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D-branes as solitons of anN/=1, D=10 noncommutative gauge theory
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We consider a Dp-brane within a D9-brane in the presenceBfield whose polarization ifransverseto
the Dp-brane. To be definite, we take a D3-D9 system. It is observed that the system has the same pattern of
supersymmetry breaking as that of a soliton of the six-dimensional noncommutative gauge theory that is
obtained by dimensional reduction of a#=1D=10 gauge theory. These results indicate that the soliton
solution is the low energy realization of a D3-brane in a D9-brane with a transBdiskel and, hence, can be
viewed as a generalization of the previous results in the literature where similar observations were made for
lower codimensional cases.
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[. INTRODUCTION serving conditions and observe that the supersymmetry
breaking pattern is equivalent to the constraint equation ob-
D-branes appear when offedualizes open strings with tained for the D3-D9 system. This can be viewed as a gen-
fully Neumann boundary conditions. Since the duality con-eralization of the previous results in the literature where
nects two equivalent descriptions, it is worth asking whethesimilar observations were made for lower codimensional
open string theory has a different way of incorporatingcases.
D-branes. The most natural candidate that could provide The rest of the paper is organized as follows. In Sec. I,
such an incorporation may be the soliton solutions of the lowye consider a D3-D9-brane system with the only nonzero
energy effective action of open string theory. components transverse to the D3-brane. The boundary con-
Progress toward different realizations of D-branes hagjition at one end of the open string is different from the one
been madein the framework of open bosonic string field gt the other end. This makes it necessary, for any possible
theory[3] and noncommutative gauge thed#;5]. In par-  esiqual supersymmetry, to impose an extra constraint among
ticular, it was argued that D-branes can be constructed a§,nersymmetry parameters in addition to the ordinary one
solitons of open string field theof$—8]. Asimilar claim has a4 preaks one-half of the supersymmetry. In Sec. Ill, we
also been m_ade for the sqllton solutions of noncommutatlv%onsider anV=1 supersymmetric gauge theory D= 10
gauge theoriefd—-15). In this paper, we study the pattern of and dimensionally reduce it to six dimensions that have the

supersymmetry breaking of such noncommutative solitons. L .
To be definite, we consider a D3-D9 system althoughnonzerOB compqnents. Therefore the six-dimensional theory
various other systems can be analyzed similaiViarious IS noncommutative. We show that the supersymmetry break-

properties of generip-p’ systems were studied {iL6] that ing pattern for the soliton solutions is equivalent to that of
have some related discussidhsWe consider an oriented the D3-D9 system. Although the supersymmetry gets com-
open superstring description of D-brards,1§ using the pletely broken for a generic configuration of tBdield, one
Green-SchwarZzGS) formalism[19]. A constantB field is ~ ¢an choose the values of th& components such that the
turned on with the only nonzero componetansverseto  System has residual supersymmetry. It is shown in Sec. IV
the D3-brane. The boundary conditions of the system impostat there are no tachyons for those values ofgield. We
a constraint on the parameters of the supersymmetry tranénd with conclusions in Sec. V.
formations. The constraint equation in an appropriate limit is
to be compared with the corresponding gauge theory result.

The low energy limit of open superstring theory is .&h Il. OPEN SUPERSTRING ANALYSIS
=1 gauge theory irD=10. We dimensionally reduce the
theory toD=6. With the sameB-field configuration as that
of the D3-D9 system, one gets six-dimensional noncommu
tative gauge theory. Followingi12], soliton solutions are
written down. By a trivial lifting procedure, they can also be
considered as solutions of the ten-dimensional gauge theo
that one started with. We examine the supersymmetry pr

Consider an open superstring in a flat ten-dimensional
background. We turn on a constastfield and impose Di-
richlet boundary conditions appropriate for a given D-brane
configuration. We briefly revieyl7,18 for a D3-brane case

here the authors consideredBafield polarized along the
grane direction. Then we move to the case of a transu@rse
field.

