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Compactified D=11 supermembranes and symplectic noncommutative gauge theories
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It is shown that a double compactifi€= 11 supermembrane with nontrivial wrapping may be formulated
as a symplectic noncommutative gauge theory on the world volume. The symplectic noncommutative structure
is intrinsically obtained from the symplectic two-form on the world volume defined by the minimal configu-
ration of its Hamiltonian. The gauge transformations on the symplectic fibration are generated by the area
preserving diffeomorphisms on the world volume. Geometrically, this gauge theory corresponds to a symplec-
tic fibration over a compact Riemann surface with a symplectic connection.
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[. INTRODUCTION idea in mind, we show that the Hamiltonian for the dual of
the the double compactified supermembrane corresponds ex-

Noncommutative geometry in string theory with a non-actly to a super-Maxwell theory of a symplectic connection
zero B field [1] has recently been discussed by several auon a symplectic fibration, the fiber being the space generated
thors[2—-5]. The relation of the noncommutative Yang-Mills by transverse coordinates and its conjugate momenta to the
Lagrangian to the Born-Infeld one was considered6iv] brane in the target phase space. It is noticed that a deforma-
and general aspects of noncommutative gauge fields hadi@n of the given geometrical structure in this theory will lead
been discussed if8B—22. In [16], the change of variables in a straightforward way to a noncommutatiee the manner
from ordinary to noncommutative Yang-Mills fields was ex- of Moyal) gauge theory. The reformulation of the compacti-
plicitly found and the equivalence between the Born-Infeldfied D =11 supermembrane dual in terms of noncommuta-
action for ordinary Yang-Mills fields in the presence oBa tive gauge theories provides a different point of view to ana-
field and the Born-Infeld action for noncommutative Yang-lyze fundamental properties of the supermembrane as
Mills fields was proved. discussed irf28,29.

In this work, we follow a different approach. We relate the ~ The steps taken in our formulation are as follows: we first
double compactifie®d = 11 closed supermembrafi23] dual ~ construct the Hamiltonian for the doubly compactified super-
[24—26 to a symplectic noncommutative gauge theory onmembrane dual. The Hamiltonian minima are smooth con-
the world volume minimally coupled to seven scalar fieldsfigurations corresponding to U(1) connections globally de-
representing the transverse coordinates to the brane. fined over the brane world volume. The curvature of these

We first show that there is a natural symplectic structureconnections is a nondegenerate two-form that gives rise to a
for the double compactified supermembrane with nontriviawell-defined symplectic structure. The second step in our
wrapping on the target space. It is defined by the minimaFonstruction is then to introduce symplectic connections with
configurations of the Hamiltoniaf25,26. In fact, the solu- their covariant derivatives in the compactified directions. The
tions when interpreted in terms of connection one-forms oveHamiltonian reduces then to an exact symplectic noncommu-

principal bundles satisfy the global condition tative super-Maxwell theory interacting with scalar fields.
In our construction of the Hamiltonian, we deal with a
*F(A)=n. (1)  canonical analysis of the dual theory to the compactified su-

permembrane. This approach allows us to study directly the
On the other hand, it is known that for a given a symplec-gIObal aspects related to the nontrivial wrapping of the mem-
tic structure over a manifold there always exists a globally?rane on the torus. The Hamiltonian for a generic supermem-
defined deformation of the Poisson brackets. Moreover, eveRfane was first performed if30]; however, the above-
for Poisson manifolds it is possible to define star bracketdnentioned global aspects were not tackled in it.

[27] which lead to a noncommutative geometry. Having this I HAMILTONIAN FORMULATION OF THE DOUBLE

COMPACTIFIED D=11 SUPERMEMBRANE DUAL

*Email address: isbeliam@usb.ve; isbeliam@ic.ac.uk We consider the compactified =11 closed supermem-
"Email address: jovalle@usb.ve brane dual obtained if24] and[26]. The bosonic part of its
*Email address: arestu@usb.ve action is given by
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where X", m=1,...,D —q denote the maps from the world
volume 3 XR to the target space MD,qulx. xS, Y
q
been a compact (closed) Riemann surface. A}, r=1,...,q,
denotes the components of the ¢ U(1) connection one-
forms over 3 X R. Here y" is the auxiliary metric. We will
be interested in the cases ¢g=1 and ¢=2, the single and
double compactified cases. The case g =0 corresponds to the
supermembrane action over M ;. The action (2) for the ¢
=1 case is dual to the supermembrane with target space
M yX S, while the action for g=2 is dual to the supermem-
brane with target space MyXS'XS!. The equivalence be-
tween the actions under duality transformations is valid off
shell. The functional integral formulations may be proved to
be formally equivalent in both cases.
To obtain the Hamiltonian formulation of the theory, we

consider in the usual way, the Arnowitt-Deser-Misner

(ADM) decomposition of the metric

Yab=Bab,  ¥°=BP—NINN"2,
YP=NN"? " yp,=BapN", 3
Yoo= —N?+ BopNaNP,  y=—N72
and definegg®” by g8, .= 62,
The light-cone gauge fixing conditions are
XT=P{T, P =P W, (4)

where 7 is the time coordinate on the world volume avd
the determinant of the metric ov&r introduced through the
gauge fixing condition only.

