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Mode regularization of the supersymmetric sphaleron and kink:
Zero modes and discrete gauge symmetry

Alfred Scharff Goldhaber,* Andrei Litvintsev,† and Peter van Nieuwenhuizen‡

C. N. Yang Institute for Theoretical Physics, SUNY at Stony Brook, Stony Brook, New York 11794
~Received 29 November 2000; published 27 July 2001!

To obtain the one-loop corrections to the mass of a kink by mode regularization, one may take one-half the
result for the mass of a widely separated kink-antikink~or sphaleron! system, where the two bosonic zero
modes count as two degrees of freedom, but the two fermionic zero modes as only one degree of freedom in
the sums over modes. For a single kink, there is one bosonic zero mode degree of freedom, but it is necessary
to average over four sets of fermionic boundary conditions in order~i! to preserve the fermionicZ2 gauge
invariancec→2c, ~ii ! to satisfy the basic principle of mode regularization that the boundary conditions in the
trivial and the kink sector should be the same,~iii ! that the energy stored at the boundaries cancels and~iv! to
avoid obtaining a finite, uniformly distributed energy which would violate cluster decomposition. The average
number of fermionic zero-energy degrees of freedom in the presence of the kink is then indeed 1/2. For
boundary conditions leading to only one fermionic zero-energy solution, theZ2 gauge invariance identifies two
seemingly distinct ‘‘vacua’’ as the same physical ground state, and the single fermionic zero-energy solution
does not correspond to a degree of freedom. Other boundary conditions lead to two spatially separatedv
;0 solutions, corresponding to one~spatially delocalized! degree of freedom. This nonlocality is consistent
with the principle of cluster decomposition for correlators of observables.

DOI: 10.1103/PhysRevD.64.045013 PACS number~s!: 11.27.1d, 11.10.Kk, 11.10.Lm
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I. INTRODUCTION

The problem of how to compute the one-loop correctio
to the massM and central chargeZ of supersymmetric
~SUSY! kinks has been the subject of renewed investigati
in the past few years. In this article we give a precise p
scription for computing the mass of ordinary and SUS
kinks using mode regularization. The prescription follow
from a careful study of bosonic and fermionic zero mod
Differing from previous prescriptions, it yields the accept
result, thus reaffirming mode regularization as a bona
scheme.

According to standard arguments@1#, the mass can be
written in terms of differences of sums over zero-point en
gies, but because the sums themselves are divergent,
must specify how to regularize them. In their pioneeri
work, Dashen et al.@1# used mode number regularization f
bosons, but did not work out this method for fermions. T
values of the zero-point energies depend on the boun
conditions one imposes on the fields, and for fermions th
conditions may produce a contribution to the energy com
from the boundaries. If so, one must first subtract the e
boundary energy to obtain the mass correction for the
perkink. In addition, as we shall show, certain boundary c
ditions lead to a uniformly distributed energy density, whi
also should not be counted as part of the kink mass.

The recent interest in the subject of this paper began w
the work @2#, where two important questions were posed:

~1! What is the quantum correctionM (1) to the mass of
the kink in supersymmetriclf4 theory?

~2! If M (1) is not zero, can the kink remain
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Bogomol’nyi-Prasad-Sommerfield-~BPS-!-saturated state in
the presence of quantum corrections, and if so how does
occur?

The authors of@2# noted that the two regularization meth
ods they used to calculateM (1), momentum cutoff and mode
cutoff, gave different answers. Moreover, the BPS bound
not seem to be saturated. Since then various regulariza
schemes have been applied to this problem: momentum
off @2–4#, mode cut-off@2,4#, mass-derivative regularizatio
@3,4#, phase-shift methods @5#, higher-derivative
supersymmetry-preserving regularization@6#, dimensional
regularization@6# and derivative expansion@7#.

From @4# one sees that the inadequacy in the moment
cutoff calculation had to do with the need for smoothing t
cutoff so that it becomes well-defined. In the present wo
we shall show that the mode cutoff calculation was corre
but included a localized boundary energy along with the k
energy.

Nastaseet al. @3# avoided these pitfalls by first evaluatin
the mass derivative of the mode sums, which gave be
control of the divergences and thus eliminated the need
smoothing the cutoff. Their result forM (1) agreed with the
older work of Schonfeld@8# for the SUSY kink-antikink sys-
tem, suggesting that this indeed is the correct value. T
also suggested that there might be an anomaly that wo
restore the BPS condition.

The MIT group@5# used continuum phase shift metho
~avoiding consideration of boundary conditions! to compute
the one-loop corrections to the kink energyM (1) and to the
central chargeZ(1), finding that they are the same, so that t
BPS condition is obeyed. They did not ascribe the shift inZ
to an anomaly, instead treating it as a straightforward o
loop result.

The Minnesota group@6#, stimulated by@2# and @3#, un-
dertook to attack the second question of@2# directly. There is
a beautiful argument originated by Witten and Olive@9#. If
©2001 The American Physical Society13-1
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the isolated kink has a single ground state, and if perturba
quantum corrections violate the conditionM5Z, then the
fact that this would mean the supersymmetry is comple
broken implies that there must be a double degeneracy o
ground state, and hence a multiplicity discontinuity at\50.
In @6# three different methods were used to calculate
one-loop correction toZ, all methods agreeing that the co
rection represents a local anomaly, and results in maintain
M5Z, with M given by Eq. ~1!. The authors of@6# also
computed the one-loop effective superpotential, and
tracted from it the effective central charge as the differe
of the effective superpotential at6`; this yielded the one-
loop correction toZ.

In @4#, the anomaly in the central charge was direc
computed using momentum cutoff to regulate both the Di
delta function appearing in the algebra of the supersymm
charges and the propagators appearing in the loops; a
M5Z was found.

Perhaps the easiest scheme is mass-derivative regula
tion @3#, according to which one first evaluates the derivat

(]/]m)M5(]/]m)@ 1
2 (v2 1

2 (v (0)1DM # of the sums
~which is better convergent, so that there is no sensitivity
the form of cutoff! and then integrates with respect tom
using the renormalization conditionM (m50)50. Any
boundary conditions on the fluctuations for which the div
gences inM (1) cancel are allowed. The method yields t
total energy of the system, in the presence of speci
boundary conditions, and is insensitive to finite bound
energy.~Herem is the mass of an elementary boson or f
mion.! However, for boundary conditions that give diverge
M, mass-derivative regularization gives an incorrect res
This is the case with SUSY boundary conditions. There
ists a divergent boundary energy, which requires either
plicit computation of the local energy density around t
kink, as in the Minnesota approach@6#, or direct computation
of the boundary energy, e.g. by techniques developed in
present paper. A detailed discussion is given in@4#; here we
only need the result: the one-loop bosonic, fermionic a
supersymmetric corrections to the kink mass are, resp
tively,

Mb
(1)52m\S 3

2p
2

A3

12D ; M f
(1)5m\S 1

p
2

A3

12D ;

Ms
(1)5Mb

(1)1M f
(1)52

m\

2p
. ~1!

These values are now accepted by all workers in the fi
@3–7#.

The problem to be solved is thus how to obtain the
results with the other regularization schemes and o
boundary conditions. The most commonly used schemes
energy cut-off~5 momentum cut-off! and mode regulariza
tion. Although each has been in use for decades, we c
that each needs modifications. For energy cut-off regular
tion ~in which one first computes each of the sums up to
same given energyL, and then takes the limitL→`) it was
found that a simple modification makes the sum well d
04501
e

ly
he

e

g

x-
e

c
ry
ain

za-
e

o

-

d
y
-
t
t.
-

x-

he

d
c-

ld

e
er
re

m
a-
e

-

fined, and reproduces Eq.~1!: instead of an abrupt cut-off a
L one needs a smooth cut-off which interpolates between
zero-point energies in the topological and trivial sectors@4#.

In this article we repair mode number regularization. T
basic idea of this scheme is to subtract the energies o
equal numberN of modesvn

(0) in the trivial sector from the
valuesvn in the topological sector, and then to take the lim
N→`, but a problem arises whether one should inclu
some or all or none of the zero modes in this counting. T
issue has turned out to be surprisingly complicated, and
pedagogical reasons we shall first deduce in Sec. II the
rect rules by requiring that they reproduce the result in E
~1!. The problem then obviously is to justify these rules. W
shall first consider a kink-antikink configuration,@8#, which
lies in the trivial sector~having no overall winding number!
so that standard manipulations of quantum field theory
still reliable. For such a system the energy located at
boundaries in the kink-antikink sector cancels the sa
quantity in the trivial sector if one uses the same bound
conditions in both sectors,1 so the mass of the kink is the
just one-half of the sums over the zero-point energies p
the counterterm for mass renormalization~the latter will be
given in Sec. II!. ~For periodic or antiperiodic boundary con
ditions in the kink-antikink system, there is not even a
localized boundary energy because these boundary co
tions are translationally invariant.! For the bosonic case on
finds for the kink mass~putting \51)

Mb
(1)5

1

2
lim

N→`
(
n51

N S 1

2
vn

b2
1

2
vn

b,(0)D1DMb , ~2!

where 1
2 vn

b are the zero point energies for the bosonic flu
tuations around the kink-antikink background,1

2 vn
b,(0) those

around the trivial background, andDMb is the counterterm
for a single kink.

Next we consider the SUSY kink. Except for a uniqu
value of the strength of the Yukawa coupling of the ferm
ons, the SUSY of the action is explicitly and complete
broken, but in theK̄K ~antikink-kink! background zero
modes remain. We shall therefore generalize our appro
and consider arbitrary kinks with fermions, and not on
SUSY kinks. The action we use contains a Yukawa te
2cAl/2fc̄c with c a real two-component spinor andc
51 for SUSY. The correction to the mass of the kink
given by

1If one first considers a finite number of modes in the sector wh
the classical scalar field is constant, and then slowly turns on
kink-antikink configuration by pulling the scalar field aroundx
50 away from its constant value, the mode energies move fr

their values in the trivial background to their values in theK̄K
configuration. This is the justification for mode regularization, as
Eq. ~2!. Since a change in the background away from the bou
aries will not change the~localized or delocalized! boundary en-

ergy, the latter~if present! cancels between theK̄K case and the
trivial case.
3-2
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MODE REGULARIZATION OF THE SUPERSYMMETRIC . . . PHYSICAL REVIEW D 64 045013
Ms
(1)5

1

2
lim

N→`
(
n51

N F1

2
vn

b2
1

2
vn

b,(0)2
1

2
vn

f 1
1

2
vn

f ,(0)G
1DM [b1 f ] , ~3!

where b denotes bosonic frequencies andf fermionic ones
and the countertermDM [b1 f ]5DMb1DM f is due to both
bosonic and fermionic loops.

There are various ways to describe a kink-antikink ba
ground. By far the most used is the configuration that
scribes a kink centered atL/2 for x>0 and an antikink cen-
tered at2L/2 for x,0 ~Fig. 1!. This configuration has the
slight drawback that atx50 the fieldf(x) is not differen-
tiable ~the left and right derivatives differ!, so thatf(x) is
not a solution of the field equation. We shall call this co
figurationf K̄K(x). Another configuration one might conside
is everywhere differentiable, but nowhere a solution of
field equations: fK1K̄(x)5fK(x)1f K̄(x)1m/Al. For
large positivex the sum off K̄(x) and m/Al vanishes and
one obtains the usual kink solutionfK(x), while for large
negativex one is left withf K̄(x). However, it is difficult to
determine the spectrum of fluctuations around this ba
ground, and we shall not use it below. A third configurati
one might consider is one of the sphaleron solutionsfsph(x)
of @10#, which are defined on the interval2L<x<L with
the periodic boundary conditionsfsph(2L)5fsph(L) and
fsph8 (2L)5fsph8 (L). ~The sphaleron is thus defined on
circle.! For our purposes the sphaleron solution that beco
one kink-antikink pair asL tends to infinity is the relevan
one, and we shall hereafter refer to it as ‘‘the sphalero
We shall see that our results for mode regularization are
same for theK̄K background as for the sphaleron bac
ground.