In the Green-Schwarz formulation, the action withBa
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1Earlier discussions of D-branes as instantons can be found, for

example, in[1,2]. SWe denote the coordinate bW =(w,m), w=0,...,3,
2We thank E. Witten for bringing this paper to our attention. m=4,...,9.
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1 )
s=— 5[ ol =g M M
+2i € g XM (0T 9, 01— 67T 9, 6%) — 2€') (6T Mg, 6%)
X (62T 1y, 6%) + €1 XM g, X By ]. (1)

By taking the variations with respect % and ¢, one can
obtain the following boundary terms:

SXy(IL,M =i 60T Mo, 01+ 62TM9,6%) + 5Xpyd X VByM
— (0T 6T M+i9,XM(6'T 66— 6°T )y, 56%)
+(0'TM 86 0°T 0,62 — PTM 867 0'T 1496 | — 0.1
=0. )
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where ND denotes the boundary condition of the typX
+4,X-B. It is convenient to examine the boundary condi-
tions atoc=0 ando= 7 separately.

A. Boundary conditions at =0

First consider boundary conditions at=0. We require
the following conditions:

9,X"=0,

G XH=0,

With the B field whose nonzero components are only along

the brane directions, the equation above becomes
SX(TM=i6TMg, 6 +16°TMa,6%) + 6X,0,X"B,*
—i(0* Ty 80T M+i9, XM(6T 86— 62Ty, 562)
+(0'TM 86T 0,02 — PTM 867 0'T 149,61 | — 0.1
=0. ()

0T (9,4 9,) 0%+ 62TM(a,— 3,) 2=0. ©)

Two remarks are in order: first, it is important that ®éeld

does not appear in the equations above whereas it does ap-
pear in the boundary conditions at= 7. This difference is
what induces an additional constraint on supersymmetry pa-
rameters as will be discussed below. Second, although we
can replacd™™ in the third equation by'#, we keep the full

I' matrices because at=m we cannot make the same re-

The X variation vanishes if one imposes the following placement. With these conditions, it is easy to show that the

boundary conditions:

I X"=0, g X +9,X"B, =0,

O H(9,+3d.) 0 + 0°TH(d,—d,) 6>=0. (4)
The part containingdé can be rewritten as
[0, XM(0'T 1,86 + 6°T 1, 667) +i9, XM (1+B) ,,0°T " 56
—(1-B),,0'T"86Y1+ 6T, 56*6'TM 9, 6*

— 60°T'y6626°TM9_62=0. (5)

S6X part vanishes. The remainingp part is as follows:
—19,XM(0'T 86 + 67T 1, 66°) +13 X“[ 5,6 66*

—8,,0°T756%]+ 6T 4 66 61T M 6

This can be satisfied by imposing the following relation be-

tween the twof’s:

0?*=P(B)6* at o=0,m, ©
where
P(B”)Ee(_Yﬂ”F/"’VO-3/2)i0'2FO'"3’ -
with
Y—Eln 18 _ ®
2 \1+B

Now, we consider the D3-D9 system havind@dield along

— 67T, 8626°T M3 _62=0, (10)
which implies that a relation betweett and 62 is
67=P,—o(B,) 0", (1D
where
Py—o(B)=iooly  g. (12

B. Boundary conditions at o=

The boundary conditions that remove th¥ part are
I XH=0,
9,X"M+ 3, X"B'=0,
OTM(9,+3,) 6"+ 62 TM(3,—3,) 62=0. (13)

Unlike Eq.(9), Eqg. (13) contains theB field, which will, in

the transverse directions to D3. The boundary conditions artrn, modify the constraint equatiofil) accordingly. The

as follows:

remainingéé part is
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iaUX”(glFﬂael—Fzruan)+ia7xm[(— 1+B)mn52F”592 transformations and obtain further constraints for thg fermi-
ons #’s. It is easy to check that the boundary conditions for