After elimination of X~ and P~ one obtains[26] the
Hamiltonian density

1
H PPy + B+ 5 BB B FanFca| — Ao T A&,

(5

11
2 Jw

whereAj andA are the Lagrange multipliers associated with

the first class constraints

d’rEaaH?: 0, (6)

I XMP+TICF

N

p=e"0p

0, ()
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36 I XMPy +IIPFL,
c W
wherec is a basis of homology of dimension 1. Hergare

integers associated with
Bap is the auxiliarly metric satisfying

d&d=2mn,, ®

ﬁab: (1_ B_ln?HFﬂab)_l(ﬁaXMabe

— BT BeaBab). ©)
where g is the determinant of the matri8,,,.

Py are the conjugate momenta associated With The
index M refers to the transverse coordinates in the light-cone
decomposition of the target space. Equatiohsnd(8) arise
from the integrability condition on the resolution f& and
the further assumption that~ winds up overS with wind-
ing humbers, .

It is interesting to notice that the Hamiltonian deng#by
depends on the auxiliarly metric only through its determinant
B. In fact,

1
BFanFcaB™B=5 W(*F")? (10
where
ab
*Fi= \/TVng (11)

is the Hodge dual to the curvature two-foleh.
The determinani3 may be obtained from Eq9) after
some calculations; it has the following expressions:

B=detd,XMa X)), M=1,...,9, (12)
for theq=0 cas€g28],
B=det(d,XMa X))+ (I139,Xx")2,  M=1,...,8,
(13

for theq=1 case, and
M a My 2 1 ayyhb rs\2
B=del(d,X U')bXM)"'(Hr&aX ) +Z(HrHsEab6 )%

r=12, M=1,...,7,(14
for theq=2 case.

The Hamiltonian densities obtained after replacing Egs.
(13) and(14) into Eq.(5) may also be constructed in a more
direct way from the Hamiltonian density of the supermem-
brane in the light-cone-gaugeCG) by using duality in the
canonical approach directly without starting from the cova-

¢ being the generator of the area preserving diffeomorphisnriant formulation. Let us analyze briefly this point. We con-
There is also a global constraint arising from the eliminationsider the canonical action of the supermembrane in the LCG

of X7; this is

[28] with target spacé o x Stx St; its bosonic part is
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M M 11 M M a My 2
Hsm= > \/_[P Pyt det(d, X" dpXy)] HD:E\/TV PY Py +det(d, X" dp,Xpy) + (1129, X™)
M 1
+Aeabﬁb(w , M=1,...,9. (15 + ZW(*F)Z —Agd JI%+ A €29,
W
M c
Consider, first, one of the compactified coordinates taking 9aX Pt 1 Fac . M=1,...8. (23
values overSt. It must satisfy JW

Equation(23) is also the Hamiltonian density arising from
the canonical formulation of the Born-Infeld acti¢81]; it
describes then thB2-brane in ten dimensions in the case of

The terms involving that map in the canonical action are OPen supermembranes. If we now repeat the above procedure
for the second compactified coordinate, we obtain the fol-

é dX=2mn;. (16)
C

lowing Hamiltonian density:
< PX~ 5 J_— (P?+ €2°€°99,X dpX g XNgXN)
11 M M M2
P =3 \/_ PMPy +det( 9, XMapXy) + (TT83,XM)
+ A eabaax\/Tv> , 17

1 1
+ Z(Hfﬂgsabers)er AL Ff)z) —ALgII°
where XN is different from X. We may then construct an

equivalent constrained term I XMPy, +I1°
+ A e, : ac) , (24)
1 Jw
< PLo— 5 —(P2+ €2 oL pd XNdgXN)

W in complete agreement with Eq&) and (14) which were
= obtained from the canonical analysis of the covariant formu-

+(9bAeabLa—> (18 lation of the theory. The equivalence betwedq,, Hp,
VW and’H may be then established from the duality equivalence
between the covariant formulations of the theories or, more
subject to directly, from the duality equivalence of the gauge fixed ca-
nonical formulations in the LCG. The relation becomes non-
€9cLa=0, dalo—doLa=0. (19 trivial because the procedure of going from the covariant

formulation to the LCG one involves the elimination of the
We may introduce them into the acti¢h?) through the use auxiliarly metric which is an on-shell step while the duality
Of Lagrange multipliers, which we will denoté, and equivalence are off-shell ones; they can be formally per-
€A, respectively. We then recognize that the conjugatdormed on the functional integral.
momenta toA, is

