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Phase space and its relativistic extension is a natural space for realizin@RBpyimetry through canoni-
cal transformations. On aD(X 2)-dimensional covariant phase space, we formulate noncommutative field
theories, where Sp(R) plays a role as either a global or a gauge symmetry group. In both cases these field
theories have potential applications, including certain aspects of string thedrtbspry, as well as quantum
field theories. If interpreted as living in lower dimensions, these theories realize Posycamgetry linearly in
a way consistent with causality and unitarity. In case IR & a gauge symmetry, we show that the spacetime
signature is determined dynamically aB-@,2). The resulting noncommutative SR, gauge theory is
proposed as a field theoretical formulation of two-time physics: classical field dynamics contains all known
results of “two-time physics,” including the reduction of physical spacetime fioio (D-2) dimensions, with
the associated “holography” and “duality” properties. In particular, we show that the solution space of
classical noncommutative field equations put all massless scalar, gauge, gravitational, and higher-spin fields in
(D-2) dimensions on equal footing, reminiscent of string excitations at zero and infinite tension limits.
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[. INTRODUCTION wide range of applications in various physical contexts.
Our main results for these noncommutative field theories
In this paper, we construcD(X 2)-dimensional noncom- are twofold.

mutative field theorie§NCFT’s) with the symmetry group If Sp(2R) is a gauge symmetry, the spacetime signature
Sp(2R) X SO* (D) and study their properties. We consider is determined dynamically a(—2,2). The gauge-invariant
Sp(2R) either as a global or as a gauge symmetry. Denotingector of these theories describes commutative dynamics in
Dx2 dimensional coordinates a¢), the group Sp(®) (D —2)-dimensional spacetime, with &¢-3,1) signature,
X SO+ (D) acts on thex=1,2 index as a doublé®,1) and with linearly realized Poincar@nd, nonlinearly realized,
on theM=1,2, --,D index as a vectof1,D). A variety of ~ Nigher spacetime symmetries. They offer aln initio field
choices are possible for the signatu¥™ in D dimensions theory. formglanon. of two-time physics” (2T phy_3|c$
or the corresponding real form of the SM)=SOD [4—-8] in D-dimensional spacetime, a result established by

. . M . = . . _
~n.n) group, wheren is the number of timelike dimensions. interpretingX,;” as coordinates of thB X2 dimensional co

Theories with Euclidean signature arise most prominentl invariant phase space.
9 P y If Sp(2R) is a global symmetry, the spacetime signature

the Weyl-Wigner-Moyal formulatiof1-3] of nonrelativistic is left arbitrary. Unitarity and causality force an interpreta-

quantum mechanics, and in the noncqmmgtatwe sectM. of tion of these theories as describing dynamics in spacetime of
theory[when a magnetic background field is present, with ajimensions lower tha.

maximum possible symmetry SpR).xSO(5)]. For a In investigating this sort of noncommutative field theo-
Lorentzian signaturen=1, one can view the coordinates ries the general question we have posed ourselves is the
X)’s as labeling a relativistic quantum phase spax¥, following. Quantum field theories are traditionally formu-
=XM and xg”: PM, extending the Weyl-Wigner-Moyal for- |ated on configuration space. Alternatively, what if one at-
mulation of the nonrelativistic quantum mechants-3] to  tempts to formulate the theories on corresponding phase
relativistic situations. One can also view them as noncomspace? In the disguise of nonrelativistic quantum mechanics,
muting spacetime coordinates of two point particles, whergrecisely this sort of an alternative formulation was proposed
the noncommutativity is induced by the presence of a backby Weyl[1], Wigner[2], and studied further by Moy&B]. It
ground field. Because vastly different interpretations are posis referred as “deformation quantization,” an alternative to
sible, more broadly, we expect the formalism and methodshe traditional quantization based on Hilbert space and linear
developed for these noncommutative field theories to have aperators therein. In this approach, dynamical equations of
guantum mechanics, either the Sdfirger or the Heisen-
berg equation of motion, are replaced by a sort of evolution
*Email address: bars@usc.edu equation of distribution functions over phase space. Math-
"Email address: sjrey@gravity.snu.ac.kr ematically, the Weyl-Wigner-Moyal formalism is equivalent

0556-2821/2001/64)/04600%18)/$20.00 64 046005-1 ©2001 The American Physical Society



ITZHAK BARS AND SOO-JONG REY PHYSICAL REVIEW D64 046005

to noncommutative field theories arising as a limit of string2T physics for spinless particles and, most notably, find that

theories[9—11], and is identifiable as the Euclidean case, the solution space provides a unified description of gauge

=0, in the present context. fields, including the gravitational and high spin gauge fields.
Extension of the deformation quantization to systems withSection VI summarizes various issues left for future work.

n=1 poses several peculiarities, all of which lead to a link

with two timelike dimensions. Lorentz covariance ‘JD) Il. 2T PHYSICS: CONCEPTS AND FIELD THEORY

implies that time and energyone-particle Hamiltonian o .

ought to be included, along with spatial coordinates and mo- Part of the motivation for the present work has arisen

menta, as part of covariant phase space. If so, general c§om the following question: What is the interacting field
nonical transformations consistent with SfRRx SO* (D) theory, whose free propagation is given by the first quantized

would require the one-particle Hamiltonian to transformWorldline theory of 2T-physic$4—8]? Free field equations
along with coordinates and momenta, thus mapping one sy§Merge, in covariant first-quantized description, by imposing
tem with a given one-particle Hamiltonian to another with aconstraints on states in C(_)nflguratlon space, e.g., worldline
different one-particle Hamiltonian. This is a central feature'®Parametrization  constraints leads to the Klein-Gordon
that, for n=2, 2T physics has embodied through local €quation[#°—m?]¢(X)=0, worldsheet reparametrization
Sp(2R), leading to the “2T to 1T holography,” and “dual- constraints lead to string field equations through the Virasoro
ity” property among various systems with one physical timeconstraintd.,¢(X(o))=0. These constraints are the genera-
[5,4]. Apparently, a relativistic field theory with more than tors of the underlying gauge symmetries and hence the states

one timelike dimensions introduces ghosts, as is easily sedtP€ying them are gauge invariant physical states. In several

by expanding a fields(X,P) in powers of momenta whose known situations, the constraint equations can be derived
coefficients are local ten’sorﬁMl"'MS(X). Timelike compo- from a field theory, when the field interactions are neglected.

nents of these tensors could give rise to negative-norm, gho§t€!d interactions promote the first quantized theory to an

fields. An approach for eliminating the ghosts is to promotemteracting field theory which can then be analyzed both with

Sp(2R) t try, f le, by d di classical and second quantized methods.
P(2R) to a gauge symmetry, for example, by demanding In 2T physics, the fundamental gauge symmetry is

equivalence under general canonical transformations. The _ . 2
vanishing of the Sp(R) gauge generators on physical states>P(2R) and its supersymmetric generalizations. SBj2,

determines dynamically that spacetime must have two time2CtS @S symplectic transformation on coordinates and mo-

like dimensions. menta of a particle’s phase spa¢€(,PM)=X'". For a spin-

It turns out that the resulting noncommutative SR)2, €ss particle, the worldline action witlocal Sp(2R) sym-
gauge theories possess a rich structure, most notably tHBetry is given by
“holography” property, in which aD-dimensional system is
holographically represented by variou3 { 2) -dimensional |:f dr
systems, each with different dynamics. The signature of the
(D —2)-dimensional spacetime i®( 3,1), where the time- .
like direction in each D — 3,1)-dimensional system is given Where’A{”A(T) deAnotes .three Sp[) gauge fields and the
by a combination of the two timelike dimensions in the em-SymmetricQ,,,=Q,,,, with w,»=1,2, are the three Sp()
bedding D — 2,2)-dimensional spacetime. With one timelike 9€nerators, whose Poisson brackets obey B)(Pie alge-
dimension, the D — 2)-dimensional systems are causal andbra. This action is Sp(R) gauge invariant provided th@,,,
have a unitary spectrum of physical states. The $)(2, satisfy the Sp(R) Lie algebra under Poisson brackggss].
gauge symmetry acts as a sort of “duality” in that all theseThe equations of motion foh*” lead to three classical con-
different dynamical systems are included in the SR§2, straints,Q,,(X,P)=0, which become, upon first quantiza-
gauge orbit that describes the physical gauge invariant sectafon, differential operator equations,

This paper is organized as follows. In Sec. Il, for later
application, we explain conceptual issues in constructing N —id
field theories of 2T physics and recapitulate some results of Quv Xl’(;_x1
earlier approaches relevant for later sections. In Sec. Ill, we
discuss deformation quantization on covariant phase spacgith an appropriate operator ordering. The simplest situation
and develop a formalism that will be used in later sectionsoccurs for the following form of the generators which we
In Sec. IV, we construct examples of noncommutative fieldrefer to as the “free” caséomitting the hat symbgl
theories with global Sp(R) < SC*(D) symmetry for a ge-
neric signature of spacetime. Results of these two sections Qu=X-X, Qp=X-P, Qxn=P-P, ()
are more general and ought to be applicable to a wide ran
of physical problems. In Sec. V, we promote the SBj2,
automorphism to a gauge symmetry and construct nonco ; . e
mutative Sp(R) gauge theories. We show that the conditiondyn"’m"c""IIy d_etermmed to béD—2,2)). For th'e partlcle n
for physical states dynamically determines that the signatur@ackground fields such as Yang-Mills, gravity, higher-spin
of spacetime must be(—2,2), so inevitably we end up with gauge fields,Q,,,(X,P) takes a more general fori6,8].
2T physics. We then find a class of nontrivial special classiWith this example, one can see that e, equation in Eq.
cal solutions that reproduce all previously known results of(2) is nothing but(a generalization ofthe massless Klein-

