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Noncommutative Sp„2,R… gauge theories: A field theory approach to two-time physics
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Phase space and its relativistic extension is a natural space for realizing Sp(2,R) symmetry through canoni-
cal transformations. On a (D32)-dimensional covariant phase space, we formulate noncommutative field
theories, where Sp(2,R) plays a role as either a global or a gauge symmetry group. In both cases these field
theories have potential applications, including certain aspects of string theories,M theory, as well as quantum
field theories. If interpreted as living in lower dimensions, these theories realize Poincare´ symmetry linearly in
a way consistent with causality and unitarity. In case Sp(2,R) is a gauge symmetry, we show that the spacetime
signature is determined dynamically as (D-2,2). The resulting noncommutative Sp(2,R) gauge theory is
proposed as a field theoretical formulation of two-time physics: classical field dynamics contains all known
results of ‘‘two-time physics,’’ including the reduction of physical spacetime fromD to (D-2) dimensions, with
the associated ‘‘holography’’ and ‘‘duality’’ properties. In particular, we show that the solution space of
classical noncommutative field equations put all massless scalar, gauge, gravitational, and higher-spin fields in
(D-2) dimensions on equal footing, reminiscent of string excitations at zero and infinite tension limits.
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I. INTRODUCTION

In this paper, we construct (D32)-dimensional noncom
mutative field theories~NCFT’s! with the symmetry group
Sp(2,R)3SO* (D) and study their properties. We consid
Sp(2,R) either as a global or as a gauge symmetry. Deno
D32 dimensional coordinates asXm

M , the group Sp(2,R)
3 SO* (D) acts on them51,2 index as a doublet„2,1… and
on theM51,2,•••,D index as a vector„1,D…. A variety of
choices are possible for the signaturehMN in D dimensions
or the corresponding real form of the SO* (D)[SO(D
2n,n) group, wheren is the number of timelike dimensions
Theories with Euclidean signature arise most prominently
the Weyl-Wigner-Moyal formulation@1–3# of nonrelativistic
quantum mechanics, and in the noncommutative sector oM
theory@when a magnetic background field is present, wit
maximum possible symmetry Sp(2,R)3SO(5)]. For a
Lorentzian signature,n>1, one can view the coordinate
Xm

M ’s as labeling a relativistic quantum phase space,X1
M

5XM andX2
M5PM, extending the Weyl-Wigner-Moyal for

mulation of the nonrelativistic quantum mechanics@1–3# to
relativistic situations. One can also view them as nonco
muting spacetime coordinates of two point particles, wh
the noncommutativity is induced by the presence of a ba
ground field. Because vastly different interpretations are p
sible, more broadly, we expect the formalism and meth
developed for these noncommutative field theories to hav
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wide range of applications in various physical contexts.
Our main results for these noncommutative field theor

are twofold.
If Sp(2,R) is a gauge symmetry, the spacetime signat

is determined dynamically as (D22,2). The gauge-invarian
sector of these theories describes commutative dynamic
(D22)-dimensional spacetime, with a (D23,1) signature,
with linearly realized Poincare´ and, nonlinearly realized
higher spacetime symmetries. They offer anab initio field
theory formulation of ‘‘two-time physics’’~2T physics!
@4–8# in D-dimensional spacetime, a result established
interpretingXm

M as coordinates of theD32 dimensional co-
variant phase space.

If Sp(2,R) is a global symmetry, the spacetime signatu
is left arbitrary. Unitarity and causality force an interpret
tion of these theories as describing dynamics in spacetim
dimensions lower thanD.

In investigating this sort of noncommutative field the
ries, the general question we have posed ourselves is
following. Quantum field theories are traditionally formu
lated on configuration space. Alternatively, what if one
tempts to formulate the theories on corresponding ph
space? In the disguise of nonrelativistic quantum mechan
precisely this sort of an alternative formulation was propos
by Weyl @1#, Wigner@2#, and studied further by Moyal@3#. It
is referred as ‘‘deformation quantization,’’ an alternative
the traditional quantization based on Hilbert space and lin
operators therein. In this approach, dynamical equation
quantum mechanics, either the Schro¨dinger or the Heisen-
berg equation of motion, are replaced by a sort of evolut
equation of distribution functions over phase space. Ma
ematically, the Weyl-Wigner-Moyal formalism is equivale
©2001 The American Physical Society05-1
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ITZHAK BARS AND SOO-JONG REY PHYSICAL REVIEW D64 046005
to noncommutative field theories arising as a limit of stri
theories@9–11#, and is identifiable as the Euclidean casen
50, in the present context.

Extension of the deformation quantization to systems w
n>1 poses several peculiarities, all of which lead to a li
with two timelike dimensions. Lorentz covariance SO* (D)
implies that time and energy~one-particle Hamiltonian!
ought to be included, along with spatial coordinates and m
menta, as part of covariant phase space. If so, genera
nonical transformations consistent with Sp(2,R)3SO* (D)
would require the one-particle Hamiltonian to transfo
along with coordinates and momenta, thus mapping one
tem with a given one-particle Hamiltonian to another with
different one-particle Hamiltonian. This is a central featu
that, for n52, 2T physics has embodied through loc
Sp(2,R), leading to the ‘‘2T to 1T holography,’’ and ‘‘dual
ity’’ property among various systems with one physical tim
@5,4#. Apparently, a relativistic field theory with more tha
one timelike dimensions introduces ghosts, as is easily s
by expanding a fieldf(X,P) in powers of momenta whos
coefficients are local tensorsfM1•••Ms(X). Timelike compo-
nents of these tensors could give rise to negative-norm, g
fields. An approach for eliminating the ghosts is to prom
Sp(2,R) to a gauge symmetry, for example, by demand
equivalence under general canonical transformations.
vanishing of the Sp(2,R) gauge generators on physical sta
determines dynamically that spacetime must have two ti
like dimensions.

It turns out that the resulting noncommutative Sp(2,R)
gauge theories possess a rich structure, most notably
‘‘holography’’ property, in which aD-dimensional system is
holographically represented by various (D22) -dimensional
systems, each with different dynamics. The signature of
(D22)-dimensional spacetime is (D23,1), where the time-
like direction in each (D23,1)-dimensional system is give
by a combination of the two timelike dimensions in the e
bedding (D22,2)-dimensional spacetime. With one timelik
dimension, the (D22)-dimensional systems are causal a
have a unitary spectrum of physical states. The Sp(2R)
gauge symmetry acts as a sort of ‘‘duality’’ in that all the
different dynamical systems are included in the Sp(2R)
gauge orbit that describes the physical gauge invariant se

This paper is organized as follows. In Sec. II, for lat
application, we explain conceptual issues in construct
field theories of 2T physics and recapitulate some result
earlier approaches relevant for later sections. In Sec. III,
discuss deformation quantization on covariant phase sp
and develop a formalism that will be used in later sectio
In Sec. IV, we construct examples of noncommutative fi
theories with global Sp(2,R)3SO* (D) symmetry for a ge-
neric signature of spacetime. Results of these two sect
are more general and ought to be applicable to a wide ra
of physical problems. In Sec. V, we promote the Sp(2,R)
automorphism to a gauge symmetry and construct nonc
mutative Sp(2,R) gauge theories. We show that the conditi
for physical states dynamically determines that the signa
of spacetime must be (D22,2), so inevitably we end up with
2T physics. We then find a class of nontrivial special clas
cal solutions that reproduce all previously known results
04600
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2T physics for spinless particles and, most notably, find t
the solution space provides a unified description of ga
fields, including the gravitational and high spin gauge fiel
Section VI summarizes various issues left for future work

II. 2T PHYSICS: CONCEPTS AND FIELD THEORY

Part of the motivation for the present work has aris
from the following question: What is the interacting fie
theory, whose free propagation is given by the first quanti
worldline theory of 2T-physics@4–8#? Free field equations
emerge, in covariant first-quantized description, by impos
constraints on states in configuration space, e.g., world
reparametrization constraints leads to the Klein-Gord
equation @]22m2#f(X)50, worldsheet reparametrizatio
constraints lead to string field equations through the Viras
constraintsLnf„X(s)…50. These constraints are the gene
tors of the underlying gauge symmetries and hence the s
obeying them are gauge invariant physical states. In sev
known situations, the constraint equations can be deri
from a field theory, when the field interactions are neglect
Field interactions promote the first quantized theory to
interacting field theory which can then be analyzed both w
classical and second quantized methods.

In 2T physics, the fundamental gauge symmetry
Sp(2,R) and its supersymmetric generalizations. Sp(2,R)
acts as symplectic transformation on coordinates and
menta of a particle’s phase space (XM,PM)[Xm

M . For a spin-
less particle, the worldline action withlocal Sp(2,R) sym-
metry is given by

I 5E dtF Ẋ1
MX2M2

1

2
Amn~t!Q̂mn~X1 ,X2!G , ~1!

where,Amn(t) denotes three Sp(2,R) gauge fields and the
symmetricQ̂mn5Q̂nm , with m,n51,2, are the three Sp(2,R)
generators, whose Poisson brackets obey sp(2,R) Lie alge-
bra. This action is Sp(2,R) gauge invariant provided theQ̂mn

satisfy the Sp(2,R) Lie algebra under Poisson brackets@5,8#.
The equations of motion forAmn lead to three classical con
straints,Q̂mn(X,P)50, which become, upon first quantiza
tion, differential operator equations,

Q̂mnS X1 ,
2 i ]

]X1
Dc~X1!50, ~2!

with an appropriate operator ordering. The simplest situat
occurs for the following form of the generators which w
refer to as the ‘‘free’’ case~omitting the hat symbol!

Q115X•X, Q125X•P, Q225P•P, ~3!

where the dot products,X•P5XMPNhMN , are constructed
using a flat metrichMN of unknown signature~which later is
dynamically determined to be„D22,2)…. For the particle in
background fields such as Yang-Mills, gravity, higher-sp
gauge fields,Q̂mn(X,P) takes a more general form@6,8#.
With this example, one can see that theQ̂22 equation in Eq.
~2! is nothing but~a generalization of! the massless Klein-
5-2
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Gordon equation. In fact, the~22! components of the
Sp(2,R) gauge fields and generators are associated with
worldline reparametrization invariance. Together with the
ditional transformations generated byQ̂11 and Q̂12, world-
line reparametrization is promoted to the non-Abelian lo
Sp(2,R) symmetry, which may also be regarded as local c
formal symmetry on the worldline@5#.