Our main conclusion for the bosonic kink-antikink sy
tem, to be derived below, is that both translational z
modes should be taken into account in the sum over z
point energies~2!. When the kink and antikink are not infi
nitely far apart and are described by the sphaleron ba
ground, one still has a zero mode withv50 for translations,
while a second mode hasv2,0 and indicates an instability
~the kink is attracted by the antikink!. For v50, one has the
usual collective coordinateX̂ ~the Hamiltonian does not de
pend onX̂) for translations and its canonically conjuga
momentumP̂, so thatX̂ and P̂ form a canonical pair and
correspond to one term in the sum overvn

b in Eq. ~2!. For
v2,0 the solutions withe6uvut define one pair of canonica
variables and thus another term in the sum over zero-p
energies.~The Hamiltonian depends in this case on both

FIG. 1. The kink-antikink configuration.
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nonical variables.! In thef K̄K background there is again on
pair of solutions withv2,0, but now there appears anoth
pair of solutions withv2.0. As usual the solutions with
e6 ivt then describe one degree of freedom. Thus there
still two degrees of freedom associated with the bosonic z
modes.

For fermions the situation is quite different. For th
sphaleron background we find two fermionic solutions w
v250 @see Eq.~18!#. The corresponding operatorsb andg
satisfy b25g251 and$b,g%50, and thus there is one de
gree of freedom. Next we study thef K̄K system with a finite
separationL. Then we find two solutions of the Dirac equa
tion with the same~very small! v2.0 which are normaliz-
able and which enter in the second quantization of the
mionic fluctuation fieldc(x,t) ~for x.0) as follows:

c~x,t !5bS cK~x!

i

v
~]x1cA2lfK!cK~x!D e2 ivt

1b†S cK~x!

2
i

v
~]x1cA2lfK!cK~x!D eivt. ~4!

Here cK(x) is a real normalizable function,fK(x) is the
kink solution andc51 for the SUSY case. Clearlyb andb†

form oneconjugate pair, and hence one degree of freed
Therefore the final effect of fermionic zero modes amou
to one term in the sum overvn

f in Eq. ~3!.
Moving the kink and antikink apart, one obtains a fr

kink and a free antikink, each having its own zero mode
the Dirac equation~even forcÞ1). The problem then is how
to perform mode number regularization for a single isola
kink. As we shall discuss later, for a canonical descript
one must take into account four sets of boundary conditio
and average the results. Then the fermionic ‘‘half degree
freedom’’ of the kink appears as a change in degrees
freedom ~from vacuum! by unity in one pair of boundary
conditions, and no change at all in the other pair.

Closer inspection reveals that for certain boundary con
tions there is exactly one fermionic zero-energy solution.
the ground state then is an eigenstate of the operator w
appears as the coefficient of this solution in the fermion fie
the Fock space for this system is half as big as one m
have expected, meaning that by this elementary criter
there is no zero-energy fermion degree of freedom.

In string theory one encounters a similar situation w
respect to the zero mode of the coordinate ghost~denoted by
c0). In that case Becchi-Rouet-Stora-Tyutin~BRST! coho-
mology shows that states withc0 are BRST exact, so tha
there is no doubling of the number of states. In our case
do not have BRST symmetry to remove half of the states
the Fock space, but we shall show that one can divide F
space into two sectors, such that all operators map state
one sector into states of the same sector. The other sect
then aZ2-gauge copy of the first, and as a discreteZ2-gauge
symmetry in string theory can be promoted to a continuo
symmetry, a BRST approach may be possible also for
SUSY kink.
3-3



GOLDHABER, LITVINTSEV, AND van NIEUWENHUIZEN PHYSICAL REVIEW D64 045013
FIG. 2. Potentials for the bosonic and fermionic fluctuations in the kink-antikink system.
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II. THE CORRECT RULES FOR MODE
REGULARIZATION

In this section we demonstrate that for the kink-antiki
system counting two zero modes in the bosonic spectrum
only one in the fermionic spectrum gives the correct answ
~1! for both the SUSY and the bosonic cases. In the n
sections we derive these rules. After a brief review of
properties of the spectra, the actual calculation of the mas
performed in Eqs.~15! and ~16!.

The Lagrangian is given by

L52
1

2
~]mf!22

1

2
U2~f!2

1

2
c̄gm]mc2

1

2
c
dU

df
c̄c,

~5!

where for the kink U@f(x)#5Al/2(f22m0
2/l) and c̄

5c†ig0. We shall use the representationg15(0
1

21
0 ) and

g05(1
0

0
21) and takec real. This system has SUSY whe

c51, and then the SUSY transformation rules aredf5 ēc
and dc5gm]mfe2Ue. The theory with or without fermi-
ons is renormalized by replacingm0

2 by m21dm2, where for
the SUSY case (dm2)s5(l\/4p)*2L

L dk/Ak21m2 ~we put
m252m2). For the bosonic case (dm2)b

5(3l\/4p)*2L
L dk/Ak21m2. The one-loop correction to

the mass of the supersymmetric kink is given by Eq.~3! with
counter-termDM [b1 f ]5(m/l)(dm2)s . For the bosonic case
we use Eq.~2! with DMb5(m/l)(dm2)b . The value ofdm2

follows from requiring absence of tadpoles, while the va

of DM follows from replacingf by fK in *2`
` 1

2 U2(f)dx
and retaining the term linear indm2. For details see@2#.

Expanding the bosonic field around the background c
figuration f(x,t)5f K̄K(x,t)1h(x)e2 ivt one finds the fol-
lowing equation for the bosonic modesh:

v2h1]x
2h2@~U8!21U9U#h50. ~6!

The solutions of this equation for the single kink backgrou
can be found explicitly~see, for example,@1#!. The spectrum
consists of a translational zero mode, a bound statevB

5A3m/2, and a continuum of states. From this informati
one can easily extract the spectrum of the kink-antikink c
figuration at largeL.

For the fermionic fields we set

c~x,t !5S c1~x!

c2~x!
De2 ivt

and obtain the Dirac equation
04501
ut
rs
xt
e
is

e

-

d

-

ivc21~]x1U8!c150
~7!

2 ivc11~2]x1U8!c250.

For v50, the single kink~or antikink! in a box defined by
2L/2<x<L/2 has two fermionic solutions with periodi
boundary conditions, namely the zero mode attached to
kink, obeying

]xc11U8c150, ~8!

whereU85m tanh(mx/2), and a second zero mode attach
to the boundary, obeying

]xc22U8c250. ~9!

The solutions to these equations are

c I5S a1 /cosh2
mx

2

0
D , c II 5S 0

a2cosh2
mx

2
D ~10!

~for cÞ1 the power 2 becomes 2c).
For vÞ0 one may express each component ofc in terms

of the other, in which case Eq.~7! becomes

v2c11]x
2c12~U8!2c11U9]xfc150

~11!
v2c21]x

2c22~U8!2c22U9]xfc250.

For the case of a kink one may use the Bogomol’nyi eq
tion ]xf52U, and~11! becomes

v2c11]x
2c12@~U8!21U9U#c150

~12!
v2c21]x

2c22@~U8!22U9U#c250.

These are Schro¨dinger-type equations, and the first of the
is the same as Eq.~6!. For the antikink sector the
Bogomol’nyi equation reads]xf5U, so one must exchang
c1 andc2 in Eq. ~12! keepingU unchanged.

In general, Eqs.~6! and~12! for a kink-antikink system on
2L<x<L can be written as

v2f ~x!1]x
2f ~x!2V~x! f ~x!50. ~13!

The potentialsV(x) for bosonic and fermionic fluctuation
are sketched in Fig. 2.

A plane wave incident from the right acquires a pha
shift d(k) in the deeper potentialV(x)5 1

2 m2@3 tanh2mx/2
21# and a phase shiftd(k)1u(k) in the shallower potentia
V(x)5 1

2 m2@ tanh2(mx/2)11#. Thus on the far rightc1
;ei [kx1d(k)1u(k)/2], on the far left c1;ei [kx2d(k)2u(k)/2]

while nearx50 one hasc1;ei [kx1u(k)/2]. The phase shifts
are given in Fig. 3. The phase shifts are defined up to 2p.
Different authors use different expressions for these ph
shifts, which nevertheless lead to the same answers.
3-4



a
h

on

nk

in
nk
t

al
on

f

e
y
n
h
d
e-

c,
ce

or
ff
an

ta
ou
in

ok

q.

and
w
that
unt
f

2
s in

ua

MODE REGULARIZATION OF THE SUPERSYMMETRIC . . . PHYSICAL REVIEW D 64 045013
For definiteness we choose a particular set of bound
conditions although for the kink-antikink system to whic
we now turn, the results do not depend on which choice
makes. We choose the boundary conditions of@8#, c1(L)
5c1(2L)5h(L)5h(2L)50 whereh(x) are the fluctua-
tions of the bosonic field around the background~the back-
ground is constant in the trivial sector, and equal to the ki
antikink combination of Fig. 1 in the nontrivial sector!.
These boundary conditions are SUSY if one considers a k
background but they are not SUSY for the kink-antiki
background, because the kink background breaks half of
SUSY while the antikink background breaks the other h
The boundary conditions lead to the following quantizati
rules

kn
bL1d~kn

b!5
pn

2
for bosons

km
f L1d~km

f !1
1

2
u~km

f !5
pm

2
for fermions ~14!

where the integersn and m are non-negative. Solutions o
Eqs. ~14! exist only for n>4 and m>3. Clearly kn

b5kn
b,0

2d(kn
b,0)/L1O(1/L2), with a similar expression forkn

f .
For large k, the bosonic and fermionic levels with th

samem andn approach each other, but the bosonic energ
always slightly smaller than the fermionic energy. For a
given n5m there is still a small interval of momenta suc
that if we pick a cut-off in this interval, then the correspon
ing bosonic level will be below the cut-off, and the corr
sponding fermionic level above the cutoff. In Ref.@8# Schon-
feld implicitly excludes this possibility as non-generi
having very small probability in comparison with the chan
to include both corresponding levels@see below his Eq.
~2.44!#. With this prescription, Schonfeld’s procedure f
computing Eq.~3! turns in effect from a momentum cut-o
into a mode cut-off method, with one more fermionic th
bosonic mode in the continuous spectrum.

We are now ready to apply our counting rules. Let us s
with the bosonic case. We include two zero modes in
counting. The bosonic mass correction for the kink-antik
system is given by~reinserting\)

FIG. 3. The phase shifts for the bosonic and fermionic fluct
tions.
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2Mb
(1)5S 23012

\

2
vB1

\

2 (
n54

N

A~kn
b!21m2D

2
1

2 (
n50

N

\A~kn
0!21m212DMb

5\vB22m\1
1

2
\

3 (
n54

N

„A~kn
b!21m22A~kn

0!21m2
…12DMb

5\vB22m\1
1

2
\E

0

L dk

~p/2!

dv

dk
@2d~k!#12DMb

5\vB22m\2\
vd~k!

p U
0

L

1F\E
0

L dk

p
vd8~k!12DMbG

5\vB2
3m\

p
12F2

A3m\

6 G . ~15!

We usedvd(k)52pm at k50 andvd(k)53m for k→`,
while \*0

L(dk/2p)vd8(k)1DMb52\A3m/6 @see@2#, Eq.
~14!#. With vB5(A3/2)m we indeed get Eq.~1!. Note that if
we were to forget about the unstable mode, i.e. if we to
only one zero mode into account, the result forMbos

(1) would
be divergent. Also omitting to include any zero mode in E
~2! yields a divergent answer.