. 1 A
XY Xom= A (1) Quu(X1.X0) |, (D)

$(Xq)=0, @)

e
YVhere the dot products(- P=XMPNy,,\, are constructed
Ising a flat metricyy,y Of unknown signaturéwhich later is
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Gordon equation. In fact, th€22) components of the the physical spacetime is reduced tb+2) dimensions
Sp(2R) gauge fields and generators are associated with theith  one  timelike  dimensioh In  particular,
worldline reparametrization invariance. Together with the ad{D — 2)-dimensional spacetime symmetries—Galilean, Poin-

ditional transformations generated By, and Q,,, world- ca_r'e conformal, or even general coordinate invariance—
line reparametrization is promoted to the non-Abelian localr1s€ as symmetries.
Sp(2R) symmetry, which may also be regarded as local con- If 2T physics with Sp(R) gauge symmetry is equivalent
formal symmetry on the worldling5]. to one-time (1T) physics, what does one gain from the
One of the goals of this work is to construct interacting former formulation? By embedding 1T physics into 2T phys-
field theories with Sp(®) gauge symmetry, which would ICS, one is led to a notion of “holography” between 2T and
yield the first quantized 2T physics physical state equationdT Physics: a given 2T action iD dimensions describes a
(2) from the linearized part of the field equations of motion. family of 1T actions in D —2) dimensions. Examples dis-
The obvious benefit of these theories is, of course, to reachBlaying these properties have been found in worldline and
formulation of field interactions from first principles based field theory formulations of 2T physidg,5,7]. The “holog-
on gauge symmetry. An interesting outcome of this approacHaphy” is intimately related to the issue of ‘time’: which
as will be elaborated in Sec. V, viz. noncommutative SR{2, (combination of the two times corresponds to the causal
gauge theories, is that all massless fieldsin-2) dimen-  evolution parameter of the physical 1T systems? In the
sions, scalar, gauge, gravity, and higher-spin gauge fields, apeorldline formulation one can rephrase this question as:
all packaged into the noncommutative SRR gauge field which combination ofXO(r),XO'(T) is identified with the
A,.(X,P) in a DX2-dimensional covariant phase space!proper timer? It turns out that Sp(R) gauge orbit in the

There seems to be an intriguing relationship between thiﬁhysicaj SeCtOf,Qﬂy(X,P):O, encompasses all possible
packaging of higher-spin gauge fields and a subset of masgpombinations. Furthermore, the SERE, gauge symmetry
less string modes at infinite Regge sldpensionless string  thins out the spacetime degrees of freedom fino (D
or zero Regge slopgooint-particle limits [8]. The noncom-  _2) dimensions, giving rise to the holography property.
mutative Sp(R) gauge theories offers an approach forla 2 Thys, different 1T theories ind(—2) dimensions emerge as
physics description of fields and the formulation of nonlineary result of different choices of the SpRY, gauge fixing, but
interactions among themselves. . _ ~ they all represent the physical sector Bfdimensional 2T
The notion of two timelike dimensions raises varioustheory. This also implies that, within a given 2T theory, dif-
technical and conceptual questions and points to deepggrent 1T theories are related to one another via a sort of
physics. Remarkably, the most obvious and troublesomedua"ty:u the Sp(2R) gauge transformations map a 1T
problem concerning causality and unitarity is solvable, a”‘iheory to another, while staying within the physi¢ghuge-
transparently understood in the worldline approach 1 2 jnyariany sector of the same 2T theory. The “holography”
physics. The reason for two timelike dimensions is as fol-and “duality” properties ought to persist in noncommutative
lows. The Sp(R) gauge invariance imposes constraints,sp(2R) gauge theories, but now accommodating nonlinear
Q.,~0, viz. physical states are defined as gauge singletsgauge interactions.
Solving them classically, one finds that nontrivial dynamics e find it compelling to understand the above phenomena
is possible only for two or more timelike dimensions. How- jn 3 field-theoretic formulation of 2T physics, including in-
ever, the Sp(&) gauge symmetry can remove all the ghoststeractions. An first attempt would be in terms of fields de-
only if the number of timelike dimensions do not exceedfined on configuration space, as studied 7 However, it
two.! Hence, Sp(R) gauge invariance demands two time- hecame clear that a more natural and far reaching approach
like dimensions, no less and no more. would result from a phase-space formulation. Naturally, the
A similar analysis is applicable in the present context anttesulting formulation is in terms of noncommutative S|R)2,
will lead precisely to the same conclusion: noncommutativegauge theories, which as shown below makes contact with
Sp(2R) gauge theories on @ X 2-dimensional phase space the relevant parts of the configuration space approach. Hence
with signature D—2,2) are unitaryas there are precisely it is useful for us to review here the salient aspects of the
two timelike dimensionsand causalas, in unitary gauge, configuration space formulatidi7].
Field equations in configuration spa@e the presence of
background fieldsresult from imposing the constraints on

Ias an illustration, take the simplest case E8) wherein the Physical states as in E(R). For the free case of E(B) these
inner products<- X=X"XNyyy , etc. are defined with a flat metric  take the form
of unknown signature. For Euclidean metric, the only solution is a
trivial one, XM=PM=0. For Lorentzian metric with a single time-
like dimension,X™ and PM ought to be parallel, and is a trivial Qurtf(X1) =0, 4
system since it lacks angular momentum. For Lorentzian metric,
with more than two timelike dimensions, the Sgf® gauge invari-
ance is insufficient to remove all the ghosts. For Lorentzian metric
with precisely two timelike dimensions, SpR), gauge invariance
is just enough to remove all the ghosts. Furthermore, causality is
not violated as, in a unitary gauge, there is only one timelike di-
mension.

whereQ,,—q,, refers to Hermitian differential operators

i Jd Jd
011= X1+ Xy, di2=~ 5 Xl'&_)(1+c9_)(1'xl ;
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d 9 The holographic aspects can be studied in the 2T field

2=~ ox " Xy (5)  theory. One holographic picture is th® ¢ 2)-dimensional
massless Klein-Gordon equation, derived originally by Dirac

The q,, equation is solved by [12]. Another is the nonrelativistic Schiinger equation, and
yet another is the scalar field equation in anti-de Sitter back-

P(XY)=8(XD e(XY). (6)  ground with a quantized mass, ef@]. In each of them, the

SO(D —2,2) automorphism of the 2T theory arises with dif-
ferent physical interpretation. It is interpreted as conformal
qulzw(le\-/l) symmgtry of the KIein-Gord_on eqpation while, for others, as
dynamical symmetry or anti-de Sitter symmetry etc. The ex-
" istence of this symmetry in some of the 1T theories is sur-
Pp(X1) prising, but it is understood naturally within the 2T frame-
work. Furthermore, all 1T holographic pictures of the free 2T
physics theory (free massless particle, AgSparticle,
AdS,_ X S particle, H-atom, harmonic oscillator in one less
dimension, etg.occupy the same singleton/doubleton repre-

where we have used an identit),-(a/aX,)8(x2) ~ Sentation described aboy8]. _ _
:2X§5'(Xi): _25()(%) (as a distribution The g, equa- G.ener.allza.nons of the same apprgach tc_) flgld theo.ry, in-
tion becomes cluding field interactions, and including spinning particles,
gauge, and gravitational fields, etc. were accompligfiéd
However, one unsatisfactory aspect is that the equations
Xq-X1=0 Quy¢=--- are not all treated on an equal footing: the
condition, including interactions, is derivable from an inter-
acting 2T theory action; however, tlog; andq;, conditions
(8) do not follow directly from the action and are applied as
additional constraint&lthough one could introduce them by
using Lagrange multiplieysOne thus anticipatd$] that 2T
field theories ought to be constructed most naturally as non-
commutative field theories on the phase-space spanned by
(XM x¥) , as this is the space where the SR)2transfor-
. 9 mations are manifest, and &ll,,, appear on an equal foot-
ing.

