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Compactified DÄ11 supermembranes and symplectic noncommutative gauge theories
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It is shown that a double compactifiedD511 supermembrane with nontrivial wrapping may be formulated
as a symplectic noncommutative gauge theory on the world volume. The symplectic noncommutative structure
is intrinsically obtained from the symplectic two-form on the world volume defined by the minimal configu-
ration of its Hamiltonian. The gauge transformations on the symplectic fibration are generated by the area
preserving diffeomorphisms on the world volume. Geometrically, this gauge theory corresponds to a symplec-
tic fibration over a compact Riemann surface with a symplectic connection.

DOI: 10.1103/PhysRevD.64.046001 PACS number~s!: 11.25.Mj, 11.25.Hf
n-
au
ls

a
s
x-
ld

g-

he

on
lds

ur
ia
a

ve

c
ll
ve
e
hi

of
s ex-
on
ted
the

ma-
d

ti-
ta-
a-
as

rst
er-
on-
e-
se

to a
our
ith
he

mu-

a
su-
the
m-

em-

-

I. INTRODUCTION

Noncommutative geometry in string theory with a no
zero B field @1# has recently been discussed by several
thors@2–5#. The relation of the noncommutative Yang-Mil
Lagrangian to the Born-Infeld one was considered in@6,7#
and general aspects of noncommutative gauge fields h
been discussed in@8–22#. In @16#, the change of variable
from ordinary to noncommutative Yang-Mills fields was e
plicitly found and the equivalence between the Born-Infe
action for ordinary Yang-Mills fields in the presence of aB
field and the Born-Infeld action for noncommutative Yan
Mills fields was proved.

In this work, we follow a different approach. We relate t
double compactifiedD511 closed supermembrane@23# dual
@24–26# to a symplectic noncommutative gauge theory
the world volume minimally coupled to seven scalar fie
representing the transverse coordinates to the brane.

We first show that there is a natural symplectic struct
for the double compactified supermembrane with nontriv
wrapping on the target space. It is defined by the minim
configurations of the Hamiltonian@25,26#. In fact, the solu-
tions when interpreted in terms of connection one-forms o
principal bundles satisfy the global condition

* F~A!5n. ~1!

On the other hand, it is known that for a given a symple
tic structure over a manifold there always exists a globa
defined deformation of the Poisson brackets. Moreover, e
for Poisson manifolds it is possible to define star brack
@27# which lead to a noncommutative geometry. Having t
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idea in mind, we show that the Hamiltonian for the dual
the the double compactified supermembrane correspond
actly to a super-Maxwell theory of a symplectic connecti
on a symplectic fibration, the fiber being the space genera
by transverse coordinates and its conjugate momenta to
brane in the target phase space. It is noticed that a defor
tion of the given geometrical structure in this theory will lea
in a straightforward way to a noncommutative~in the manner
of Moyal! gauge theory. The reformulation of the compac
fied D511 supermembrane dual in terms of noncommu
tive gauge theories provides a different point of view to an
lyze fundamental properties of the supermembrane
discussed in@28,29#.

The steps taken in our formulation are as follows: we fi
construct the Hamiltonian for the doubly compactified sup
membrane dual. The Hamiltonian minima are smooth c
figurations corresponding to U(1) connections globally d
fined over the brane world volume. The curvature of the
connections is a nondegenerate two-form that gives rise
well-defined symplectic structure. The second step in
construction is then to introduce symplectic connections w
their covariant derivatives in the compactified directions. T
Hamiltonian reduces then to an exact symplectic noncom
tative super-Maxwell theory interacting with scalar fields.

In our construction of the Hamiltonian, we deal with
canonical analysis of the dual theory to the compactified
permembrane. This approach allows us to study directly
global aspects related to the nontrivial wrapping of the me
brane on the torus. The Hamiltonian for a generic superm
brane was first performed in@30#; however, the above-
mentioned global aspects were not tackled in it.