One of the goals of this work is to construct interacti
field theories with Sp(2,R) gauge symmetry, which would
yield the first quantized 2T physics physical state equati
~2! from the linearized part of the field equations of motio
The obvious benefit of these theories is, of course, to rea
formulation of field interactions from first principles base
on gauge symmetry. An interesting outcome of this approa
as will be elaborated in Sec. V, viz. noncommutative Sp(2R)
gauge theories, is that all massless fields in (D22) dimen-
sions, scalar, gauge, gravity, and higher-spin gauge fields
all packaged into the noncommutative Sp(2,R) gauge field
Amn(X,P) in a D32-dimensional covariant phase spac
There seems to be an intriguing relationship between
packaging of higher-spin gauge fields and a subset of m
less string modes at infinite Regge slope~tensionless string!
or zero Regge slope~point-particle! limits @8#. The noncom-
mutative Sp(2,R) gauge theories offers an approach for aT
physics description of fields and the formulation of nonline
interactions among themselves.

The notion of two timelike dimensions raises vario
technical and conceptual questions and points to de
physics. Remarkably, the most obvious and troubleso
problem concerning causality and unitarity is solvable, a
transparently understood in the worldline approach toT
physics. The reason for two timelike dimensions is as f
lows. The Sp(2,R) gauge invariance imposes constrain
Qmn'0, viz. physical states are defined as gauge sing
Solving them classically, one finds that nontrivial dynam
is possible only for two or more timelike dimensions. How
ever, the Sp(2,R) gauge symmetry can remove all the gho
only if the number of timelike dimensions do not exce
two.1 Hence, Sp(2,R) gauge invariance demands two tim
like dimensions, no less and no more.

A similar analysis is applicable in the present context a
will lead precisely to the same conclusion: noncommutat
Sp(2,R) gauge theories on aD32-dimensional phase spac
with signature (D22,2) are unitary@as there are precisel
two timelike dimensions! and causal~as, in unitary gauge

1As an illustration, take the simplest case Eq.~3! wherein the
inner productsX•X5XMXNhMN , etc. are defined with a flat metri
of unknown signature. For Euclidean metric, the only solution i
trivial one,XM5PM50. For Lorentzian metric with a single time
like dimension,XM and PM ought to be parallel, and is a trivia
system since it lacks angular momentum. For Lorentzian me
with more than two timelike dimensions, the Sp(2,R) gauge invari-
ance is insufficient to remove all the ghosts. For Lorentzian me
with precisely two timelike dimensions, Sp(2,R) gauge invariance
is just enough to remove all the ghosts. Furthermore, causali
not violated as, in a unitary gauge, there is only one timelike
mension.
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the physical spacetime is reduced to (D22) dimensions
with one timelike dimension#. In particular,
(D22)-dimensional spacetime symmetries—Galilean, Po
caré, conformal, or even general coordinate invariance
arise as symmetries.

If 2T physics with Sp(2,R) gauge symmetry is equivalen
to one-time ~1T! physics, what does one gain from th
former formulation? By embedding 1T physics into 2T phy
ics, one is led to a notion of ‘‘holography’’ between 2T an
1T physics: a given 2T action inD dimensions describes
family of 1T actions in (D22) dimensions. Examples dis
playing these properties have been found in worldline a
field theory formulations of 2T physics@4,5,7#. The ‘‘holog-
raphy’’ is intimately related to the issue of ‘time’: whic
~combination! of the two times corresponds to the caus
evolution parameter of the physical 1T systems? In
worldline formulation one can rephrase this question
which combination ofX0(t),X08(t) is identified with the
proper timet? It turns out that Sp(2,R) gauge orbit in the
physical sector,Q̂mn(X,P)50, encompasses all possib
combinations. Furthermore, the Sp(2,R) gauge symmetry
thins out the spacetime degrees of freedom fromD to (D
22) dimensions, giving rise to the holography proper
Thus, different 1T theories in (D22) dimensions emerge a
a result of different choices of the Sp(2,R) gauge fixing, but
they all represent the physical sector ofD dimensional 2T
theory. This also implies that, within a given 2T theory, d
ferent 1T theories are related to one another via a sor
‘‘duality:’’ the Sp(2,R) gauge transformations map a 1
theory to another, while staying within the physical~gauge-
invariant! sector of the same 2T theory. The ‘‘holography
and ‘‘duality’’ properties ought to persist in noncommutativ
Sp(2,R) gauge theories, but now accommodating nonlin
gauge interactions.

We find it compelling to understand the above phenom
in a field-theoretic formulation of 2T physics, including in
teractions. An first attempt would be in terms of fields d
fined on configuration space, as studied in@7#. However, it
became clear that a more natural and far reaching appro
would result from a phase-space formulation. Naturally,
resulting formulation is in terms of noncommutative Sp(2,R)
gauge theories, which as shown below makes contact w
the relevant parts of the configuration space approach. He
it is useful for us to review here the salient aspects of
configuration space formulation@7#.

Field equations in configuration space~in the presence of
background fields! result from imposing the constraints o
physical states as in Eq.~2!. For the free case of Eq.~3! these
take the form

qmnc~X1!50, ~4!

whereQmn→qmn refers to Hermitian differential operators

q115X1•X1 , q1252
i

2 S X1•
]

]X1
1

]

]X1
•X1D ,

a

c,

c,

is
i-
5-3
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q2252
]

]X1
•

]

]X1
. ~5!

The q11 equation is solved by

c~X1
M !5d~X1

2!w~X1
M !. ~6!

The q12 equation becomes

05q12c~X1
M !

52 i S D

2
1X1•

]

]X1
Dc~X1

M !

52 id~X1
2!F S D

2
221X1•

]

]X1
Dw~X1

M !G
X1•X150

, ~7!

where we have used an identityX1•(]/]X1)d(X1
2)

52X1
2d8(X1

2)522d(X1
2) ~as a distribution!. The q22 equa-

tion becomes

S 1

2
lMNlMNDw~X1

M !tUX1•X150

52
1

4
D~D24!w~X1

M !U
X1•X150

. ~8!

Here, 1
2 lMNlMN is the SO* (D) quadratic Casimir operato

and lMN is its generator

lMN52 i S X1
M ]

]X1N
2X1

N ]

]X1M
D . ~9!

Equation~8! is a rewriting of 1
2 qmnqmnw5 1

2 (q11q221q22q11
22q12q12)w50 after using the relation between the Sp(2,R)
and the SO(D22,2) Casimirs

1
2 lMNlMN5 1

2 qmnqmn2 1
4 D~D24!, ~10!

which is derived directly from their representations in Eq
~5!, ~9!. Thus demanding an Sp(2,R) gauge invariant physi-
cal state Eq.~4! implies that such states form an irreducib
representation of SO* (D) with a fixed eigenvalue for the
quadratic Casimir operator of SO* (D) as given in Eq.~8!.
The higher Casimir operators for SO* (D) can be computed
in the same way, and shown that they are fixed numb
Hence the physical states in the free case occupy a spe
representation of SO* (D)5SO(D22,2). This representa
tion is a unitary representation, and are referred to assingle-
ton or doubletonrepresentation, depending on the dimens
D.

The above differential equations, Eqs.~6!–~8!, have non-
trivial solutions only if there are two timelike dimension
Moreover, the particular SO* (D) representation emerging i
this way is unitary provided there are again two timeli
dimensions. This implies that the first-quantized theory
quires SO* (D)5SO(D22,2) with two timelike dimensions
confirming the result of the classical analysis recapitula
earlier.
04600
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The holographic aspects can be studied in the 2T fi
theory. One holographic picture is the (D22)-dimensional
massless Klein-Gordon equation, derived originally by Dir
@12#. Another is the nonrelativistic Schro¨dinger equation, and
yet another is the scalar field equation in anti-de Sitter ba
ground with a quantized mass, etc.@7#. In each of them, the
SO(D22,2) automorphism of the 2T theory arises with d
ferent physical interpretation. It is interpreted as conform
symmetry of the Klein-Gordon equation while, for others,
dynamical symmetry or anti-de Sitter symmetry etc. The
istence of this symmetry in some of the 1T theories is s
prising, but it is understood naturally within the 2T fram
work. Furthermore, all 1T holographic pictures of the free
physics theory ~free massless particle, AdSd particle,
AdSd2k3Sk particle, H-atom, harmonic oscillator in one le
dimension, etc.! occupy the same singleton/doubleton rep
sentation described above@5#.

Generalizations of the same approach to field theory,
cluding field interactions, and including spinning particle
gauge, and gravitational fields, etc. were accomplished@7#.

However, one unsatisfactory aspect is that the equat
qmnc5••• are not all treated on an equal footing: theq22
condition, including interactions, is derivable from an inte
acting 2T theory action; however, theq11 andq12 conditions
do not follow directly from the action and are applied
additional constraints~although one could introduce them b
using Lagrange multipliers!. One thus anticipates@5# that 2T
field theories ought to be constructed most naturally as n
commutative field theories on the phase-space spanne
(X1

M ,X2
M) , as this is the space where the Sp(2,R) transfor-

mations are manifest, and allQmn appear on an equal foot
ing.

To construct noncommutative field theories that reprod
known results of 2T physics, we will develop some forma
ism in the next two sections. We will focus on how to mai
tain the Sp(2,R)3SO* (D) covariance manifest and stud
the theories in cases where Sp(2,R) symmetry is global or
local. The Sp(2,R) gauge symmetry is the necessary ing
dient for 2T physics and leads to the same results as
classical and the first-quantized 2T theory. In noncommu
tive field theories, however, the Sp(2,R) gauge symmetry
renders consistent interactions as well. In the free field lim
field equations in configuration space Eqs.~4!,~5! follow
naturally from the noncommutative field equations. Solutio
to these equations and their holographic 1T interpreta
coincide with the previous results@7# of the 2T field theory
in configuration space. The noncommutative field theor
also yield known results when generic background fields
turned on @6,8#. We thus find that the noncommutativ
Sp(2,R) gauge theories offer a unified approach to all a
pects of 2T physics, including interactions.

