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To obtain the one-loop corrections to the mass of a kink by mode regularization, one may take one-half the
result for the mass of a widely separated kink-antikiok sphaleron system, where the two bosonic zero
modes count as two degrees of freedom, but the two fermionic zero modes as only one degree of freedom in
the sums over modes. For a single kink, there is one bosonic zero mode degree of freedom, but it is necessary
to average over four sets of fermionic boundary conditions in ofideio preserve the fermioniZ, gauge
invariancey— — i, (ii) to satisfy the basic principle of mode regularization that the boundary conditions in the
trivial and the kink sector should be the sartig) that the energy stored at the boundaries cancelgightb
avoid obtaining a finite, uniformly distributed energy which would violate cluster decomposition. The average
number of fermionic zero-energy degrees of freedom in the presence of the kink is then indeed 1/2. For
boundary conditions leading to only one fermionic zero-energy solutiorZ tlgmuge invariance identifies two
seemingly distinct “vacua” as the same physical ground state, and the single fermionic zero-energy solution
does not correspond to a degree of freedom. Other boundary conditions lead to two spatially separated
~0 solutions, corresponding to otigpatially delocalizeddegree of freedom. This nonlocality is consistent
with the principle of cluster decomposition for correlators of observables.
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[. INTRODUCTION Bogomol'nyi-Prasad-SommerfieldBPSJ-saturated state in
the presence of quantum corrections, and if so how does this
The problem of how to compute the one-loop correctionsoccur?

to the massM and central charge of supersymmetric The authors of2] noted that the two regularization meth-
(SUSY) kinks has been the subject of renewed investigation®ds they used to calculai(?), momentum cutoff and mode
in the past few years. In this article we give a precise precutoff, gave different answers. Moreover, the BPS bound did
scription for computing the mass of ordinary and SUSYNOt seem to be saturated. Since then various regularization
kinks using mode regularization. The prescription followsSchemes have been applied to this problem: momentum cut-
from a careful study of bosonic and fermionic zero modesOff [2—4], mode cut-off2,4], mass-derivative regularization
Differing from previous prescriptions, it yields the accepted[3.4, ~ phase-shift = methods [5],  higher-derivative
result, thus reaffirming mode regularization as a bona fid@upersymmetry-preserving regularizati¢fi], dimensional
scheme. regularization 6] and derivative expansigrr].

According to standard argumenfs], the mass can be ~ From[4] one sees that the inadequacy in the momentum
written in terms of differences of sums over zero-point enercutoff calculation had to do with the need for smoothing the

gies, but because the sums themselves are divergent, ofitoff so that it becomes well-defined. In the present work
must specify how to regularize them. In their pioneeringWe shall show that the mode cutoff calculation was correct,
work, Dashen et a[.1] used mode number regularization for but included a localized boundary energy along with the kink
bosons, but did not work out this method for fermions. The€nergy.
values of the zero-point energies depend on the boundary Nastaseet al.[3] avoided these pitfalls by first evaluating
conditions one imposes on the fields, and for fermions theste€ mass derivative of the mode sums, which gave better
conditions may produce a contribution to the energy comingontrol of the divergences and thus eliminated the need for
from the boundaries. If so, one must first subtract the extr@moothing the cutoff. Their result fav™") agreed with the
boundary energy to obtain the mass correction for the suolder work of Schonfeld8] for the SUSY kink-antikink sys-
perkink. In addition, as we shall show, certain boundary conte€m, suggesting that this indeed is the correct value. They
ditions lead to a uniformly distributed energy density, whichalso suggested that there might be an anomaly that would
also should not be counted as part of the kink mass. restore the BPS condition.

The recent interest in the subject of this paper began with The MIT group[5] used continuum phase shift methods
the work[2], where two important questions were posed: (avoiding consideration of boundary conditiorie compute

(1) What is the quantum correctiod ") to the mass of the one-loop corrections to the kink energ?) and to the
the kink in supersymmetriz ¢* theory? central charg@®), finding that they are the same, so that the

@2 1f M® is not zero, can the kink remain a BPS condition is_ obeyed. Th_ey d_id not ascri_be the shifZin
to an anomaly, instead treating it as a straightforward one-