II. HAMILTONIAN FORMULATION OF THE DOUBLE
COMPACTIFIED DÄ11 SUPERMEMBRANE DUAL

We consider the compactifiedD511 closed supermem
brane dual obtained in@24# and@26#. The bosonic part of its
action is given by
©2001 The American Physical Society01-1
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S~g,X,A!52
1

2ESxR
d3jA2gS g i j ] iX

m] jX
nhmn

1
1

2
g i j gklFik

r F jl
r 21D , ~2!

To obtain the Hamiltonian formulation of the theory, w
consider in the usual way, the Arnowitt-Deser-Misn
~ADM ! decomposition of the metric

gab5bab , gab5bab2NaNbN22,

g0a5NaN22, g0a5babN
b, ~3!

g0052N21babN
aNb, g0052N22

and definebab by babbbc5dc
a.

The light-cone gauge fixing conditions are

X15P0
1T, P15P0

1AW, ~4!

whereT is the time coordinate on the world volume andW
the determinant of the metric overS introduced through the
gauge fixing condition only.

After elimination of X2 and P2 one obtains@26# the
Hamiltonian density

H5
1

2

1

AW
S PMPM1b1

1

2
bbacbbdFab

r Fcd
r D2A0

r f r1Lf,

~5!

whereA0
r andL are the Lagrange multipliers associated w

the first class constraints

f r[]aP r
a50, ~6!

f[eab]bF ]aXMPM1P r
cFac

r

AW
G50, ~7!

f being the generator of the area preserving diffeomorphi
There is also a global constraint arising from the eliminat
of X2; this is
04600
r

.
n

R
c
S ]aXMPM1P r

bFab
r

AW
D dja52pnc , ~8!

wherec is a basis of homology of dimension 1. Herenc are
integers associated withc.

bab is the auxiliarly metric satisfying

bab5~12b21P r
aP r

bbab!
21~]aXM]bXM

2b21P r
cP r

dbcabdb!, ~9!

whereb is the determinant of the matrixbab .
PM are the conjugate momenta associated withXM. The

indexM refers to the transverse coordinates in the light-co
decomposition of the target space. Equations~7! and~8! arise
from the integrability condition on the resolution forX2 and
the further assumption thatX2 winds up overS1 with wind-
ing numbersnc .

It is interesting to notice that the Hamiltonian density~5!
depends on the auxiliarly metric only through its determin
b. In fact,

bFab
r Fcd

r bacbbd5
1

2
W~* Fr !2 ~10!

where

* Fr[
eab

AW
Fab

r ~11!

is the Hodge dual to the curvature two-formFr .
The determinantb may be obtained from Eq.~9! after

some calculations; it has the following expressions:

b5det~]aXM]bXM !, M51, . . . ,9, ~12!

for the q50 case@28#,

b5det~]aXM]bXM !1~Pa]aXM !2, M51, . . . ,8,
~13!

for the q51 case, and

b5det~]aXM]bXM !1~P r
a]aXM !21

1

4
~P r

aPs
beabe

rs!2,

r 51,2, M51, . . . ,7, ~14!

for the q52 case.
The Hamiltonian densities obtained after replacing E

~13! and~14! into Eq. ~5! may also be constructed in a mo
direct way from the Hamiltonian density of the superme
brane in the light-cone-gauge~LCG! by using duality in the
canonical approach directly without starting from the cov
riant formulation. Let us analyze briefly this point. We co
sider the canonical action of the supermembrane in the L
@28# with target spaceM93S13S1; its bosonic part is
1-2
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HSM5
1

2

1

AW
@PMPM1det~]aXM]bXM !#

1Leab]bS ]aXMPM

AW
D , M51, . . . ,9. ~15!

Consider, first, one of the compactified coordinates tak
values overS1. It must satisfy

R
c
dX52pnc . ~16!