So far, we have considered mainly the phase-space in
pretation of the noncommuting coordinatesX1

M5XM, X2
M

5PM. On the other hand, as mentioned in the previous s
tion, we may also consider a noncommutative geometry
terpretation ofX1

M ,X2
M as noncommutingpositionsof two

point particles, where noncommutativity is induced by a co
stant magnetic field. This idea naturally occurred in the c
5-4
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text of a two-particle system described by (X1
M ,P1

M) and
(X2

M ,P2
M), with constraintsP1

25P2
25P1•P250 that fol-

lowed from two-particle gauge symmetries@13#. In the pres-
ence of a constant magnetic field with interactio
B(Ẋ1•X22Ẋ2•X1) the two position coordinatesX1

M ,X2
M de-

velop mutual noncommutativity.~In the infinite magnetic
field limit, the kinetic terms are negligible and then one m
reinterpret the system as a single particle, whereX15X,
X25P are phase-space variables!.2 Such a setup is analogou
in spirit to the interpretation of noncommutative field the
ries in terms of ‘‘dipole’’ behavior of an open string theory
background magnetic field.

III. ! ALGEBRA ON RELATIVISTIC QUANTUM PHASE
SPACE

In this section we develop anab initio approach. Conside
the noncommutative~NC! Moyal products for any two func-
tions f (x)!g(x) in 23D dimensions. Instead of the gener
NC spacetimexm, which satisfiesxm!xn2xn!xm5 iumn, we
are interested in a special form of the noncommutativity
rameterumn that explicitly exhibits the highest possible sym
metry. Recalling that in a real basis forxm the parameterumn

may be brought to block diagonal form with skew 232
blocks, the highest symmetry is manifest when all the 232
diagonal blocks are identical up to signs. Such aumn param-
eter has the symmetry Sp* (2D) which contains the sub
group Sp(2,R)3SO(D2n,n) for some n. For notational
convenience we will write SO* (D)[SO(D2n,n) and
Sp(2)[Sp(2,R). To exhibit this subgroup symmetry, it i
convenient to use the pair of labelsm5mM with m51,2 and
M51,2,•••,D, so that spacetime is labeled byXm

M instead of
xm, andumn is replaced by\«mnhMN, where«mn and hMN

are the invariant metrics for Sp(2) and SO* (D), respec-
tively. In this basis the Moyal!-product takes the form

~ f !g!~Xm
M !

5expS i\

2
«lshMN

]

]Xl
M

]

]X̃s
ND f ~Xm

M !g~X̃m
M !U

X
m
M5X̃

m
M

.

~11!

We define the! commutator

@ f ~X!,g~X!#!ª f ~X!!g~X!2g~X!! f ~X!. ~12!

We then have the Heisenberg algebra

@Xm
M ,Xn

N#!5 i«mnhMN, ~13!

which exhibits a global automorphism symmetry Sp(2,R)
3SO* (D). Hereafter we will set\51.

2The derivation of one particle dynamics from a two particle s
tem with two times, where noncommutativity is induced by a co
stant magnetic field, was the historical path that led to the conc
in the first paper in@5#.
04600
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In the NC limit of 11-dimensionalM theory the highest
such symmetry would be Sp(2,R)3SO(5) with Euclidean
signature. Our formalism would be useful in this physic
setting. More generally, concerning the spacetime signat
for now, we will take the signature arbitrary, say, (D2n)
spacelike andn timelike dimensions. Ultimately, we shall b
promoting the Sp(2,R) subgroup to a gauge symmetry, an
find that, as a consequence of the gauge invariance, the n
ber of timelike dimensionsn is determined uniquely to be
n52.

On this basis, there is no loss of generality if we consid
the Sp(2,R) doublet Xm

M as the doublet ofD -dimensional
spacetime positions and energy momenta:Xm

M5(XM,PM),
spanningD32 dimensional relativistic phase space. T
subgroup SO* (D) remains as a global subgroup of the re
tivistic phase space.

A. Symmetry generators on quantum phase space

Having identified the Sp(2)3SO* (D) as the global sym-
metry groups on the relativistic quantum phase space,
now investigate their Lie algebra, but in terms of the! prod-
uct through the Weyl Moyal map. Denote the Sp(2) gene
tors asQmn and the SO* (D) generators asL MN, respectively.
In terms of the! product, we have found that they are re
resented by

Qmn[ 1
2 hMNX(m

M !Xn)
N 5 1

2 hMN~Xm
M!Xn

N1Xn
M!Xm

N!

5hMNXm
MXn

N , ~14!

L MN[ 1
2 «mnXm

[ M!Xn
N]5 1

2 «mn~Xm
M!Xn

N2Xm
N!Xn

M !

5«mnXm
MXn

N , ~15!

where the symbols enclosed in parentheses or brack
(mn), @MN# etc., refer to symmetrization and antisymmet
zation, respectively. The last form ofQmn , after the star
products have been evaluated, is identical to the class
form of Eq. ~3!. The same remark applies toL MN. These
Qmn’s andL MN’s obey the sp(2)% so* (D) Lie algebras un-
der star products

@Qmn ,Qkl#!5 iF mn,kl
ab Qab , ~16!

@L MN,LKL#!5 iF MN,KL
RSL

RS ~17!

@L MN,Qmn#!5,0. ~18!

Here,Fmn,kl
ab , FMN,KL

RS denote the structure constants of t
sp(2)% so* (D) Lie algebras, respectively:

Fmn,ls
ab 5 1

2 d (m
(a«n)(kdl)

b)

and

FRS
MN,KL5 1

2 d [R
[ MhN][ KdS]

L] . ~19!

From the!-product representation of the generators,
construct the quadratic Casimir operators of Sp(2) a
SO* (D):

-
-
ts
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C2@SO* ~ D! #5
1

2
L MN!L MN , ~20!

C2@Sp~ 2! #5
1

2
Qmn!Qmn, ~21!

where indices are contracted by using the metricshMN and
«mn , respectively. Remarkably, by applying the!
-commutator relation Eq.~11!, one can show that the tw
Casimir invariants are related each other just as in Eq.~10!

C2@SO* ~ D! #5C2@Sp~2! #2 1
4 D~D24!. ~22!

Note that the relation isindependentof the signature of the
D-dimensional spacetime. In the following discussions, E
~22! will play an important role, especially, in relating th
resulting noncommutative field theory to two-time physic

B. Differential calculus on quantum phase space

On the relativistic quantum phase spaceM\ , differential
calculus may be developed from the defining algebra of
! products. We thus consider left or right multiplication of
single power ofXm

M’s from the left or the right of a function
f(X) on phase space. They are:

Xm
M!f~X!5S Xm

M1
i

2
]m

M Df~X![D m
Mf~X!, ~23!

f~X!!Xm
M5S Xm

M2
i

2
]m

M Df~X![Dm
Mf~X!. ~24!

Here, utilizing the invariant metrics«mn andhMN , we have
introduced the notation:

]m
M[hMN«mn

]

]Xn
N

such that

]m
MXn

N5«mnhMN. ~25!

The multiplications define, as the notations indicate, two
equivalent differential operators—D m

Mf(X) and Dm
Mf(X).

However, these differential operators violate the Leib
rule: D m

M(f1!f2)Þ(Dm
Mf1)!f21f1!(D m

Mf2). On the
other hand, a new differential operator obeying the Leib
rule can be defined by taking thedifferencebetween the
above two differential operators:

~D m
M2Dm

M !f~X!5@Xm
M ,f~X!#!5 i ]m

Mf~X!. ~26!
04600
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The three differential operatorsD m
M ,Dm

M ,]m
M form a com-

plete set of first-order differential operators on the quant
phase space.3

Next, consider! multiplication by two powers ofXm
M ’s on

f(X). Of particular interest are the generators,Qmn and
L MN. Their commutators define derivatives that obey t
Leibniz rule

Dmnf~X![2 i @Qmn ,f#!

5 1
2 hMN~X(m

M !]n)
N f1] (m

M f!Xn)
N !~X!

5hMNX(m
M ]n)

N f~X! ~27!

DMNf~X![2 i @L MN,f#!

5 1
2 «mn~Xm

[ M!]n
N]f1]m

[ Mf!Xn
N] !~X!

5«mnXm
[ M]n

N]f~X!. ~28!

Note the! multiplication ordering in the middle expression
After applying Eqs.~23!,~24!, however, they are expressib
in terms of ordinary products, as shown in the last expr
sions. Note further that, using Eq.~25!, these two derivations
can be expressed as total first-order derivatives:

Dmnf~X!5] (m
M ~hMNXn)

N f!~X!

and

DMNf~X!5]m
[ M~«mnXn

N]f!~X!, ~29!

implying that integrals over the phase space of these der
tions acting on smooth functions vanish identically.

Left multiplications of the generatorsQmn andL MN on a
function f(X) define second-order differential operato
Dmn ,D MN:

Qmn!f~X!5
1

2
hMNS X(m

M 1
i

2
] (m

M D S Xn)
N 1

i

2
]n)

N Df~X!

~30!

5S Xm•Xn1
i

2
Dmn2

1

4
]m•]nDf~X!

[Dmnf~X!, ~31!

3More generally, one can construct a family of first-order diffe
ential operators: D 1

M5aX1
M1bhMN( i ]/]X2

N) and D 2
M5gX2

M

2(1/a)(12bg)hMN( i ]/]X1
N) with arbitrary coefficientsa,b,g.

For a5g51 and b51/2, they reduce to Eqs.~23!,~24!. For a
51 and b5g50, they reduce to the conventional position a
momentum operatorsD 1

M[XM and D 2
M[PM52 i ]/]XM. We

shall restrict the following discussion to the derivations Eq
~23!,~24!,~26! only.
5-6
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L MN!f~X!5
1

2
«mnS Xm

[ M1
i

2
]m

[ M D S Xn
N]1

i

2
]n

N] Df~X!