e loop result.
*Email address: goldhab@insti.physics.sunysb.edu The Minnesota group6], stimulated by[2] and[3], un-
"Email address: litvint@insti.physics.sunysb.edu dertook to attack the second questiorn 2fdirectly. There is
*Email address: vannieu@insti.physics.sunysb.edu a beautiful argument originated by Witten and OIp3. If
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the isolated kink has a single ground state, and if perturbativéned, and reproduces E({l): instead of an abrupt cut-off at
guantum corrections violate the conditidh=2, then the A one needs a smooth cut-off which interpolates between the
fact that this would mean the supersymmetry is completelyzero-point energies in the topological and trivial sectdrs
broken implies that there must be a double degeneracy of the In this article we repair mode number regularization. The
ground state, and hence a multiplicity discontinuityzat0.  basic idea of this scheme is to subtract the energies of an
In [6] three different methods were used to calculate theequal numbeN of modesw!” in the trivial sector from the
one-loop correction t&, all methods agreeing that the cor- valuesw, in the topological sector, and then to take the limit
rection represents a local anomaly, and results in maintaining —, but a problem arises whether one should include
M=Z, with M given by Eq.(1). The authors of6] also  some or all or none of the zero modes in this counting. This
computed the one-loop effective superpotential, and exissue has turned out to be surprisingly complicated, and for
tracted from it the effective central charge as the differencgpedagogical reasons we shall first deduce in Sec. Il the cor-
of the effective superpotential at; this yielded the one- rect rules by requiring that they reproduce the result in Eq.
loop correction taZ. (1). The problem then obviously is to justify these rules. We
In [4], the anomaly in the central charge was directlyshall first consider a kink-antikink configuratiof8], which
computed using momentum cutoff to regulate both the Diradies in the trivial sectofhaving no overall winding numbgr
delta function appearing in the algebra of the supersymmetrgo that standard manipulations of quantum field theory are
charges and the propagators appearing in the loops; agaétill reliable. For such a system the energy located at the
M =Z was found. boundaries in the kink-antikink sector cancels the same
Perhaps the easiest scheme is mass-derivative regularizguantity in the trivial sector if one uses the same boundary
tion [3], according to which one first evaluates the derivativeconditions in both sectorsso the mass of the kink is then
(dlom)M=(dlom)[iZw—3i3w®+AM] of the sums Just one-half of the sums over the zero-point energies plus
(which is better convergent, so that there is no sensitivity tghe counterterm for mass renormalizatighe latter will be
the form of cutoff and then integrates with respect to ~ 9ivenin Sec. I]._(For pe_r|_0d|c or antlperlodlc_ boundary con-
using the renormalization conditioM(m=0)=0. Any d|t|or)s in the kink-antikink system, there is not even any
boundary conditions on the fluctuations for which the diver-localized boundary energy because these boundary condi-
gences inM®) cancel are allowed. The method yields thet!ons are trans_,latlonally mv_arlamIFor the bosonic case one
total energy of the system, in the presence of specifiedinds for the kink masgputting7=1)
boundary conditions, and is insensitive to finite boundary
energy.(Herem is the mass of an elementary boson or fer- 1 Noq 1
mion.) However, for boundary conditions that give divergent Mf)l)=§ lim 2 (zwﬁ— Ewg’(o)
M, mass-derivative regularization gives an incorrect result.
This is the case with SUSY boundary conditions. There ex-
ists a divergent boundary energy, which requires either exwherew? are the zero point energies for the bosonic fluc-
plicit computation of the local energy density around thetuations around the kink-antikink backgrouridy® () those
kink, as in the Minnesota approapsi, or direct computation around the trivial background, ansiM, is the counterterm
of the boundary energy, e.g. by techniques developed in thgy a single kink.
present paper. A detailed discussion is givedih here we Next we consider the SUSY kink. Except for a unique
only need the result: the one-loop bosonic, fermionic andajue of the strength of the Yukawa coupling of the fermi-
supersymmetric corrections to the kink mass are, respegns, the SUSY of the action is explicitly and completely

tively, broken, but in theKK (antikink-kink) background zero
modes remain. We shall therefore generalize our approach
M(l)z_mﬁ(i_ﬁ). M(l):mﬁ<£_ﬁ)_ and consider arbitrary kinks with fermions, and not only
b 27 12)° f T 12)’ SUSY kinks. The action we use contains a Yukawa term
—c\2¢yy with o a real two-component spinor and
m# =1 for SUSY. The correction to the mass of the kink is

Mgl): M E)l)+ M ]((1): — % . (1) given by

+AMy, 2

These values are now accepted by all workers in the field
[3-7]. LI one first considers a finite number of modes in the sector where
The problem to be solved is thus how to obtain thesehe classical scalar field is constant, and then slowly turns on the
results with the other regularization schemes and othekink-antikink configuration by pulling the scalar field aroumd
boundary conditions. The most commonly used schemes are0 away from its constant value, the mode energies move from
energy cut-off(= momentum cut-off and mode regulariza- their values in the trivial background to their values in &
tion. Although each has been in use for decades, we clairdonfiguration. This is the justification for mode regularization, as in
that each needs modifications. For energy cut-off regularizagq. (2). Since a change in the background away from the bound-
tion (in which one first computes each of the sums up to theries will not change thélocalized or delocalizedboundary en-
same given energl, and then takes the limit — o) it was  ergy, the latter(if presenj cancels between th€K case and the
found that a simple modification makes the sum well de-trivial case.
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+_(X)=4> L2 for o0 no_nical varigbles}.ln the ¢k background there is again one
. KK K . pair of solutions withw?<0, but now there appears another
; =‘#I<"‘+”2)f°“ pair of solutions withw?>0. As usual the solutions with
i e*'“! then describe one degree of freedom. Thus there are
L L&\ o/ﬂz still two degrees of freedom associated with the bosonic zero
modes.
For fermions the situation is quite different. For the

sphaleron background we find two fermionic solutions with

(i EEr-

FIG. 1. The kink-antikink configuration. »?=0 [see Eq(18)]. The corresponding operatofsand y
satisfy 82=y?=1 and{B,y}=0, and thus there is one de-
1 NoTq 1 1 1 gree of freedom. Next we study thfg system with a finite
Mg1)=§'\llim nZl Ewﬁ— Ewﬁ'(o)— Ewhzwf{(o)} separatiorL. Then we find two solutions of the Dirac equa-

tion with the samgvery smal) w?>0 which are normaliz-
+AMp11s €©)] able and which enter in the second quantization of the fer-

mionic fluctuation fieldg(x,t) (for x>0) as follows:
where b denotes bosonic frequencies ahéermionic ones

and the counterter®M . ;=AMp+AMy is due to both P (X)
bosonic and fermionic loops. p(x,t)=b| i g iot
There are various ways to describe a kink-antikink back- G CV2N ) (%)
ground. By far the most used is the configuration that de-
scribes a kink centered &2 for x=0 and an antikink cen- P (X)
tered at—L/2 for x<O (Fig. 1). This configuration has the +pt i eet. (4
slight drawback that ax=0 the field ¢(x) is not differen- — = (Ot CV2N ) i (X)