Next consider the supersymmetric case. The bosonic
fermionic contributions in the trivial sector cancel. We kno
already that we need two bosonic zero modes. We claim
one should take only one fermionic zero mode into acco
~for reasons to be explained later!. The mass correction o
the SUSY kink-antikink system is then given by

2Ms
(1)5F23012

1

2
\vB1

1

2 (
n54

N

\A~kn
b!21m2G

2F012
1

2
\vB1

1

2 (
n53

N

\A~kn
f !21m2G12DM [b1 f ]

52
1

2
m\1

1

2
\ (

n54

N

„A~kn
b!21m22A~kn

f !21m2
…

12DM [b1 f ]

52
1

2
m\1

1

2
\E

0

L dk

~p/2! S d

dk
Ak21m2D S 1

2
u~k! D

12DM [b1 f ]

52
1

2
m\1

\

2p
vu~k!u0

`

52
1

2
m\2

m\

p
1

1

2
m\52

m\

p
. ~16!

We used kn
b2kn

f 5(1/2L)u(kn)1O(1/L2), and
2*0

L(dk/4p)Ak21m2(d/dk)u(k)1DM [b1 f ]50 @see @2#,
Eq. ~59!#. The expression in Eq.~16! again gives the ac-
cepted result~1!. Note that if one assumed either 0 or
fermionic zero modes, but the same total number of mode
the trivial andK̄K sectors, the answer would be infinite@i.e.,
O(L)].

-
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In @4# the corresponding analysis for periodic bounda
conditions was found to yield exactly the same result and
shall use those conditions in what follows.

III. SUPERSYMMETRIC SPHALERONS ON A CIRCLE

We turn now to a justification of the rules that one shou
take two bosonic zero modes and one fermionic zero m
into account when using mode regularization forMs

(1).
Consider the first sphaleron solution on a circle with lar

circumference 2L; it describes a kink-antikink system wit
periodic boundary conditions@10#. The bosonic fluctuations
around this background have been analyzed in@10#, and we
quote the result. ForL5` there are two zero modes, bu
when L is reduced~bringing the kink and the antikink to
gether! one of the zero modes becomes unstable (v2,0),
while rotational invariance guarantees that the other z
mode remains at zero (v250). The value for the unstabl
mode for largeL ~adapted to our normalization! is v25
248m2exp(2mL).

We now extend the sphaleron solution to the case w
fermions present. We need the background solution. I
given by

fn~x!5
mkb

A2l
sn~bx,k!, ~17!

whereb5@1/2(11k2)#1/2m and sn(bx,k) is an elliptic func-
tion @11#. All we need is that this function satisfies the cla
sical field equations, is odd inx, wherex50 is the center of
the kink ~or antikink, of course!, and smooth on the circle.

We can now settle the issue of the fate of the fermio
zero mode in one line: the Dirac Hamiltonian due to Eq.~7!
is manifestly self-adjoint, so thatv is real and thusv2 is
non-negative. Thus all one has to study is whether there
any zero modes, and how many. Forv50 the Dirac equa-
tion in ~8! and ~9! has as solutions

c I5bS a1expF22bkE sn~bx,k!dxG
0

D ,

c II 5gS 0

a1expF2bkE sn~bx,k!dxG D . ~18!

Because the function sn(bx,k) is odd in x, the spinors at
opposite points from the center of the kink are equal, a
hence if one goes around the circle fromx50 in either di-
rection, one reaches the same value for the spinor at
antipodal point. Thus the solutions are continuous. They
actually smooth~differentiable! because the Dirac equatio
is first order in derivatives.

Our conclusion is that for a sphaleron background
fermionic spectrum has two zero modes, the same as fo
infinitely separated kink and antikink. The canonical equ
time anticommutation relations read according to the Di
formalism$c i(x,t),c j (y,t)%5d i j d(x2y). It follows that the
operatorsb and g satisfy b25g251 and$b,g%50: hence
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b1 ig andb2 ig form the annihilation and creation opera
tors for one degree of freedom.

It is possible to give a physical explanation why for fe
mionsv2.0 for theK̄K system butv250 for the sphaleron
system. Consider a configurationf(x) for the boson field on
the circle vanishing at two pointsx5x1 andx5x2 which are
not antipodal, such thatf(x) is a solution of the field equa
tion except atx5x1 and x5x2. @Such a solution exists be
cause it describes according to the usual mechanical
logue a ball oscillating around the bottom of the invert
potential. For the segment wherex1 andx2 are nearer to each
other, the value of (]/]x)f(x) at x1 andx2 is smaller than
for the other segment wherex1 andx2 are further apart. For
large enough circle radius the exponential behavior in
regions between kink and antikink is the dominant featu
The kink and antikink fields differ from their asymptoti
values only over a distanceDx;m21.#

Now note that the zero mode of the kink and antiki
increases exponentially on one segment while it decrea
exponentially on the other segment. It becomes clear th
spinor that is transported along the circle cannot be perio
because the segments have different length. Thus in
asymmetric sphaleron background the assumptionv50
cannot be satisfied. For largeL but fixed x12x2 this looks
like the K̄K solution on the infinite line, except that now th
discontinuities inf8(x) arise at the centers of the kink an
antikink instead of in between.

IV. ZERO MODES OF THE f K̄K SYSTEM

We now study the discrete spectrum of the kink-antiki
system on an infinite line with the background of Fig. 1.

The bosonic modes are the solutions of Eq.~6!. The so-
lutions for x.0 are given by@1#

hK~v,x!5expikS x2
L

2D F23 tanh2
m~x2L/2!

2
111

4k2

m2

1
6ik

m
tanh

m~x2L/2!

2 G ~19!

with v25k21m2. For the solutions withv2,m2 on 0<x
,` which are square-integrable, we takek5 ik with k.0.
The solution of Eq.~6! should also have the same left d
rivative as right derivative atx50 because the potential i
continuous.

When one considers the zero modes of the kink and
antikink together, taking the symmetric combination, the
sulting function is still continuous atx50, but the derivative
is discontinuous~there is a cusp!. Making v2,0 decreases
the curvature of the solution, and one can find a value ofv2

such that also the derivative becomes continuous. Hence
lowest mode in theK̄K system is symmetric and has neg
tive v2. Using Eq.~19! one findsv25212m2exp(2mL) for
large L. The next mode is antisymmetric. One can find t
value ofv2 for this solution by requiring thatcK(v,x)50 at
x50. There is no further condition involving derivative
because if we take the antisymmetric combination of the
lutions which vanishes atx50, its derivative is there con
tinuous. We find that this second mode hasv2.0, namely
3-6
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v2512m2exp(2mL) for large L. Note that contrary to the
sphaleron there is now no longer a zero mode. The reaso
clear: the zero mode would be the derivative of the confi
ration f K̄K(x) in Fig. 1, but this derivative is discontinuou
at x50, and therefore not a solution.

Let us now turn to the fermionic sector. The fermion
modes that should become zero modes asL tends to infinity
are given by

c~x,t !5aS cK
R~v,x!

i

v
@]x1cA2lfK~x!#cK

R~v,x!D e2 ivt

1bS cK
R~v,x!

2
i

v
@]x1cA2lfK~x!#cK

R~v,x!D eivt

~20!

for positivex, and

c~x,t !5gS i

v
@]x2cA2lf K̄~x!#cK

L ~v,x!

cK
L ~v,x!

D e2 ivt

1dS 2
i

v
@]x2cA2lf K̄~x!#cK

L ~v,x!

cK
L ~v,x!

D eivt

~21!

for negativex. The functioncK
R(v,x) is the solution of the

Schrödinger equation~6! with frequencyv which vanishes
for x→`. Similarly, cK

L (v,x) is the solution of Eq.~6!
which vanishes forx→2`. Further,fK(x)5m/A2ltanh(x
2L/2) for x.0 and f K̄(x)52m/A2l tanh(x1L/2) for x
,0. The positivev parts ofc(x,t) are shown in Fig. 4.

For nonzerov continuity at the origin fixesv:

v2cK
L cK

R52@~]x1cA2lfK!cK
R#

3@~]x2cA2lf K̄!cK
L # at x50. ~22!

The expressions forcK
R andcK

L are given by@1#

FIG. 4. Thec1 and c2 components of the part ofc(x,t) that
multiplies e2 ivt. The dashed line represents thev50 solution and
the solid line corresponds to the actual solution withv.0.
04501
is
-

cK
R~v,x!5exp2kS x2

L

2D F23 tanh2
m~x2L/2!

2
112

4k2

m2

2
6k

m
tanh

m~x2L/2!

2 G for x.0

cK
L ~v,x!5expkS x1

L

2D F23 tanh2
m~x1L/2!

2
112

4k2

m2

1
6k

m
tanh

m~x1L/2!

2 G for x,0 ~23!

with k5(m22v2)1/2.0. For largeL the frequencyv is
small, and expanding Eq.~22! in powers ofv2 one finds to
leading order

v25
9

4
m2

@12tanh~mL/4!#4

@22tanh~mL/4!#2
;36m2exp~22mL!.

~24!

Note thatv2 tends to zero as exp(22mL) for largeL. As v2

is positive, the frequencies in Eqs.~20! and ~21! are real.
The results forv2'0 for the bosons and fermions in

sphaleron background display a suggestive relation to
same results for aK̄K background. For the bosons one fin
v25248m2e2mL andv250 in a sphaleron background, bu
612m2e2mL in a K̄K background. A tunneling argumen
shows that for theK̄K system the two zero mode leve
become split symmetrically around zero, yieldingv25
6Ae2mL ~with A512m2). The factor e2mL can be ex-
plained by considering the zero mode of the kink in a pot
tial V1DV whereV is the potential of the kink andDV is
the potential due to the antikink. Perturbation theory yie
then for the diagonal correction toH5v2 a value
*dx@hDVh#;e22mL. However, the main effect is an off
diagonal mixing, yieldingv25*dx@h̄DVh# whereh̄ is the
zero mode of the antikink. Diagonalization of the 232 mix-
ing matrix indeed producesv2;6e2mL. In fact, we claim
that the value of the splitting inv2 in the sphaleron case i
24A. The reason is that the magnitude of the splitting in t
sphaleron background should be twice the magnitude of
splitting in theK̄K background because in the sphaleron c
forces work in both directions. Also the results for the fe
mionic distorted zero modes can be explained. The fac
e22mL in v2 given by Eq.~24! for the K̄K system is due to
the overlap effect inDH5v;*c1DVc2dx yielding v
;e2mL ~and thusv2;e22mL), asc1;e2mL whereDV is of
order unity. This also explains whyv2 for the fermions is
positive.

The continuity of Eqs.~20! and ~21! at the originx50
requiresa5gg andb52gd where

g5
i @]x2cA2lf K̄~0!#cK

L ~v,0!

vcK
R~v,0!

. ~25!

The expression~20! can then be rewritten as
3-7
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2c~x,t !5gF gS cK
R~v,x!

i

v
@]x1cA2lfK~x!#cK

R~v,x!D e2 ivt

3dS cK
R~v,x!

2
i

v
@]x1cA2lfK~x!#cK

R~v,x!D eivtG
for x>0 ~26!

while Eq. ~21! is unchanged. Reality ofc(x,t) implies a
5b* andg5d* , while g* 52g. This shows that we really
have only one set of creation and annihilation operatorsb
5gg andb* 52gd. Notice also, that when the separationL
is large, the expressions@]x1cA2lfK(x)#cK

R(v,x) and
@]x2cA2lf K̄(x)#cK

L (v,x) are very small~they vanish at
v250 because of the BPS equation, and are of orderv2 for
nonzerov). As a result, nearx5L/2 both solutions have
mostly an upper component and a negligible lower com
nent, while nearx52L/2 the opposite holds. However ne
x50 the upper and lower components of both solutions
of equal magnitude~although much smaller then the leadin
components atx56L/2).