+(14B) 0 T80+ 01T, 6560 T Mo 6" fermions at both ends are
_?FM502;2FM5702:0. (14) ((?0'+(9T) 01:01 (‘90'_(97')02:0- (23)
The modified relation between this is These conditions are consistent with the light cone gauge and
they solve the last conditions in Eq®) and(13).
02: P<r: 71'( BL) 011 (15)
Ill. GAUGE THEORY ANALYSIS
where
In this section, we consider aW/=1 Abelian gauge
P,_.(B,)=e" Y " Tmws2)j g 49 (16)  theory in ten dimensions among which six directions are
noncommutative. We use then the methods developed in
with [10-15 for noncommutative spaces to construct solitons in
the six-dimensional noncommutative gauge theory. We com-
v lln 1+B 1y pare the supersymmetry breaking pattern for these solutions
2 \1-B)° with the one obtained in the previous section. We observe

that they are equivalent to each other.
The action(1) is invariant under the following supersymme-  The action for an\V=1 Abelian gauge theofyin D= 10
try transformation: is

5xM:'_AI‘M A 1 1—
e —s:fdloxJE ZFunF N SUTYD W | (24)
50=€". (19
Since we take the sanifield configuration as in the previ-
In order for these transformations to be consistent with theus section, six dimensions become noncommutative. The
boundary conditions discussed above, it must be satisfiedoncommutativity is parametrized by
that
[x4x°]=i0%=i¢, [x5x"]=i0%=i¢?

62: P(T:O( BJ_)Ell 62: Po': 77( BJ_)el- (19)
S [x8x°]=i0%=] ¢ (25)
This implies
mn N o ) It is also convenient to introduce a complex coordinate sys-
In the limit o’ — 0 discussed ifi20], the leading term of Eq. NZERNC x6+ix7 x84 ix?
(17) is zt= . 7= , ZB=—— (26
V2 V2 V2
mn
Ymnrmn~(§ Ln- (21)  and define the creation and annihilation operators
. . A1
It follows that we have the following two conditions: a,ﬁElpan, ap=-10_7% p=123. (27
e,=10°T,  £1, Here we have chosen the annihilation and creation operators
in accordance with the positivity of thé, , ;. Namely, for
1\mn positive §'s the above notation is valid, whereas for negative
g/ Tmn€1=0. (22 g's we have to switch the operators. We assume from now on

that our@’s are all positive. In the ten-dimensional action, we

The first equation breaks one-half of the supersymmetryi€place the integration over the six noncommutative dimen-

leaving 16 supercharges. The second equation breaks furth&fons with a trace over the Hilbert space enacted by the cre-

leaving no supersymmetry in general. We can apply thétion and annihilation operators. We also replace the covari-

above discussion, e.g., to the case of D5-D9 by replacingnt derivative and the gauge field strengths on the

,,,,, o- The corresponding open string theory NONcommutative space in an appropriate way:

is supersymmetric only fdB’s having special properties. For

the D5-D9 case, the supersymmetry preserBrig self-dual

or anti-self-dual and in this case the system preserves eightror an ordinary Abelian gauge theory, it is a partial derivatiye

supercharges. that acts onl. For a theory of noncommutative spaces the fields do
We also require that the boundary conditions for thenot commute and it is necessary to replace the partial derivative by

bosonic fieldsX’s be compatible with the supersymmetry a covariant derivative.
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Dp——[Cp.1, second terms of the variation vanish once the solution is
substituted. Therefore the only nontrivial part is the last term:

o ~- -1
quHI[Cp,Cq]—pE, 1 B
) Sip=— —Fpl'P%=0. (32
Fpqg— —i[Cp,Cql, 4

Since the indices in Eqg22) are contracted by using the
closed string metrig,,,, we need to convert E§32) into an
e ©xpression where the indices are also contracted with respect
do the closed string metric. Using the solution, one can re-
write Eq.(32) as

Foq— —i[Cp,Cql, (28)

whereCp=—iA,+ ag. We consider, for simplicity, that th
metric on the noncommutative directions takes the simpl
form Gpg=dyq. We make the above replacements in the
ten-dimensional action and obtain