tiable (the left and right derivatives diffgrso thatg(x) is

not a solution of the field equation. We shall call this con-Here ¢ (x) is a real normalizable functionpg(x) is the
figuration ¢k (). Another configuration one might consider kink solution andc=1 for the SUSY case. Clearlyandb’
is everywhere differentiable, but nowhere a solution of theform one conjugate pair, and hence one degree of freedom.
field equations: ¢y k(X)=d(X)+ dx(X)+u/VN. For  Therefore the final effect of fermionic zero modes amounts
large positivex the sum ofgi(x) and w/ N vanishes and to one term in the sum ove‘sL in Eq. (3).
one obtains the usual kink solutiapk(x), while for large Moving the kink and antikink apart, one obtains a free
negativex one is left with ¢ (x). However, it is difficult to  kink and a free antikink, each having its own zero mode in
determine the spectrum of fluctuations around this backthe Dirac equatiofieven forc#1). The problem then is how
ground, and we shall not use it below. A third configurationto perform mode number regularization for a single isolated
one might consider is one of the sphaleron solutidgg(x) kink. As we shall discuss later, for a canonical description
of [10], which are defined on the interval L<x<L with one must take into account four sets of boundary conditions,
the periodic boundary conditiongs,( —L)=¢s,(L) and  and average the results. Then the fermionic “half degree of
depr(—L)=dspr(L). (The sphaleron is thus defined on afreedom” of the kink appears as a change in degrees of
circle.) For our purposes the sphaleron solution that becomekeedom (from vacuum by unity in one pair of boundary
one kink-antikink pair ad. tends to infinity is the relevant conditions, and no change at all in the other pair.
one, and we shall hereafter refer to it as “the sphaleron.” Closer inspection reveals that for certain boundary condi-
We shall see that our results for mode regularization are th&ons there is exactly one fermionic zero-energy solution. As
same for theKK background as for the sphaleron back-the ground state then is an eigenstate of the operator which
ground. appears as the coefficient of this solution in the fermion field,
Our main conclusion for the bosonic kink-antikink sys- the Fock space for this system is half as big as one might
tem, to be derived below, is that both translational zerd1@ve expected, meaning that by this elementary criterion
modes should be taken into account in the sum over zerdh€re is no zero-energy fermion degree of freedom. _
point energieg2). When the kink and antikink are not infi-  In string theory one encounters a similar situation with
nitely far apart and are described by the sphaleron back®Spect to the zero mode of the coordinate glidsnoted by
ground, one still has a zero mode with=0 for translations, ~Co)- In that case Becchi-Rouet-Stora-TyuliBRST) coho-
while a second mode has?<0 and indicates an instability Mology shows that states witt, are BRST exact, so that
(the kink is attracted by the antikinkFor =0, one has the there is no doubling of the number of states. In our case we
usual collective coordinaté (the Hamiltonian does not de- do not have BRST symmetry to remove half of the_ s_tates of
R ) ) ) . the Fock space, but we shall show that one can divide Fock
pend onX) for translations and its canonically conjugate gpace into two sectors, such that all operators map states of
momentumP, so thatX and P form a canonical pair and one sector into states of the same sector. The other sector is
correspond to one term in the sum ove? in Eq. (2). For  then aZ,-gauge copy of the first, and as a discréiegauge
w?<0 the solutions witre™“I' define one pair of canonical symmetry in string theory can be promoted to a continuous
variables and thus another term in the sum over zero-poirdymmetry, a BRST approach may be possible also for the
energies(The Hamiltonian depends in this case on both ca-SUSY kink.
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FIG. 2. Potentials for the bosonic and fermionic fluctuations in the kink-antikink system.

Il. THE CORRECT RULES FOR MODE i Wi+ (0 +U") gy =0
REGULARIZATION )

. . . L —lof+(=d+U") =0
In this section we demonstrate that for the kink-antikink
system counting two zero modes in the bosonic spectrum bifor =0, the single kink(or antikink in a box defined by
only one in the fermionic spectrum gives the correct answers-L/2<x=<L/2 has two fermionic solutions with periodic
(1) for both the SUSY and the bosonic cases. In the nexboundary conditions, namely the zero mode attached to the
sections we derive these rules. After a brief review of thekink, obeying

properties of the spectra, the actual calculation of the mass is i+ U k=0 8
performed in Eqs(15) and (16). gl 4t ®
The Lagrangian is given by whereU’ =mtanhfnx2), and a second zero mode attached
to the boundary, obeying
1 1 1 1 du—
=__ 2 Z U2 ) — v d— — o— Ixpo— U ho=0. (9)
5 (9u9)? = 3UAD) ~ 50y 0= 50520, | e U0
(5)  The solutions to these equations are
_ mx 0
where for the kink U[ ¢(x)]= V\/2(¢?>— ,uo/)\) and ¢ a, /cosit—-
_ gt h= 2, = mx| (10
=y'i°. We shall use the representatign= (0 _1) and a,cosif —

'yo—( 0 1y and takey real. This system has SUSY when 0

c=1, and then the SUSY transformation rules 5@—?1# (for c# 1 the power 2 becomesc.
and o= y*d,¢pe—Ue. The theory with or without fermi- For w# 0 one may express each componentdh terms
ons is renormalized by replacing} by u?+ su?, where for ~ of the other, in which case E¢7) becomes

the SUSY case §u2)s= (\h/4m) [ ,dk/ JK*+ ~ (we put 02y P — (U2, + U"dy i =0

m?=2u2). For  the bosonic case  Of?) (1D
= (3\#/4ar) [* \dk/JK?+m?. The one-loop correction to ot Fgha— (U") 24— U" b=

the mass of the supersymmetric kink is given by &j.with . L
counter- terrrAM[b+f]_(m/)\)(5M2)s For the bosonic case FOr the case of a kink one may use the Bogomol'nyi equa-

we use Eq(2) with AM,=(m/\)(8x2), . The value ofsp? 0N dx¢=—U, and(11) becomes

follows from requiring absence of tadpoles, while the value w2+ 5>2<¢1—[(U')2+ U"UTg,=0
of AM follows from replacinge by ¢y in [~..3U?($)dx , , U (12)
and retaining the term linear ifiw?. For details se¢2]. 0 Yt dpr—[(U")*=U"U]¢,=0.

