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D-branes as solitons of anNÄ1, DÄ10 noncommutative gauge theory
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We consider a Dp-brane within a D9-brane in the presence of aB field whose polarization istransverseto
the Dp-brane. To be definite, we take a D3-D9 system. It is observed that the system has the same pattern of
supersymmetry breaking as that of a soliton of the six-dimensional noncommutative gauge theory that is
obtained by dimensional reduction of anN51,D510 gauge theory. These results indicate that the soliton
solution is the low energy realization of a D3-brane in a D9-brane with a transverseB field and, hence, can be
viewed as a generalization of the previous results in the literature where similar observations were made for
lower codimensional cases.
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I. INTRODUCTION

D-branes appear when oneT dualizes open strings with
fully Neumann boundary conditions. Since the duality co
nects two equivalent descriptions, it is worth asking whet
open string theory has a different way of incorporati
D-branes. The most natural candidate that could prov
such an incorporation may be the soliton solutions of the
energy effective action of open string theory.

Progress toward different realizations of D-branes
been made1 in the framework of open bosonic string fie
theory @3# and noncommutative gauge theory@4,5#. In par-
ticular, it was argued that D-branes can be constructed
solitons of open string field theory@6–8#. A similar claim has
also been made for the soliton solutions of noncommuta
gauge theories@9–15#. In this paper, we study the pattern
supersymmetry breaking of such noncommutative soliton

To be definite, we consider a D3-D9 system althou
various other systems can be analyzed similarly.~Various
properties of genericp-p8 systems were studied in@16# that
have some related discussions.2! We consider an oriented
open superstring description of D-branes@17,18# using the
Green-Schwarz~GS! formalism @19#. A constantB field is
turned on with the only nonzero componentstransverseto
the D3-brane. The boundary conditions of the system imp
a constraint on the parameters of the supersymmetry tr
formations. The constraint equation in an appropriate limi
to be compared with the corresponding gauge theory res

The low energy limit of open superstring theory is anN
51 gauge theory inD510. We dimensionally reduce th
theory toD56. With the sameB-field configuration as tha
of the D3-D9 system, one gets six-dimensional noncomm
tative gauge theory. Following@12#, soliton solutions are
written down. By a trivial lifting procedure, they can also b
considered as solutions of the ten-dimensional gauge th
that one started with. We examine the supersymmetry

*Present address: CARB, University of Maryland Biotechnolo
Institute, Rockville, MD 20850.

1Earlier discussions of D-branes as instantons can be found
example, in@1,2#.

2We thank E. Witten for bringing this paper to our attention.
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serving conditions and observe that the supersymm
breaking pattern is equivalent to the constraint equation
tained for the D3-D9 system. This can be viewed as a g
eralization of the previous results in the literature whe
similar observations were made for lower codimensio
cases.

The rest of the paper is organized as follows. In Sec.
we consider a D3-D9-brane system with the only nonz
components transverse to the D3-brane. The boundary
dition at one end of the open string is different from the o
at the other end. This makes it necessary, for any poss
residual supersymmetry, to impose an extra constraint am
supersymmetry parameters in addition to the ordinary
that breaks one-half of the supersymmetry. In Sec. III,
consider anN51 supersymmetric gauge theory inD510
and dimensionally reduce it to six dimensions that have
nonzeroB components. Therefore the six-dimensional theo
is noncommutative. We show that the supersymmetry bre
ing pattern for the soliton solutions is equivalent to that
the D3-D9 system. Although the supersymmetry gets co
pletely broken for a generic configuration of theB field, one
can choose the values of theB components such that th
system has residual supersymmetry. It is shown in Sec
that there are no tachyons for those values of theB field. We
end with conclusions in Sec. V.

II. OPEN SUPERSTRING ANALYSIS

Consider an open superstring in a flat ten-dimensio
background. We turn on a constantB field and impose Di-
richlet boundary conditions appropriate for a given D-bra
configuration. We briefly review@17,18# for a D3-brane case
where the authors considered aB field polarized along the
brane direction. Then we move to the case of a transversB
field.

In the Green-Schwarz formulation, the action with aB
field is given by3

or
3We denote the coordinate byM5(m,m), m50, . . . ,3,

m54, . . . ,9.
©2001 The American Physical Society06-1
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S52
1

2pE d2s@A2ggi j P i
MP j

NhMN

12i e i j ] iX
M~ ū1GM] ju

12 ū2GM] ju
2!22e i j ~ ū1GM] iu

1!