1 — —
Sip= - Po® 1 EPEYT e, (33)
2m)3\—det® 1 4 pa— ¢
S=-— % VG dx Tr(ZFWF’”
Gym wherec andd (p andq) are flat(curved indices.E? rep-
1 — 4 — 1 resents the transverse components of the inverse 10-beins of
+5([Cp Cal+iO ([Cq. Cpl+i0 1)~ 5[Cp.Cql  the open string metric. They are related to the corresponding
components of the closed string 10-beie§, by [20]
— — 1 1—
il P + ol _
X[Cp,Cq]—FD#CpD Cp+ 21,/1F DM1/1+21,[/FP[CD,¢] Eg=i(2ﬂ'a')BpS@SC. (34)
1 - :
_ El//FpTCp,lﬁ] _ (29) Substitution of Eq(34) into Eq.(33) leads to
mn
The supersymmetry transformations in six dimensions can be Sp=—>— PO(E) I'mne=0, (35
obtained from those of the ten-dimensional theory by the Amta

same replacements we used for the action: ) .
where now the contractions are with respect to the closed

1 string metric. Therefore this condition is equivalent to the
oA, = Eﬂrmﬁ, one obtained in the previous section.
The result shows that in gauge theory we can construct
1_ supersymmetric solutions by the above method only in the
8Cp= Enrplp, case where the noncommutative parameters satisfy some par-

ticular relations. For generi®’s the solutions do not pre-
serve supersymmetry. In the case of four noncommutative
5¢:_E(F 442D ,C.T*P+F, T™ Qimensions, by a similar analysis, we conclude that such

my w=p m ' instantons preserve supersymmetry only for self-dual or anti-
(300 self-dual noncommutative parameters.

wherem,n=p,p in the last equation. These transformations
have the same form even when we leave the m&rarbi-
trary. For properly chosen values @¥'s, one has residual su-

We consider now the solitonic solutions presentefil®]  persymmetry. By studying fluctuations around the solitonic
and establish when these solutions preserve supersymmetgonfiguration, we show here that the tachyon does not ap-
The solutions have nontrivial values f@r, and do not de- pear. From the actiof29) we can write the potential for the
pend on the commutative coordinates: bosonic fieldC’s:

IV. FLUCTUATIONS

—gtat c——ct
ComS2S  Gp=SapS (Y v<c>=%Tr{([cp,c5]+i®;§)([cq,c5]+i®;§)
The operatorS has the property tha8S'=1 and S'S=1
— Py, wherePy is the projector on the vacuuf@) (a,|0) —[Cp,Cul[Cy.Cqll, (36)
=0 for any p). As such, it is a static solution and has a
single unit of topological charge. The solution has fieldwhere we use summation over repeated indipe®. The
strength in the noncommutative directiofig;,= — P, ;El above potential can be used also for the other cases of inter-
Solutions with arbitrary positive charge are obtained by est: DO-D2[12] and D0-D4 if we considep,q=1 andp,q
simply replacingS with S™. The discussion for the single =1,2, respectively. We consider fluctuatioBg=Cp+ 5C,
charged solutions applies equally well for>1. The first around the solitonic solutiorcgzs’rags, and decompose
two equations of Eqg30) are trivially satisfied. The firstand them in terms of the projection operatd?g and 1— P:
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5Cp:Ap+?p+Wp+STDpS, V. CONCLUSIONS
_ The best studied example of the AdS conformal field
Ap=PodC,Pq, T,=(1—Pg)dCyPy, (37 theory (CFT) correspondencf21-23, the duality between

. IIB supergravity, and N=4, d=4 super Yang-Mills

Wp=PodCy(1=Po), S'DpS=(1-Pg)dCy(1=Po), (SYM) theory was motivated if26] by taking the viewpoint
s=/(0 0)((1,0 0+ (38)  that there are two different but dual string theory descriptions
ey ' of the same objects, D3-branes. The viewpoint seems to