_ Expanding the bosonic field aroy_n(t:i the background conyhege are Schidinger-type equations, and the first of them
figuration ¢(x,t) = gick(x,t) + n(x)e”"'" one finds the fol- s the same as Eq(6). For the antikink sector the

lowing equation for the bosonic modeg Bogomol'nyi equation reads,¢=U, so one must exchange
1 and ¢, in Eq. (12) keepingU unchanged.
w?n+d2n—[(U")2+U"U]n=0. (6) In general, Eqs(6) and(12) for a kink-antikink system on
—L=<x=<L can be written as
The solutions of this equation for the single kink background
q 9 9 w2f(X)+ 32F(x) — V() f(x)=0. (13)

can be found explicitlysee, for exampld,1]). The spectrum

consists of a translational zero mode, a bound stage The potentialsv(x) for bosonic and fermionic fluctuations

= \/§m/2, and a continuum of states. From this informationare sketched in Fig. 2.

one can easily extract the spectrum of the kink-antikink con- A plane wave incident from the right acquires a phase

figuration at large.. shift 8(k) in the deeper potentiaV(x)=3m?[3 tantfmx2
For the fermionic fields we set —1] and a phase shiff(k) + (k) in the shallower potential

V(x)=3im?[tanif(mx2)+1]. Thus on the far righty
~ @il a0F 002 on the far left gy~ eilx— o0 0(k)/211

P(x,t)= Valx )) —iot while nearx=0 one hasy;~e'l**" %W The phase shifts
a(X) are given in Fig. 3. The phase shifts are defined up 4o 2
Different authors use different expressions for these phase
and obtain the Dirac equation shifts, which nevertheless lead to the same answers.
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© M= | 2x0+ 25 0p+5 2 V)7
j o® n=4
N
1
o k :)T/’_ k —Enzofi\/(kg)z—i—mz-i—ZAMb
) 1
2T =hwg—2Mh+ Eh
FIG. 3. The phase shifts for the bosonic and fermionic fluctua- N - 5
tions. X 2 (V(kp) P+ m? = (k)2 m?) + 24 My
. . 1 (A dk do
For definiteness we choose a particular set of boundary =hwg—2mh+ Eﬁf ) W[_ S(k)]+2AMy,
conditions although for the kink-antikink system to which o (7/2)
we now turn, the results do not depend on which choice one wd(k) [* Adk
makes. We choose the boundary conditiong&f (L) =hwg—2Mh—fh——\ + ﬁfo w8 (K+2AM,
=iyn(—L)=n(L)=n(—L)=0 wheren(x) are the fluctua- 0
tions of the bosonic field around the backgrouitte back- _ _ 3mh B V3m#i
. ) - . =hwg 2 . (15
ground is constant in the trivial sector, and equal to the kink- 6

antikink combination of Fig. 1 in the nontrivial secfor We usedws(K)=27m atk=0 andwa(k)=3m for k—,

These boundary conditions are SUSY if one considers a kink - A / _
background but they are not SUSY for the kink-antikinkWhIIe o (dki2m) o' (K) + A, = —7 y3m/6 [seel2], Eq.

background, because the kink background breaks half of t 14)]. With wg=(\(3/2)m we indeed get EG1). Note that i

. . e were to forget about the unstable mode, i.e. if we took
SUSY while the antikink background breaks the other half'only one zero mode into account, the result mﬁ))s would

The boundary conditions lead to the following quantizationy,q divergent. Also omitting to include any zero mode in Eq.
rules (2) yields a divergent answer.
Next consider the supersymmetric case. The bosonic and
fermionic contributions in the trivial sector cancel. We know
b b 7N already that we need two bosonic zero modes. We claim that
KoL+ 0(ky)= =~ for bosons one should take only one fermionic zero mode into account
(for reasons to be explained lateffhe mass correction of
the SUSY kink-antikink system is then given by

N
1 1
2X0+25fiwg+5 > 7 (KB)Z+ m?
n=4

ka+5(kf)+30(kf)=W—m for fermions (14 2M®=
m m 2 m 2 s

N

| | | ot 2t hopt = S 4 OZEME| < 2AM . 1
where the integers and m are non-negative. Solutions of 2 2 7=3
Egs. (14) exist only forn=4 andm=3. Clearly k>=k>° 1 1 N
— 8(kPO)/L+ O(1/L?), with a similar expression fok! . =-omhtoh 2 (kD)2 +m? = \(k})?+m?)

For largek, the bosonic and fermionic levels with the =4

samem andn approach each other, but the bosonic energy is +2AMppy g
always slightly smaller than the fermionic energy. For any 1 1 (A dk [d 1
given n=m there is still a small interval of momenta such - Emﬁ+ Eﬁfo (wl2) (ﬂvkzﬂnz (Ea(k))
that if we pick a cut-off in this interval, then the correspond- L 9AM
ing bosonic level will be below the cut-off, and the corre- (b+1]
sponding fermionic level above the cutoff. In RE§] Schon- __ Emh+ Ea)a(k)|°°
feld implicitly excludes this possibility as non-generic, 2 2 0
having very small probability in comparison with the chance 1 mih 1 m#
to include both corresponding leve[see below his Eq. =T M- —+omh=——. (16)

(2.44)]. With this prescription, Schonfeld’s procedure for

computing Eq.(3) turns in effect from a momentum cut-off We  used  kP—kf=(1/2L)6(k,)+O(1/L?),  and

into a mode cut-off method, with one more fermionic than — [ 4 (dk/4) Vk>+m?(d/dk) O(K)+AMp ;=0 [see [2],

bosonic mode in the continuous spectrum. Eqg. (59)]. The expression in Eq16) again gives the ac-
We are now ready to apply our counting rules. Let us star€epted result(1). Note that if one assumed either O or 2

with the bosonic case. We include two zero modes in oufermionic zero modes, but the same total number of modes in

counting. The bosonic mass correction for the kink-antikinkthe trivial andKK sectors, the answer would be infinfiee.,

system is given byreinserting#) O(A)].
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In [4] the corresponding analysis for periodic boundarys+iy and 8—ivy form the annihilation and creation opera-
conditions was found to yield exactly the same result and wéors for one degree of freedom.

shall use those conditions in what follows. It is possible to give a physical explanation why for fer-
mionsw?>0 for theKK system buiw?=0 for the sphaleron
Ill. SUPERSYMMETRIC SPHALERONS ON A CIRCLE system. Consider a configurati@i(x) for the boson field on

o the circle vanishing at two points=x; andx=x, which are

We turn now to a justification of the rules t.hat' one shouldygt antipodal, such thap(x) is a solution of the field equa-
take two bosonic zero modes and one fermionic zero modggn except atx=x; andXx=x,. [Such a solution exists be-
into account when using mode regularization K", cause it describes according to the usual mechanical ana-