~32!

5S X1
[ MX2

N]1
i

2
DMN2

1

4
]1

[ M]2
N] Df~X!

[D MNf~X!. ~33!

The • refers to contraction of indices with respect to t
SO* (D) metric hMN . Likewise, from right multiplications
of Qmn andL MN to the functionf(X), one obtains anothe
set of second-order differentiationsDmn ,DMN:

f~X!!Qmn5S Xm•Xn2
i

2
Dmn2

1

4
]m•]nDf~X!

[Dmnf~X!, ~34!

f~X!!L MN5S X1
[ MX2

N]2
i

2
DMN2

1

4
]1

[ M]2
N] Df~X!

[DMNf~X!. ~35!

These various first- and second-order left- and rig
differential operators violate the Leibniz rule, however, th
have interesting properties: from the commutation relati
of Qmn andL MN, Eqs.~16!–~18!, it follows immediately that
each of the sets of differential operators we have defi
(Dmn ,DMN,]m

M) or (Dmn ,D MN,D m
M) or (Dmn ,DMN,Dm

M)
provide inequivalent representations for the generators of
Sp(2)3SO* (D) symmetry group, as they obey the sp(
% so* (D) Lie algebra

@Dmn ,Dkl#5 iF mn,kl
ab Dab , ~36!

@D MN,D KL#5 iF MN,KL
PQD PQ, ~37!

@D MN,Dmn#50, ~38!

and rotate the first-order derivatives in the appropriate f
damental representation

@Dmn ,D l
K#5 i«nlD m

K1 i«mlD m
K , ~39!

@D MN,D l
K#5 ihNKD l

M2 ihMKD l
N . ~40!

Similar commutation relations are obeyed by the other s
of differential operators (Dmn ,DMN,]m

M) or
(Dmn ,DMN,Dm

M).
There also exists another class of second-order differe

operators of the formXm
M!f(X)!Xn

N’s. One can show, how
ever, that their algebra does not close among themselves
hence is not relevant for the representation of the Sp
3SO* (D) symmetry group.

Summarizing the result of this section, we have co
structed various first- and second-order differential operat
The Leibniz rule is obeyed by]m

M , Dmn ,DMN and violated
04600
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by D m
M , Dm

M , Dmn , Dmn , D MN, DMN. Nevertheless, in the
following discussion, all of them will play a role.

C. Projective relations

Extending further the products the field with higher po
ers ofXm

M’s, consider! multiplication between fields. Given
a set of fields that are well defined on phase space, satisf
a suitable fall off condition at infinity, the! multiplication
between them ought to correspond to another field well
fined on the same phase-space, viz.

!:Mu ^ Mu→Mu . ~41!

We will define a complete basis of fields that close under
! product, and will prove Eq.~41! via explicit calculation.
Recall that, in the context of nonrelativistic quantum m
chanics, the Wigner function defined on the particle’s ph
space@2# is the Weyl-Moyal counterpart of thediagonal
density-matrix operators. We will begin with generalizin
this correspondence to a complete set of covariant fields
fined on relativistic phase space by includingoff-diagonal
density-matrix operators.

Consider a complete set of covariant fields,wm(X1)
[^X1uwm&, m51,2,3,•••, defined on the particle’s configu
ration space, and construct all possible density matri
r̂mnªuwm&^wnu out of them. Then, noncommutative scal
fields fmn(X1 ,X2) can be defined by applying the Wey
Moyal map to the density matrix

fmn~X1 ,X2!:5E dDYwm~X1!! exp~2 iX2•Y!!wn* ~X1!,

~42!

5E dDYwmS X12
Y

2 Dexp~2 iX2•Y!

3wn* S X11
Y

2 D . ~43!

The phase-space fieldfmn(X) is nothing but the Wigner
transformation @2# of the configuration space field
wm(X1),wn(X1), now extended to a relativistically covarian
and off-diagonal form. Assuming completeness, one can c
struct acoherent superpositionto represent any noncommu
tative field in the form

f~X1 ,X2!ª( Cmnfmn~X1 ,X2!, ~44!

whereCmn are a set of constant coefficients. Therefore it
useful to learn about the properties of thefmn .

We claim that noncommutative fields of the form Eq.~42!
form a set that close under the! multiplication, as in Eq.
~41!. Explicitly, consider two noncommutative fields
fkl(X),fmn(X), of the form Eq.~42! and take the! product
between them. One calculates that
5-7
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~fkl!fmn!~X!5E dDYdDỸ~wk~X1!!e2 iY•X2!w l* ~X1!!

!~wm~X1!!e2 iỸ•X2!wn* ~X1!!

5E dDYdDỸwk~X1!!@e2 iY•X2!~w l* ~X1!

3wm~X1!!!e2 iỸ•X2#!wn* ~X1!

522DE dDY1wk~X1!!Fe2 iX2•Y1E dDY2

3w l* S X12
Y2

2 DwmS X12
Y2

2 D G!wn* ~X1!,

whereY6
M5(YM6ỸM). In going from the second to the thir

line we used the fact that under the! product, phase spac
‘‘plane-waves,’’ e2 ia•X[ exp(2iai

MXj
N«ijhMN), generate

translation on the quantum phase space: for any func
F(Xi

M) on phase space,

e2 ib•X!F~Xi
M !!e2 ia•X5e2 iX•(a1b)FS Xi

M2 1
2 ai

M1
1

2
bi

M D .

~45!

Since the integrals overY6
M are factorized, one finally ob

tains

~fkl!fmn!~X!5N lmE dDY1wk~X1!!e2 iX2•Y1!wn* ~X1!,

~46!

whereNlm is a constant

Nlm522DE dDY2w l* ~X12Y2/2!wm~X12Y2/2!

~47!

5E dDX1w l* ~X1!wm~X1!, ~48!

which denotes an inner product between two configurati
space fields, or simplyNlm5^w l uwm&. Thus the closure of
the algebra satisfied by thefmn under! products is the same
as the one satisfied by density matricesr̂mnªuwm&^wnu.

In case the configuration-space fieldswm’s form an ortho-
normal basis—take, for example, configuration-space pl
waves,eiX1•K –, viz. Nlm5d l ,m . One then obtains a covar
ant version of the orthogonality relation

~fkl!fmn!~X!5d l ,mfkn~X! ~49!

as the fundamental nonlinear relations among the nonc
mutative fields. A subset closed under the orthogonality
lation consists ofdiagonal noncommutative fieldsfmm(X),
which have the property of projection operatorsuwm&^wmu,
satisfying

~fmm!•••!fmm!~X!5fmm~X!. ~50!
04600
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In fact, such a projection operatorfmm is a relativistic gen-
eralization of the Wigner distribution function

fmm5E dDYwm~X1!! exp~2 iX2•Y!!wm* ~X1! ~51!

5E dDYwm~X12Y/2!exp~2 iX2•Y!wm~X11Y/2!.

~52!

In the solution of our NCFT equations we will use the ge
eral superposition Eq.~44! to relate 2T physics in noncom
mutative field theory to 2T physics in configuration space
discussed in the following subsection.

Incidentally, in recent works on noncommutative solito
@14#, both diagonal and off-diagonal Wigner distributio
functions have been utilized. Interpreting th
D32-dimensional phase space asD32-dimensional non-
commutative space, diagonal Wigner functions are in
preted as spherically symmetric solitons, while off-diagon
ones are interpreted as asymmetric solitons. Indeed, the
are related each other byU(`) transformations.

D. Map between phase space and configuration space

Consider the Fourier transform in theX2 variable of the
general field in NCFT

f~X1 ,X2!ªE dDY exp~2 iX2•Y!FS X12
Y

2
,X11

Y

2 D ,

~53!

whereF(XL
M ,XR

M)ª f (X1 ,Y) is a by-local field inconfigu-
ration space. If one computes the! productsX1

M!f(X1 ,X2)
andX2

M!f(X1 ,X2) acting from the left as in Eq.~23!, then
their effect is reproduced by acting only on the left variab
in F(XL

M ,XR
M) like position and derivative in configuratio

space, respectively. A similar result is obtained by act
from the right

X1
M!f~X1 ,X2!→XL

MF~XL
M ,XR

M !, ~54!

X2
M!f~X1 ,X2!→2 i

]

]XL
M

F~XL
M ,XR

M !, ~55!

f~X1 ,X2!!X1
M→XR

MF~XL
M ,XR

M !, ~56!

f~X1 ,X2!!X2
M→ i

]

]XR
M

F~XL
M ,XR

M !. ~57!

The left-hand side of these equations is equal to the Fou
transform of the right hand side as in Eq.~53!. Similarly, we
may consider the basisfmn(X1 ,X2) of the previous section
From their definition Eq.~42! we see thatF@X12(Y/2),X1

1(Y/2)# is replaced bywm@X12(Y/2)#wn* @X11(Y/2)#, and
assuming the completeness of the superposition Eq.~44!, we
have
5-8
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FS X12
Y

2
,X11

Y

2 D5( CmnwmS X12
Y

2 Dwn* S X11
Y

2 D .

~58!

Using Eq.~23!, we readily verify that the! multiplication of
X1

M ,X2
M on the phase-space fieldfmn(X1 ,X2) is equivalent

to applying X1
M and 2 i ]/]X1

M , respectively, on
configuration-space fieldswm(X1

M). Explicitly,

X1
M!fmn~X!5E dDYX1

M!~wm~X1!!e2 iX2•Y!wn* ~X1!!

~59!

5E dDY~X1wm~X1!!!e2 iX2•Y!wn* ~X1!

~60!

and

X2
M!f~X!5E dDYX2

M!~wm~X1!!e2 iX2•Y!wn* ~X1!! ~61!

5E dDYS 2 i
]

]X1
M

wm~X1!D !e2 iX2•Y!wn* ~X1!.

~62!

Therefore, the actionX1
M or X2

M on NC fields, from the left or
the right, is equivalent to the usual rules for position a
momenta acting on a complete set of wave functions in c
figuration space, as illustrated by the expressions in E
~59!,~61! or in Eqs.~54!–~57!.