The terms involving that map in the canonical action are

K PẊ2
1

2

1

AW
~P21eacebd]aX]bX]cX

N]dXN!

1]bLeab]aX
P

AW
L , ~17!

where XN is different from X. We may then construct a
equivalent constrained term

K PL02
1

2

1

AW
~P21eacebdLaLb]cX

N]dXN!

1]bLeabLa

P

AW
L ~18!

subject to

eca]cLa50, ]aL02]0La50. ~19!

We may introduce them into the action~17! through the use
of Lagrange multipliers, which we will denoteA0 and
eabAb , respectively. We then recognize that the conjug
momenta toAb is

Pb[eabLa . ~20!

After the elimination ofL0 we get

p5eab]aAb . ~21!

Equation~17! subject to Eq.~19! reduces then to

K PbȦb2
1

2

1

AW
@~eab]aAb!21PcPd]cX

N]dXN#2A0]cP
c

2LPb]bS ecd]cAd

AW
D L . ~22!

The terms~22! contribute together with the terms inde
pendent ofX and P in Eq. ~15! to give exactly the same
expression of the Hamiltonian density~5! and ~13!:
04600
g

e

HD5
1

2

1

AW
S PMPM1det~]aXM]bXM !1~Pa]aXM !2

1
1

4
W~* F !2D2A0]cP

c1Leab]b

3S ]aXMPM1PcFac

AW
D , M51, . . . ,8. ~23!

Equation~23! is also the Hamiltonian density arising from
the canonical formulation of the Born-Infeld action@31#; it
describes then theD2-brane in ten dimensions in the case
open supermembranes. If we now repeat the above proce
for the second compactified coordinate, we obtain the
lowing Hamiltonian density:

H5
1

2

1

AW
S PMPM1det~]aXM]bXM !1~P r

a]aXM !2

1
1

4
~P r

aPs
beabe

rs!21
1

4
W~* Fr !2D2A0

r ]cP r
c

1Leab]bS ]aXMPM1P r
cFac

r

AW
D , ~24!

in complete agreement with Eqs.~5! and ~14! which were
obtained from the canonical analysis of the covariant form
lation of the theory. The equivalence betweenHSM , HD ,
andH may be then established from the duality equivalen
between the covariant formulations of the theories or, m
directly, from the duality equivalence of the gauge fixed c
nonical formulations in the LCG. The relation becomes no
trivial because the procedure of going from the covari
formulation to the LCG one involves the elimination of th
auxiliarly metric which is an on-shell step while the duali
equivalence are off-shell ones; they can be formally p
formed on the functional integral.

III. MINIMAL CONFIGURATIONS
OF THE HAMILTONIAN

We will now analyze more in detail Eq.~24!. Its super-
symmetric extension may be obtained in a straightforw
way from the supermembrane Hamiltonian in the LCG
the procedure described above, we will write the result
expression at the end of the analysis. We may solve exp
itly the constraints onP r

c , obtaining

P r
c5ecb]bP r , r 51,2. ~25!

Defining the two-formv in terms ofP r as

v5]aP r]bPse
rsdja`djb, ~26!

the condition of nontrivial membrane winding imposes a
striction on it, namely,
1-3
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R
S
v52pn. ~27!

With this condition onv, Weil’s theorem ensures tha
there will always exist an associated U(1) principal bun
over S and a connection on it such thatv is its curvature.
The minimal configurations for the Hamiltonian~24! may be
expressed in terms of such connections.

In @26# the minimal configurations of the Hamiltonian o
the double compactified supermembrane were obtained
spite of the fact that the explicit expression~24! was not then
written, all minimal configurations were found. They corr

spond toP r 5 P̂ r , satisfying

* v̂5eab]aP̂ r]bP̂se
rs5nAW, nÞ0. ~28!

The explicit expressions forP̂ r are @26#

P̂15611tanhf, P̂25w. ~29!