From the equal-time canonical anticommutation relatio
of c(x,t) as given by the Dirac formalism for Majoran
spinors$c i(x,t),c j (y,t)%5d i j d(x2y) one reads off the an
ticommutators for theg and d. One finds~after properly
normalizing the wave functions for the almost-zero mode!

$g,g%50, $d,d%50, $g,d%51. ~27!

Reality of c(x,t) implies

g5d†. ~28!

Shifting the origin in time fromt50 to t5t leads to opera-
tors g(t)5e2 i tvg andd(t)5ei tvd. Independence oft im-
plies $g(t),d(t)%51 and $g(t),g(t)%5$d(t),d(t)%50,
which are obviously true.

For v→0 (L→`) one can introduce two Hermitian op
erators which commute with the Hamiltonian

b5„eivtg~t!1e2 ivtd~t!…; b5b†, b251,

d5
1

i
„eivtg~t!2e2 ivtd~t!…; d5d†, d251. ~29!

The operatorsb and d are then the operators for the ze
modes of the kink and antikink, respectively.

V. THE ISOLATED KINK

Having understood mode counting for the kink-antiki
system on the circle and on the infinite line, we now turn
the problem of the kink alone. This section consists of th
parts:~i! it begins with an analysis of the three contributio
to the energy density~localized near the kink, localized nea
the boundary or uniformly distributed!, ~ii ! next we make
explicit computations that corroborate the general anal
04501
-

e

s

e

is

and~iii ! we interpret the results in terms of aZ2 gauge sym-
metry.

A. Localized and delocalized energy

We shall begin with a very simple approach which
guaranteed to yield the correct answer for the kink mass@4#:
given the solutions for the kink-antikink system with~for
definiteness! periodic boundary conditions atx56L, we just
look at the behavior of these solutions halfway between k
and antikink, and this determines a set of boundary con
tions atx5L andx50 for a kink centered atx5L/2. If we
use the corresponding frequencies in the mass formula,
must get the correct result, namely half the mass shift for
K̄K system. These boundary conditions are periodic~P! or
antiperiodic~AP! for the boson field fluctuations in both se
tors, and also P and AP for fermions in the trivial sector. F
fermions in the kink sector, the conditions are twisted pe
odic ~TP! or twisted antiperiodic ~TAP! @specifically,
c1(2L/2)5c2(L/2) and c2(2L/2)5c1(L/2) for TP,
c1(2L/2)52c2(L/2) and c2(2L/2)52c1(L/2) for
TAP#.2 Evidently, taking both P and AP conditions~or TP
and TAP conditions! would overcount the number of state
in the interval 0<x<L by a factor two, so one may take th
contributions from each and then average the results.

In particular, by identifying the kink mass as half theK̄K
mass, one should take for the fermions the difference
tween the averages of mode sums with P and AP bound
conditions in the trivial sector, and sums with TP and TA
boundary conditions in the kink sector. There is no fermio
P or AP solution withv2;0 in the trivial sector, and clearly
therefore no corresponding fermion degree of freedom.~The
general solution of the Schro¨dinger equationc15aekx

1be2kx with k25m22v2;m2 cannot be P or AP for both
c1 and c2.! As there is only one fermionic zero-frequenc
TP or TAPsolution in the kink sector~see below!, there are
no zero-frequency fermiondegrees of freedomin either sec-
tor. However, in the kink-antikink system, there was o

2Using c15eik(x1L/2) on the far left,c15eik(x1L/21d1u) nearx
50 and c15Aei „k(x2L/2)12d1u… on the far right~see Fig. 2! one
finds from continuity at the originA5eikL. The Dirac equation~7!
yields c2, in particular c2(L)5ei (3kL/212d13u/2). Imposing c1

(2L)5c1(L) ~which implies that also the derivative is periodic!,
one finds the quantization conditionei (2kL12d1u)51. Clearly
c2(L)/c1(0)5ei (kL1d1u/2)561.

FIG. 5. The chiral rotation causes a current which leads to
accumulation of half a degree of freedom at the boundary if
boundary conditions are kept fixed.
3-8
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fermionic degree of freedom near zero frequency, see
~26!, and hence the highest-energy mode in the kink se
must be counted with half the weight of any other mod
This may be accomplished, for example, by omitting t
highest energy state in the sum for twisted antiperio
boundary conditions.3 Clearly this prescription violates th
principle of summing equal numbers of modes, which is
basis of mode regularization.

The contradiction is resolved by noting that the mo
regularization principle is based on fixed boundary con
tions, so that one may think of the individual modes as ‘‘p
ticle wave functions’’ which are deformed in the
x-dependence and shifted in frequency as the backgro
classical field changes from trivial to kink. However, in th
approach described above, the boundary conditions
change between the two sectors~from P and AP to TP and
TAP!. As noted by Goldstone and Wilczek for comple
~Dirac! fermion fields, the 180° chiral rotation in Eq.~30! of
the Yukawa coupling leads to a flow of 1/2 unit of fermio
charge out of the region@12# ~see Fig. 5!.

In this way they gave a dynamical mechanism for t
phenomenon which had been discovered by Jackiw
Rebbi @13#, that a kink coupled to Dirac fermions carrie
half-integer fermionic charge. Fixed boundary conditio
would stop this flow at the boundary, but it is obvious th
simultaneously rotating the boundary conditions wou
maintain the flow. This certainly is consistent with the actu
result in our case, that~on averaging between P and AP
the trivial sector, and TP and TAP in the kink sector! half a
Majorana fermion mode must be omitted from the sum in
kink sector. Drawing a superficial analogy~which will be-
come less superficial as we go on!, having a complex Dirac
fermion allows the same chiral rotation~and loss of half a
unit of fermionic charge! as having two sets of boundar
conditions for a real fermion~where the chiral rotation lead
to the loss of half a degree of freedom!.

The recipe obtained from theK̄K system gives a reason
able interpretation for the kink alone, but does not satisfy

3For future use we do at this moment a little calculation. HavingN
modes for TP conditions in the kink sector andN21 modes for
TAP conditions in the kink sector, one finds that the difference
the mode sums is finite but nonzero. ForN52M21 one finds

1

2 ( vTP2
1

2 ( vTAP5
1

2
v7),N1(

n51

M21

v7)2(
n51

M21

v8)

5
AL21m2

2
1E

0

L dk

2p
~2p!v85

m

2

@where we putv7) (v8)) for the frequency withk, satisfying TP
~TAP! conditions in the kink sector, which we define in our ma
text above Eq.~42!#. Our arguments in the main text lead to th
conclusion that one needs the average of the TP and TAP co
tions, but it is clear from this little calculation that using only TP
TAP conditions yields an incorrect finite answer forM (1). Obvi-
ously, taking insteadN21 modes with TP conditions andN modes
with TAP conditions leads to a divergent value for the differen
~but the same result for the average!.
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principle of mode regularization that one should use fix
boundary conditions. If we wish to use fixed boundary co
ditions, we run into the following problem: The period
conditions in the trivial sector and twisted periodic cond
tions in the kink sector both are associated with ‘‘loca
invisible’’ boundaries~namely, withplane wavesolutions!.
That is, they give no structure associated with the prec
location of the boundary@3#. This means that, aside from th
energy density localized around the kink, in principle t
only other possible contribution would be a translationa
invariant piece, corresponding to an energy densityO(1/L)
as we shall explain~see Fig. 6!.

Except for this possibility, computing the quantum corre
tion using these boundary conditions is identical in effect
the procedure advocated by Shifmanet al. @6#, to compute
the local energy density and integrate it over the region
the kink. However, either periodic conditions in the kin
sector or twisted periodic conditions in the trivial sect
would produce a ‘‘visible’’ boundary, forcingstanding wave
rather than plane wave solutions. In the fermionic sum(vn

f

there is then a true contribution to the mass and a bound
contributionEboundary. Therefore, one obtains an energy sh
M kink

(1) 2Eboundaryif one uses fixed~i.e., in both sectors! P plus
AP boundary conditions, andM kink

(1) 1Eboundarywith fixed TP
~plus TAP! boundary conditions. By averaging the two form
one obtainsDM kink by itself.

To spell this out further: P and AP conditions in the trivi
sector have no localized boundary energyEboundary. TP and
TAP conditions in the kink sector also have no localiz
Eboundary. However, TP and TAP in the trivial sector, as we
as P and AP in the kink sector, all have localized bound
energyEboundary. Making a chiral rotation near the bounda
which mapsf→2f and twists the fermions

S c1

c2D 8
5e6 i ~p/2!s1S c1

c2D 56 i S c2

c1D , f85e6 ipf

~30!

the localized boundary energy should not change.4 ~In addi-
tion, to keep the fermions real one needs a finite local ga

f

di-

4As the fermions are Majorana, one really should first complex
them~going to anN52 model!, but one can achieve the same go
by summing over both chiral rotations.

FIG. 6. The total energy density in the kink background.
3-9
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transformationc1→ ic1 andc2→ ic2.! Thus P→ ~TP,TAP!
and AP→ ~TAP,TP! and vice versa.

Accepting that we need fixed boundary conditions~i.e. the
same in the trivial and in the kink sector! for mode regular-
ization, and observing that we need different boundary c
ditions to cancel the localized boundary energy, we are c
pelled to average over all four sets~P, AP, TP and TAP in
both sectors! of boundary conditions for the fermions. Th
need for all four sets of boundary conditions to impleme
the chiral symmetry is similar to the need to consider all fo
spin structures for the string on a torus. The conclusion
that boundary energy occurs in the various cases as indic
in Table I. Obviously, the boundary energy cancels in
average over all four choices with fixed boundary conditio

What about the delocalized boundary energy? In
trivial sector with P and AP conditions, the difference of t
P sum of A(2pn/L)21m2 and the AP sum of
A@(2n11)p/L#21m2 can be grouped into a sum over qua
tets of states, starting from the bottom. In each quartet
leading nonvanishing term is of order 1/L2, but summing
over all modes, the total energy difference is of order5 1/L.
Hence, one can forget in the computation of the kink m
the delocalized boundary energy in the trivial sector. T
permits us to choose the average of the P sum and the
sum as the energy of the trivial vacuum, which we define
be zero. In the kink sector one has locally invisible boun
aries for TP and TAP conditions, so in these cases th
could also be delocalized boundary energy. From the exp
calculation that TP~with N modes! minus TAP~with N21
modes! gives m/2, we conclude that there are differe
amounts of delocalized boundary energy in the TP and T
sectors, so delocalized energy does, in fact, occur.6 Never-
theless, returning to ourK̄K system, we notice that no delo
calized energy could be created when one locally pulls
trivial configurationf5m/Al down to the nontrivial con-
figuration with aK̄K, and then separatesK and K̄. Conse-
quently, when the average is taken, the delocalized boun

5Using A@p(n11)/L#21m222A(pn/L)21m2

1A@p(n21)/L#21m25(p/L)2d2v/dk21 . . . with n52k11,
one finds that the total energy difference is equal
1
2 \(p/L)2*2`

in f ty(d/dk)(k/v)(Ldk/2p)5
1
2 \(p/L)(k/v)u0

`5
1
2 \(p/L).

6We assume here that after subtracting the localized and the
localized boundary energy, one obtains the true mass of the
which should not depend on the boundary conditions@6#. Since for
TP and TAP boundary conditions in the kink sector there is
localized boundary energy, the differencem/2 must be due to delo
calized boundary energy.