To construct noncommutative field theories that reproduce
known results of 2T physics, we will develop some formal-
ism in the next two sections. We will focus on how to main-
tain the Sp(R) X SO*(D) covariance manifest and study

LM = 1q,,04— ED(D - 4), (10  the theories in cases where SfRp,symmetry is global or

local. The Sp(&R) gauge symmetry is the necessary ingre-

which is derived directly from their representations in Egs.dient for 2T physics and leads to the same results as the
(5), (9). Thus demanding an Sp), gauge invariant physi- classical and the first-quantized 2T theory. In noncommuta-
cal state Eq(4) implies that such states form an irreducible tive field theories, however, the Spg), gauge symmetry
representation of SD) with a fixed eigenvalue for the renders consistent interactions as well. In the free field limit,
quadratic Casimir operator of QD) as given in Eq(8).  field equations in configuration space Edd),(5) follow
The higher Casimir operators for (D) can be computed nhaturally from the noncommutative field equations. Solutions
in the same way, and shown that they are fixed numberd? these equations and their holographic 1T interpretation
Hence the physical states in the free case occupy a specifi@incide with the previous result¥] of the 2T field theory
representation of StD)=SO(D —2,2). This representa- in configuration space. The noncommutative field theories
tion is a unitary representation, and are referred teimgle- ~ also yield known results when generic background fields are
ton or doubletonrepresentation, depending on the dimensionturned on[6,8]. We thus find that the noncommutative
D. Sp(2R) gauge theories offer a unified approach to all as-

The above differential equations, Eq6)—(8), have non-  Pects of 2T physics, including interactions.
trivial solutions only if there are two timelike dimensions. ~ So far, we have considered mainly the phase-space inter-
Moreover, the particular SGD) representation emerging in Pretation of the noncommuting coordinat§'=x", X}'
this way is unitary provided there are again two timelike =P™. On the other hand, as mentioned in the previous sec-
dimensions. This implies that the first-quantized theory retion, we may also consider a noncommutative geometry in-
quires SO (D)=SO(D — 2,2) with two timelike dimensions, terpretation ofX}', X} as noncommutingositions of two
confirming the result of the classical analysis recapitulategboint particles, where noncommutativity is induced by a con-
earlier. stant magnetic field. This idea naturally occurred in the con-

The g4, equation becomes

(D X Jd
=—1 E'f’ 1-(9—Xl

v (D

D
2 X1-X;=0

J
=—i5<xi>{( ‘2+X1'a—x1)‘P(X9A>

(%'MNWN)QD(XQAN

1 M
=~ 7DD~ 4e(x})
X1-X;=0

Here, 2IMN|,,\ is the SO (D) quadratic Casimir operator
andIMN is its generator

IMN=—i| X}’ Tyt

- IXin L Xy

Equation(8) is a rewriting of3q,,,0*"¢= 3 (011022+ 0220011
—2012012) ¢ =0 after using the relation between the SR,
and the SOD —2,2) Casimirs
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text of a two-particle system described by{,P}") and
(X3, Py, with constraintsP2=P3=P,-P,=0 that fol-
lowed from two-particle gauge symmetrigh3]. In the pres-
ence of a constant magnetic field with
B(X;-X,—X,-X;) the two position coordinatex)!, X} de-
velop mutual noncommutativity{ln the infinite magnetic

field limit, the kinetic terms are negligible and then one may

reinterpret the system as a single particle, wh¥ge= X,
X,= P are phase-space variabléSuch a setup is analogous
in spirit to the interpretation of noncommutative field theo-
ries in terms of “dipole” behavior of an open string theory in
background magnetic field.

Ill. » ALGEBRA ON RELATIVISTIC QUANTUM PHASE

SPACE

In this section we develop ab initio approach. Consider
the noncommutativéNC) Moyal products for any two func-
tions f(x)*g(x) in 2X D dimensions. Instead of the generic
NC spacetime™, which satisfiex™xx"—x"xxM=i ™", we

are interested in a special form of the noncommutativity pa

rameterd™" that explicitly exhibits the highest possible sym-
metry. Recalling that in a real basis 0t the parameteg™"
may be brought to block diagonal form with skewx2
blocks, the highest symmetry is manifest when all the22
diagonal blocks are identical up to signs. Suchl"@ param-
eter has the symmetry $(D) which contains the sub-
group Sp(R)XSOD—n,n) for somen. For notational
convenience we will write SQD)=SO(D—n,n) and
Sp(2)=Sp(2R). To exhibit this subgroup symmetry, it is
convenient to use the pair of labets= uM with ©=1,2 and
M=1,2,--,D, so that spacetime is labeled K% instead of
x™, and 6™" is replaced byfie,,n"N, wheree,,, and "N
are the invariant metrics for Sp(2) and S®@), respec-
tively. In this basis the Moyak-product takes the form

(Fxg)(XM)

ih ~
=exp 5 ero?"N — =x | FXMDa(X]))
'{2 ax;\\ﬂ &X(Nr a . xM_xM
2 ®
(1)
We define thex commutator
[F(X),9(X) ] =F(X)*g(X) —g(X)xf(X). (12
We then have the Heisenberg algebra
(XY XD, =ie,, "N, (13

which exhibits a global automorphism symmetry SR)2,
X SO* (D). Hereafter we will sefi=1.

2The derivation of one particle dynamics from a two particle sys-
tem with two times, where noncommutativity is induced by a con-

PHYSICAL REVIEW D 64 046005

In the NC limit of 11-dimensionaM theory the highest
such symmetry would be Sp@), <X SO(5) with Euclidean
signature. Our formalism would be useful in this physical

interactionssetting. More generally, concerning the spacetime signature,

for now, we will take the signature arbitrary, say) {n)
spacelike andh timelike dimensions. Ultimately, we shall be
promoting the Sp(R) subgroup to a gauge symmetry, and
find that, as a consequence of the gauge invariance, the num-
ber of timelike dimension# is determined uniquely to be
n=2.

On this basis, there is no loss of generality if we consider
the Sp(2R) doubletX,"jI as the doublet oD -dimensional
spacetime positions and energy moment:=(X™,PM),
spanningD X2 dimensional relativistic phase space. The
subgroup S®(D) remains as a global subgroup of the rela-
tivistic phase space.

A. Symmetry generators on quantum phase space
Having identified the Sp(2¥ SO* (D) as the global sym-

metry groups on the relativistic quantum phase space, we

now investigate their Lie algebra, but in terms of therod-

uct through the Weyl Moyal map. Denote the Sp(2) genera-
tors asQ,,, and the SO(D) generators as™V, respectively.

In terms of thex product, we have found that they are rep-
resented by

Qu=3 WMNX&*XT): 3 WMN(X;'\:I*X';“*‘ X?JA*XL\:)
= nunXy X}, (14
LMN= X IMax M= 2o (XM X = XD X3
=eXNXY, (15)

where the symbols enclosed in parentheses or brackets,
(mv), [MN] etc., refer to symmetrization and antisymmetri-
zation, respectively. The last form &,,,, after the star
products have been evaluated, is identical to the classical
form of Eq. (3). The same remark applies to"N. These
Q,.'s andLM\'s obey the sp(2pso*(D) Lie algebras un-

der star products

[Q,u,v YQK)\]*ziFle,K}\Qaﬁ’ (16)
[LMN’LKL]*:iFMN,KLRd_RS (17)
[LYN,Q,.1.=.0. (18)

Here,F2% ., FMNKL g denote the structure constants of the

sp(2)®sa* (D) Lie algebras, respectively:

Fzg,)\o': %65728 u)(x5@
and
Fra =3 ofx nNII%sY . (19)

From thex-product representation of the generators, we

stant magnetic field, was the historical path that led to the conceptgonstruct the quadratic Casimir operators of Sp(2) and

in the first paper ir{5].

SO*(D):

046005-5
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1
C,[SO*( D) ]=§LMN*LMN, (20)

1
CaSR 2) 1= 5Qu* Q™ @y

where indices are contracted by using the metstd' and
€ respectively. Remarkably, by applying the

uvo

-commutator relation Eq(11), one can show that the two

Casimir invariants are related each other just as in(EQ).

Cy[SO(D) ]=C,[Sp2) ]-7D(D—4). (22

Note that the relation isndependenbf the signature of the

PHYSICAL REVIEW D64 046005

The three differential operator® ), D} ,7) form a com-
plete set of first-order differential operators on the quantum
phase space.

Next, consider multiplication by two powers of(l'\fI 'son
#(X). Of particular interest are the generato3,, and
LMN. Their commutators define derivatives that obey the
Leibniz rule

D,U,V¢(X)E —i [QMV’¢]*
= 3 IuN(X(* D)+ 3 d* X)) (X)

D-dimensional spacetime. In the following discussions, Eg.

(22) will play an important role, especially, in relating the
resulting noncommutative field theory to two-time physics.

B. Differential calculus on quantum phase space

On the relativistic quantum phase spakteg, , differential

calculus may be developed from the defining algebra of th
* products. We thus consider left or right multiplication of a
s from the left or the right of a function

single power ofX);"

¢(X) on phase space. They are:

Xieg0=( X+ 52| s00=DYg0x0, (23

¢(X>*x%=(x2f—Za,“f)¢<><>55§f¢<xy (24)

Here, utilizing the invariant metrics,, and 7y, We have
introduced the notation:

d
M= ,MNg )
W= Eu axN
such that
IMXN=e,,n"N. (25)

= anX () B(X) (27)
DMNg(X)=—i[LMN, o],

=38 (XM %0} p+ ALY px X (X)

=" XM p(X). (28)

Note thex multiplication ordering in the middle expressions.
After applying Eqs.(23),(24), however, they are expressible
in terms of ordinary products, as shown in the last expres-
sions. Note further that, using E@®5), these two derivations

%an be expressed as total first-order derivatives:

D ., d(X) =tk (munX3) ) (X)
and

DMNp(X) =M e+ XN $)(X), (29

implying that integrals over the phase space of these deriva-
tions acting on smooth functions vanish identically.

Left multiplications of the generato®,,, andLM" on a
function ¢(X) define second-order differential operators
D DMN'

wv :
1 M i M
Q,LLV* ¢(X): E 7TMN X(,u,+ Eé,(ﬂ

(xt‘)+'§a'§))¢(x)
(30)
i 1
Z(XM~XV+ ED,MV_ Z(?,u' ‘91/) d(X)

=Dy, $(X), (31)

The multiplications define, as the notations indicate, two in-

equivalent differential operatorsP ¢(X) and DY ¢(X).