Consider the first sphaleron solution on a circle with largelogue a ball oscillating around the bottom of the inverted
circumference R; it describes a kink-antikink system with potential. For the segment whetgandx, are nearer to each
periodic boundary conditiongl0]. The bosonic fluctuations other, the value of 4/ 9x) ¢(x) at x; andx, is smaller than
around this background have been analyzefldj, and we for the other segment whersg andx, are further apart. For
quote the result. Fob. =« there are two zero modes, but large enough circle radius the exponential behavior in the
when L is reduced(bringing the kink and the antikink to- regions between kink and antikink is the dominant feature.
gethe) one of the zero modes becomes unstambé<(0), The kink and antlklnk fields differ from their asymptotic
while rotational invariance guarantees that the other zeryalues only over a distana®x~ "~ *] . N
mode remains at zeraw@=0). The value for the unstable . NOW note that the zero mode of the kink and antikink

mode for largeL (adapted to our normalizatipris w?= increases exponentially on one segment while it decreases
— 48m2exp(—mL) exponentially on the other segment. It becomes clear that a

We now extend the sphaleron solution to the case wit pinor that is transported along the circle cannot be periodic

. . .because the segments have different length. Thus in the
fermions present. We need the background solution. It '%symmetric sphaleron background the assumption0

given by cannot Ee satisfied. For lardebut fixed x; —X, this looks
mkb like the KK solution on the infinite line, except that now the
Pn(X)= —==snbx,k), (17 discontinuities ing’ (x) arise at the centers of the kink and
\/ﬁ antikink instead of in between.
whereb=[1/2(1+ kz)]ll’zm and snbxk) is an elliptic func- IV. ZERO MODES OF THE ¢ SYSTEM
tion [11]. All we need is that this function satisfies the clas-
sical field equations, is odd ixy wherex=0 is the center of We now study the discrete spectrum of the kink-antikink

the kink (or antikink, of coursg and smooth on the circle. system on an infinite line with the background of Fig. 1.
We can now settle the issue of the fate of the fermionic The bosonic modes are the solutions of Eg). The so-

zero mode in one line: the Dirac Hamiltonian due to Ef).  lutions forx>0 are given by 1]

is manifestly self-adjoint, so thab is real and thusw? is

non-negative. Thus all one has to study is whether there are

any zero modes, and how many. o0 the Dirac equa-

tion in (8) and(9) has as solutions

m(x—L/2 4k?
-3 tant’?(—)Jrle—2

) L
nK(w,x)zexpk<x— E) 5 -

6ik  m(x—L/2)
h——

+ —tan (19
" g alexp[—zbkj sn(bx,k)dx m 2
I 0 ’ with w?=k?+m?. For the solutions withw?<m? on 0<x
< which are square-integrable, we take i« with «>0.
0 The solution of Eq.(6) should also have the same left de-
Yy =" (18) rivative as right derivative ak=0 because the potential is
alex;{Zbkf sn(bx,k)dx continuous.

When one considers the zero modes of the kink and the
Because the function sb,k) is odd inx, the spinors at antikink together, taking the symmetric combination, the re-
opposite points from the center of the kink are equal, angulting function is still continuous a¢=0, but the derivative
hence if one goes around the circle from 0 in either di- 1S discontinuougthere is a cusp Making »”<0 decreases
rection, one reaches the same value for the spinor at tH&€ curvature of the solution, and one can find a valuef
antipodal point. Thus the solutions are continuous. They aréuch that also the derivative becomes continuous. Hence, the
actually smooth(differentiable because the Dirac equation lowest mode in th&KK system is symmetric and has nega-
is first order in derivatives. tive w?. Using Eq.(19) one findsw?= — 12m?exp(—mL) for

Our conclusion is that for a sphaleron background thdargeL. The next mode is antisymmetric. One can find the
fermionic spectrum has two zero modes, the same as for aralue ofw? for this solution by requiring thagy (»,x)=0 at
infinitely separated kink and antikink. The canonical equal-x=0. There is no further condition involving derivatives,
time anticommutation relations read according to the Diradecause if we take the antisymmetric combination of the so-
formalism{ ;(x,t),;(y,t)} = 8;; 6(x—y). It follows that the  lutions which vanishes at=0, its derivative is there con-
operators@ and y satisfy 82=y?=1 and{B,y}=0: hence tinuous. We find that this second mode ha%>0, namely
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R L m(x—L/2) 4>
JR(w,X)=exp— k| x— = || —3tanf————+1——
2 2 m2
6k m(x—L/2)
— —tanh————| for x>0
m 2
L L m(x+L/2) 4K?
Ui, x)=expe| x+ = || -3 tanf————+1——
2 2 m2
6k mM(x+L/2)
+FtanhT for x<0 (23

FIG. 4. They, and ¢, components of the part af(x,t) that
multiplies e~'“t. The dashed line represents the=0 solution and
the solid line corresponds to the actual solution with0.

with k=(m?— »?)¥?>0. For largeL the frequencyw is
small, and expanding E¢22) in powers ofw? one finds to
leading order

w?=12m?exp(—mL) for large L. Note that contrary to the , 9 ,[1-tanHmL/4)}*

sphaleron there is now no longer a zero mode. The reasonis ~ @"=zM"—— Ua 36m’exp(—2mL).
clear: the zero mode would be the derivative of the configu- [ H ]

ration ¢k (x) in Fig. 1, but this derivative is discontinuous (24
atx=0, and therefore not a solution. Note thatw? tends to zero as exp@mL) for largeL. As w?