TABLE I. Localized boundary energy for different sectors a
boundary conditions.

Boundary conditions
Sector P and AP TP and TAP

Trivial 0 Eboundary

Kink Eboundary 0
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energy contributions must cancel.7 We summarize the result
on delocalized boundary energy in Table II.

What about the zero modes, and the correct counting
states in the sums? For fixed TP conditions, one has a si
zero-frequency solution attached to the boundary in
trivial sector, namely~35! with a1e2mL/25a2emL/2, and a
single one attached to the kink in the kink sector, nam
~10! with a1 /cosh2(mL/2)5a2cosh2(2mL/2). Thus, no mat-
ter how one might weigh the contribution of such a sing
solution, the effect cancels exactly in the subtraction. F
fixed P conditions, there are no zero modes in the triv
sector, and two in the kink sector, namely one attached to
kink and one attached to the boundary, given by Eq.~10!
with a1 and a2 arbitrary. For TAP and AP conditions th
same results hold.8 Thus one must omit one~above-
threshold! fermion mode from the Casimir sums over P a
AP boundary conditions. Previously, from our study of t
kink-antikink system, we were led to consider only TP a
TAP conditions and then we needed to omit one term fr
their sum. Now we have a different message: we conside
four sets of P, AP, TP and TAP, and omit one term from t
P sum and one term from the AP sum.

Averaging over the four cases of fixed nontwisted a
twisted boundary conditions once again leads to a reduc
in the kink sum for the fermions by half a fermion mode, b
now the accounting is completely straightforward, una
biguous and canonically justified.

e-
k

o

7These statements follow from a standard assumption in fi
theory, that in the presence of a mass gap, all correlators of obs
ables fall exponentially with separation of arguments. Consider
correlator involving some number of factors@f2(x)2m2/l# and
one factore(x), the local energy density. By the general princip
^e(x)& must fall exponentially forx far from kink and from anti-
kink. Thus, there can be no translationally invariant piece of
energy density. From our analysis of the kink-antikink system
know that the average over TP and TAP in the kink sector an
and AP in the trivial sector will not produce such a contributio
The novelty here is that for TP or TAP separately there is a fin
difference, which must be attributed to a translationally invaria
energy density. This fact suggests that some principle must req
averaging over both TP and TAP corrections, excluding a delo
ized energy of orderm. We shall see shortly that there is indee
such a principle.

8Actually, to obtain two solutions with AP conditions in the kin
sector one needs exponentially small but nonvanishingv. One may
start with the Schro¨dinger equation forc1 and raisev2 such thatc1

vanishes atx56L/2. Then the Dirac equation yields two solution
for c2 corresponding to6v, which are antisymmetric.

TABLE II. Delocalized boundary energy for different secto
and boundary conditions.

Boundary conditions
Sector P AP TP TAP

Trivial 0 0 0 0
0 0 \m

4
2

\m

4
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We have reached the following conclusions:
~i! For fixed boundary conditions no change in the to

number of degrees of freedom occurs, as expected.
~ii ! The issue of how to weigh a single zero-frequen

solution in the sums over modes need not be solved~al-
though we shall solve it! because both the trivial and the kin
sector have one such solution for twisted boundary con
tions.

~iii ! In going from P and AP in the trivial sector to TP an
TAP in the kink sector, 1/2 degree of freedom is lost on
average.9 ~It is radiated away at the boundary, in agreem
with @12#. When the boundary conditions change there is
reason to expect that the number of degrees of freedom
mains the same.!

~iv! One must average over the four sets of bound
conditions for the following reasons:~a! in order to get the
correct answer~the same as from theK̄K system!, ~b! the
contributions from TP or TAP in the kink sector are diffe
ent, so one may expect to need a particular combinatio
both, ~c! the chiral rotation from one set of boundary cond
tions in the trivial sector links to two sets of boundary co
ditions in the kink sector,~d! in order that the localized
boundary energy of Table I cancels, and~e! in order that the
delocalized boundary energy given in Table II cancels.

~v! For fixed boundary conditions, no degrees of freed
are lost, but now one zero-frequency solution can be attac
to the boundary or to the kink. More specifically, for visib
boundary conditions there is always one zero-frequency
lution attached to the boundary, and when a kink is pres
there is always one zero-frequency solution attached to
kink. This yields four possible contributions; see Table II

B. Explicit computations

We now give some details. We start with periodic boun
ary conditions for the bosonic fluctuations in theK̄K system:
h(2L)5h(L) and h8(2L)5h8(L). We could use the
sphaleron solution discussed before as background, or
could usef K̄K(x) to avoid elliptic functions at the price o
not having a solution of the classical field equations ax
50. For the fluctuations this makes negligible~exponentially
small! difference.

The quantization condition for the double system is 2kL
12d(k)52pn, 2`,n,`. For the single kink we find

9To avoid confusion, note that for the calculation of the kink ma
one must take equal numbers of modes in the trivial and kink se
for each set of boundary conditions, but what these numbers a
not important; they may differ from one set to another.

TABLE III. Number of v'0 solutions for different sectors an
boundary conditions.

Boundary conditions
Sector P AP TP TAP

Trivial 0 0 1 1
Kink 2 2 1 1
04501
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two sets of boundary conditions: P and A

h~0!5h~L ! and h8~0!5h8~L ! ~P!

~31!
h~0!52h~L ! and h8~0!52h8~L ! ~A!.

With the solutionh(x,t);exp$i@kx61
2d(k)#% we then find the

quantization conditions

kL1d~k!52np ~P!

~32!
kL1d~k!5~2n11!p ~A!

where in both cases2`,n,`. Clearly we find for a single
kink the same set of momenta in Eq.~32! as for theK̄K
system. The mass formula for a single kink then reads

Mb
(1)5

1

4
\F01vB1m12(

n52

N

vn
P2 (

n52N

N

vn
P,(0)G

1
1

4
\F01vB1 (

n52N

22

vn
A1 (

n51

N21

vn
A22 (

n50

N21

vn
A,(0)G

1DMb

5
\vB

2
2\m2\E

0

L dk

2p
v8d1DMb . ~33!

We used the fact that in the nontrivial periodic case the
lution with n50 is excluded, and the solutions withn5
11 andn521 both yieldk50, giving the termm. In the
nontrivial antiperiodic case the solutions withn521 and
n50 are excluded. This yields~by construction! the correct
mass for the bosonic kink.~In fact the P and AP conditions
each give the same correct value for the bosonic fluct
tions.! In the K̄K system we had two zero modes, and th
corresponds to having one zero mode in each of the k
sectors.

Let us now turn to the fermionic fluctuations. In this ca
the issue of what set of boundary conditions to use is m
more subtle. As explained earlier, the correct set of bound
conditions consists of periodic and antiperiodic, both twis
and untwisted, considered in both trivial and kink secto
The formula for the mass correction from the fermions th
reads

1
1

4
~P1A!Triv ial sector2

1

4
~P1A!Kink sector

1
1

4
~TP1TAP!Triv ial sector2

1

4
~TP1TAP!Kink sector.

~34!

As mentioned earlier, the first and the last lines app
naturally when one reduces the kink-antikink system to
single kink, so they do separately give the right result. N
we check that the full set of sums also gives the corr
answer.

s
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First, we address the issue of fermionicv50 solutions
under these boundary conditions. The formal solutions of
Dirac equation withv50, Eq.~8! and~9!, are given by Eq.
~10! for the case of the kink background and by

c I5S a1e2mx

0 D , c II 5S 0

a2emxD ~35!

for the case of the trivial backgroundf tr i v5m/A2l. Adjust-
ing the coefficientsa1 and a2, one may try to satisfy the
boundary conditions in Eq.~34!. This results in the number
of v'0 solutions in particular sectors given by Table III.

Next we consider the continuous spectrum. The quant
tion conditions for P and AP boundary conditions in t
trivial sector are obvious.

We now address the TP conditions in the trivial sector
one puts

c15eikx1ae2 ikx ~36!

then it follows from the Dirac equation~7! that

c25ei (kx1u/2)2ae2 i (kx1u/2) ~37!

where we defineu such thateiu/252k/v1 im/v. Twisted
periodic conditions readc1(0)5c2(L) andc2(0)5c1(L).
We insertc1,2 and solve fora; this gives the quantization
condition

ei (kL1u/2)21

e2 i (kL1u/2)11
5a5

eiu/22eikL

e2 ikL1e2 iu/2
~38!

which can be rewritten as sinkL50, i.e.kL5pn. Notice that
if one changesk→2k in Eqs. ~36! and ~37!, then eiu/2→
2e2 iu/2, so thata→1/a, and Eqs.~36! and ~37! stay the
same up to normalization. Therefore negativek do not pro-
duce new independent solutions. There is formally a solu
with n50, i.e. k50, but for this solution Eq.~38! yields a
521 and then Eqs.~36! and ~37! yield c15c250 every-
where, so we must also excluden50.

For TAP conditions in the trivial sector one gets the sa
result~which is obvious: one changes the sign ofc2 and then
requires twisted periodic conditions onc1 and2c2).

The P boundary conditions in the kink sector correspo
to standing wave solutions of the Dirac equation~7! which
were found in@2#. The general solution of the Dirac equatio
for c1 reads

c1~x!5expikS x2
L

2D F23 tanh2
m~x2L/2!

2
111

4k2

m2

1
6ik

m
tanh

m~x2L/2!

2 G1aexp2 ikS x2
L

2D
3F23 tanh2

m~x2L/2!

2
111

4k2

m2

2
6ik

m
tanh

m~x2L/2!

2 G ~39!
04501
e
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which gives the following asymptotic expressions for fe
mion components:

c15H ei (kx2d/2)1ae2 i (kx2d/2), x'0,

ei (kx1d/2)1ae2 i (kx1d/2), x'L,
~40!

and, from the Dirac equation~7!,

c25H ei (kx2d/22u/2)2ae2 i (kx2d/22u/2), x'0,

ei (kx1d/21u/2)2ae2 i (kx1d/21u/2), x'L.
~41!

Requiring periodicity, it is clear10 that it can be achieved
either for a51, kL1d1u52pn or for a521, kL1d
52pn, and only positiven are needed to produce distin
solutions. In particular forn51, k50 one computes from
the latter setc1uk505$123 tanh2@m(x2L/2)/2#%(11a)50,
so by the Dirac equationc250. Thus this solution must be
excluded, just like thek50 solution in TP of the kink sector

The situation with AP conditions in the kink sector
quite analogous. The antiperiodicity is achieved by putt
a521, kL1d1u52pn1p or by a51, kL1d52pn
1p. In particular there seems to be a solution atn50, k
50 in the first set. This solution is excluded by the sam
argument as before: it is easy to check that in this casec1
5c250 everywhere.

The TP conditions in the kink sector were worked out
@3#; the computation for the TAP case in the kink sector
again straightforward~it turns out that these two sets o
boundary conditions are the only ones consistent with pl
wave solutions; see@3#!.

Thus, the quantization conditions for fermions are:
I. Nontwisted
~1! Periodic trivial sector:kL52pn, all n.
~2! Antiperiodic trivial sector:kL52pn1p, all n.
~3! Periodic kink sector: ~a! kL1d1u52pn, n

51,2,3, . . . and~b! kL1d52pn, n52, . . . .
~4! Antiperiodic kink sector:~a! kL1d1u52pn1p, n

51,2, . . . and~b! kL1d52pn1p, n51,2, . . . .
II. Twisted
~5! Twisted periodic trivial sector:~a! kL52pn, n

51,2, . . . and~b! kL52pn1p, n50,1,2, . . . .
~6! Twisted antiperiodic trivial sector:~a! kL52pn, n

51,2, . . . and~b! kL52pn1p, n50,1,2, . . . .
~7! Twisted periodic kink sector:kL1d1u/252pn, all

n, nÞ0.
~8! Twisted antiperiodic kink sector:kL1d1u/252pn

1p, all n, nÞ0,21.
We now work out the mass corrections due to fermions

the kink background for each fixed set of boundary con
tions separately. In all the sums we keep equal number
modes in both trivial and nontrivial sectors.~For these fer-
mionic corrections we subtract the contributions in the ki
sector from the contributions in the trivial sector.!