However, these differential operators violate the Leibniz 3More generally, one can construct a family of first-order differ-

rule: DY (pix dy) # (D) p1)* bo+ 1 (D) 7). On the

ential operators: D} =aX)+ BN a/oXY) and DY=yx¥

other hand, a new differential operator obeying the Leibniz—(1/a)(1—By) »"N(ia/oX}) with arbitrary coefficientsa, 3, y.

rule can be defined by taking thdifference between the
above two differential operators:

(DM =DM () =[XY,6(X) ], =1dMB(X). (26

For a=vy=1 and B=1/2, they reduce to Eqg23),(24). For «
=1 and B=vy=0, they reduce to the conventional position and
momentum operatorD Y'=XM and DY=PM=—ia/oxM. We
shall restrict the following discussion to the derivations Egs.
(23),(24),(26) only.
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by DY, DY, D,,, D,,, DN, D'N. Nevertheless, in the

1 i i
MN _ T opv| ywIM_ M Nl _ oN] L ; uvr Zpvs )
L™ o (X) = 2‘9# (XM + 2‘9u X, + 2 7y )‘MX) following discussion, all of them will play a role.
(32

) C. Projective relations
i 1 . . . .

= ( XM+ EDMN_ZO')EM agl) d(X) Extending further the products the field with higher pow-

ers ofXZ"s, considerx multiplication between fields. Given
=DMNg(X). (33 a set of fields that are well defined on phase space, satisfying

a suitable fall off condition at infinity, the multiplication
The - refers to contraction of indices with respect to the b_etween them ought to corresponql to another field well de-
SO* (D) metric nyy. Likewise, from right multiplications fined on the same phase-space, viz.
of Q,, andLMN to the functiong(X), one obtains another _
set of second-order differentiatiod,, , DM™: *:Mo® M= M. (4D

i 1 We will define a complete basis of fields that close under the
¢(X)*QW:<XM'XV—§DW— Zﬁ,ﬂ?y) d(X) = product, and will prove Eq(41) via explicit calculation.

Recall that, in the context of nonrelativistic quantum me-

EBMV(;,(X), (34)  chanics, the Wigner function defined on the particle’s phase

space[2] is the Weyl-Moyal counterpart of theiagonal

i 1 density-matrix operators. We will begin with generalizing
H(X)xLMN= ( XM — EDMN— Za[lM 0?1) H(X) this correspondence to a complete set of covariant fields de-
fined on relativistic phase space by includioff-diagonal
— DMN B(X). (35) density-matrix operators.

Consider a complete set of covariant fields,(X4)

These various first- and second-order left- and right-={X1l®m), m=1,2,3; -, defined on the particle’s configu-
differential operators violate the Leibniz rule, however, theyfation space, and construct all possible density matrices
have interesting properties: from the commutation relation®mn:=|¢m){¢n| out of them. Then, noncommutative scalar
of Q,, andLMN, Eqs.(16)—(18), it follows immediately that ~ fields ¢yn(X1,Xz) can be defined by applying the Weyl-
each of the sets of differential operators we have defined/loyal map to the density matrix

(D#V.,D'.V'N,a;"f_) or (DM,:DMN,D_,T) or (D,,, DN, DY)
provide inequivalent representations for the generators of the _ b ) .
Sp(2)x SO* (D) symmetry group, as they obey the sp(2) Pmn(X1,X2):= [ dZY@p(Xy)* exp(—iXz-Y)*en (Xy),
®so* (D) Lie algebra (42
[D,uvvpx)\]:”:zlj,x)\paﬁl (36) Y
:f dDY(pm(Xl— E)exp(—ixz-Y)
[DMN'DKL]:”:MN,KLPQDPQ, (37)
Y
[DMN,D,,]=0, (38) Xen| Xot 5. (43)
and rotate the first-order derivatives in the appropriate fun- ] ) ) i
transformation [2] of the configuration space fields
[D,,,DK]=ie, D +ie DX, (39  ¢m(X1),en(X1), now extended to a relativistically covariant
. a g and off-diagonal form. Assuming completeness, one can con-
DMN DKJ—j pNKDM _j MK N 40 struct acoherent superpositioto represent any noncommu-
[ M= Dy Dy (40 tative field in the form
Similar commutation relations are obeyed by the other sets
of  differential  operators ,,DMN M or
(2_) DMN 1_)'\/') P m# ,u) d(X1,X2) ’:2 Crmn®mn(X1,X2), (44)
pv Yl

There also exists another class of second-order differential
operators of the form<;"f'*¢(X)*X'3’S. One can show, how- whereC,,, are a set of constant coefficients. Therefore it is
ever, that their algebra does not close among themselves angeful to learn about the properties of titg,,.
hence is not relevant for the representation of the Sp(2) We claim that noncommutative fields of the form E42)
X SO* (D) symmetry group. form a set that close under the multiplication, as in Eq.
Summarizing the result of this section, we have con-(41). Explicitly, consider two noncommutative fields,
structed various first- and second-order differential operatorsp,(X), ¢,n(X), of the form Eq.(42) and take the- product
The Leibniz rule is obeyed by;",f', DW,D'\’IN and violated between them. One calculates that
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. X In fact, such a projection operatdr,, is a relativistic gen-
(d’kl*(ﬁmn)(x):f d2Y d°Y(@p(Xp)*xe " Tax g (X1)) eralization of the Wigner distribution function
—iY-X *
*(<Pm(X1)*e 2*(Pn(x1)) d)mm:f dDY(Pm(Xl)* eX[X—inY)*cp’fn(Xl) (51)

= [ dPYdPYe(Xy)*[e Y Xex (¥ (Xy)
f - =f dPY (X —YI2)exp —iX,- Y)om(X i+ Y12).
X om(Xp))*e™ " 2% o (X7) (52

e—in-Y+f dPy In the solution of our NCFT equations we will use the gen-
eral superposition Eq44) to relate 2T physics in noncom-

v v mutative field theory to 2T physics in configuration space as
Xi— —) (pm<xl— —) * @k (Xq), discussed in the following subsection.

2 2 Incidentally, in recent works on noncommutative solitons
M oM s M ) . [14], both diagonal and off-diagonal Wigner distribution
whereY = (Y"=Y"). In going from the second to the third f,nctions  have been  utilized.  Interpreting  the
line we used the fact that under theproduct, phase space px 2-dimensional phase space Bs<2-dimensional non-
“plane-waves,” e "= exp(-ia'X\s" nun),  generate commutative space, diagonal Wigner functions are inter-
translation on the quantum phase space: for any functiopreted as spherically symmetric solitons, while off-diagonal
F(xiM) on phase space, ones are interpreted as asymmetric solitons. Indeed, the two
are related each other lhy() transformations.

=2_Df d°Y ;o (Xy)*

X pf

) . . 1
e—lb-X*F(XiM)*e—la-X:e—IX-(a+b)F(XiM_%aiM+ EbIM .

D. Map between phase space and configuration space

(45 Consider the Fourier transform in th variable of the

Since the integrals oveY'\i’I are factorized, one finally ob- general field in NCFT

tains Y Y
qs(xl,xz)::J d®y exq—iX2~Y)F(Xl— E’X1+ 5

(¢kl*¢mn)(x)=NlmJ dDY+‘Pk(X1)*eiix2'Y+*‘P:(Xl)v (53)
(46)

where F(XM,X¥):=f(X,,Y) is a by-local field inconfigu-
ration space If one computes the productsxg"* d(X1,X5)
and XY'x ¢(X1,X,) acting from the left as in Eq23), then
Mm=27DJ d®Y_of (X1 = Y_12)om(X1—Y_/2) their effect is reproduced by acting only on the left variable
47 in F(X!",XR) like position and derivative in configuration
space, respectively. A similar result is obtained by acting
from the right

whereN,,, is a constant

- [ @®xaet X enx). @9
XY Xy, Xo) = XUF XY XR), (54)
which denotes an inner product between two configuration-
space fields, or simplyV;,= (| ¢m). Thus the closure of J
the algebra satisfied by thg,,, underx products is the same X (X1, Xp)— —i WF(XQA XN, (55)
as the one satisfied by density matriges,:=|em){(@n|. IR
In case the configuration-space fielgg’'s form an ortho-

M M M M
normal basis—take, for example, configuration-space plane DXy, X)* Xy = Xg F(X[, XR), (56)
waves,e™1°K— viz. Nj,= & . One then obtains a covari-
ant version of the orthogonality relation . d
(X X) X5 =1 — g PO XR). (57
(* dmn) (X) = 6 mPrn(X) (49 R

as the fundamental nonlinear relations among the noncomtne left-hand side of these equations is equal to the Fourier
mutative fields. A subset closed under the orthogonality refransform of the right hand side as in E§3). Similarly, we
lation consists offiagonal noncommutative fieldsp,(X), May consider the basis,n(X1,X;) of the previous section.
which have the property of projection operatous,)(@m, From their definition Eq(42) we see thafF[X;—(Y/2),X;

satisfying +(Y/2)] is replaced byp, [ X;—(Y/2)]or [ X1+ (Y/2)], and
assuming the completeness of the superposition(4, we
(Pmm* -+ - * Pmm) (X) = Pmnf(X). (50 have
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Y Y
F Xi= 5. X1+ 5

X-I—Y
15-

(58)

Y
= 2 Cmn@m( X1— E) (P:

Using Eq.(23), we readily verify that the- multiplication of
X X} on the phase-space fielth,,(X1,X,) is equivalent
to applying XY and —ia/oX}!, respectively, on
configuration-space fields,(X}"). Explicitly,

Xy*cﬁmn(x):J dPY XY (@m(Xp)xe™ X2 Yr o} (Xy))
(59

- J dPY(X1em(Xp))xe "2 Yo (Xq)
(60)

and

XUk h(X) = f OV X x (o(Xp)we X2 Vagt (Xp))  (61)

=diY

Therefore, the actioX}' or X3! on NC fields, from the left or

xe™ "2 Yx o (X1).