3~ ū2GM] ju
2!1e i j ] iX

M] jX
NBMN#. ~1!

By taking the variations with respect toX and u, one can
obtain the following boundary terms:

dXM~Ps
M2 i ū1GM]tu

11 i ū2GM]tu
2!1dXM]tX

NBN
M

2 i ~ ūAGMduA!Ps
M1 i ]tX

M~ ū1GMdu12 ū2GMdu2!

1~ ū1GMdu1ū2GM]tu
22 ū2GMdu2ū1GM]tu

1!us50,p

50. ~2!

With the B field whose nonzero components are only alo
the brane directions, the equation above becomes

dXM~Ps
M2 i ū1GM]tu

11 i ū2GM]tu
2!1dXm]tX

nBn
m

2 i ~ ūAGMduA!Ps
M1 i ]tX

M~ ū1GMdu12 ū2GMdu2!

1~ ū1GMdu1ū2GM]tu
22 ū2GMdu2ū1GM]tu

1!us50,p

50. ~3!

The X variation vanishes if one imposes the followin
boundary conditions:

]tX
m50, ]sXm1]tX

nBn
m50,

ū1Gm~]s1]t!u
11 ū2Gm~]s2]t!u

250. ~4!

The part containingdu can be rewritten as

i ]sXm~ ū1Gmdu11 ū2Gmdu2!1 i ]tX
m@~11B!mnū2Gndu2

2~12B!mnū1Gndu1#1 ū1GMdu1ū1GM]tu
1

2 ū2GMdu2ū2GM]tu
250. ~5!

This can be satisfied by imposing the following relation b
tween the twou ’s:

u25P~Bi!u
1 at s50,p, ~6!

where

P~Bi![e(2YmnGmns3/2)is2G0•••3, ~7!

with

Y5
1

2
lnS 12B

11BD . ~8!

Now, we consider the D3-D9 system having aB field along
the transverse directions to D3. The boundary conditions
as follows:
04600
g

-

re

s X0 X1 X2 X3 X4 X5 X6 X7 X8 X9

0 N N N N D D D D D D

p N N N N ND ND ND ND ND ND

where ND denotes the boundary condition of the type]sX
1]tX•B. It is convenient to examine the boundary cond
tions ats50 ands5p separately.

A. Boundary conditions at sÄ0

First consider boundary conditions ats50. We require
the following conditions:

]tX
m50,

]sXm50,

ū1GM~]s1]t!u
11 ū2GM~]s2]t!u

250. ~9!

Two remarks are in order: first, it is important that theB field
does not appear in the equations above whereas it does
pear in the boundary conditions ats5p. This difference is
what induces an additional constraint on supersymmetry
rameters as will be discussed below. Second, although
can replaceGM in the third equation byGm, we keep the full
G matrices because ats5p we cannot make the same re
placement. With these conditions, it is easy to show that
dX part vanishes. The remainingdu part is as follows:

2 i ]sXm~ ū1Gmdu11 ū2Gmdu2!1 i ]tX
m@dmnū1Gndu1

2dmnū2Gndu2#1 ū1GMdu1ū1GM]tu
1

2 ū2GMdu2ū2GM]tu
250, ~10!

which implies that a relation betweenu1 andu2 is

u25Ps50~B'!u1, ~11!

where

Ps50~B'!5 is2G4•••9 . ~12!

B. Boundary conditions at sÄp

The boundary conditions that remove thedX part are

]sXm50,

]sXm1]tX
nBn

m50,

ū1GM~]s1]t!u
11 ū2GM~]s2]t!u

250. ~13!

Unlike Eq. ~9!, Eq. ~13! contains theB field, which will, in
turn, modify the constraint equation~11! accordingly. The
remainingdu part is
6-2
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i ]sXm~ ū1Gmdu12 ū2Gmdu2!1 i ]tX
m@~211B!mnū

2Gndu2

1~11B!mnū
1Gndu1#1 ū1GMdu1ū1GM]tu

1

2 ū2GMdu2ū2GM]tu
250. ~14!

The modified relation between theu ’s is

u25Ps5p~B'!u1, ~15!

where

Ps5p~B'!5e(2YmnGmns3/2)is2G4•••9, ~16!

with

Y5
1

2
lnS 11B

12BD . ~17!