Let us now turn to the fermionic sector. The fermionic js positive, the frequencies in Eq20) and (21) are real.
modes that should become zero modes &snds to infinity The results foro?>~0 for the bosons and fermions in a
are given by sphaleron background display a suggestive relation to the

lﬂE(w X) same results for KK background. For the bosons one finds
e ’ . w?=—48m’e” ™" andw”=0 in a sphaleron background, but
pxH=a I;[&XJ’_C\/XQ{)K(X)]'J}E((‘)!X) € +12m*¢~ ™" in a KK background. A tunneling argument
shows that for theKK system the two zero mode levels
YR(w,X) become split symmetrically around zero, yielding’=
+8 i . gl ot +Ae M (with A=12m?). The factore ™" can be ex-
Lot V2N (X) 1Y (@,X) plained by considering the zero mode of the kink in a poten-
(20) tial V+AV whereV is the potential of the kink andV is
the potential due to the antikink. Perturbation theory yields
for positivex, and then for the diagonal correction tdHH=w? a value
fdx[ pAV7n]~e 2™t However, the main effect is an off-
o L diagonal mixing, yieldingw?= fdx[ AV 7] where 7 is the
P(X =1y w[&x CMQSHX)WK(“)’X) e iot zero mode of the antikink. Diagonalization of th&x2 mix-
Yk(w,%) ing matrix indeed produces®~+e ™" In fact, we claim
i that the value of the splitting im? in the sphaleron case is
_ L —4A. The reason is that the magnitude of the splitting in the
+4 w[&x Cﬂd)K(X)]W(w'X) fot sphaleron background should bge twice the magnitudge of the
z/xk(w,x) splitting in theKK background because in the sphaleron case

(21  forces work in both directions. Also the results for the fer-
mionic distorted zero modes can be explained. The factor
for negativex. The functio_nzﬁﬁ(w,x) is the solution of the  g-2mL jn 2 given by Eq.(24) for the KK system is due to
Schralinger equatior(6) with frequencyw which vanishes phe overlap effect iNAH=w~ [ AVindx yielding
for x—o. Similarly, yk(w,x) is the solution of Eq.(6) ~e ™M (and thusw?~e~2™Y), asy;~e~ ™ whereAV is of
which vanishes fox— —. Further, ¢ (x)=m/y2\tanh§&  order unity. This also explains why? for the fermions is
—L/2) for x>0 and ¢g(x)=—m/\2\ tanh&+L/2) for x  positive.

<0. The positivew parts of(x,t) are shown in Fig. 4. The continuity of Eqs(20) and (21) at the originx=0
For nonzerow continuity at the origin fixeso: requiresa=gy and 8= —gé where
PR =~ (dx+ 2N i) Y] [ 4 c\2X $(0)]gk(w,0) -
X[(a—c\V2NdOvk] at x=0. (22) 9= o) '
The expressions fog andyy are given by[1] The expressioti20) can then be rewritten as
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R(w,x) Boundary
—p(x,)=g| | i ot [ [ s /]
Lot VN G010 (.0 [ [ |
R currdnt
r(w,X) no rotation \ \ \
X O fot rotation

- IZ[(?X+C\/§¢K(X)]‘//E(CU:X)

FIG. 5. The chiral rotation causes a current which leads to the
accumulation of half a degree of freedom at the boundary if the
for x=0 (26)  poundary conditions are kept fixed.

while Eq. (21) is unchanged. Reality ofs(x,t) implies «
=pB* andy= &*, while g* = —g. This shows that we really
have only one set of creation and annihilation operators,
=gy andb* = —g4. Notice also, that when the separation
is large, the expressiongd,+ C\/ﬁqﬁK(X)]l//E(w,X) and A. Localized and delocalized energy
[&;_C\/ﬁqﬁﬂx)wk(w’x) are very smallithey vanish at We shall begin with a very simple approach which is
=0 because of the BPS equation, and are of ofefor guaranteed to yield the correct answer for the kink niidks
nonzerow). As a result, neax=L/2 both solutions have gien the solutions for the kink-antikink system witfor
mostly an upper component and a negligible lower compoyefinitenessperiodic boundary conditions &t * L, we just
nent, while neax=—L/2 the opposite holds. However near |oqy 4t the behavior of these solutions halfway between kink
x=0 the upper and lower components of both solutions arg,nq anikink, and this determines a set of boundary condi-
of equal magnitudéalthough much smaller then the leading ions atx=L andx=0 for a kink centered at=L/2. If we

components ak= +L/2). use the corresponding frequencies in the mass formula, we

From the equal-time canonical anticommutation relationsyst get the correct result, namely half the mass shift for the
of ¢(x,t) as given by the Dirac formalism for Majorana KK system. These boundary conditions are perig@icor
spinors{ #i(x,t), ¢;(y,t)} = &;; 8(x—y) one reads off the an- )

ticommutators for they and 8. One finds(after properly antiperiodic(AP) for the boson field fluctuations in both sec-

- : tors, and also P and AP for fermions in the trivial sector. For
normalizing the wave functions for the almost-zero modes . . . . ' .
fermions in the kink sector, the conditions are twisted peri-

and(iii) we interpret the results in terms ofZa gauge sym-
metry.

{y,9}=0, 15,81=0, {y,8=1. (27) odic (TP) or twisted antiperiodic (TAP) [specifically,
U(—LI2)=p(L12) and io(—LI2)=yy(L/2) for TP,
Reality of y(x,t) implies P1(—LI2)=—¢(LI12) and yp(—L/2)=—yy(L/2) for
TAP].2 Evidently, taking both P and AP conditiorier TP

y=4o". (28)  and TAP conditionswould overcount the number of states

o o in the interval G=x=<L by a factor two, so one may take the
Shifting the origin in time frorritTjO tot=rleads to opera- conributions from each and then average the results.
t(Tir:syy)(_)e 5 )i/_a?d 2512{_6( )5' (Ing?fg(ding(e ;)}f _'rg In particular, by identifying the kink mass as half thé&
\?vhich ;/reTc;bv;;)usly e LASIANANS ) oAT ' mass, one should take for the fermions the difference be-

For w—0 (L—) one. can introduce two Hermitian op- tween the averages of mode sums with P and AP boundary

. ; S conditions in the trivial sector, and sums with TP and TAP
erators which commute with the Hamiltonian boundary conditions in the kink sector. There is no fermionic
b=(e“y(r)+e “75(7)); b=b', b2=1, P or AP solution Withw2~_0 in thg trivial sector, and clearly
therefore no corresponding fermion degree of freeddrhe
1 . general solution of the Schidinger equationy,= ae**
d= i—(e"”y( n—e '75(7)); d=df, d’=1. 29 +Be “*with k?>=m?— w?~m? cannot be P or AP for both
1 and ¢,.) As there is only one fermionic zero-frequency
TP or TAPsolutionin the kink sector(see below, there are
no zero-frequency fermiodegrees of freedorim either sec-
tor. However, in the kink-antikink system, there was one

The operatord and d are then the operators for the zero
modes of the kink and antikink, respectively.