We start with P boundary conditions. The fermions gi
the contribution

10Alternatively, an explicit calculation similar to Eq.~38! yields
sin@(kL1d)/2#50 or sin@(kL1d1u)2#50.
3-12
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M f
(1)~P!5

\

2 (
n52N

N

v1)2
\

2 (
n51

N

v3a)2
\

2 (
n52

N

v3b)20

2
\vB

2
1DM f

52
\vB

2
1\m1\E

0

L dk

2p
v8S d1

u

2D1DM f ~42!

where we have taken into account onev50 fermionic de-
gree of freedom in the kink sector; see Table III. For A
boundary conditions one obtains

M f
(1)~AP!5\ (

n50

N

v2)2
\

2 (
n51

N

v4a)2
\

2 (
n51

N

v4b)202
\vB

2

1DM f

52
\vB

2
1\m1\E

0

L dk

2p
v8S d1

u

2D1DM f ~43!

and again, onev'0 fermionic degree of freedom in the kin
sector is counted in the sum. The result is exactly the sam
in the case of P boundary conditions.

For TP one does not have anv'0 degree of freedom, so

M f
(1)~TP!5

\

2 (
n51

N

v5a)1
\

2 (
n50

N

v5b)2\(
n51

N

v7)2
\vB

2
1DMf

5
\AL21m2

4
2

\vB

2
1

\m

4

1\E
0

L dk

2p
v8S d1

u

2D1DM f . ~44!

For TAP, however, we get a result that is different from t
result ~44! for TP:

M f
(1)~TAP!5

\

2 (
n51

N

v6a)1
\

2 (
n50

N

v6b)2\ (
n51

N

v8)2
\vB

2

1DM f

52
\AL21m2

4
2

\vB

2
1

3\m

4

1\E
0

L dk

2p
v8S d1

u

2D1DM f . ~45!

Actually, only the averages (P1AP)/2 and (TP1TAP)/2 are
invariant under theZ2-gauge symmetryc→2c. It is easy to
compute these averages, which of course do not have li
divergences. In terms ofM f

(1) , the fermionic contribution to
the mass of the kink in Eq.~1!, they can be written as

1

2
@M f

(1)~P!1M f
(1)~AP!#5M f

(1)1
\m

4
, ~46!

1

2
@M f

(1)~TP!1M f
(1)~TAP!#5M f

(1)2
\m

4
. ~47!
04501
as

ar

Note the presence of a ‘‘half-mode’’ contribution\m/4 rep-
resenting the boundary energy, which as expected app
with opposite signs in the~P1 AP! and ~TP1 TAP! sums.
To find out whether this boundary energy is localized or n
we consider the difference of the mode densities of
1 TAP minus P1 AP in the trivial sector11 One computes
for the density difference of continuum modes with T
1TAP versus P1AP boundary conditions.12

11In the P1 AP sector there is no localized boundary energy, a
the delocalized boundary energy density is proportional to 1/L2.
Hence, from P1AP we get no boundary energy at all, but the re
son we subtract it from the TP1TAP is to make the result conver
gent. P1AP really defines the energy of the trivial vacuum.

12First, we find the proper normalization for the continuu
modes. From Eq.~38! one finds for TP and TAP conditions in th
trivial sectorkL5pn and then Eq.~38! yieldsa, and Eqs.~36! and
~37! yield c1 andc2,

c15A$@e2iu/21~21!n#eikx1@eiu/22~21!n#e2 ikx%

c25A$@e2 iu/21~21!n#ei (kx1u/2)

2@eiu/22~21!n#e2 i (kx1u/2)%
with k5pn/L and cos(u/2)52k/v, sin(u/2)5m/v. Here A is a
constant which we will fix for the normalization. For the absolu
values one obtains

uc1u25uAu2$412 cos@2kx2u#22 cos@2kx#%

uc2u25uAu2$412 cos@2kx1u#22 cos@2kx#%
and the density of thenth mode, normalized to unity, is

uc1u21uc2u25
1

L H11
1

2
cos@2kx#~cosu21!J.

Using also the expression for the zero mode~35!, one gets for the
total density in the trivial sector with TP and TAP conditions

rTP1rTAP523~ucIu21ucIIu2!123(
n

@ucn,1u21ucn,2u2#

52m
e22mx1e22m(L2x)

12e22mL

1
1

L (
n51

N

@21cos~2kx!~cosu21!#

where the first term stands for the twov50 solutions. For the P
and AP conditions in the trivial sector we get simplyrP1rAP

5(1/L)(11(n51
N 2). Neglectinge2mL terms and identifyingx50

with x5L as the boundary atx50 for 2L/2<x<L/2, we get for
the difference of TP1TAP and P1AP

$rTP1rTAP%2$rP1rAP%

52me22muxu2
1

L
1

1

L (
n51

N
22m2cos@2~pn/L!x#

~pn/L!21m2

52me22muxu2
1

L
1

1

2F2L 2E
2`

` dk

p

2m2cos~2kx!

k21m2 G
52me22muxu2me22muxu

5me22mx.
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1

2
@$rTP~x!1rTAP~x!%cont2$rP~x!1rAP~x!%cont#

52E
0

`dk

p

m2cos~2kx!

k21m2
52

m

2
e22muxu, ~48!

so that the mode density is localized around the bound
and leads to a net mode number shiftdn52 1

2 . This compu-
tation for Majorana fermions in the trivial sector is equiv
lent to the result of Jackiw and Rebbi@13# for Dirac fermions
in the presence of a kink. Indeed, a little thought shows t
fermions in the trivial sector ‘‘feel’’ the twisted periodi
boundary conditions as equivalent to a kink~or antikink! of
zero width.

Instead of the mode density, we may also compute
energy density. Using *0

` cos(ak)dk/Ak21m25K0(am)
@where K0(x) is the modified Bessel function# to obtain for
the energy density

eTP1TAP~x!2eP1AP~x!52\
m2

p
K0~2muxu!, ~49!

which is also localized around the boundary, and leads
net boundary energy for twisted periodic boundary con
tions in the trivial sector,dMbound5\m/4. This proves that
there is no delocalized energy in Eqs.~46! and~47!, in com-
plete accord with the principle of cluster decomposition.

The average of Eqs.~42!–~45! or ~46!–~47! gives

1

4
@M f

(1)~P!1M f
(1)~AP!1M f

(1)~TP!1M f
(1)~TAP!#5M f

(1).

~50!

Adding this result to Eq.~33!, one recovers the correct resu
for the SUSY kinkMs

(1) , namely Eq.~1!.
With these results one may address the discrepancy

M (1) obtained by mode regularization between@2# and the
accepted value~1!. In @2# Eq. ~60! the authors computed th
one-loop correction to the energy using mode regulariza
for fixed periodic boundary conditions. Thus they shou
have obtainedM (1)1\m/4 @where the latter term is the lo
calized boundary energy for periodic conditions in the ki
sector, as indicated in Eq.~46!#, and they did. Their calcula
tion was a correct application of mode regularization, b
gave the total effect of changing from trivial to kink bac
ground with fixed periodic boundary conditions, includin
the boundary energy which is not part of the localized qu
tum correction to the mass of the kink.

This brings up another question: Why do the methods
@3# @where (d/dm)(v was first evaluated# and of @4# ~en-
ergy cut-off using a smooth interpolating function! get the
accepted answer for the mass of the kink, even thoug
these methods no information is used about the bottom c
tinuum modes, as in mode regularization? Answer: T
boundary conditions in these works do not change the d
sity of states. Therefore, a formula depending only on
density of states through the phase shift~as @3# and @4# do!
will give an answer for the mass independent of the bou
ary conditions. Because that formula agrees with the re
04501
y,
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e
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from the K̄K system, which has no boundary energy,
should be correct regardless of boundary conditions. Wha
lost by these methods, and this might well be described a
advantage, is the calculation of the total energy, includ
the boundary energy. Clearly, this type of regulation giv
correctly thelocal energy density associated with the boun
ary, if there is such, because the local density is insensitiv
O(1/L) contributions from the bottom of the spectrum. B
conservation of energy, therefore, what it does not neces
ily give correctly is the delocalized energy associated w
the boundary. Put differently, in this type of scheme there
no reliable information about the delocalized energy, b
there is reliable information about the mass of the kink, e
bodied in a single, global integral. By invoking the princip
of cluster decomposition, with its implication that in a co
rect calculation there cannot be any delocalized energy,
may circumvent even the one disadvantage of these sche
However, as we have seen, with mode regulation one m
check the principle directly.

C. The Z2 gauge symmetry

It still remains to show that a single solution withv50
for fermions in a given sector with given boundary cond
tions does not correspond to any degree of freedom at
and also to discuss the effect of such a solution on the
bert space. In the mode expansion of the Majorana field,
coefficientc0 of the zero mode is a single, idempotent He
mitian operator. This follows from the equal-time canonic
anticommutation relations. The ground state may be cho
as an eigenstate13 of c0, so uground&5 1

2 (11c0)uV&. Con-
sequently, all states in the Hilbert space may be obtained
the action of local operators onuground&. No such operator
would connect12 (11c0)uV& with 1

2 (12c0)uV&. For c0 this
is true by construction, but more complicated operators h
either one factorc0 or no factorc0, and in both cases on
never leaves the half of the Hilbert space one is in. The ot
half of the Hilbert space is a copy of the first under the act
of the discreteZ2 symmetry which maps fermion fieldsc
into 2c. TheZ2 symmetry is actually a discrete gauge sym
metry because it leaves all observables~expectation values o
operators which contain an even number of fermion fiel!
invariant, just as in quantum mechanics phase factors
continuousU(1) symmetry multiplying state vectors are n
observable.

The Z2 symmetryc→2c is hidden: That is, the kink
ground state (11c0)uV& is not manifestly invariant under i
(c0 is mapped into2c0 underZ2). A better way of defining
the ground state might be to say that it consists of a set w
the two elements (11c0)uV& and (12c0)uV&. The state
(11c0)uV& is then simply a representative. Clearly, wi
this definition the ground state isZ2 gauge invariant and
unique. On the other hand, it has been observed by Ritzet al.
@14# that the ground state is not annihilated by the~linear-

13At first sight it may seem strange to have a ground state tha
half fermionic and half bosonic, but in 2 dimensions there is le
distinction between fermions and bosons.
3-14
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ized! supersymmetry generatorQ2. Rather it is mapped into
itself, becauseQ2 is proportional toc0.14 Thus, half of the
supersymmetry is spontaneously broken, as has long b
known, but at the same time the unbreakableZ2 gauge sym-
metry only is hidden, i.e., not manifest.