Heref andw are the real and imaginary parts of an Abeli
integral, respectively. This Abelian integral is defined ov
the Riemann surfaceS of genusg. f is a single valued
harmonic function andw a multivalued one. For more detai
on the deduction of these monopole solutions on the R
mann surface see@33#.

As mentioned before, they correspond to U(1) conn
tions on nontrivial principal bundles overS. The principal
bundle is characterized by the integern corresponding to an
irreducible winding of the supermembrane@25#. Moreover,
the semiclassical approximation of the Hamiltonian dens
around the minimal configuration was shown to agree w
the Hamiltonian density of super-Maxwell theory on t
world sheet, minimally coupled to the seven scalar fie
representing the coordinates transverse to the world vol
of the super-brane.

IV. SYMPLECTIC NONCOMMUTATIVE FORMULATION

Let us now analyze the geometrical structure of the c
structed Hamiltonian. We notice that the minimal configu
tions of the Hamiltonian introduce a natural symplec
structure in the theory through the nondegenerate two-f
v̂:

v̂5]aP̂ r]bP̂se
rsdja`djb. ~30!

Also, P̂ r
a is an invertible matrix. It allows one to define th

metric Wab on the world volume,

Wab52]aP̂ r]bP̂ r . ~31!

Its determinant takes the value

detWab5n2W, ~32!

and its inverse is given by
04600
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n2Wab5
eac

AW

ebd

AW
Wcd5

2

AW
P̂ r

aP̂ r
b . ~33!

Furthermore, we introduce the covariant derivativeDa with
respect to this metricWab ; it then follows that

DaW50, DaP̂ r
b50. ~34!

We now define the rotated covariant derivatives in terms
tangent space coordinates in the compactified directions

Dr[
P̂ r

a

AW
Da . ~35!

We may now perform a canonical transformation in order
introduce a symplectic connectionAr in our formalism. The
kinetic term

^P r
aȦa

r & ~36!

may then be rewritten as

^P r
aȦa

r &5^eab]bAa
r Ṗ r&5^P rȦr&, ~37!

where we have introduced

P r[eab]bAa
r , ~38!

Ar[P r2Cr , ~39!

where Cr is a time independent geometrical object, whi
will be defined shortly. They satisfy the following Poisso
bracket relation:

$Ar~j!,P r~j8!%P5d~j,j8!. ~40!

The symplectic noncommutative derivativeDr may be de-
fined now as

Dr[Dr1$Ar ,% ~41!

where the brackets$•,•% are defined as follows:

$•,•%[
2esr

n
Dr•Ds•5

eba

AW
Da•Db•, nÞ0. ~42!

We remark that these symplectic noncommutative deri
tives behave as symplectic connections on a symplectic
bration overS with the phase space (XM,PM)(j) being the
fiber. The gauge transformations generated by the first c
constraint ~area preserving diffeomorphisms in the ba
manifold S) preserve the Poisson brackets in the fiber. T
symplectic noncommutative derivatives preserve, in turn,
same structure; i.e., the symplectic noncommutative der
tives of the fields transform under gauge transformations
the same way as the fields and the holonomies generate
the symplectic connections preserve the Poisson bracke
the fiber. These properties may be checked out by strai
forward calculations. In particular,dAr5Drj under infini-
tesimal gauge transformations with parameterj.
1-4
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Without loss of generality we rewrite Eq.~39! as

P r5Ar1P̂ r , ~43!

whereCr is defined asP̂ r .
We then have, for the terms in Eq.~24!,

1

AW
P r

a]aXM5
1

AW
P̂ r

a]aXM1
eab

AW
]bAr]aXM

5DrX
M1$Ar ,XM%5D rX

M, ~44!

det ]aXM]bXM5
1

2
]aXM]cX

N]bXM]dXNeacebd

5
1

2
W$XM,XN%2, ~45!

P r
aPs

beabe
rs5nAW22AWDrA se

rs1ebc]bAr]cA se
rs

5nAW2e rsAW~DrAs2DsAr1$Ar ,As%!