Using these results, one can show similarly that for
free Qmn or LMN we have

Qmn!fmn~X!5E dDY~qmnwm~X1!!!e2 iX2•Y!wn* ~X1!,

~63!

L MN!fmn~X!5E dDY~ lMNwm~X1!!!e2 iX2•Y!wn* ~X1!,

~64!

whereqmnwm(X1) and lMNwm(X1) are given in terms of or-
dinary products or derivatives as in Eqs.~5! and~9!, respec-
tively. Thus, acting on the basic fieldswm(X1) in configura-
tion space, qmn ,lMN are the operators obeying sp(2
% so* (D) Lie algebra:

@qmn ,qab#5 iF mn,ls
ab qab ,

@ lMN,lPQ#5 iF MN,PQ
RSl

RS, ~65!

an immediate consequence of Eqs.~16!–~18!. We have seen
in the previous section that these operators have playe
prominent role in the first-quantized approach to 2T phys

The above analysis allows us to rewrite the free fi
equations of 2T physics inX1 space given in Eq.~4! as free
field equations in NCFT in noncommutative phase space
04600
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qmnwm~X1!ª0⇔Qmn!f~X1 ,X2!505f~X1 ,X2!!Qmn .

~66!

A complete set of solutions to the free NCFT equations
provided by a complete set of solutions to the configurati
space free field equations. These were already solved in@7#.
Thus the 2T to 1T holographic properties of 2T physics
NC phase space are closely related to those of the con
ration space by the above map. The complete set of st
wm(X1) form a specific unitary representation of SO(D
22,2) with quadratic CasimirD(42D)/4, namely the
singleton/doubleton, as explained in the paragraphs follo
ing Eq.~10!. Hence the noncommutative fieldf(X1 ,X2) that
satisfies the NC free field equation should be regarded as
direct product of two singletons/doubletons.

For the more general 2T physics theory in the presenc
background fields, the first quantized field equation~2! can
also be rewritten simply in the noncommutative field theo
approach as

~Q̂mn!f!~X1 ,X2!505~f!Q̂mn!~X1 ,X2!, ~67!

whereQ̂mn(X1 ,X2) contains all background fields, includin
scalar, vector~gauge field!, tensor~gravitational field!, and
higher spin fields as analyzed in@8#. The Q̂mn(X1 ,X2) are
required to obey the Sp(2) Lie algebra using star produ
since at the classical level they had to obey the same alg
using Poisson brackets

@Q̂mn ,Q̂ls#!5 i ~«nlQ̂ms1«mlQ̂ns1«nsQ̂ml1«msQ̂nl!.

~68!

Having established the desired field equations in NCFT,
cluding background fields~before adding further nonlinea
interactions among the NC fieldsf,Q̂mn), we will next pro-
ceed to developing the methodology for deriving them fro
first principles directly in the NCFT setting. This requires
study of both global and local Sp(2)3* (D) covariance in
NCFT.

IV. FIELD THEORY WITH GLOBAL Sp „2…ÃSO* „D…

SYMMETRY

Having identified the symmetry group on relativist
phase space, we next construct noncommutative field the
in which the Sp~2! symmetry is global. Since this is a ne
subject which may have more general applications, we w
first develop some general methodology before returning
the 2T physics problem.

We begin with specifying Sp(2)3SO* (D) representa-
tions to the noncommutative fields. The generators that
on the relativistic phase space areQmn and L MN, Eqs.
~14!,~15!. Noncommutative fields of different defining repre
sentations are specified, depending on whether the gener
act on fields from the left, the right, or as a commutat
Additionally, the fields can carrym,n,•••;M ,N,••• or
spinor indices, thus describing states of higher spin in Sp
or SO* (D).
5-9
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A. ‘‘Adjoint’’ representations

By a noncommutative scalar fieldf(X) in ‘‘adjoint’’ rep-
resentation of Sp(2)3SO* (D), we refer to the transforma
tion rules:

dspf~X!52
i

2
vab@Qab ,f#!~X!5

1

2
vabDabf~X!,

~69!

under infinitesimal Sp~2! rotation, wherevab denote three
infinitesimal rotation parameters, and

dsof~X!52
i

2
vMN@L MN,f#!~X!5

1

2
vMNDMNf~X!,

~70!

under infinitesimal SO* (D) rotation, wherevMN denote
D(D21) infinitesimal parameters of SO* (D) rotations.
Note that the latter transformation involves the total ‘‘angu
momentum’’ operatorX1

[ M]1N]1X2
[ M]2N] , rotating bothX1

M

andX2
M coordinates of the relativistic phase space.

From Eq. ~69!, one finds Sp~2! transformation rules for
various differential operators acting on the scalar field. E
plicitly,

dsp~]m
Mf!~X!5]m

MS 1

2
vabDabf D ~X! ~71!

5
1

2
vabDab~Dm

Mf!~X!1vm
b~]b

Mf!~X!.

~72!

The second term arises because]m
Mf transforms as a Sp~2!

doublet as opposed tof(X) itself being Sp~2! singlet. Simi-
larly, Dmnf, Dmnf, Dmnf transform as Sp(2) triplets, while
DMNf, D MNf, DMNf transform as Sp(2) singlets. Henc

dsp~Dmnf!~X!5
1

2
vabDab~Dmnf!~X!1vm

b~Dbnf!~X!

1vn
b~Dbmf!~X!, ~73!

dsp~DMNf!~X!5
1

2
vabDab~DMNf!~X!, ~74!

and similarly for (Dmnf,D MNf) or (Dmnf,DMNf). For an
infinitesimal SO* (D) rotation, transformation rules are ob
tained analogously:DMNf, D MNf, DMNf transform as
SO* (D) adjoints, whileDmnf, Dmnf, Dmnf transforms as
SO* (D) singlets.

Having identified the adjoint Sp~2! and SO* (D) transfor-
mation rules, we now proceed to the construction of an
tion functional possessing manifest global Sp(2)3SO* (D)
invariance.

We begin with the potential term. Consider an arbitrary!
product polynomial off ’s:
04600
r
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V!~f!5m2f!f1
l3

3
f!f!f1

l4

4
f!f!f!f1•••.

~75!

Equations~69!,~70! and cyclicity of the! multiplication then
imply that its integral is invariant under the Sp(2
3SO* (D) transformations. Explicitly,

dspS E d2DXV!~f! D5E d2DXV!8~f!!dspf

52
i

2
vabE d2DX@Qab ,V!~f!#!50,

~76!

dsoS E d2DXV!~f! D5E d2DXV!8~f!!dsof

52
i

2
vLME d2DX@L MN,V!~f!#!50,

~77!

where cyclicity property of the! multiplication is used.
Consider next the kinetic term. Possible terms quadr

in differential operators are given by

1
2 ~]M

m f!!~]m
Mf!, 1

2 ~DM
m f!!~D m

Mf! ~78!

1
4 ~Dmnf!!~Dmnf!, 1

4 ~DMNf!!~DMNf! ~79!

1
4 ~Dmnf!!~Dmnf!5 1

4 f!~D mnDmnf!, ~80!

1
4 ~DMNf!!~DMNf!5 1

4 f!~D MNDMNf!. ~81!

All indices are raised or lowered by the Sp(2) or SO* (D)
metrics,«mn or hMN . Because of that, the integrals of th
two terms in the first line vanish identically. The rest, whi
will be denoted collectively asLKE , all behave as scalar
under Sp(2)3SO* (D) transformations. Hence, like the po
tential term, their integrals are invariant once the cyclicity
the ! multiplication is taken into account:

dspE d2DXLKE52
i

2
vabE d2DX@Qab ,LKE#!50,

~82!

dsoE d2DXLKE52
i

2
vMNE d2DX@L MN,LKE#!50.

~83!

Furthermore, because of the relation Eq.~22!, the last two
terms are related to each other:

1
2 f!D MNDMNf5 1

2 f!D mnDmnf1 1
4 D~42D !f!f.

~84!

Overall, the most general Sp(2)3SO* (D) invariant action
functional of the ‘‘adjoint’’ scalar field is expressible as
5-10
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I @f#5E d2DXFa

4
~Dmnf!!~Dmnf!1

b

4
~Dmnf!!~Dmnf!

1
c

4
~DMNf!!~DMNf!2V!~f!G , ~85!

wherea,b,c denote arbitrary constants.
Inclusion of fermions is straightforward. Denote SO* (D)

spinors asca(X). The Sp(2) invariant differential operator
are extendible to the spinors. By contracting them w
SO* (D) Dirac matrices, one obtains possible kinetic ter
as

iD MN~GMNc!a , iDMN~GMNc!a , iDMN~GMNc!a .
~86!

As an example, consider a fermionc interacting with a sca-
lar fieldf, all transforming in ‘‘adjoint’’ representation unde
Sp~2!. The Sp~2!3SO* (D) invariant action is then given by

I @c,c,f#5E d2DX@ ic!gMN~a8DMN1b8DMN1c8DMN!c

1gc!f!c1•••#, ~87!

where a8,b8,c8 are arbitrary constants andg denotes the
Yukawa coupling parameter.

B. ‘‘Fundamental’’ representations

In the previous section, we have shown that left or rig
multiplication ofQab’s andL MN’s yield, in addition to com-
mutator multiplication, another representation of the sp~2!
% so* (D) Lie algebra. Based on this, we define left or rig
‘‘fundamental’’ representation of a noncommutative sca
field F(X) by the following transformation rules:

dsp
L F~X!51

i

2
vL

abQab!F~X!ª1
i

2
vL

ab~DabF!~X!,

~88!

dsp
RF~X!52

i

2
F~X!!QabvR

ab
ª2

i

2
~DabF!~X!vR

ab ,

~89!

where vL
ab ,vR

ab denote infinitesimal Sp(2)L and Sp(2)R
transformation parameters. Note that the fieldF ought to be
complex valued, in contrast to the ‘‘adjoint’’ representati
scalarf, which could be real or complex valued. Then, t
Hermitian conjugate field transforms as

dsp
L F†~X!52

i

2
~F†~X!!Qab!vL

ab

52
i

2
~DabF†!~X!vL

ab , ~90!
04600
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dsp
RF†~X!51

i

2
vR

ab~Qab!F†~X!!