The necessity of averaging over more than one se
boundary conditions implies a refinement of the assertion
Shifman et al.@6# that boundary conditions are unimporta
if one computes the energy by calculating a regulated, re
malized energy density and integrating this density only
the region of the kink. One might expect the error in th
calculation to be exponentially small, associated with ex
nential localization of the boundary energy. As discuss
earlier, with the appropriate averaging over boundary con
tions the total delocalized energy vanishes, which is cl

because for theK̄K system there is no delocalized energ
Explicit calculation shows that the difference in the trivi
sector between the AP and P contributions to the delocal
energy~the only kind there is in this case!, is of order 1/L.
Thus one can indeed forget about delocalized energy f
the trivial sector. However, the differencem/2 between sums
for TP and TAP conditions in the kink sector represent
translationally invariant contribution to the energy, whi
would imply a spurious finite shift in the energy of the kin

Thus the assertion in@6# that the kink mass may be ca
culated by integrating only over, say, the half-space s
rounding the kink, and staying well away from the bounda
indeed is correct, but with the proviso that boundary con
tions which provide infrared regulation in this calculatio
must respect theZ2 gauge symmetry: All of the boundar
conditions considered above may be visualized as jump c
ditions for wave functions defined on a circle. The effect
introducing aZ2 flux through that circle when a kink is
present would be to interchange TP and TAP conditions,
we have seen that there is one fewer mode just above
mass threshold for TAP than for TP. Because the couplin
this flux is a discrete form of a continuous gauge symme
a change in the number of states for the continuous ver
~i.e., complex fermion fields! would correspond to the abrup
disappearance of a unit of conserved charge, constitutin
anomalous violation of the gauge invariance. To prev
such an anomaly, it is necessary and sufficient to use a r
lation that preserves the gauge invariance, namely, des
ing the system as an incoherent, equal, superposition o
and TAP boundary conditions. It is for this reason that in
discussion of the energy sums involving four differe
boundary conditions we have further bundled the sums
pairs, ~TP 1 TAP! ~essential bundling! and ~P 1 AP! ~al-
lowed but not essential bundling!.

There is anotherZ2 symmetry of the action, the transfo
mation f→2f, and simultaneously the twistc→6s1c.
This transformation imposed as a jump condition is loca

14Using Q5*@]mfgmg0c1Ug0c#dx one finds Q2

;*(]xfK)c1dx. Since]xfK is proportional to the zero mode i
c1, see Eq.~10!, and orthogonal to the nonzero modes, one fin
Q2;c0.
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invisible, but globally changes a system whose lowest s
is the trivial vacuum to one whose lowest state is a kink,
more precisely, a half-sphaleron: For a circle of circumf
ence 2L with a sphaleron in metastable equilibrium, join an
two points, making a circle of circumferenceL. The match-
ing or boundary conditions on the half-sphaleron are p
cisely those of the secondZ2 symmetry, and because th
lowest energy configuration in this domain must be a k
~or equally well, an antikink!, slightly squeezed because it
on a circle, it is obvious that the field is precisely that of h
the sphaleron. The main, if not the only difference, from t
full sphaleron is that there is no instability, because there
no possibility of kink-antikink annihilation in the presence
the jump condition. As with the sphaleron, ifL is too small,
then the lowest solution is simplyfclassical50. However, for
largerL, the half-sphaleron becomes absolutely stable. It
however, not a BPS solution even at the classical level,
cause the BPS bound can be saturated only on the infi
line.15

This discussion complements a recent analysis by Bin
et al. @15# of solitons with winding number61 in anN52
supersymmetric theory with a potential depending on a co
plex f and periodic inR f. It is clear that there is quantum
tunneling between soliton and antisoliton in both cas
However, theirN52 soliton is quantum unstable but class
cally saturates the BPS bound, whereas our kink is quan
stable but already violates the BPS bound at the class
level. A tentative conclusion from these two examples is t
tunneling between soliton and antisoliton is likely to be t
most generic feature for such systems.

We now are in a position to address an issue glos
over above: How general is the statement that the method
@2# and @3# are independent of boundary condition
One conspicuous case for which these methods do not w
as mentioned already in the Introduction, is that
‘‘supersymmetric’’ boundary conditions f(0)5c1(0)
5f(L)5c1(L)50. There are two reasons for this failur
First, the mentioned Dirac spinor conditions are equivalen
energy-dependent boundary conditions in a Schro¨dinger
equation, and hence do change the density of sta
Secondly, this choice of boundary conditions obviously v
lates the secondZ2 symmetry, under whichc1(0)5c1(L)
50 in the kink sector→c2(0)5c1(L)50 in the trivial sec-
tor. To average over a set of fixed boundary conditions wh
respecting theZ2 symmetry, one must have both the
choices in both sectors. Indeed, doing so will remove
logarithmic divergence mentioned earlier, and also will
produce the change in density of states between trivial
kink sectors due to the kink alone.~The details for these
boundary conditions will be worked out explicitly elsewhe
@16#.!

Should both these discrete symmetries be conside

s

15The BPS equation]xf1U(f)50 at the point wheref is maxi-
mal ~and thus]xf50) requires thatU(f)50, but then the only
solution isf5m/A2l.
3-15



d
m
lf
re
m
2
p

n
im

s,
n-

s

s-
ro
nk
nk

r
e
in
te

r t
e
ga
at
fo
i

th

n
d
e
n
ic
s

a
a

ll
ro
r
a

us
n
be
tw
e
er
y

he
k

a
or

c
nd
ld,

son
ero
ing
ies
the

nd

no

of a
ly
lso

for-
odd
rry

fer-
cted

s in
n-

on
hat

y
t is,
La-
not
y
ns,
han
ne
ns.

s

x-
e of
he

d-
ic
alf
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gauge symmetries? As we have seen already, the seconZ2

is similar to the first in that each one when applied to a ju
condition has global implications. The first introduces a ha
quantum of flux through the circle on which the fields a
defined, while the second converts the sector with kink nu
ber 0 mod 2 into the sector with kink number 1 mod
Nevertheless, while globally significant, both these jum
conditions may be applied at any point, and there will be
local consequences at that point. However, there are two
portant reasons not to describe the secondZ2 as also a gauge
symmetry.~1! If one goes from real fields to complex field
so thatZ2 becomesU(1), then the first corresponds to sta
dard gauge coupling, but the second would correspond
axial gauge coupling. It is well known that thi
U(1)3U(1) is an anomalous theory.~2! In the sector with
the secondZ2 jump condition, as mentioned earlier it is po
sible to describe paths in field configuration, with action p
portional to the circumference of the circle, connecting ki
and antikink. This would make no sense if kink and antiki
were identical, as would be implied by treating the secondZ2
as a gauge symmetry. One may see this also by conside
the sphaleron configuration, in which there may be a conv
tion used to define the kink, but the distinction between k
and antikink is clear from the fact that they can annihila
each other. Indeed, the same point is manifest already fo
vacuum configurationh56const. For a finite-circumferenc
ring, there will be tunneling between the positive and ne
tive values, leading to two nearly degenerate ground st
which are equal superpositions of the two values. Only
infinite circumference do we have the thermodynamic lim
in which spontaneous symmetry breaking occurs, and
two values are completely independent.

VI. CONCLUSIONS

Mode regularization, i.e., the simple prescription that o
subtracts vacuum energies for the same number of mo
with and without some background, differs from many oth
regularization schemes in that the cutoff parameter need
be averaged over some continuous weight function wh
goes from unity at low energies to zero at high energies, a
necessary in particular for energy or momentum cutoff@4#.
This attractive feature gives a strong incentive to investig
whether the scheme is universally applicable. Here we h
studied mode regularization for the case of the kink in~111!
dimensions, including Majorana fermions. There is a we
known subtlety in counting boson zero modes, that ze
frequency modes must be expressed as collective coo
nates, so that for each coordinate there is a conjug
momentum, giving rise to raising and lowering operators j
like those for nonzero frequencies. Thus the two boso
zero modes of a widely separated kink-antikink system
come two collective coordinates, and they correspond to
pairs of (P,X) variables, counting as two degrees of fre
dom. This makes sense because it keeps the total numb
modes constant as the corresponding squared frequencv2

goes to or through zero.
For fermions the situation is less familiar. By studying t

problem in three closely related systems, kink-antikin
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sphaleron~i.e., kink and antikink symmetrically placed on
circle!, and isolated kink, we find a very different behavi
from that for bosons, namely, the number ofv;0 degrees of

freedom~one! in the K̄K system is half the number~two! of
fermionic v;0 solutions: The two zero modes in the Dira
equation for the fermions together give one annihilation a
one creation operator in the expansion of the fermion fie
hence one degree of freedom.

This suggests that for an isolated kink, there is one bo
zero mode degree of freedom, but only half a fermion z
mode degree of freedom. This half is interpreted as be
due to different boundary conditions for which the energ
must be averaged to give the correct mass shift. Two of
boundary conditions~periodic twisted and antiperiodic
twisted! give a single zero mode in the Dirac equation, a
the Hermitian coefficientc0 of this mode function in the
fermion field leaves the ground state invariant. There is
doubling of the Hilbert space due to thisc0 because the
states (11c0)uV& and (12c0)uV& are equivalent under the
Z2 symmetryc→2c.

The conclusion that the ground state is an eigenstate
fermionic operator is at first thought puzzling. It not on
violates intuition based on widespread experience, but a
appears to contradict the well-known superselection rule
bidding coherent superposition of states with even and
fermion numbers. Although Majorana fermions do not ca
an additive, conserved fermion numberF, still the fermion
field anticommutes with theZ2 factor (21)F. However, in
one space dimension the distinction between bosons and
mions is not pronounced, because there is no spin conne
to the statistics; for example, one can bosonize fermion
string theory. The SUSY multiplet also is unusual: it co
tains 2 states for the non-BPS case@4#, but only one state for
the BPS case, as discussed in@6# and this article. Thus, the
state (11c0)uV& is not an exception to the superselecti
rule, but rather a unique and unexpected illustration of t
rule.

The Z2 symmetryc→2c is actually a gauge symmetr
because it leaves all possible observables invariant. Tha
there is no conceivable field that could be added to the
grangian as a perturbation and would give a coupling
invariant underc→2c. Thus there is no zero-frequenc
fermionic degree of freedom for these boundary conditio
and consequently one must include one more fermion t
boson continuum mode in the mode regularization if o
wishes to consider only TP and TAP boundary conditio
The two other boundary conditions~periodic and antiperi-
odic! each give in the kink sector two fermionic solution
with v50 ~P! or v;0 ~AP!. Their coefficients yield one
annihilation and one creation operator in the Dirac field e
pansion, and hence one corresponding fermionic degre
freedom, half localized at the kink and half localized at t
boundary.

Evidently, the average of the sums with different boun
ary conditions is equivalent to the loss of half a fermion
degree of freedom. This half clearly is related to the h
fermion charge found by Jackiw and Rebbi@13# when they
3-16
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considered Dirac fermions in the presence of a kink. Fo
Majorana fermion the half degree of freedom of the ki
system was initially interpreted as one degree of freedom

the K̄K system which was shared half by the kink and h
by the antikink. The nonlocal character of this fermionic d

gree of freedom for the KK̄system is still present for plain
periodic boundary conditions on the kink alone: The deg
of freedom is localized half at the kink~by c1) and half at
the boundary~by c2). For our Majorana fermion we ca
interpret this fractionalization of degree of freedom as f
lows: Suppose one starts in the trivial vacuum with perio
boundary conditions, and one starts to rotate the right-h
half of the constant background fieldf by a Goldstone-
Wilczek chiral rotation@12#. This rotation produces a curren
and changes the trivial vacuum to the kink vacuum. T
periodic boundary condition in the kink sector stops the c
rent, and half a degree of freedom is accumulated at
boundary. In the analysis of Jackiw and Rebbi@13# the
boundary was moved to infinity and thus they only fou
half a charge around the kink.

The results summarized here lead to a well-defined p
cedure for applying mode regularization to a system in wh
the boundary conditions naturally change between one se
and another: In the difference of sums, require that the te
of highest energy are matched in such a way that there i
contribution to the quantum energy shift linearly diverge
with the maximum energyL. Having thus matched the sum
‘‘at the top’’ one may count down to the bottom, and com
pare the number of modes in each sum. For fixed bound
conditions, this procedure is equivalent to the usual mo
counting prescription. However, when the boundary con
tions change, as from P1 AP to TP1 TAP, then the number
of modes can change.~For the P, AP cases in the trivia
sector and the TP case in the kink sector there are e
numbers of nonzero modes, but for the TAP case in the k
sector there is one fewer zero mode.! Because the numbe
goes down by 1 for TAP but zero for TP, the average los
1/2. Thus, one important conclusion from our work is th
there is a natural generalization of mode regularization to
case when boundary conditions are not fixed. This may
useful in other contexts.