V. THE ISOLATED KINK

Having under_stood mode counting fqr the kink-antikink 2Using i, = e%0+L2) on the far left, i, = eK0HL2+ 5+ 0) neary
system on the circle and on the infinite line, we now turn to_ g gnd y, = Ad«x-L2+20+0 on the far right(see Fig. 2 one
the problem of the kink alone. This section consists of thre@inds from continuity at the origith=ek. The Dirac equatioif7)
parts:(i) it begins with an analysis of the three contributionsyields ,, in particular y,(L) =€/ (32726362 |mposing ¢,
to the energy densitflocalized near the kink, localized near (—L)=y,(L) (which implies that also the derivative is periogic
the boundary or uniformly distributgd(ii) next we make one finds the quantization conditiog'®<-*29+%=1_ Clearly
explicit computations that corroborate the general analysig,(L)/,(0)=e'*K-+02)=+1,
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fermionic degree of freedom near zero frequency, see Eq. kink mass
(26), and hence the highest-energy mode in the kink sector
must be counted with half the weight of any other mode.
This may be accomplished, for example, by omitting the
highest energy state in the sum for twisted antiperiodic
boundary conditions.Clearly this prescription violates the
principle of summing equal numbers of modes, which is the
basis of mode regularization. localized boundary delocalized boundary

The contradiction is resolved by noting that the mode encray energy
regularization principle is based on fixed boundary condi-
tions, so that one may think of the individual modes as “par- FIG. 6. The total energy density in the kink background.
ticle wave functions” which are deformed in their
x-dependence and shifted in frequency as the backgroungtinciple of mode regularization that one should use fixed
classical field changes from trivial to kink. However, in the houndary conditions. If we wish to use fixed boundary con-
approach described above, the boundary conditions alsgitions, we run into the following problem: The periodic
change between the two sect¢iom P and AP to TP and conditions in the trivial sector and twisted periodic condi-
TAP). As noted by Goldstone and Wilczek for complex tions in the kink sector both are associated with “locally
(Dirac) fermion fields, the 180° chiral rotation in EB0) of  jnvisible” boundaries(namely, withplane wavesolutions.
the Yukawa coupling leads to a flow of 1/2 unit of fermion That is, they give no structure associated with the precise
charge out of the regiof.2] (see Fig. $. location of the boundar§8]. This means that, aside from the

In this way they gave a dynamical mechanism for theenergy density localized around the kink, in principle the
phenomenon which had been discovered by Jackiw angnly other possible contribution would be a translationally
Rebbi [13], that a kink Coupled to Dirac fermions carries invariant piece, corresponding to an energy denélt/L)
half-integer fermionic charge. Fixed boundary conditionsas we shall explaifisee Fig. 6.
would stop this flow at the boundary, but it is obvious that  Except for this possibility, computing the quantum correc-
simultaneously rotating the boundary conditions wouldtion using these boundary conditions is identical in effect to
maintain the flow. This Certainly is consistent with the aCtua.lthe procedure advocated by Shifmanal. [6], to Compute
result in our case, thdbn averaging between P and AP in the |ocal energy density and integrate it over the region of
the trivial sector, and TP and TAP in the kink segtbalf a  the kink. However, either periodic conditions in the kink
Majorana fermion mode must be omitted from the sum in thesector or twisted periodic conditions in the trivial sector
kink sector. Drawing a superficial analogwhich will be-  \would produce a “visible” boundary, forcingtanding wave
come less superficial as we go)phaving a complex Dirac  rather than plane wave solutions. In the fermionic sy,
fermion allows the same chiral rotatidand loss of half a {here is then a true contribution to the mass and a boundary

unit of fermionic chargeas having two sets of boundary contributionEpeungare Therefore, one obtains an energy shift

conditions for a real fermiofwhere the chiral rotation leads M(kiln)k— Epoundaryif ONE uses fixedi.e., in both sectojsP plus
to the loss of half a degree of freedbm

_ _ _ AP boundary conditions, andl i)+ EpoundaryWith fixed TP
The recipe obtained from th€K system gives a reason- (pjus TAP) boundary conditions. By averaging the two forms
able interpretation for the kink alone, but does not satisfy thg)ne obtainsA M ., by itself.
To spell this out further: P and AP conditions in the trivial
sector have no localized boundary ene&gyngar, TP and
3For future use we do at this moment a little calculation. Hating TAP conditions in the kink sector also have no localized
modes for TP conditions in the kink sector aNd-1 modes for  Epoungan, HOWever, TP and TAP in the trivial sector, as well
TAP conditions in the kink sector, one finds that the difference ofas P and AP in the kink sector, all have localized boundary
the mode sums is finite but nonzero. Fo+=2M —1 one finds energyEpqundan, Making a chiral rotation near the boundary

M-1 M-1 which maps¢— — ¢ and twists the fermions
1 1 1
> > orp- > > @TAP= S O NT > w7~ > wg)

n=1 n=1

ZAN 2} 2 .
:\/erfAdk m gy | =€ TPy =il | =TT
2

, E(*ﬂ')w'Zg
(30)

[where we putw;) (wg)) for the frequency withk, satisfying TP

(TAP) conditions in the kink sector, which we define in our main the localized boundary energy should not Cha‘hge. addi-

text above Eq(42)]. Our arguments in the main text lead to the . ; -
ion, to k he fermions real one n finite local
conclusion that one needs the average of the TP and TAP (:ond?-O , to keep the fermions real one needs a finite local gauge

tions, but it is clear from this little calculation that using only TP or
TAP conditions yields an incorrect finite answer fa{Y). Obvi-

ously, taking insteatN —1 modes with TP conditions arld modes “4As the fermions are Majorana, one really should first complexify
with TAP conditions leads to a divergent value for the differencethem(going to anN=2 mode}, but one can achieve the same goal
(but the same result for the average by summing over both chiral rotations.
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TABLE |. Localized boundary energy for different sectors and  TABLE Il. Delocalized boundary energy for different sectors

boundary conditions. and boundary conditions.