(62

J
—i—=omn(X
(9X1M ‘Pm( l)

the right, is equivalent to the usual rules for position and
momenta acting on a complete set of wave functions in con-
figuration space, as illustrated by the expressions in Egs.

(59),(61) or in Eqgs.(54)—(57).

PHYSICAL REVIEW D 64 046005

Q;LV()Dm(Xl) ::0<:>Q,u,v* ¢(X1 lXZ) =0= ¢(Xl ’Xz)*Q,u,V .
(66)

A complete set of solutions to the free NCFT equations is
provided by a complete set of solutions to the configuration-
space free field equations. These were already solvéd].in
Thus the 2T to 1T holographic properties of 2T physics in
NC phase space are closely related to those of the configu-
ration space by the above map. The complete set of states
em(Xq) form a specific unitary representation of JD(
—2,2) with quadratic CasimirD(4—D)/4, namely the
singleton/doubleton, as explained in the paragraphs follow-
ing Eq.(10). Hence the noncommutative fieds(X,,X,) that
satisfies the NC free field equation should be regarded as the
direct product of two singletons/doubletons.

For the more general 2T physics theory in the presence of
background fields, the first quantized field equati@ncan
also be rewritten simply in the noncommutative field theory
approach as

(Qur d)(X1,X2) =0=(*Q,,)(X1.X5), (67

whereQW(Xl,Xz) contains all background fields, including
scalar, vector(gauge fieldl, tensor(gravitational field, and
higher spin fields as analyzed [B]. The Qw(xl,xz) are
required to obey the Sp(2) Lie algebra using star products
since at the classical level they had to obey the same algebra
using Poisson brackets

[QILLV lQ)\U’]* =i (8 V)\Qp,(r+ SM)\QVU'J’_ SVU'Q/,L)\ + S,LL(I'QV)\) .
(68)

Using these results, one can show similarly that for the

freeQ,, or LN we have

Q,uv* Dmn(X) = f dDY(q,uv(Pm(xl))*eiixz.Y* (P: (Xy),
(63)

L0 30 = [ QYN X)) w22 Va0,
(64)
whereq,,,em(X1) andIMVe(X,) are given in terms of or-

dinary products or derivatives as in EqS) and(9), respec-
tively. Thus, acting on the basic fields,(X;) in configura-

tion space, qW,IMN are the operators obeying sp(2)

@so* (D) Lie algebra:
[q,uv lan] =iF zlj,}\a'qaﬁ ’

[|MN,|PQ]=iFMN'PQRS|RS, (65)

Having established the desired field equations in NCFT, in-
cluding background field¢before adding further nonlinear

interactions among the NC fieldﬁ,@uv), we will next pro-
ceed to developing the methodology for deriving them from
first principles directly in the NCFT setting. This requires a
study of both global and local Sp(&)*(D) covariance in
NCFT.

IV. FIELD THEORY WITH GLOBAL Sp (2)XSO*(D)
SYMMETRY

Having identified the symmetry group on relativistic
phase space, we next construct noncommutative field theory,
in which the Sg2) symmetry is global. Since this is a new
subject which may have more general applications, we will
first develop some general methodology before returning to
the 2T physics problem.

We begin with specifying Sp(2JSO*(D) representa-
tions to the noncommutative fields. The generators that act
on the relativistic phase space a@,, and LMY, Egs.

an immediate consequence of E(E5)—(18). We have seen (14),(15). Noncommutative fields of different defining repre-

in the previous section that these operators have played sentations are specified, depending on whether the generators

prominent role in the first-quantized approach to 2T physicsact on fields from the left, the right, or as a commutator.
The above analysis allows us to rewrite the free fieldAdditionally, the fields can carryu,v,---;M,N,--- or

equations of 2T physics iK; space given in Eq4) as free  spinor indices, thus describing states of higher spin in Sp(2)

field equations in NCFT in noncommutative phase space or SO (D).
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A. “Adjoint” representations

)\3 )\4
) e} -4 e
By a noncommutative scalar fieldl(X) in “adjoint” rep- Vi(g)=mgx o+ 3 Prpxdt 4 Prdxfrot- .
resentation of Sp(2YSO* (D), we refer to the transforma- (75

tion rules: ) o S
Equationg69),(70) and cyclicity of thex multiplication then

[ op 1 B imply that its integral is invariant under the Sp(2)
5sp¢(x):_§“’ [Qaﬁy‘f’]*(x)ziw Dapd(X), X SO* (D) transformations. Explicitly,

(69
5sp( f dZvam)): f A2PX V()% S

under infinitesimal S(2) rotation, wherew®? denote three
infinitesimal rotation parameters, and

i
:_Ewaﬁf dZDX[Qaﬁ’aV*(d))]*:Ov
i 1
5SO¢>(X)=—EwMN[LMN,QS]*(X):EwMNDMN¢(X), (76)
(70)
2D — 2D 4
under infinitesimal S®(D) rotation, wherew),y denote 55”(fd XV*(¢)) fd XVi ()% Osop
D(D—1) infinitesimal parameters of SQD) rotations.

S [
N hat the latter transformation involves th | “angular - _ 2D MN -
ote that t ,:a atte ta[f,/lolN]ato[M znﬁ est e tota aMgua = 2“"—""J d2PX[LMN.V, (¢)], =0,
momentum” operatoiXi " ¢ + X5 9™, rotating bothX}
and Xg" coordinates of the relativistic phase space. (77

From Eg.(69), one finds Sf2) transformation rules for
various differential operators acting on the scalar field. ExWhere cyclicity property of the multiplication is used.
plicitly, Consider next the kinetic term. Possible terms quadratic
in differential operators are given by

1 _
5sp<0%¢><x>=8%(§w“ﬁDaﬂ¢)<><> (71 (M) () ), 5 (Diyd)*(D) ¢) (78)

1 1(D*"$)*(D,,¢), (D) (Dung) (79
= 50D, 5(D} $)(X) + (95 $)(X). _
(72) %(Dﬂvd))*(Duv(ﬁ) = Alld)*(D/“/D,uvgb)v (80)

The second term arises becauhyp transforms as a $p) 1(D"Ng)x(Dynd) =5 p*(DM"NDyn o). (81)
doublet as opposed W(X) itself being Sp2) singlet. Simi-

larly, D, ¢, D,, ¢, D,,¢ transform as Sp(2) triplets, while
DMNg, DMNg DMNg transform as Sp(2) singlets. Hence

All indices are raised or lowered by the Sp(2) or*3D)
metrics, e, or 7N . Because of that, the integrals of the
' two terms in the first line vanish identically. The rest, which
1 will be denoted collectively aLyg, all behave as scalars
. 8 under Sp(2X SO* (D) transformations. Hence, like the po-
Osd D ) (X) = 2% ﬁDaﬁ(Dqu)(X) @, (D) (X) tential tel?fn,);heir i(nte)grals are invariant once the cyclicitr; of
the » multiplication is taken into account:

+ (D g, ) (X), (73
i
) bup | POX L= 50 [ POX[Qup.Liel =0,
554 DM p)(X)= 5 ™D (DMN) (X), (74 -
and similarly for (DMV¢,DMN¢) or (5W¢,_Z_DMN¢). For an 5sof dPX L= — '_wMNf d2OX[LMN £,c], =0,
infinitesimal SO (D) rotation, transformation rules are ob- 2
tained analogouslyD™N¢, DMNg, DMNg transform as (83)

SO*(D) adjoints, whileD ¢, D,,¢, D,,,¢ transforms as
SO* (D) singlets.

Having identified the adjoint $p) and SG (D) transfor-
mation rules, we now proceed to the construction of an ac- 1p*DVNDyp=1p* DD, b+ D(4—D)dx .

Furthermore, because of the relation E2_2), the last two
terms are related to each other:

tion functional possessing manifest global Sp{&0* (D) (84)
invariance.

We begin with the potential term. Consider an arbitrary Overall, the most general Sp(2)SC* (D) invariant action
product polynomial of¢’s: functional of the “adjoint” scalar field is expressible as
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a — b
Z(D“%)*(chﬁ) + Z(D“”¢)*(DW¢)

|[¢>]=j d?PX

c
+Z(DMN¢)*(DMN¢)_V*(¢) , (89

wherea,b,c denote arbitrary constants.

Inclusion of fermions is straightforward. Denote SD)
spinors asy,(X). The Sp(2) invariant differential operators
are extendible to the spinors. By contracting them with

SO* (D) Dirac matrices, one obtains possible kinetic terms

as

i Dyn(TMNY) .
(86)

iDun(TMNy) ., iDun(TMNY),,

As an example, consider a fermighinteracting with a sca-
lar field ¢, all transforming in “adjoint” representation under
Sp(2). The Sp2)x SO (D) invariant action is then given by

I[E,w,¢]=f d?OX[i g yMN(@' Dy + b’ Dyn+¢'Dyn) ¢

gy prgt -], 87)

where a’,b’,c’ are arbitrary constants angl denotes the
Yukawa coupling parameter.