The nonlocality of one fermionic degree of freedo
clearly must be an essential feature of a theory where the
only one unpaired fermion state localized at a soliton. For
case of locally invisible boundary conditions both in t
trivial sector~P 1 AP! and in the kink sector~TP 1 TAP!,
the half charge is even more ethereal. It simply evapora
under the change in boundary conditions, as a consequ
of the chiral anomaly.

The nonlocality is surprising because it appears to vio
the principle of cluster decomposition. However, Majora
fermion charge is not an observable, and all vacuum exp
tation values for observable fields still obey the principle.
course, if the fermion field carried an observable char
such as fermion charge for a Dirac fermion, then the h
would become a localized eigenvalue, as in the case anal
by Jackiw and Rebbi. Thus, the unadorned Majorana ferm
interacting with the kink is a kind of ‘‘square root’’ of the
04501
a

in

f
-

e

-
c
d

e
-
e

-
h
tor
s

no
t

ry
e-
i-

al
k

is
t
e
e

is
e

es
ce

e

c-
f
,

lf
ed
n

Dirac fermion, still manifesting the Jackiw-Rebbi ha
charge, but in a delocalized form, whose precise specifica
depends on what might otherwise have seemed an arbi
choice of boundary conditions.

The combined thrust of all the recent works is to sho
that new aspects continue to appear in understanding a
totype soliton, the kink in 111 dimensions, with a strong
hint that the methods sharpened in this theoretical labora
are likely to have broader application.

Note added.We have received questions from vario
readers concerning the relation among the results of
Stony Brook~@2–4# and this paper!, MIT @5# and Minnesota
@6,14,15,17# groups. We address these issues here in m
explicit and complete form than in the Introduction.

The Minnesota group obtained an expression for the
ergy densityH(x) as a sum of the central charge dens
z(x) and an extra term of the form$Q, j (x)%. The latter
vanishes in the kink background, which isQ invariant. Thus
^H&5^z& locally, and this proves the saturation of the BP
bound locally. They used higher-derivative regularization
the kinetic terms]2/]x2 but not of]2/]t2 or the interactions;
this is a regularization scheme which does not involve hig
time derivatives and preserves supersymmetry. The exp
sion forz(x) is a total derivative]x(W1Y). At the one-loop
level, the corrections fromW are canceled by the counte
term, whereasY5(1/2Mr

2)@(]xf)]xF2(]x
2f)F# yields a

one-loop vacuum expectation value of the formMr
2/Mr

2 be-
cause the regulated propagator for the fluctuations is pro
tional to Mr

2 . This contribution they called an anomaly. I
the loop calculations they used the regularized Feynm
propagator for infinite volume~which is unique if one im-
poses causality!, making their expression for the local energ
density independent of boundary conditions. The anomal
their formulation comes entirely from the ultraviolet regula
ization; boundary conditions, which are a form of infrare
regularization, play no role.

Using the local expressionz(x), they obtained the kink
mass by integrating over a region containing the kink a
staying away from the boundaries, so that, unlike approac
that compute the quantum corrections integrated over
space, their analysis was not sensitive to the finite or e
divergent boundary energies discussed in our paper. In
ticular, by integrating only over a finite region around th
kink one can avoid even the delocalized boundary ene
which we found for twisted periodic boundary condition
~this paper!.

The MIT group wrote down formal expressions for th
integrated differenceH2Z5*dx@H(x)2z(x)# ~in the Min-
nesota notation!, and forH and Z separately. By ‘‘formal’’
we mean mode sums represented as continuous integ
without explicit discussion of either infrared or ultraviole
regularization prescriptions. The Minnesota group criticiz
this work because~in addition to the formal character of th
expressions! there seemed to be no contribution from a
anomaly. The MIT group used canonical commutation re
tions for Heisenberg operators but did not regulate explic
~by point splitting or other standard methods!, and it is well-
3-17
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known that without proper regularization Hamiltonian me
ods miss anomalies. Having studied this problem in detail
have come to the conclusion that one can regularize the w
in @5# and discuss issues of boundary conditions. As we s
show, with these additions, the expressions and results o@5#
for the integratedH2Z and H may be seen as not onl
correct but also directly equivalent to corresponding res
of the other groups. We claim that both the Stony Brook a
the MIT results do contain the anomaly, albeit in integra
form.

The MIT group wroteH2Z andH andZ in terms of only
two mode integrals of the formI 15*v(k)uhk(x)u2dkdxand
I 25*v(k)uh̃k(x)u2dkdx. Formally, all terms inH2Z can-
cel pairwise: degenerate boson and fermion modes give
same contribution with opposite signs. We believe that t
cancellation implicitly assumes SUSY boundary conditio
for which thehk andh̃k as well as the densities of states a
equal for the bosons and for the fermions. The integrand
H2Z therefore is the correct local density~this was not
mentioned in@5#!, and this density clearly vanishes. Thus t
BPS bound is saturated locally, provided the same coun
term is used forH and forz.

The translation of the MIT group’s expressions forH and
Z individually into the standard framework of regularizatio
and renormalization is more subtle. They start again from
expression in terms ofI 1 and I 2, but inside their continuum
integrals overk they also need a counterterm, which th
identify as the divergent contribution from the Born expa
sion of the scattering phase shift. With the help of this te
~and an identity based on Levinson’s theorem!, the integrals
become manifestly convergent, so that no further regular
tion seems required. On the other hand, the Minnesota g
~and we! using standard methods of quantum field theo
explicitly regularized the kink mass, and obtained the m
renormalization counterterm from the requirement that t
pole graphs vanish.

It remains to explain why the MIT approach of subtra
ing the Born term is also correct. Consider the followi
equation of MIT:

M5E dk

2p
~v2m!

d

dk
@d~k!2dB~k!#. ~51!

Compare Eq.~51! with the Stony Brook method for momen
tum cut-off

M5E
2`

1` dk

4p
v

d

dk
@d~k!Q~L2uku!#1DM , ~52!

where Q(L2uku) is the cut-off function introduced in@4#
which states that above a certain energy the kink modes
over smoothly into modes of the trivial vacuum.

To relate both approaches we rewriteDM as follows

DM5E
2`

1` dk

4p
~v2m!

d

dk
@d0~k!Q~L2uku!#. ~53!

We claim that this works withd0(k)[dB(k). This is easy to
prove:dB(k)52m/k, and this yields
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DM5E
2L

1L dk

2p S dv

dk

m

k D5mE
0

L dk

2p

1

v
, ~54!

in agreement with@2#. Combining the two terms in Eq.~52!
one finds

M5E dk

2p
~v2m!

d

dk
$@d~k!2dB~k#Q~L2k!%. ~55!

As d(k)2dB(k) tends rapidly to zero for largek, one may
omit theQ(L2k), and Eq.~55! then becomes Eq.~51!. This
establishes the equivalence of the Born subtraction in
MIT phase shift calculation with the improved momentu
cut-off in @4#. As the latter has a clear physical meaning, t
former has been justified in our opinion. Recently, the M
group has used dimensional regularization, and conclu
that it produces the term withdB(k) if one only renormalizes
by requiring absence of tadpoles~last reference in@5#!.

To summarize, the recent revival of interest in the qua
tum description of the supersymmetric kink started with t
Stony Brook group~with Rebhan! who brought back into
focus the problem of the saturation of the BPS bound for
SUSY kink and the issue of multiplet shortening@2#, justified
Schonfeld’s calculation of the mass by an explicit regulari
tion ~the so-called derivative regularization scheme@3#!, and
suggested that there could be a local anomaly in the cen
charge@3#. In the present paper we showed how to remo
fermion boundary energies from the integrated quantum c
rection to the mass, either by averaging over suitable set
boundary conditions, or by direct computation and subtr
tion of boundary contributions. The MIT group found a
identity which, as we have shown here, can be used to pr
more than they claimed, namely, the local equality of ene
and central charge densities. They also obtained an exp
sion for the mass using phase shift methods which is m
ematically equivalent in detail to that obtained by perturb
tive quantum field theory methods. The issue of multip
shortening of massless multiplets was solved by the Min
sota group@6#. They went farther, establishing that there is
local anomaly in the central charge density, and providing
explicit expression for that density, which makes th
method completely independent of the boundary conditi
introduced for infrared regularization@6#.

ACKNOWLEDGMENTS

We thank N. Graham, N. Manton, A. Rebhan, M. Rocˇek,
J. Schonfeld, A. Sen, M. Shifman, W. Siegel, M. Stephan
and A. Vainshtein for discussions. These results were p
sented at a meeting celebrating 30 years of supersymmet
Minnesota. A new paper by Losev, Shifman and Vainshte
@17#, has discussed the multiplet structure inN51 supersym-
metric models. Their results seem to be complementary
and compatible with ours.
3-18



A

e

.

u-

MODE REGULARIZATION OF THE SUPERSYMMETRIC . . . PHYSICAL REVIEW D 64 045013
@1# R. F. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D10,
4130 ~1974!; for an introduction see R. Rajaraman,Solitons
and Instantons~Elsevier, Amsterdam, 1996!.

@2# A. Rebhan and P. van Nieuwenhuizen, Nucl. Phys.B508, 449
~1997!.

@3# H. Nastase, M. Stephanov, P. van Nieuwenhuizen, and
Rebhan, Nucl. Phys.B542, 471 ~1999!.

@4# A. Litvintsev and P. van Nieuwenhuizen, ‘‘Once More on th
BPS Bound for the SUSY kink,’’ hep-th/0010051.

@5# N. Graham and R.L. Jaffe, Nucl. Phys.B544, 432 ~1999!;
B549, 516 ~1999!; Phys. Lett. B435, 145 ~1998!; E. Farhi, N.
Graham, R. L. Jaffe, and H. Weigel, Nucl. Phys.B585, 443
~2000!.

@6# M. Shifman, A. Vainshtein, and M. Voloshin, Phys. Rev. D59,
045016~1999!.

@7# G. V. Dunne, Phys. Lett. B467, 238 ~1999!.
@8# J.F. Schonfeld, Nucl. Phys.B161, 125 ~1979!.
04501
.

@9# E. Witten and D. Olive, Phys. Lett.78B, 97 ~1978!.
@10# N. S. Manton and T. M. Samols, Phys. Lett. B207, 179~1988!.
@11# G. A. Korn and T. M. Korn, Mathematical Handbook

~McGraw-Hill, New York, 1968!; E. T. Whittaker and G. N.
Watson,A Course of Modern Analysis~Cambridge University
Press, Cambridge, England, 1962!, Chap. XXII.

@12# J. Goldstone and F. Wilczek, Phys. Rev. Lett.47, 986 ~1981!.
@13# R. Jackiw and C. Rebbi, Phys. Rev. D13, 3398~1976!.
@14# A. Ritz, M. Shifman, A. Vainshtein, and M. Voloshin, Phys

Rev. D63, 065018~2001!.
@15# D. Binosi, M. Shifman, and T. ter Veldhuis, Phys. Rev. D63,

025006~2001!.
@16# A. S. Goldhaber, A. Litvintsev, and P. van Nieuwenhuizen~un-

published!.
@17# A. Losev, M. Shifman, and A. Vainshtein, ‘‘Single State S

permultiplet in 111 Dimensions,’’ hep-th/0011027.
3-19