[1b= EabLa. (20) 11l. MINIMAL CONFIGURATIONS
OF THE HAMILTONIAN
After the elimination ofL, we get We will now analyze more in detail Eq24). Its super-
ab symmetric extension may be obtained in a straightforward
P=€""daAy . (21)  way from the supermembrane Hamiltonian in the LCG by
_ . the procedure described above, we will write the resulting
Equation(17) subject to Eq(19) reduces then to expression at the end of the analysis. We may solve explic-
itly the constraints oI}, obtaining
bp = T ab 2 crrd N c
<H Ab 2 \/—[(E J Ab) +H H (9 X ade] Aoa H H(r;: ECbé’bHr, r:1,2. (25)
€“%9:A Defining the two-forme in terms ofII, as
—Anbab( Jv—cv d > 22) g v f
w=3,11,9,ITe5d 2N\ d e, (26)

The terms(22) contribute together with the terms inde-
pendent ofX and P in Eq. (15) to give exactly the same the condition of nontrivial membrane winding imposes a re-
expression of the Hamiltonian density) and (13): striction on it, namely,
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¢ ebd
o= 2. 27 nWab=—— 11211 (33

e g

With this condition onw, Weil's theorem ensures that Furthermore, we introduce the covariant derivativg with
there will always exist an associated U(1) principal bundlerespect to this metridV,,; it then follows that
over > and a connection on it such that is its curvature.

The minimal configurations for the Hamiltoni&24) may be D,W=0, Daﬁfzo_ (34)
expressed in terms of such connections.

In [26] the minimal configurations of the Hamiltonian of We now define the rotated covariant derivatives in terms of
the double compactified supermembrane were obtained. f@angent space coordinates in the compactified directions:
spite of the fact that the explicit expressi@#) was not then
written, all minimal configurations were found. They corre- e

spond toll, = I1,, satisfying DfE\/TVDa' (39
* = eabaaf[rabf[sers: nJyW, n#0. (289  We may now perform a canonigal transformatior) in order to
introduce a symplectic connectiof, in our formalism. The
The explicit expressions 1‘der are[26] Kinetic term
(TT2AL) (36)

I[1,==*1+tanhg, Il,=e. (29
may then be rewritten as
Here ¢ and¢ are the real and imaginary parts of an Abelian
integrgl, respectively. This Abelian intggral i§ defined over <1‘[aAf> <6ab(9bAf D ={1I" A) (37
the Riemann surfac& of genusg. ¢ is a single valued
harmonic function ang a multivalued one. For more details where we have introduced
on the deduction of these monopole solutions on the Rie- c abe Ar
mann surface se€&3]. II'=e"apA;, (38
As mentioned before, they correspond to U(1) connec-
tions on nontrivial principal bundles ové. The principal A=IL—C (39)

bundle is characterized by the integecorresponding to an whereC, is a time independent geometrical object, which

wreduub_le W|r_1d|ng of the_ supermembrah%]: Moreover, il he defined shortly. They satisfy the following Poisson
the semiclassical approximation of the Hamiltonian dens'tybracket relation:

around the minimal configuration was shown to agree with

the Hamiltonian density of super-Maxwell theory on the {A(,II7(E))p=8(£,8). (40)
world sheet, minimally coupled to the seven scalar fields

representing the coordinates transverse to the world volum€&he symplectic noncommutative derivatii® may be de-
of the super-brane. fined now as

D,=D,+ 41
IV. SYMPLECTIC NONCOMMUTATIVE FORMULATION r A (4D

Let us now analyze the geometrical structure of the con¥here the bracket,«} are defined as follows:

structed Hamiltonian. We notice that the minimal configura-

. . . . . 2¢ST €ba

tions of the Hamiltonian introduce a natural symplectic {e,}="—D,De=—D,Dy*, n#0. (42
structure in the theory through the nondegenerate two-form n Jw

w:

We remark that these symplectic honcommutative deriva-
tives behave as symplectic connections on a symplectic fi-
bration overS, with the phase spaceX{!,PM)(¢) being the

. fiber. The gauge transformations generated by the first class
Also, H? is an invertible matrix. It allows one to define the constraint (area preserving diffeomorphisms in the base