B. “Fundamental” representations

In the previous section, we have shown that left or right

multiplication ofQ,z's andL™"'s yield, in addition to com-
mutator multiplication, another representation of thé2sp
@sd* (D) Lie algebra. Based on this, we define left or right

“fundamental” representation of a noncommutative scalar

field d(X) by the following transformation rules:
[ i
S5 P(X)=+ EwﬁBQaﬁ*db(X) =+ waﬁ(DaBd))(X),

(89)

5 Dop®) (X0,
(®9)

i
SED(X)=— §<I>(X)*Qa5wgﬁ:: -

where /" ,wRﬁ denote infinitesimal Sp(2)and Sp(2)
transformation parameters. Note that the fiddught to be
complex valued, in contrast to the “adjoint” representation
scalar¢, which could be real or complex valued. Then, the
Hermitian conjugate field transforms as

S 1K) == S (@TX)*Qup)f”

=~ (D@0, (90)

PHYSICAL REVIEW D 64 046005
i
g (X) =+ 5 wrf(Qupr @T(X))

=+3 wRB(Daﬁ@*)(X) (91)

Likewise, for SO (D) transformation, left or right “funda-

mental” representations can be defined analogously.
From Egs.(89), (91), it also follows that®x®d" and
T«® transform as

S D) (X) =3 0D o(PxDT)(X)

and
SE(D*dT)(X)=0,
(92
S5 DT D) (X)=0
and
S DT+ D) (X) =3 0i’D 5 (P T+ D) (X). (93

Note that the infinitesimal transformations @ ®" are all
given entirely in terms of th®,z:=—i[Q,z,0], the deri-
vation satisfying the Leibniz rule, although the transforma-
tion of ® involvesD,z, the differential operator which does
not satisfy the Leibniz rule. It then follows that any function
of OxdT Vv, (&xdM) is invariant under Sp(2)and trans-
forms as an “adjoint” representation under Sp(2)Thus,

SEV.(DP*DT)=0

S5V (P* D)= 30DV, (P*DT) (94)
and vice versa for any function ob™x®, V,(OTxd).
Therefore, taking/, (® '+ ®) or V,(®xd™) as the potential
term, its integral is invariant manifestly under both Sp(2)
X SO* (D), and Sp(2xXx SO* (D)g transformations.

Next, to construct a kinetic term in the action integral,
consider various differential operators acting on the fields
®,d". Begin withD,,,® andD"N®. Under Sp(2) trans-
formation

854D g ®)(X)= 0 - D(D g ®)(X) = (@ - D) (o5 P (X)
(95)

generates theD differential operator in the second term,
henceD ,,® is not covariant under Sp(2) Analogous re-
sults apply for Sp(2), SO (D), , and SO (D) transfor-
mations. HenceD,,,® and DMN® do not define covariant
differential operators, contrary to the situation for the fields
in “adjoint” representation. It turns out that Sp(2)and
Sp(2) covariant differential operators are given By, ,®

andD,,® , respectively. Explicitly,
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L i X SO (D) is manifest. Because 8} is part of the manifest
5Sp(DchI>)(X)=+Ew,_-D(Daﬁ¢)(X)—(wL-D)(aﬁ)<1>(X), symmetry group,X;,X, appear explicitly in the kinetic
(96) terms, and break translation symmetry. These field theories
are SO (D) Lorentz invariant but not Poincaiavariant in
_ i _ _ D dimensions. It implies, in particular, energy and momen-
5§p(Daﬁd>)(X):— EwR-D(Daﬁ,(b)(X)—(wR'D)(aﬁ)d)(X) tum cannot be used as quantum numbers labelling states in
97) Hilbert space. The good quantum numbers are associated
with the representations of Sp(250* (D).
for DMN® and DMN® differential operétors. ThusD, 5, theory? Not at all. The lack of translation invariance is a
“ common feature of 2T physics in all its formulations, and
surprisingly it is correct from the lower dimensional 1T
physical point of view. When we identify the 1T dynamics in
the lower O —2) dimensions, the system does have Poin-
caresymmetry from theD — 2 dimensional point of view. An

D,z®, DMN®, andDMNd transform as adjoint representa-
tions under Sp(2), Sp(2k, SO (D)., and SO*(D)R,
respectively, and as singlets otherwise. Similar]yy'\f'CD
transforms in the fundamental representation of Sp(2)
EMSO’C(D)'- and n the smglet of Sp(2)<SC* (D). Wh”_e example in one of the holographic pictures is that*$)
D, ® transforms in the singlet of Sp(2x SO" (D). andin  _ 55D —2,2) is the conformal group iD—2 dimensions,
the fundamental representation of Sp{X)SO* (D)r. The  4nq it does contain the Poincageoup, including transla-
differential operators acting on the Hermitian conjugate fields This example shows that embedding the symmetries of
®T exhibit similar transformation rules, related to thosebof the physical space in SOD) is possible, and that the em-
by interchanging the left- and the right-symmetry groups. bedding space may have some unusual signature.

Putting the above results together, for the “fundamental” |, more general cases beyond 2T physics, the spacetime
scalar field®, the most general action integral with manifest gjgnature, which has been left unspecified so far, ought to be
Sp(2). X Sp(2kX SO* (D) X SO* (D) invariance is given  getermined by consistency and physical properties of the

by theory. There are several ways of doing so. One is by treating
. . the spacetime coordinate(ﬁ"’s as embedding space coordi-
I[<D,(I>T]=f d?°X[aD*'® '« D, +bD,, DT+ DL P nates of a true physical spacetime as in the 2T physics ex-
ample. For instance, one may formulate Euclidean quantum
—V, (DxdM)]. (98) field theories on a — 1)-dimensional hypersphere in terms

of those onD-dimensional Euclidean spa¢&5]. Likewise,
One could have also added terms of the formquantum field theories onD(—2)-dimensional de Sitter
DMNO Dy @ andDMND T« Dy, ®. As pointed out in Eq.  space can be recast in terms of those ob-dimensional
(84), they are re-expressible in terms of those already inLorentzian spacetime wittone timelike dimension, and
cluded. In the actiona,b are arbitrary coefficients. quantum field theories or)(— 2)-dimensional anti-de Sitter
The field equation of motion is given by space in terms of those on B-dimensional Lorentzian
_ spacetime withtwo timelike dimensions. In all cases, the
i(aD D, +bD*"D,,)® =V (DPxDN)xD. (99 physical spacetime is defined as a hypersurface defined by an
o ) _ appropriate quadratic equations for coordinates of the
Note that the left-hand side is expressed entirely in terms ofy_gimensional embedding space. Moreover, the symmetry
the Sp(2) and Sp(2) Casimir operators, Vviz;D*'D,, group of the physical spacetime is (D) and acts linearly
=3Q*"xQ,,=3D""D,, acting ond either from the left or  on coordinates of the embedding space. Any of these embed-
from the right. dings will require some local symmetry to thin out degrees
Extension to fermion or higher-rank tensor field is of freedom, eliminate ghosts, and reduce the theory to the
straightforward. The fermiof’, can be taken as the spinor |ower dimensional theory.
representation of either SQD)_ or SO*(D)g and as the The above discussion suggests that the noncommutative
“fundamental” representation of either Sp2pr Sp(2k.  field theory with global Sp(2XSO‘(D) automorphism
Taking, as an example, thdt,, is in the left representations group may be viewed as a sort of theory defined on an em-
for both, the action integral is expressible as bedding phase space of the physical phase space. In particu-
lar, the signature of the higher dimensional spacetime will be
I[@,\If]= J dZDX[E*(FMN_ iDyP)+ -], (100 determined_dependin_g on th_e Way_the physical phase space is
embedded into the higher dimensional space.

The ellipses denote the interaction part, whose form is con-
strained severely by the requirement of both the Sp(2)
XSO (D), and the Sp(2)x SO*(D)r symmetry groups.

V. FIELD THEORY WITH LOCAL Sp (2) SYMMETRY

In this section, we will discuss noncommutative (3p
gauge theory on relativistic noncommutative phase space. Of
particular interest would be the construction of a theory,

We have constructed noncommutative field theories omwhose field equations coincide with Eq$7),(68) for 2T
the relativistic phase space, in which the phase space Sp(hysics.

C. Spacetime signature and automorphism group
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A. Action and equations of motion

Consider promoting the global Sp(2{jransformation Eg.
(88) of the complex scalar fielé®, to a local transformation
parametrized byo{"#(X;,X,):

S-b(X)= I5w"‘B(X)*(Daﬁcb)(x)

S (@)% Qup) 4B (X)
=i (X)xD(X). (101)

Ordering of the factors ir%wfﬁ(X)*QaB::wL(X) could be
more general. With any ordering, the resulting, (X,X,)

can be regarded as the general noncommutative infinitesimal

local phase transformation acting on the left®f So, we
will in fact interpret local Sp(2) applied on a scalar to mean
the general gauge transformation for amy(X) applied
from the left as in the last expression in Ef01). Proceed-
ing as usual, we introduce a gauge poterfiig)(X;,X;) and
promote the global Sp(2)differential operatorD,,, to a

local covariant differential operatdADW

D ®(X):=D,,®(X)+A, +»D(X)

=(Qurt AL (X)) *D(X). (102

The noncommutative local transformations are defined b

Eq. (10D along with

SA,(X)=D 0 =D ,,w (X)—i[A,,(X), 0 (X)],
:—i[(Q;LV+A/LV)1wL]*Y (103)

where D, is the derivation of Eq(27) that satisfies the

Leibniz rule. This ensures the covariance of the differential

operatorD,,,®:
D, P)=iw *D,,. (104
Denote the covariantize@,, asQ,,(X;,Xy)
Qur=Quut A= XX unt Au(X). (109

Note that QW(Xl,XZ) is the counterpart of the classical

QW(X,P) that appeared in the worldline formalism in Eq.
(1). The infinitesimal local gauge transformation of Ef03
is re-expressed as

8Q,,=—i[Q,, w.].. (106

This is the counterpart of the canonical transformations in
the “space of all theories” discussed in the worldline ap-

proach[8].
The covariant field strength‘:hy,m(x) is obtained from
the x commutator of the covariant derivatives

PHYSICAL REVIEW D 64 046005

[Dus Drodex PX)=[(Dpyy A ) (Dygt Ay o) Lo x P (X)
(107
:inlj,)\(r(Daﬁq))+i(D;LvA)\U
_D)\UA;LV_i[A[LV’A)\U]*)*(D (108)
=iFe8  Dap®+iG,,\* P,
(109
where FZEM refers to the Sp(2) structure constants, Eq.