51
i

2
vR

ab~DabF†!~X!. ~91!

Likewise, for SO* (D) transformation, left or right ‘‘funda-
mental’’ representations can be defined analogously.

From Eqs. ~89!, ~91!, it also follows thatF!F† and
F†!F transform as

dsp
L ~F!F†!~X!5 1

2 vL
abDab~F!F†!~X!

and

dsp
R ~F!F†!~X!50,

~92!
dsp

L ~F†!F!~X!50

and

dsp
R ~F†!F!~X!5 1

2 vR
abDab~F†!F!~X!. ~93!

Note that the infinitesimal transformations ofF!F† are all
given entirely in terms of theDabª2 i @Qab ,s#, the deri-
vation satisfying the Leibniz rule, although the transform
tion of F involvesDab , the differential operator which doe
not satisfy the Leibniz rule. It then follows that any functio
of F!F†, V!(F!F†) is invariant under Sp(2)R and trans-
forms as an ‘‘adjoint’’ representation under Sp(2)L . Thus,

dsp
RV!~F!F†!50

and

dsp
L V!~F!F†!5 1

2 vL
abDabV!~F!F†! ~94!

and vice versa for any function ofF†!F, V!(F†!F).
Therefore, takingV!(F†!F) or V!(F!F†) as the potential
term, its integral is invariant manifestly under both Sp(2L
3SO* (D)L and Sp(2)R3SO* (D)R transformations.

Next, to construct a kinetic term in the action integr
consider various differential operators acting on the fie
F,F†. Begin with DabF andDMNF. Under Sp(2)L trans-
formation

dsp
L ~DabF!~X!5vL•D~DabF!~X!2~vL•D!(ab)F~X!

~95!

generates theD differential operator in the second term
henceDmnF is not covariant under Sp(2)L . Analogous re-
sults apply for Sp(2)R , SO* (D)L , and SO* (D)R transfor-
mations. HenceDmnF and DMNF do not define covarian
differential operators, contrary to the situation for the fiel
in ‘‘adjoint’’ representation. It turns out that Sp(2)L and
Sp(2)R covariant differential operators are given byDmnF
andDmnF , respectively. Explicitly,
5-11
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dsp
L ~DabF!~X!51

i

2
vL•D~DabF!~X!2~vL•D!(ab)F~X!,

~96!

dsp
R ~DabF!~X!52

i

2
vR•D~DabF!~X!2~vR•D!(ab)F~X!

~97!

and analogous expressions for SO* (D)L,R transformations
for D MNF andDMNF differential operators. Thus,DabF,
DabF, D MNF, andDMNF transform as adjoint represent
tions under Sp(2)L , Sp(2)R , SO* (D)L , and SO * (D)R ,
respectively, and as singlets otherwise. Similarly,D m

MF
transforms in the fundamental representation of Sp(L
3SO* (D)L and in the singlet of Sp(2)R3SO* (D)R , while
Dm

MF transforms in the singlet of Sp(2)L3SO* (D)L and in
the fundamental representation of Sp(2)R3SO* (D)R . The
differential operators acting on the Hermitian conjugate fi
F† exhibit similar transformation rules, related to those ofF
by interchanging the left- and the right-symmetry groups

Putting the above results together, for the ‘‘fundament
scalar fieldF, the most general action integral with manife
Sp(2)L3Sp(2)R3SO* (D)L3SO* (D)R invariance is given
by

I @F,F†#5E d2DX@aDmnF†!DmnF1bDmnF†!DmnF

2V!~F!F†!#. ~98!

One could have also added terms of the fo
DMNF†!DMNF andD MNF†!DMNF. As pointed out in Eq.
~84!, they are re-expressible in terms of those already
cluded. In the action,a,b are arbitrary coefficients.

The field equation of motion is given by

1
2 ~aD mnDmn1bDmnDmn!F5V!8~F!F†!!F. ~99!

Note that the left-hand side is expressed entirely in term
the Sp(2)L and Sp(2)R Casimir operators, viz.12 D mnDmn

5 1
2 Qmn!Qmn5 1

2 DmnDmn acting onF either from the left or
from the right.

Extension to fermion or higher-rank tensor field
straightforward. The fermionCa can be taken as the spino
representation of either SO* (D)L or SO* (D)R and as the
‘‘fundamental’’ representation of either Sp(2)L or Sp(2)R .
Taking, as an example, thatCa is in the left representation
for both, the action integral is expressible as

I @C,C#5E d2DX@C!~GMN
• iDMNC!1•••#. ~100!

The ellipses denote the interaction part, whose form is c
strained severely by the requirement of both the Sp(L
3SO* (D)L and the Sp(2)R3SO* (D)R symmetry groups.

C. Spacetime signature and automorphism group

We have constructed noncommutative field theories
the relativistic phase space, in which the phase space S
04600
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3SO* (D) is manifest. Because Sp~2! is part of the manifest
symmetry group,X1 ,X2 appear explicitly in the kinetic
terms, and break translation symmetry. These field theo
are SO* (D) Lorentz invariant but not Poincare´ invariant in
D dimensions. It implies, in particular, energy and mome
tum cannot be used as quantum numbers labelling state
Hilbert space. The good quantum numbers are associ
with the representations of Sp(2)3SO* (D).

Is this an indication that something is wrong with th
theory? Not at all. The lack of translation invariance is
common feature of 2T physics in all its formulations, a
surprisingly it is correct from the lower dimensional 1
physical point of view. When we identify the 1T dynamics
the lower (D22) dimensions, the system does have Po
carésymmetry from theD22 dimensional point of view. An
example in one of the holographic pictures is that SO* (D)
5SO(D22,2) is the conformal group inD22 dimensions,
and it does contain the Poincare´ group, including transla-
tions. This example shows that embedding the symmetrie
the physical space in SO* (D) is possible, and that the em
bedding space may have some unusual signature.

In more general cases beyond 2T physics, the space
signature, which has been left unspecified so far, ought to
determined by consistency and physical properties of
theory. There are several ways of doing so. One is by trea
the spacetime coordinatesX1

M ’s as embedding space coord
nates of a true physical spacetime as in the 2T physics
ample. For instance, one may formulate Euclidean quan
field theories on a (D21)-dimensional hypersphere in term
of those onD-dimensional Euclidean space@15#. Likewise,
quantum field theories on (D22)-dimensional de Sitter
space can be recast in terms of those on aD-dimensional
Lorentzian spacetime withone timelike dimension, and
quantum field theories on (D22)-dimensional anti-de Sitte
space in terms of those on aD-dimensional Lorentzian
spacetime withtwo timelike dimensions. In all cases, th
physical spacetime is defined as a hypersurface defined b
appropriate quadratic equations for coordinates of
D-dimensional embedding space. Moreover, the symm
group of the physical spacetime is SO* (D) and acts linearly
on coordinates of the embedding space. Any of these em
dings will require some local symmetry to thin out degre
of freedom, eliminate ghosts, and reduce the theory to
lower dimensional theory.

The above discussion suggests that the noncommuta
field theory with global Sp(2)3SO* (D) automorphism
group may be viewed as a sort of theory defined on an
bedding phase space of the physical phase space. In pa
lar, the signature of the higher dimensional spacetime will
determined depending on the way the physical phase spa
embedded into the higher dimensional space.

V. FIELD THEORY WITH LOCAL Sp „2… SYMMETRY

In this section, we will discuss noncommutative Sp~2!
gauge theory on relativistic noncommutative phase space
particular interest would be the construction of a theo
whose field equations coincide with Eqs.~67!,~68! for 2T
physics.
5-12



im

n

b

tia

al
q.

i
p-

q.

tes
p-
ors

ay

ra
the

the
ons

ld
g

s to

NONCOMMUTATIVE Sp(2,R) GAUGE THEORIES: A . . . PHYSICAL REVIEW D 64 046005
A. Action and equations of motion

Consider promoting the global Sp(2)L transformation Eq.
~88! of the complex scalar fieldF, to a local transformation
parametrized byvL

ab(X1 ,X2):

dLF~X!5
i

2
vab~X!!~DabF!~X!

5
i

2
~vab~X!!Qab!!F~X!

[ ivL~X!!F~X!. ~101!

Ordering of the factors in12 vL
ab(X)!QabªvL(X) could be

more general. With any ordering, the resultingivL(X1 ,X2)
can be regarded as the general noncommutative infinites
local phase transformation acting on the left ofF. So, we
will in fact interpret local Sp(2)L applied on a scalar to mea
the general gauge transformation for anyvL(X) applied
from the left as in the last expression in Eq.~101!. Proceed-
ing as usual, we introduce a gauge potentialAmn(X1 ,X2) and
promote the global Sp(2)L differential operatorDmn to a
local covariant differential operatorD̂mn

D̂mnF~X!ªDmnF~X!1Amn!F~X!

5~Qmn1Amn~X!!!F~X!. ~102!

The noncommutative local transformations are defined
Eq. ~101! along with

dLAmn~X!5D̂mnvL5DmnvL~X!2 i @Amn~X!,vL~X!#!

52 i @~Qmn1Amn!,vL#! , ~103!

where Dmn is the derivation of Eq.~27! that satisfies the
Leibniz rule. This ensures the covariance of the differen
operatorD̂mnF:

dL~D̂mnF!5 ivL!D̂mnF. ~104!

Denote the covariantizedQmn asQ̂mn(X1 ,X2)

Q̂mnªQmn1Amn5 1
2 X(m

M !Xn)
N hMN1Amn~X!. ~105!

Note that Q̂mn(X1 ,X2) is the counterpart of the classic
Q̂mn(X,P) that appeared in the worldline formalism in E
~1!. The infinitesimal local gauge transformation of Eq.~103!
is re-expressed as

dLQ̂mn52 i @Q̂mn ,vL#! . ~106!