=511, 0,11 € 5dE3\d b, (30)

metric W,;, on the world volume, manifold X) preserve the Poisson brackets in the fiber. The
o symplectic noncommutative derivatives preserve, in turn, the
W, =24d,11, 4,11, . (31)  same structure; i.e., the symplectic noncommutative deriva-
tives of the fields transform under gauge transformations in
Its determinant takes the value the same way as the fields and the holonomies generated by
the symplectic connections preserve the Poisson brackets in
detW,,=n?Ww, (32 the fiber. These properties may be checked out by straight-
forward calculations. In particulag.A, =D, & under infini-
and its inverse is given by tesimal gauge transformations with parameter
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Without loss of generality we rewrite Eq39) as
,=A+1I,, 43

where(, is defined asﬁr.
We then have, for the terms in EQ4),

1 oa, w1 man ym e M
\/—W/Hr(?ax = \/—W/Hr(?ax + \/TNﬁbAré’ax
=D, XM+{A4, XM=D XM, (44)

1
det 9,XMa Xy = EaaxMacxNabeadeeacebd

=%W{XM,XN}2, (45)

H?ngabers= NyW—2JWD, A€+ Pdp A, do.A €™

= n\/V_V— Ers\/V—V(Dr-As_ DsA +{A; , A}

=(n—*F)\W, (46)
where
* F=€"SFq,
]:rsE Dr-As_ DsAr +{Ar vAs}- (47)

Finally, the generator of area preserving diffeomorphisms,

M cr
P XM Py+ IR, 49
Jw '
may be expressed as
—p=D,I1"+{XM,Py}. (49

The Hamiltonian density24) may then be rewritten
i [ [
s s2 W
1
+W(D XM)2+ EW(Jfrs)2

f
+
3

g\/\TVnZ—A(DrH’+{XM,PM})

(PM)2+(HI’)2+ %W{XM,XN}Z

: (50

where the following global condition has been imposed:

L*f\/V—degzo. (51)
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tained from the Hamiltonian of the supermembrang 28]
by the dual approach discussed previously. They are

L VW(A{6T _ ,6}— 6T _T',D,6+ 6T _T y{X",6}),
(52

whered is the Majorana spinor of the original formulation of
the supermembrane in the LCG d=11 which may be
decomposed in terms of a complex eight-component spinor
of SO(7)xU(1).

The Hamiltonian(50) corresponds then exactly to a sym-
plectic noncommutative super-Maxwell theory on the world
volume minimally coupled to seven scalar fieldd', M
=1,...,7. Thegenerator of area preserving diffeomorphisms
becomes the generator of gauge transformations. In distinc-
tion to the star product defined [16] which depends on a
constant large background antisymmetric field of the string
which couples to the U(1) gauge fields of the D-brane, the
symplectic noncommutative product here is intrinsically con-
structed from minimal configurations of the Hamiltonian
density which are uniquéup to closed one-formdor each
givenn and related to the natural symplectic structure of the
world volume Riemann surface. This theory may be inter-
preted geometrically as a symplectic fibration over a Rie-
mann surface, with fiber given by the symplectic phase space
manifold generated by the transverse coordinate to the brane
in the target space, its symplectic structure being preserved
under the symplectomorphism induced by the first class con-
straint of the theory. The connectidp, is a symplectic con-
nection on this symplectic fibration; i.e., the associated ho-
lonomies preserve the symplectic structure in the fibg?$
Whether this symplectic fibration with a symplectic connec-
tion could be globally extended in a consistent manner to a
type of Moyal noncommutative gauge theory is an open
question. As commented on before, one can always globally
deform the Poisson brackets in the fibration base space to
Moyal brackets, but it is not necessarily true that the sym-
plectic structure on the fiber could be extended in the same
way and, moreover, be preserved under holonomies.

V. CONCLUSIONS

We have formulated the double compactifieeé=11 su-
permembrane dual with nontrivial irreducible winding as a
symplectic noncommutative super-Maxwell theory, i.e., as
an exact symplectic fibration over a compact Riemann sur-
face with a symplectic connection, the connection dynamics
being governed by a Hamiltonian that resembles that of a
Maxwell theory. We emphasize that our construction is glo-
bally defined. Also, we remark that the symplectic noncom-
mutative gauge theory we have introduced relies on the non-
singular minimal configuration of the Hamiltonia(®4),
where the assumption#0 is essential. The minimal con-
figuration obtained if26] corresponds to the monopole con-

The Hamiltonian(50) may be extended to include the fermi- nection one-forms over Riemann surfad@S] which may
onic terms of the supersymmetric theory. They may be obalso be obtained from a suitable pullbackXoof the con-
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nection one-forms on the Hopf fibering oveP, [34]. Its ACKNOWLEDGMENTS
curvature is a nondegenerate closed two-form defining a

natural symplectic structure oveX. The equivalence be-
tween the Hamiltoniar(24) of the double compactifie®
=11 supermembrane dual and the Hamilton{af) of the
symplectic noncommutative geometry is exact.
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