(19), and the covariant field strength is given by

G,LLV,)\O’(X) = D,u,VA)\a'_ D}\O'A/.LV_ I [A,uv !A)\O']*

—iFe A (110
Note again thab ,, is the derivation of Eq(27) that satisfies
the Leibniz rule. The last term in the field strength originates
from the covariantization of the non-Abelian differential op-

erators involved. In terms of the covariant generators
QMV(X), the field strength becomes

1Gune=[Qus Quoli—IFih1oQus- (11D
G, 1o has only three independent components which may
be rewritten in the form of a symmetric2 tensorG*”, the
latter being obtained from contraction @, ,, with the
tructure constant raised indicE¢”*7*?. Explicitly, three
ndependent components of te” take the form

GM1=i[Q12,Q21, +2Qys, (112
6= 5[0z, Qurl. 202 113
G%=i[Q11,Q12], +2Q1;. (114

The vanishing of the field strengthG“” or G, ), is
equivalent t(ﬁw satisfying the first quantized sp(2) algebra
as in Eq.(68). This algebra had emerged as a condition in the
first quantized worldline theory Eql), which followed from
the identical algebra in the form of Poisson brackets in the
classical theory. Thus, we now aim at deriving the equations
G*"=0 as equations of motiofbefore possible field inter-
actiong from an action principle in the noncommutative field
theory. We can easily obtain this result from the following
noncommutative field theory, whose structure is analogous to
the Chern-Simons gauge theory

So= | ¢*PX1(0.0+0)~(0.0)]
==f dZDx(

whose variation yield$Sy= [d?°X(5Q,,,* G*").

[ Qll*@lz* sz‘ [ QZZ*QlZ*Qll
+Qu1x Qoo+ Qux Q11— 2Q1x Qg '
(119
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To also the equatio(67) for the matter fieldd (X,,X5,), (D—2) dimensions by virtue of the holographic property of
consider the covariant derivative Eq(102, D, 2T physics. As demonstrated beloggee also[8]), the
EQM*@, and add it to the actiofiL15) after multiplying it G**(X,P) =0 equations describe, when expanded in powers

ith a L ltiplier fiel@“*(X,,X.): of Py’s, background gauge fields of various higher spins in
with & Lagrange multiplier fiel"(X,,X,) the (D—2)-dimensional spacetime. The matter field equa-

— . — . tion, the second in Eq121), implies that these higher-spin

Sp,0z= I f d?PX(Z#%Q,,,x D — DxQ,,, xZH"). fields are coupled also to a scalar figlde ¢(X) in Eq. (42)]

(116  in (D—2)-dimensional spacetime.
. Having noted that we have made the desired connection
The Z*” field equation yields the free part of the desiredwith 2T physics, one can generalize the noncommutative
matter equation Sp(2) gauge theory by including nonlineéself)-interactions
R consistently with gauge and spacetime symmetries. The in-

Q,,xP=0, (117 clusion of such interaction, such as Ef22 and those be-
_ low, would generate kinetic terms describing propagation of
while @ field equation yields an equation fd@t*” of the form  the gauge fields, but this has not been studied yet in our
N setting. This is an interesting issue for further study, as it is

Qu*Z+"=0. (118 related to construction of amteracting higher-spin gauge
field theory, whose satisfactory solution has remained elusive

The actionSy q.z Is invariant under the local Sp(g)rans- despite considerable progre$&6]. Specifically, consider

formations (101),(106) provided Z*” field transforms as adding terms up to two derivatives &, or D,,, . Of par-

L V_j v :
0"Z""=lw xZ"", and under the local Sp(g)efined by ticular interest would be the Yang-Mills action for the(8p
SRb=—iDxwpg gauge fieldA,,(X), which can be taken instead of or in
addition to the above Chern-Simons type action:
and

R v__ H v 1
SRZM = —iZF' % wg. (119 Se— 4_ng 42X (G, 1)

One may accordingly define a Hermitian fielbl X;,X5)

=®x® satisfying Q,,*¢=0=¢*Q,,, corresponding to _if dOX(D. O 1 —iFP & 2
the first-quantized matter wave function of the worldline _492 ([Quv+ Quols =1F Ly 1o Qap)s -
theory, Eq.(67).

The addition of matter fields would give rise to a back (123
reaction to the gauge fields themselves. The field equations
derived from the combined action Similarly, one may add self-interactions of the scalar field

©(X1,X,) (including the scalar field discussed aboye
Stota= SQ+ S(ID,Q,Z (120
1 . .

are - B S¢:f d*PX] = 5 (D) * Dy = Val(px ")

GH'=d*xZM—-Z"xd, Q,»®=0, Q,,*xZ""=0, .

(12D = [ X = S @ Va(oreh)|

plus Hermitian conjugates of the last two equations. From

them, one derives the following field equations involving R
gauge fields only: where (Q,w)2 is the quadratic Casimir operator of ().

QurGH'=0=C""*Q,, . (122 B. Classical solutions
Evidently, the structure of these equations is consistent with Let us now analyze physical contents of the equations
the first quantization of the worldline theory as given in Egs.
(68),(67), in particular, when the matter self interactions are G*"=0
ignored, as the®*”=0 andQWﬂD:O . One may setup an
expansion around this solution and analyze the classical s@nd
lution of these equations.

By virtue of the relation to the worldline 2T physics Q,*xP=0 (1249
theory, we are assured that the spectrum of these 2T field L '
equations is unitaryghost-fre¢ and causal. Indeed, as in the o ] ) )
classical theory, the physical spectrum is empty unless thefg"om Egs.(112—(114) it is evident thatG**=0 is equiva-
are two timelike dimensions. Furthermore, the physics delent to imposing the sp(2) algebra @,,(X,P). A solution
scribed by them has a direct relation to the 1T physics irto this situation was found if8] as follows: using the
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Sp(2). gauge transformations, one can choose gauges suébrmations, and tha)g"_li"MH are gauge parameters for the
that theQW(X,P) takes the following fornf: high spin fieldsGi"l"'MS. The gauge transformations mix

. R various gauge fields with one anoth{see[8]), but typically
Qu(X,P)=X"XNgyn,  QuAX,P)=X"(Py+Ay(X)) an inhomogeneous term

QzAX,P)=Go(X)+ G (P+A)u(P+A)y SGYI Ma= gMagy M2 My (128

+ 2 gMe 'MS(X)[(P+A)M o (PHAW ] remains in the gauge transformations, where the index*bn
=3 ° ! s is raised ag™=GY"Nay.

. H 2_
where 7y is the SOD —2,2) metric,Ay(X) is the Max- The equatlons,A Eqst129), t-a.ken toget.her _W'thx =0
well gauge field inD dimensions,Go(X) is the dilaton, (Which equals th&,,=0 condition, describe fields whose
GgIN(X)z 77|\/|N+hg/n\1(x) is the spacetime metric iD di- mdependent degrees_ of fre_edom r¢5|de m—2) dimen- _

. &M Ms(X) for all s=3 are the higher-spin sions, both from the viewpoint of their components and their
mensmhs, ants .g P dependence on spacetime coordinates. Specifically, Egs.
gauge fields. To obey the sp(2) algebra, these fields ought 1825), together withiX2=0, impose the holographic property
be homogen'\e/lous polynomials of degree-@) and be or- ¢ 2T physics. An explicit holographic projection from
thogonal toX™ [using the flat SOD —2,2) metricyun] 8 p_gimensional spacetim™ to (D — 2)-dimensional space-
follows time x* is presented if8]. One then sees that the indepen-
dent degrees of freedom are given by the figgl),A ,(x),
0,.,(X), g5*" #s(x) for s=3, which are fields in D—2)

M _ dimensions, where the Lorentz componepts, - - - trans-
XTFun=0, 129 form according to SQ{—1,1). Al of these
whereFyn= (duAn— dnAy) is the Maxwell field strength. (D —2)-dimensional fields are consistent with the

The Maxwell gauge symmetry can also be partially fixed by(D —2)-dimensional conformal symmetry SD(-2,2), as
taking X-A=0. Then,X"F,,,=0 becomes a homogeneity this is made evident by thB-dimensional formalism of 2T
conditionX- 9Ay = — Ay, . After the gauge fixing, there still physics.

remains local Sp(2) symmetry that does not change the ~ The remaining gauge symmetries of H3427) are also
gauge fixed form of thed;(X,P) and O,,(X,P) given holographlcally projected tod—2) dlmenS|ons‘;l§r'13 their
above(i.e., 8-Q;;= 8"Q,,=0). From Eq.(106), one finds independent components afg(x), 8;14.()(.), andeg™ TH(x)
that the corresponding gauge functien (X,P) ought to for s=2. It turns out that these remaining gauge symmetries

X-0Gs=(5—2)Gs, X, Got Mo=Xy hyM?=0,

take the form are strong enough to reduce the fields to pure gauge degrees
of freedom,unlesslower- and higher-spin fields do not co-
o (X,P)=wo(X)+ oY (X)(P+A)y exist in the solution. The exceptional cases therefore lead to

) two distinct sets of nontrivial solutions:lawer-spin branch
- My Mg and ahigher-spin branch The lower-spin branch consists
+§2 g COLP+AM, - (PEAMT only of go(x),A,(X), ,,(x), while all higher-spin fields
(s=3) vanish. In the higher-spin branays(x),A,(X) van-
(126 jgp, whileg,,,(x), together withgi*" " "#s(x) for s=3 form a

where each coefficient is a homogeneous function of degre@ontrivial basis for the gauge transformations, whose explicit
s and is transverse t§" forms are calculated if8].
Intriguingly, the two disconnected branches of solutions

X-dwg=Swg appear to bear a correspondence to massless states of string
theories in two extreme limit§¢or phases The lower-spin
and branch with spinss<2 coincides with the limiting string
My Mg spectrum in the zero Regge slope lintibfinite tension,
s =0 for s=0. (127 \yhile the higher-spin branck=2 coincides with the limit-

. . . ing string spectrum of the leading graviton trajectory in the
These residual gauge symmetries are interpreted as followgssinite Regge slope limitzero tension®

o(X) is the gauge parameter that transforms the Maxwell “y\ye have thus found a set of interesting solutions to Egs.
field, w1 (X) is the parameter for general coordinate trans-124) and have succeeded in their physical interpretations .