The action~1! is invariant under the following supersymm
try transformation:

dXM5 i ēAGMuA,

du5eA. ~18!

In order for these transformations to be consistent with
boundary conditions discussed above, it must be satis
that

e25Ps50~B'!e1, e25Ps5p~B'!e1. ~19!

This implies

YmnGmne
150, YmnGmne

250. ~20!

In the limit a8→0 discussed in@20#, the leading term of Eq
~17! is

YmnGmn;S 1

BD mn

Gmn . ~21!

It follows that we have the following two conditions:

e25 is2G4, . . . ,9e1 ,

S 1

BD mn

Gmne150. ~22!

The first equation breaks one-half of the supersymme
leaving 16 supercharges. The second equation breaks fu
leaving no supersymmetry in general. We can apply
above discussion, e.g., to the case of D5-D9 by replac
G4, . . . ,9 with G6, . . . ,9. The corresponding open string theo
is supersymmetric only forB’s having special properties. Fo
the D5-D9 case, the supersymmetry preservingB is self-dual
or anti-self-dual and in this case the system preserves e
supercharges.

We also require that the boundary conditions for t
bosonic fieldsX’s be compatible with the supersymmet
04600
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transformations and obtain further constraints for the fer
onsu ’s. It is easy to check that the boundary conditions
fermions at both ends are

~]s1]t!u150, ~]s2]t!u250. ~23!

These conditions are consistent with the light cone gauge
they solve the last conditions in Eqs.~9! and ~13!.

III. GAUGE THEORY ANALYSIS

In this section, we consider anN51 Abelian gauge
theory in ten dimensions among which six directions a
noncommutative. We use then the methods developed
@10–15# for noncommutative spaces to construct solitons
the six-dimensional noncommutative gauge theory. We co
pare the supersymmetry breaking pattern for these solut
with the one obtained in the previous section. We obse
that they are equivalent to each other.

The action for anN51 Abelian gauge theory4 in D510
is

2S5E d10xAGS 1

4
FMNFMN1

1

2
C̄GMDMC D . ~24!

Since we take the sameB-field configuration as in the previ
ous section, six dimensions become noncommutative.
noncommutativity is parametrized by

@x4,x5#[ iQ45[ iu1, @x6,x7#[ iQ67[ iu2,

@x8,x9#[ iQ89[ iu3. ~25!

It is also convenient to introduce a complex coordinate s
tem defined by

z15
x41 ix5

A2
, z25

x61 ix7

A2
, z35

x81 ix9

A2
~26!

and define the creation and annihilation operators

ap
†[ iQpq̄

21
z̄q̄, ap̄[2 iQ p̄q

21
zq, p51,2,3. ~27!

Here we have chosen the annihilation and creation opera
in accordance with the positivity of theu1,2,3. Namely, for
positiveu ’s the above notation is valid, whereas for negati
u ’s we have to switch the operators. We assume from now
that ouru ’s are all positive. In the ten-dimensional action, w
replace the integration over the six noncommutative dim
sions with a trace over the Hilbert space enacted by the
ation and annihilation operators. We also replace the cov
ant derivative and the gauge field strengths on
noncommutative space in an appropriate way:

4For an ordinary Abelian gauge theory, it is a partial derivative]M

that acts onC. For a theory of noncommutative spaces the fields
not commute and it is necessary to replace the partial derivative
a covariant derivative.
6-3
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Dp→2@Cp ,#,

Fpq̄→ i@Cp ,C̄q̄#2Qpq̄
21 ,

Fpq→2 i@Cp ,Cq#,

Fp̄q̄→2 i@C̄p̄ ,C̄q̄#, ~28!

whereCp52 iAp1ap
† . We consider, for simplicity, that the

metric on the noncommutative directions takes the sim
form Gpq̄5dpq̄ . We make the above replacements in t
ten-dimensional action and obtain

S52
~2p!3A2detQ

gY M
2 E AG d4x TrS 1

4
FmnFmn

1
1

2
~@Cp ,C̄q̄#1 iQpq̄

21
!~@Cq ,C̄p̄#1 iQqp̄

21
!2

1

2
@Cp ,Cq#

3@C̄p̄ ,C̄q̄#1DmCpDmC̄p̄1
1

2
c̄GmDmc1

1

2
c̄Gp@C̄p̄ ,c#

2
1

2
c̄G p̄@Cp ,c# D . ~29!