This is the counterpart of the canonical transformations
the ‘‘space of all theories’’ discussed in the worldline a
proach@8#.

The covariant field strengthGmn,ls
L (X) is obtained from

the ! commutator of the covariant derivatives
04600
al

y

l

n

@D̂mn ,D̂ls#!!F~X!5@~Dmn1Amn!,~Dls1Als!#!!F~X!

~107!

5 iF mn,ls
ab ~DabF!1 i ~DmnAls

2DlsAmn2 i @Amn ,Als#!!!F ~108!

5 iF mn,ls
ab D̂abF1 iGmn,ls!F,

~109!

where Fmn,ls
ab refers to the Sp(2) structure constants, E

~19!, and the covariant field strength is given by

Gmn,ls~X!5DmnAls2DlsAmn2 i @Amn ,Als#!

2 iF mn,ls
ab Aab . ~110!

Note again thatDmn is the derivation of Eq.~27! that satisfies
the Leibniz rule. The last term in the field strength origina
from the covariantization of the non-Abelian differential o
erators involved. In terms of the covariant generat
Q̂mn(X), the field strength becomes

iGmn,ls5@Q̂mn ,Q̂ls#!2 iF mn,ls
ab Q̂ab . ~111!

Gmn,ls has only three independent components which m
be rewritten in the form of a symmetric 232 tensorGmn, the
latter being obtained from contraction ofGls,rs with the
structure constant raised indicesFmn,ls,rs. Explicitly, three
independent components of theGmn take the form

G115 i @Q̂12,Q̂22#!12Q̂22, ~112!

G125
i

2
@Q̂22,Q̂11#!22Q̂12, ~113!

G225 i @Q̂11,Q̂12#!12Q̂11. ~114!

The vanishing of the field strengthsGmn or Gmn,ls is
equivalent toQ̂mn satisfying the first quantized sp(2) algeb
as in Eq.~68!. This algebra had emerged as a condition in
first quantized worldline theory Eq.~1!, which followed from
the identical algebra in the form of Poisson brackets in
classical theory. Thus, we now aim at deriving the equati
Gmn50 as equations of motion~before possible field inter-
actions! from an action principle in the noncommutative fie
theory. We can easily obtain this result from the followin
noncommutative field theory, whose structure is analogou
the Chern-Simons gauge theory

SQ5E d2DX@^Q̂,Q̂!Q̂&2^Q̂,Q̂&#

ªE d2DXS i Q̂11!Q̂12!Q̂222 i Q̂22!Q̂12!Q̂11

1Q̂11!Q̂221Q̂22!Q̂1122Q̂12!Q̂12
D ,

~115!

whose variation yieldsdSQ5*d2DX(dQ̂mn!Gmn).
5-13
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To also the equation~67! for the matter fieldF(X1 ,X2),
consider the covariant derivative Eq.~102!, D̂mnF

[Q̂mn!F, and add it to the action~115! after multiplying it
with a Lagrange multiplier fieldZmn(X1 ,X2):

SF,Q,Z52 i E d2DX~Zmn!Q̂mn!F2F!Q̂mn!Zmn!.

~116!

The Zmn field equation yields the free part of the desir
matter equation

Q̂mn!F50, ~117!

while F field equation yields an equation forZmn of the form

Q̂mn!Zmn50. ~118!

The actionSF,Q,Z is invariant under the local Sp(2)L trans-
formations ~101!,~106! provided Zmn field transforms as
dLZmn5 ivL!Zmn, and under the local Sp(2)R defined by

dRF52 iF!vR

and

dRZmn52 iZmn!vR . ~119!

One may accordingly define a Hermitian fieldf(X1 ,X2)
5F!F satisfying Q̂mn!f505f!Q̂mn , corresponding to
the first-quantized matter wave function of the worldli
theory, Eq.~67!.

The addition of matter fields would give rise to a ba
reaction to the gauge fields themselves. The field equat
derived from the combined action

Stotal5SQ1SF,Q,Z ~120!

are

Gmn5F!Zmn2Zmn!F, Q̂mn!F50, Q̂mn!Zmn50,
~121!

plus Hermitian conjugates of the last two equations. Fr
them, one derives the following field equations involvin
gauge fields only:

Q̂mn!Gmn505Gmn!Q̂mn . ~122!

Evidently, the structure of these equations is consistent w
the first quantization of the worldline theory as given in Eq
~68!,~67!, in particular, when the matter self interactions a
ignored, as thenGmn50 andQ̂mn!F50 . One may setup an
expansion around this solution and analyze the classica
lution of these equations.

By virtue of the relation to the worldline 2T physic
theory, we are assured that the spectrum of these 2T
equations is unitary~ghost-free! and causal. Indeed, as in th
classical theory, the physical spectrum is empty unless th
are two timelike dimensions. Furthermore, the physics
scribed by them has a direct relation to the 1T physics
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(D22) dimensions by virtue of the holographic property
2T physics. As demonstrated below~see also@8#!, the
Gmn(X,P)50 equations describe, when expanded in pow
of PM ’s, background gauge fields of various higher spins
the (D22)-dimensional spacetime. The matter field equ
tion, the second in Eq.~121!, implies that these higher-spi
fields are coupled also to a scalar field@thew(X) in Eq. ~42!#
in (D22)-dimensional spacetime.

Having noted that we have made the desired connec
with 2T physics, one can generalize the noncommuta
Sp~2! gauge theory by including nonlinear~self!-interactions
consistently with gauge and spacetime symmetries. The
clusion of such interaction, such as Eq.~122! and those be-
low, would generate kinetic terms describing propagation
the gauge fields, but this has not been studied yet in
setting. This is an interesting issue for further study, as i
related to construction of aninteracting higher-spin gauge
field theory, whose satisfactory solution has remained elus
despite considerable progress@16#. Specifically, consider
adding terms up to two derivatives ofDmn or Dmn . Of par-
ticular interest would be the Yang-Mills action for the Sp~2!
gauge fieldAmn(X), which can be taken instead of or i
addition to the above Chern-Simons type action:

SG252
1

4g2E d2DX~Gmn,ls!2

5
1

4g2E d2DX~@Q̂mn ,Q̂ls#!2 iF mn,ls
ab Q̂ab!!

2 .

~123!

Similarly, one may add self-interactions of the scalar fie
w(X1 ,X2) ~including the scalar fieldF discussed above!:

Sw5E d2DXF2
1

2
~D̂mnw!†!D̂mnw2V!~w!w†!G

5E d2DXF2
1

2
w†!~Q̂mn!2!w2V!~w!w†!G ,

where (Q̂mn)2 is the quadratic Casimir operator of Sp(2).

B. Classical solutions

Let us now analyze physical contents of the equations

Gmn50

and

Q̂mn!F50. ~124!

From Eqs.~112!–~114! it is evident thatGmn50 is equiva-
lent to imposing the sp(2) algebra onQ̂mn(X,P). A solution
to this situation was found in@8# as follows: using the
5-14
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Sp(2)L gauge transformations, one can choose gauges
that theQ̂mn(X,P) takes the following form:4

Q̂11~X,P!5XMXNhMN , Q̂12~X,P!5XM
„PM1AM~X!…

Q̂22~X,P!5G0~X!1G2
MN~P1A!M~P1A!N

1(
s53

`

Gs
M1•••Ms~X!@~P1A!M1

•••~P1A!Ms
#

wherehMN is the SO(D22,2) metric,AM(X) is the Max-
well gauge field inD dimensions,G0(X) is the dilaton,
G2

MN(X)5hMN1h2
MN(X) is the spacetime metric inD di-

mensions, andGs
M1•••Ms(X) for all s>3 are the higher-spin

gauge fields. To obey the sp(2) algebra, these fields oug
be homogeneous polynomials of degree (s22) and be or-
thogonal toXM @using the flat SO(D22,2) metrichMN] as
follows

X•]Gs5~s22!Gs , XM1
Gs

M1•••Ms5XM1
h2

M1M250,

XMFMN50, ~125!

whereFMN5(]MAN2]NAM) is the Maxwell field strength.
The Maxwell gauge symmetry can also be partially fixed
taking X•A50. Then,XMFMN50 becomes a homogeneit
conditionX•]AM52AM . After the gauge fixing, there stil
remains local Sp(2)L symmetry that does not change th
gauge fixed form of theQ̂11(X,P) and Q̂22(X,P) given
above~i.e., dLQ̂115dLQ̂2250). From Eq.~106!, one finds
that the corresponding gauge functionvL(X,P) ought to
take the form

vL~X,P!5v0~X!1v1
M~X!~P1A!M

1(
s52

`

vs
M1•••Ms~X!@~P1A!M1

•••~P1A!Ms
#,

~126!

where each coefficient is a homogeneous function of deg
s and is transverse toXM

X•]vs5svs

and

XM1
vs

M1•••Ms50 for s>0. ~127!

These residual gauge symmetries are interpreted as foll
v0(X) is the gauge parameter that transforms the Maxw
field, v1

M(X) is the parameter for general coordinate tra

4We emphasize that after choosing a gauge forQ̂11, the remaining
gauge symmetry is insufficient to simplify the structure

Q̂12(X,P) further. However, ifQ̂12 is restricted to obey the sp(2
algebra, the remaining gauge symmetry can be used to set it t
form shown in the text.
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formations, and thevs21
M1•••Ms21 are gauge parameters for th

high spin fieldsGs
M1•••Ms . The gauge transformations mi

various gauge fields with one another~see@8#!, but typically
an inhomogeneous term

dGs
M1•••Ms5] (M1vs21

M2•••Ms)1••• ~128!

remains in the gauge transformations, where the index on]M

is raised as]M5G2
MN]N .

The equations, Eqs.~125!, taken together withX250
~which equals theQ̂1150 condition!, describe fields whose
independent degrees of freedom reside in (D22) dimen-
sions, both from the viewpoint of their components and th
dependence on spacetime coordinates. Specifically,
~125!, together withX250, impose the holographic propert
of 2T physics. An explicit holographic projection from
D-dimensional spacetimeXM to (D22)-dimensional space
time xm is presented in@8#. One then sees that the indepe
dent degrees of freedom are given by the fieldsg0(x),Am(x),
gmn(x), gs

m1•••ms(x) for s>3, which are fields in (D22)
dimensions, where the Lorentz componentsm,n,••• trans-
form according to SO(d21,1). All of these
(D22)-dimensional fields are consistent with th
(D22)-dimensional conformal symmetry SO(D22,2), as
this is made evident by theD-dimensional formalism of 2T
physics.