Xle

“We emphasize that after choosing a gaugeJfor, the remaining  5The aforementioned solutions f@&**=0 describe gauge fields,
gauge symmetry is insufficient to simplify the structure of put the propagation of these fields is not determined by this equa-
Q.5(X,P) further. However, ifQ,, is restricted to obey the sp(2) tion. Thus the kinetic term must come from terms such as Egs.
algebra, the remaining gauge symmetry can be used to set it to tH&22),(123) which have not been included in our consideration so
form shown in the text. far.
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They have important implications; the equati@®$’=0 en- commutative S{?) gauge theories formulated in this work,

code all possible D—2)-dimensional gauge field back- part of the noncommutative gauge transformation orbit ought

grounds that a spinless point particle would interact with.to be identifiable with rotation on the relativistic phase space

Moreover, the interaction with the spinless field is governeds© that gauge-invariant observables are nonlocal. We expect

by the physical state conditio) *®(X)=0, a condition that open Wilson lines stretched over the relativistic phase
134 !

that solves the noncommutative field equations when nonlinSPace constitute an important class of such observables. As

ear interactions are turned off. Via the covariant WignertN€Y are gauge invariant, from the viewpoint of the two-time

transform, Eq.(42) and the technology developed in Egs. physics, the expectation value of the open Wilson lines ought

(59)—(66), one then obtains the corresponding field equationd® P& universally the same for all classes of
for the complete set of fieldsp,(X;) defined on the (D —2)-dimensional theories related to one another via the

‘holography property.” In view of conceptual importance of

D-dimensional configuration space, but now in the presencﬁ: X :
of these background fields. The physical state condition the['€ latter, the role of these observables in understanding the
2T to 1T “holography” could be extremely rewarding.

reduces them tol§ —2)-dimensional field equations, again S ,
Second, a complete classification of noncommutative

in th f th back d fields.
N Ihe PIesence of ese background 1els dSP(2R) gauge theories underlying the 2T physics is desir-

Finally, let us describe how the 2T to 1T holography an )
duality properties emerge in this formalism. The reductionP!e: We have already shown that a Chern-Simons type ac-

from D-dimensional spacetime to ®¢ 2)-dimensional one tion or its variant is a viable route. F(r)]r this ?(;)al, fafl Becchi-
has followed from solving thé -dimensional field equa- ROUet-Stora-Tyutin (BRST) approach would offer an

tions. The solution can be presented in a variety of ways ofconomic procedure for_con§truction Of. the .actions. For ex-
embedding thed — 2) dimensions inside thB dimensions ample, analogous to Witten's open string field theory, one
[7]. Different embeddings give rise to different @" construct a BRST operator
(D —2)-dimensional “holographic” viewpoints of the origi- N

nal D-dimensional field equations. In doing so, which one of 2ersT=(C,Q)—(c,c*b)

the two times becomethe timelike dimension in the pro- .
jected_@—Z) dime_nsions’? In princip_le, an infinite num_ber ECMVQW(X'P)_ I_Faﬁ )\C,u,vctr)\baﬁ’ (130

of choices are available, corresponding to the embedding of 2 Kne

a timelike curve in the extra dimensions. The choice made by

the embedding determines the dynamical evolution of thevherec*”,b,, are the BRST ghosts and antighosts, with
holographic projection. Each of th®( 2) -dimensional dy- ghost charg&®g,= —1,+1, respectively. The ghosts” and
namics may look different, even though any one of themP,., represent three independent fermionic degrees of free-
represents a gauge invariant physical sector of one and tiom [one may think of them as three creation and three
sameD-dimensional theory. This implies that, by a different annihilation operators acting on fermionic Fock space,
choice of the Sp(2) gauge, differenD (- 2)-dimensional equivalent to six (8< 8) matrices with the same anticommu-
theories in different background fields are obtained and alfation propertiek There is no need for a definition of star
these theories are transformed to one another by locdlroducts for the ghostsalthough this is possible via the
Sp(2R) gauge transformations. What we have succeeded iMVeyl correspondence applied to fermigpninstead of star
this work is that this property can now be obtained frima  Products they can be treated as fermionic quantum operators,
first principles by formulating the 2T physics in terms of Of Grassmann numbers, keeping track of their orders as
noncommutative S@) gauge field theories. usual. We take an action of the purely cubic Chern-Simons

type

(129

VI. OUTLOOK

In this paper we have constructed noncommutative field SBRST:[ dulX,b.cl(Qprsr* Qerst* Qersr): (13D
theories with global or local @) symmetry defined on rela-
tivistic phase space. We believe these theories deserve furhere the star product refers to the Moyal product in phase
ther investigation, either as a description of 2T physics fronspace K,P) we have used in the rest of the paper. The
first principles, or with global S{2) symmetry in other ap- integration  measure du[X,b,c]=(d?°X)(dc)(d%b)
plications. (byqb15b20) is invariant under Sp(2) and has ghost number

We mention some of the immediate questions that comer3, cancelling the ghost number3 of the Lagrangian den-
up by the results in this work. First, in noncommutative Sity (instead of fermionic integrals one may also use a
Sp(2) gauge theories, there is an important issue concerningacuum expectation value in Fock space, or a traceXr88
gauge-invariant operators. It is known that, in the context ofmatrix spacg Thus the only term in the Lagrangian that
noncommutative field theories formulated as deformatiorsurvives the integration is the term that contains the Sp(2)
quantization over a noncommutative space, part of the norinvariant ghost factoc!'c'c®2. Generalizing Eq(129, one
commutative gauge transformation orbit is identifiable withcan take the BRST operat@zrsi( X, P,c,b) to be the most
translation along the noncommutative spaté—19. It im- general ghost number1 field, containing phase space fields
plies that gauge-invariant observables are necessarily nonlas coefficients in all the allowed termshich have the form
cal. A complete set of such observables are identified witlt,cch,cccbb). One may then define a gauge symmetry on
open Wilson lined17-19. By a similar argument, in non- these fields that is given by
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5Qprst=1[ QprsT A+, (132 ics field theory? A criterion would be that the kinetic term for
the gauge fields ought to be produced correctly by the proper

whereA (X,P,c,b) is a general gauge function of ghost num- theory. As computations involving the Moyal star product are
ber zero. Note that, when expanded in powers of ghosts, theotoriously difficult in the present setting, primarily because
ghost independent term in is precisely the local gauge they involve derivatives of all orders, identification of the
parametemw, (X,P) discussed earlier. The action, EG31), proper theory would take considerable effort. We will report
is the direct counterpart of the background-independentprogress on this project elsewhere in a separate paper.
purely cubic action in Witten's open string field theory. Some  Third, for any given action, further study and a complete
comparison points include the fact th@t/w:qu“LAuw classification of the classical solutions in nonc'ommutative
whereQ,,,= %X(M' X,) is a particular background, while the Sp(2) gauge theories are needed. As uncovered_ in the present
generalQgrst, as well as the star product, are backgroundwork, classical solutions correspond to a variety of back-
independent. The equation of motion @grsr* Qprsr=0  9round fields in the holographically projected configuration
and, when an appropriate gauge is chosen, it leads to the SPace. As such, a complete classification of the classical so-
fundamental equatio®*“”=0. This was in the absence of lutions would lead to better understanding of many important
matter. One may add matter fields, ¥ containing a linear 1SSUeS in 2T physics as well as 1T physics, in particular, a

combination of ghost charges 0,-1, 2 =W,+W¥ _,+W¥ consistent formulation of interacting higher-spin field theo-
with an action that takes the form 0" " =17 772 Yies[17]. We anticipate that classical solutions with nonzero

field strength,G*”(X)#0, and nonvanishing scalar self-
_ interactionsV, (Px®d ") #0, open up new surprises.
Satter™ f du[X,b,c](V* Qgrs* V). (133 Finally, we also expect diverse applications of our formal-
ism and results to the Euclidean noncommutative field theo-
The terms that survive integration are those that add up tdes arising in string theories arid theory[9—11] and even
ghost number-3. The field equations that follow from the to other physics problems than string theories &htheory.

total actionSgrst+ Smatter &1 We will report progress on these issues elsewhere.
Qprs* V=0, T Qgrst=0,
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