The supersymmetry transformations in six dimensions can
obtained from those of the ten-dimensional theory by
same replacements we used for the action:

dAm5
1

2
h̄Gmc,

dCp5
1

2
h̄Gpc,

dc52
1

4
~FmnGmn12DmCpGmp1FmnG

mn!h,

~30!

wherem,n5p,p̄ in the last equation. These transformatio
have the same form even when we leave the metricG arbi-
trary.

We consider now the solitonic solutions presented in@12#
and establish when these solutions preserve supersymm
The solutions have nontrivial values forCp and do not de-
pend on the commutative coordinates:

Cp5S†ap
†S, C̄p̄5S†apS. ~31!

The operatorS has the property thatSS†51 and S†S51
2P0, whereP0 is the projector on the vacuumu0& (apu0&
50 for any p). As such, it is a static solution and has
single unit of topological charge. The solution has fie
strength in the noncommutative directions:Fpq̄52P0Qpq̄

21 .
Solutions with arbitrary positive chargem are obtained by
simply replacingS with Sm. The discussion for the singl
charged solutions applies equally well form.1. The first
two equations of Eqs.~30! are trivially satisfied. The first and
04600
le
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second terms of thec variation vanish once the solution i
substituted. Therefore the only nontrivial part is the last ter

dc52
1

4
Fpq̄G

pq̄e50. ~32!

Since the indices in Eqs.~22! are contracted by using th
closed string metricgmn , we need to convert Eq.~32! into an
expression where the indices are also contracted with res
to the closed string metric. Using the solution, one can
write Eq. ~32! as

dc5
1

4
P0Q21

pq̄E
p

cE
q̄

d̄Gcd̄e, ~33!

wherec and d̄ (p and q̄) are flat~curved! indices.Ec
p rep-

resents the transverse components of the inverse 10-bei
the open string metric. They are related to the correspond
components of the closed string 10-beins,ep

c , by @20#

Ep
c5 i~2pa8!Bps̄e

s̄c. ~34!

Substitution of Eq.~34! into Eq. ~33! leads to

dc5
1

4p2a82
P0S 1

BD mn

Gmne50, ~35!

where now the contractions are with respect to the clo
string metric. Therefore this condition is equivalent to t
one obtained in the previous section.

The result shows that in gauge theory we can const
supersymmetric solutions by the above method only in
case where the noncommutative parameters satisfy some
ticular relations. For genericQ ’s the solutions do not pre
serve supersymmetry. In the case of four noncommuta
dimensions, by a similar analysis, we conclude that s
instantons preserve supersymmetry only for self-dual or a
self-dual noncommutative parameters.

IV. FLUCTUATIONS

For properly chosen values ofQ ’s, one has residual su
persymmetry. By studying fluctuations around the solito
configuration, we show here that the tachyon does not
pear. From the action~29! we can write the potential for the
bosonic fieldsC’s:

V~C!5
1

2
Tr$~@Cp ,Cq̄#1 iQpq̄

21
!~@Cq ,Cp̄#1 iQqp̄

21
!

2@Cp ,Cq#@Cp̄ ,Cq̄#%, ~36!

where we use summation over repeated indicesp, p̄. The
above potential can be used also for the other cases of in
est: D0-D2@12# and D0-D4 if we considerp,q51 andp,q
51,2, respectively. We consider fluctuationsCp5Cp

01dCp

around the solitonic solution,Cp
05S†ap

†S, and decompose
them in terms of the projection operatorsP0 and 12P0:
6-4
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dCp5Ap1T̄p1Wp1S†DpS,

Ap5P0dCpP0 , T̄p5~12P0!dCpP0 , ~37!

Wp5P0dCp~12P0!, S†DpS5~12P0!dCp~12P0!,
~38!

S5u~0, . . . ,0!&^~1,0, . . . ,0!u1¯ .

There is a corresponding decomposition for the Hermit
conjugates of these. Focusing only on the part of this po
tial that can give a tachyon, we need only the first term in
expression ofS. The first order term in fluctuations is zer
and the second order term splits into two independent ter
one forT’s andW’s and the other forD ’s. We keep the one
for T’s andW’s because the tachyonic mode will come fro
this:

V2~T,W!5Tr@2iQqp̄
21

~WpW̄q̄2Tq̄T̄p!1~Cp
0C̄p̄

0
1C̄p̄

0
Cp

0!