The remaining gauge symmetries of Eq.~127! are also
holographically projected to (D22) dimensions, and thei
independent components are«0(x), «1

m(x), and«s
m1•••ms(x)

for s>2. It turns out that these remaining gauge symmetr
are strong enough to reduce the fields to pure gauge deg
of freedom,unlesslower- and higher-spin fields do not co
exist in the solution. The exceptional cases therefore lea
two distinct sets of nontrivial solutions: alower-spin branch
and a higher-spin branch. The lower-spin branch consist
only of g0(x),Am(x), gmn(x), while all higher-spin fields
(s>3) vanish. In the higher-spin branch,g0(x),Am(x) van-
ish, whilegmn(x), together withgs

m1•••ms(x) for s>3 form a
nontrivial basis for the gauge transformations, whose exp
forms are calculated in@8#.

Intriguingly, the two disconnected branches of solutio
appear to bear a correspondence to massless states of
theories in two extreme limits~or phases!. The lower-spin
branch with spinss<2 coincides with the limiting string
spectrum in the zero Regge slope limit~infinite tension!,
while the higher-spin branchs>2 coincides with the limit-
ing string spectrum of the leading graviton trajectory in t
infinite Regge slope limit~zero tension!.5

We have thus found a set of interesting solutions to E
~124! and have succeeded in their physical interpretation

he

5The aforementioned solutions forGmn50 describe gauge fields
but the propagation of these fields is not determined by this eq
tion. Thus the kinetic term must come from terms such as E
~122!,~123! which have not been included in our consideration
far.
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They have important implications; the equationsGmn50 en-
code all possible (D22)-dimensional gauge field back
grounds that a spinless point particle would interact w
Moreover, the interaction with the spinless field is govern
by the physical state condition,Q̂mn!F(X)50, a condition
that solves the noncommutative field equations when non
ear interactions are turned off. Via the covariant Wign
transform, Eq.~42! and the technology developed in Eq
~59!–~66!, one then obtains the corresponding field equati
for the complete set of fieldswm(X1) defined on the
D-dimensional configuration space, but now in the prese
of these background fields. The physical state condition t
reduces them to (D22)-dimensional field equations, aga
in the presence of these background fields.

Finally, let us describe how the 2T to 1T holography a
duality properties emerge in this formalism. The reduct
from D-dimensional spacetime to a (D22)-dimensional one
has followed from solving theD -dimensional field equa
tions. The solution can be presented in a variety of ways
embedding the (D22) dimensions inside theD dimensions
@7#. Different embeddings give rise to differen
(D22)-dimensional ‘‘holographic’’ viewpoints of the origi
nal D-dimensional field equations. In doing so, which one
the two times becomesthe timelike dimension in the pro-
jected (D22) dimensions? In principle, an infinite numb
of choices are available, corresponding to the embeddin
a timelike curve in the extra dimensions. The choice made
the embedding determines the dynamical evolution of
holographic projection. Each of the (D22) -dimensional dy-
namics may look different, even though any one of th
represents a gauge invariant physical sector of one and
sameD-dimensional theory. This implies that, by a differe
choice of the Sp(2) gauge, different (D22)-dimensional
theories in different background fields are obtained and
these theories are transformed to one another by l
Sp(2,R) gauge transformations. What we have succeede
this work is that this property can now be obtained fromthe
first principles by formulating the 2T physics in terms o
noncommutative Sp~2! gauge field theories.

VI. OUTLOOK

In this paper we have constructed noncommutative fi
theories with global or local Sp~2! symmetry defined on rela
tivistic phase space. We believe these theories deserve
ther investigation, either as a description of 2T physics fr
first principles, or with global Sp~2! symmetry in other ap-
plications.

We mention some of the immediate questions that co
up by the results in this work. First, in noncommutati
Sp~2! gauge theories, there is an important issue concern
gauge-invariant operators. It is known that, in the contex
noncommutative field theories formulated as deformat
quantization over a noncommutative space, part of the n
commutative gauge transformation orbit is identifiable w
translation along the noncommutative space@17–19#. It im-
plies that gauge-invariant observables are necessarily no
cal. A complete set of such observables are identified w
open Wilson lines@17–19#. By a similar argument, in non
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commutative Sp~2! gauge theories formulated in this work
part of the noncommutative gauge transformation orbit ou
to be identifiable with rotation on the relativistic phase spa
so that gauge-invariant observables are nonlocal. We ex
that open Wilson lines stretched over the relativistic ph
space constitute an important class of such observables
they are gauge invariant, from the viewpoint of the two-tim
physics, the expectation value of the open Wilson lines ou
to be universally the same for all classes
(D22)-dimensional theories related to one another via
‘‘holography property.’’ In view of conceptual importance o
the latter, the role of these observables in understanding
2T to 1T ‘‘holography’’ could be extremely rewarding.

Second, a complete classification of noncommutat
Sp(2,R) gauge theories underlying the 2T physics is des
able. We have already shown that a Chern-Simons type
tion or its variant is a viable route. For this goal, a Becc
Rouet-Stora-Tyutin ~BRST! approach would offer an
economic procedure for construction of the actions. For
ample, analogous to Witten’s open string field theory, o
can construct a BRST operator

QBRST5^c,Q̂&2^c,c!b& ~129!

[cmnQ̂mn~X,P!2
i

2
Fmn,sl

ab cmncslbab , ~130!

where cmn,bmn are the BRST ghosts and antighosts, w
ghost chargeQgh521,11, respectively. The ghostscmn and
bmn represent three independent fermionic degrees of f
dom @one may think of them as three creation and th
annihilation operators acting on fermionic Fock spa
equivalent to six (838) matrices with the same anticommu
tation properties#. There is no need for a definition of sta
products for the ghosts~although this is possible via th
Weyl correspondence applied to fermions!. Instead of star
products they can be treated as fermionic quantum opera
or Grassmann numbers, keeping track of their orders
usual. We take an action of the purely cubic Chern-Simo
type

SBRST5E dm@X,b,c#~QBRST!QBRST!QBRST!, ~131!

where the star product refers to the Moyal product in ph
space (X,P) we have used in the rest of the paper. T
integration measure dm@X,b,c#5(d2DX)(d3c)(d3b)
(b11b12b22) is invariant under Sp(2) and has ghost numb
13, cancelling the ghost number23 of the Lagrangian den
sity ~instead of fermionic integrals one may also use
vacuum expectation value in Fock space, or a trace in 838
matrix space!. Thus the only term in the Lagrangian th
survives the integration is the term that contains the Sp
invariant ghost factorc11c12c22. Generalizing Eq.~129!, one
can take the BRST operatorQBRST(X,P,c,b) to be the most
general ghost number21 field, containing phase space field
as coefficients in all the allowed terms~which have the form
c,ccb,cccbb). One may then define a gauge symmetry
these fields that is given by
5-16
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dQBRST5 i @QBRST,L#! , ~132!

whereL(X,P,c,b) is a general gauge function of ghost num
ber zero. Note that, when expanded in powers of ghosts
ghost independent term inL is precisely the local gaug
parametervL(X,P) discussed earlier. The action, Eq.~131!,
is the direct counterpart of the background-independ
purely cubic action in Witten’s open string field theory. Som
comparison points include the fact thatQ̂mn5Qmn1Amn ,
whereQmn5 1

2 X(m•Xn) is a particular background, while th
generalQBRST, as well as the star product, are backgrou
independent. The equation of motion isQBRST!QBRST50
and, when an appropriateL gauge is chosen, it leads to th
fundamental equationGmn50. This was in the absence o
matter. One may add matter fieldsC,C containing a linear
combination of ghost charges 0,-1,-2,C5C01C211C22,
with an action that takes the form

Smatter5E dm@X,b,c#~C!QBRST!C!. ~133!

The terms that survive integration are those that add u
ghost number23. The field equations that follow from th
total actionSBRST1Smatter are

QBRST!C50, C!QBRST50,

QBRST!QBRST5~C!C!22 , ~134!

where the subscript22 implies the sum of terms in the prod
uct with total ghost number22. Thus each matter field
C0 ,C21 ,C22, is annihilated byQBRST separately. These
equations lead to

QBRST!QBRST!QBRST50, ~135!

which is similar to the nonlinear relation following from th
action in Eq.~120!. This now looks like an equation of mo
tion for the gauge fields since it has the form ofQBRST ~i.e.,
Klein-Gordon type operator! applied on QBRST!QBRST
~which is like a field strength for the gauge fields!.

Given that there are several viable candidate theor
which one would become eventually ‘‘the’’ proper 2T phy
e

v.

04600
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ics field theory? A criterion would be that the kinetic term f
the gauge fields ought to be produced correctly by the pro
theory. As computations involving the Moyal star product a
notoriously difficult in the present setting, primarily becau
they involve derivatives of all orders, identification of th
proper theory would take considerable effort. We will repo
progress on this project elsewhere in a separate paper.

Third, for any given action, further study and a comple
classification of the classical solutions in noncommutat
Sp~2! gauge theories are needed. As uncovered in the pre
work, classical solutions correspond to a variety of ba
ground fields in the holographically projected configurati
space. As such, a complete classification of the classica
lutions would lead to better understanding of many import
issues in 2T physics as well as 1T physics, in particula
consistent formulation of interacting higher-spin field the
ries @17#. We anticipate that classical solutions with nonze
field strength,Gmn(X)Þ0, and nonvanishing scalar sel
interactions,V!(F!F†)Þ0, open up new surprises.

Finally, we also expect diverse applications of our form
ism and results to the Euclidean noncommutative field th
ries arising in string theories andM theory @9–11# and even
to other physics problems than string theories andM theory.

We will report progress on these issues elsewhere.
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