

dt1E
t1

1

dt2•••E
tm22

1

dtm21trO 1ei t1kXO 2ei (t22t1)kX
•••

3Om21ei (tm212tm22)kXO mei (12tm21)kX

1„@~m21!! 21# more terms to symmetrize…

5Str@eikXO1O2•••Om#, ~A6!

where the operators aret-ordered in the first line. This formula is the generalization of~27! in @21# to the case where more tha
two operators are inserted and useful when we transform the currentJi 1i 2••• i 2n ~2.16! to the form~2.1! used in the noncom-
mutative gauge theory.
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