There is a corresponding decomposition for the HermitiarP0int toward a duality between the two stringy descriptions
conjugates of these. Focusing only on the part of this poterthemselves, i.e., between a type IIB closed superstring de-
tial that can give a tachyon, we need only the first term in thescription and an oriented open superstring description.
expression ofs. The first order term in fluctuations is zero It was suggested in the same paper that in each descrip-
and the second order term splits into two independent termgion open strings, closed strings, and D3 branes may not all
one forT’s andW's and the other foD’s. We keep the one appear “explicitly.” For example, it was speculated that in
for T's andW's because the tachyonic mode will come from the type IIB closed string description the presence of open

this: strings on the D-branes might be only associated with the
. — 0=0 . =00 size of the nonextremality of a D-brane soliton solution.
Vao(T,W)=Tr[ 2i0 ; (W Wq—TqT,) +(CpC+C.Cp) Similar subtleties may lie in the open string description for
the realization of closed strings. A related discussion can be

X(WEWﬁTqTH)_EOEE%?qu_CgCgWBTE found in [24,25 for open string field theory in tachyonic
vacua.

As far as D-branes are concerned, open string theory has
an efficient way of realizing them: they appear as Dirichlet
boundary condition3 As is well known, Dirichlet boundary
conditions are obtained throughduality. Since the duality
connects two equivalent descriptions, it is natural to ask

00T T— ~0~DOias
- Cp{ZquTq — CpCaW;\Nq] . (39

Using the simplified notations, , 5, we obtain the following
potential in second order:

_ — (AT .3 . -

Vo(T,W) =Tr| —(W,S"ap+ TpS'ap) (a;SWy+agS T,) whether open string theory has another way of realizing
o D-branes.

+T,S'(afap+ axal) ST,+W,S'(alar With this motivation, we have considered the open string
) description of the D3-D9 system in the Green-Schwarz for-

Yy e T mulation with the nonzero components of tBefield trans-

+aga,) SWy+ —(WW,—TTy) |- 40

@A) SV 9k( Wi~ TicT) 40 verse to the D3-brane. The boundary conditions of the

. D3-D9 system give an extra condition for residual supersym-
)ﬁnetry. Then we considered the supersymmetric gauge theory

components for the operatofss andW's: in ten dimensions and its dimensional reduction to six spatial

T =T1|(O 0,... ){((1,0,... )|+ dimensions. Turning on a consta®ffield in six dimensions,
PP the gauge theory becomes noncommutative. We have shown
V_szv_v,ﬂ(l,o, 0,0, . )+ (41) that the conditions for residual supersymmetry are equiva-

lent, in an appropriate limit, to that of the D3-D9 system
where by the ellipsis we mean other states of the {@¢| = mentioned above. This can be viewed as a generalization of
or | }{0|, respectively. As can be seen from E40), all the  the previous results in the literature concerning lower codi-
modes excepT,lj will have positive mass. The mass terms for mensional cases where variogsoncommutative solitons

T, modes are were identified as D-branes.
Note Added Sometime after our paper was published, a
2 |T1|2( 2 i_ i) 42 paper[29] appeared that has some overlap with our results.
P O 6,
p k Uk p

\iVe observe that for the DO-D2 system $I_Udled[m] (p _Sit was argued if26] with evidencg 27,28 that in the context of
=1) we always have a tachyon. The condition for not Iﬁ"':“/mgAdS/CFT D-branes may not merely be boundary conditions but

a tachyon in the case of DO-D4 is thaj=0,, namely, the  povide a curved background for open strings to propagate in. How-
self-duality condition for®. For our case, the conditions are eyer, we did not, in this article, compare the open string description

>3(1/6,) — 2/6,=0 for anyp. The supersymmetry condition of D-branes with the realization of them as a supergravity solution,
for our solution implies indeed that there is no tachyon in thebut have remained within the open string and gauge theory descrip-
system. tion. Therefore, the background was taken to be flat for simplicity.
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