3~W̄q̄Wq1T̄qTq̄!2C̄p̄
0
C̄q̄

0
T̄pWq2Cp

0Cq
0W̄p̄Tq̄

2C̄p̄
0
Cq

0T̄pTq̄2Cp
0C̄q̄

0
W̄p̄Wq#. ~39!

Using the simplified notationsu1,2,3, we obtain the following
potential in second order:

V2~T,W!5TrS 2~WpS†ap̄1Tp̄S†ap
†!~aq

†SW̄q̄1aq̄ST̄q!

1Tp̄S†~ak
†ak̄1ak̄ak

†!ST̄p1WpS†~ak
†ak̄

1ak̄ak
†!SW̄p̄1

2

uk
~WkW̄k̄2Tk̄T̄k! D . ~40!

We introduce in the expression for the potential the ma
components for the operatorsT’s andW’s:

Tp5Tp
1u~0,0, . . . ,!^^~1,0, . . . ,!u1•••,

W̄p5W̄p
1u~1,0, . . . ,!&^~0,0, . . . ,!u1•••, ~41!

where by the ellipsis we mean other states of the typeu0&^ u
or u &^0u, respectively. As can be seen from Eq.~40!, all the
modes exceptTp

1 will have positive mass. The mass terms f
Tp

1 modes are

(
p

uTp
1u2S (

k

1

uk
2

2

up
D . ~42!

We observe that for the D0-D2 system studied in@12# (p
51) we always have a tachyon. The condition for not hav
a tachyon in the case of D0-D4 is thatu15u2, namely, the
self-duality condition forQ. For our case, the conditions a
(k

3(1/uk)22/up>0 for anyp. The supersymmetry conditio
for our solution implies indeed that there is no tachyon in
system.
04600
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V. CONCLUSIONS

The best studied example of the AdS conformal fie
theory ~CFT! correspondence@21–23#, the duality between
IIB supergravity, and N54, d54 super Yang-Mills
~SYM! theory was motivated in@26# by taking the viewpoint
that there are two different but dual string theory descriptio
of the same objects, D3-branes. The viewpoint seems
point toward a duality between the two stringy descriptio
themselves, i.e., between a type IIB closed superstring
scription and an oriented open superstring description.

It was suggested in the same paper that in each des
tion open strings, closed strings, and D3 branes may no
appear ‘‘explicitly.’’ For example, it was speculated that
the type IIB closed string description the presence of op
strings on the D-branes might be only associated with
size of the nonextremality of a D-brane soliton solutio
Similar subtleties may lie in the open string description
the realization of closed strings. A related discussion can
found in @24,25# for open string field theory in tachyoni
vacua.

As far as D-branes are concerned, open string theory
an efficient way of realizing them: they appear as Dirich
boundary conditions.5 As is well known, Dirichlet boundary
conditions are obtained throughT duality. Since the duality
connects two equivalent descriptions, it is natural to a
whether open string theory has another way of realiz
D-branes.

With this motivation, we have considered the open str
description of the D3-D9 system in the Green-Schwarz f
mulation with the nonzero components of theB field trans-
verse to the D3-brane. The boundary conditions of
D3-D9 system give an extra condition for residual supersy
metry. Then we considered the supersymmetric gauge th
in ten dimensions and its dimensional reduction to six spa
dimensions. Turning on a constantB field in six dimensions,
the gauge theory becomes noncommutative. We have sh
that the conditions for residual supersymmetry are equ
lent, in an appropriate limit, to that of the D3-D9 syste
mentioned above. This can be viewed as a generalizatio
the previous results in the literature concerning lower co
mensional cases where various~noncommutative! solitons
were identified as D-branes.

Note Added. Sometime after our paper was published
paper@29# appeared that has some overlap with our resu

5It was argued in@26# with evidence@27,28# that in the context of
AdS/CFT D-branes may not merely be boundary conditions
provide a curved background for open strings to propagate in. H
ever, we did not, in this article, compare the open string descrip
of D-branes with the realization of them as a supergravity soluti
but have remained within the open string and gauge theory des
tion. Therefore, the background was taken to be flat for simplic
6-5
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