5~n2* F!AW, ~46!

where

* F[e rsFrs ,

Frs[DrAs2DsAr1$Ar ,As%. ~47!

Finally, the generator of area preserving diffeomorphism

f[eab]bS ]aXMPM1P r
cFac

r

AW
D , ~48!

may be expressed as

2f5DrP
r1$XM,PM%. ~49!

The Hamiltonian density~24! may then be rewritten

H5E
S
H5E

S

1

2AW
F ~PM !21~P r !21

1

2
W$XM,XN%2

1W~D rX
M !21

1

2
W~Frs!

2G
1E

S
F1

8
AWn22L~D rP

r1$XM,PM%!G , ~50!

where the following global condition has been imposed:

E
S

* FAWd2j50. ~51!

The Hamiltonian~50! may be extended to include the ferm
onic terms of the supersymmetric theory. They may be
04600
-

tained from the Hamiltonian of the supermembrane in@28#
by the dual approach discussed previously. They are

E
S
AW~L$ūG2 ,u%2 ūG2G rDru1 ūG2GM$XM,u%!,

~52!

whereu is the Majorana spinor of the original formulation o
the supermembrane in the LCG inD511 which may be
decomposed in terms of a complex eight-component sp
of SO(7)3U(1).

The Hamiltonian~50! corresponds then exactly to a sym
plectic noncommutative super-Maxwell theory on the wo
volume minimally coupled to seven scalar fieldsXM, M
51, . . . ,7. Thegenerator of area preserving diffeomorphism
becomes the generator of gauge transformations. In dist
tion to the star product defined in@16# which depends on a
constant large background antisymmetric field of the str
which couples to the U(1) gauge fields of the D-brane,
symplectic noncommutative product here is intrinsically co
structed from minimal configurations of the Hamiltonia
density which are unique~up to closed one-forms! for each
givenn and related to the natural symplectic structure of
world volume Riemann surface. This theory may be int
preted geometrically as a symplectic fibration over a R
mann surface, with fiber given by the symplectic phase sp
manifold generated by the transverse coordinate to the b
in the target space, its symplectic structure being preser
under the symplectomorphism induced by the first class c
straint of the theory. The connectionDr is a symplectic con-
nection on this symplectic fibration; i.e., the associated
lonomies preserve the symplectic structure in the fibers@32#.
Whether this symplectic fibration with a symplectic conne
tion could be globally extended in a consistent manner t
type of Moyal noncommutative gauge theory is an op
question. As commented on before, one can always glob
deform the Poisson brackets in the fibration base spac
Moyal brackets, but it is not necessarily true that the sy
plectic structure on the fiber could be extended in the sa
way and, moreover, be preserved under holonomies.

V. CONCLUSIONS

We have formulated the double compactifiedD511 su-
permembrane dual with nontrivial irreducible winding as
symplectic noncommutative super-Maxwell theory, i.e.,
an exact symplectic fibration over a compact Riemann s
face with a symplectic connection, the connection dynam
being governed by a Hamiltonian that resembles that o
Maxwell theory. We emphasize that our construction is g
bally defined. Also, we remark that the symplectic nonco
mutative gauge theory we have introduced relies on the n
singular minimal configuration of the Hamiltonian~24!,
where the assumptionnÞ0 is essential. The minimal con
figuration obtained in@26# corresponds to the monopole co
nection one-forms over Riemann surfaces@33# which may
also be obtained from a suitable pullback toS of the con-
1-5



g
- l

h-
ork
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nection one-forms on the Hopf fibering overCPn @34#. Its
curvature is a nondegenerate closed two-form definin
natural symplectic structure overS. The equivalence be
tween the Hamiltonian~24! of the double compactifiedD
511 supermembrane dual and the Hamiltonian~50! of the
symplectic noncommutative geometry is exact.
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