Boundary conditions Boundary conditions
Sector P and AP TP and TAP Sector P AP TP TAP
Trivial 0 Eboundary Trivial 0 0 0 0
Kink Eboundary 0 0 0 am am

4 4

transformationy; — iy, andyp,—iy,.) Thus P— (TP, TAP)  energy contributions must candelVe summarize the results
and AP— (TAP,TP) and vice versa. on delocalized boundary energy in Table II.

Accepting that we need fixed boundary conditi¢ins. the What about the zero modes, and the correct counting of
same in the trivial and in the kink secidor mode regular- states in the sums? For fixed TP conditions, one has a single
ization, and observing that we need different boundary conzero-frequency solution attached to the boundary in the
ditions to cancel the localized boundary energy, we are comtrivial sector, namely(35) with a;e”""?=a,e™? and a
pelled to average over all four se8, AP, TP and TAP in  single one attached to the kink in the kink sector, namely
both sectorsof boundary conditions for the fermions. The (10) with a, /costf(mL/2)=a,costf(—mL/2). Thus, no mat-
need for all four sets of boundary conditions to implementter how one might weigh the contribution of such a single
the chiral symmetry is similar to the need to consider all foursolution, the effect cancels exactly in the subtraction. For
spin structures for the string on a torus. The conclusion idixed P conditions, there are no zero modes in the trivial
that boundary energy occurs in the various cases as indicatagctor, and two in the kink sector, namely one attached to the
in Table I. Obviously, the boundary energy cancels in thekink and one attached to the boundary, given by 8d)
average over all four choices with fixed boundary conditionswith a; and a, arbitrary. For TAP and AP conditions the

What about the delocalized boundary energy? In thesame results hol8l. Thus one must omit ongabove-
trivial sector with P and AP conditions, the difference of thethreshold fermion mode from the Casimir sums over P and
P sum of (2#n/L)>+m? and the AP sum of AP boundary conditions. Previously, from our study of the
J[(2n+1)7/L]?+ m? can be grouped into a sum over quar- kink-antikink system, we were led to consider only TP and
tets of states, starting from the bottom. In each quartet th& AP conditions and then we needed to omit one term from
leading nonvanishing term is of orderL?/ but summing their sum. Now we have a different message: we consider all
over all modes, the total energy difference is of ordet..  four sets of P, AP, TP and TAP, and omit one term from the
Hence, one can forget in the computation of the kink mas$ sum and one term from the AP sum.
the delocalized boundary energy in the trivial sector. This Averaging over the four cases of fixed nontwisted and
permits us to choose the average of the P sum and the Awisted boundary conditions once again leads to a reduction
sum as the energy of the trivial vacuum, which we define ton the kink sum for the fermions by half a fermion mode, but
be zero. In the kink sector one has locally invisible bound-now the accounting is completely straightforward, unam-
aries for TP and TAP conditions, so in these cases therbiguous and canonically justified.
could also be delocalized boundary energy. From the explicit
calculation that TRwith N mode$ minus TAP (with N—1

modes gives m/2, we conclude that the_:re are different  7Tnese statements follow from a standard assumption in field
amounts of delocalized boundary energy in the TP and TARheory, that in the presence of a mass gap, all correlators of observ-
sectors, so delocalized energy does, in fact, otdvever-  aples fall exponentially with separation of arguments. Consider any
theless, returning to outK system, we notice that no delo- correlator involving some number of factofg?(x) — x?\] and
calized energy could be created when one locally pulls thene factore(x), the local energy density. By the general principle
trivial configuration = /A down to the nontrivial con- {€(x)) must fall exponentially forx far from kink and from anti-

figuration with akK, and then separate¢ and K. Conse- kink. Thus, there can be no translationally invariant piece of the

. . energy density. From our analysis of the kink-antikink system we
quently, when the average is taken, the delocalized bounda%ovx?)':hat theyaverage over Tg and TAP in the kink seé/tor and P

and AP in the trivial sector will not produce such a contribution.
The novelty here is that for TP or TAP separately there is a finite

*Using VIm(n+ 1)L+ m*=2(wn/L)*+m*  gifference, which must be attributed to a translationally invariant
+\[m(n—1)/ILP+m?=(7/L)’d?w/dk*+ ... with n=2k+1,  energy density. This fact suggests that some principle must require
one finds that the total energy difference is equal toaveraging over both TP and TAP corrections, excluding a delocal-
SH(/L) 2SI (dIdK) (Kl w)(LdK27) = 37 (/L) (K w)|g = 3 (mIL). ized energy of ordem. We shall see shortly that there is indeed

We assume here that after subtracting the localized and the deuch a principle.
localized boundary energy, one obtains the true mass of the kink ®Actually, to obtain two solutions with AP conditions in the kink
which should not depend on the boundary conditi@ls Since for ~ sector one needs exponentially small but nonvanishkin@ne may
TP and TAP boundary conditions in the kink sector there is nostart with the Schidinger equation fory; and raisew? such that/;
localized boundary energy, the differenoé must be due to delo- vanishes ak= *L/2. Then the Dirac equation yields two solutions
calized boundary energy. for 4, corresponding ta- w, which are antisymmetric.
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TABLE Ill. Number of w~0 solutions for different sectors and two sets of boundary conditions: P and A

boundary conditions.
7(0)=7n(L) and 7'(0)=7x(L) (P)

Boundary conditions (31
Sector P AP TP TAP 20)=—7(L) and 2" (0)=—n'(L) (A).
Trivial 0 0 1 1 With the solutionz(x,t) ~expli[kx=18(K)]} we then find the
Kink 2 2 1 1 guantization conditions
We have reached the following conclusions: KL+d(k)=2nm (P)
(i) For fixed boundary conditions no change in the total (32
number of degrees of freedom occurs, as expected. kL+o(k)=(2n+1)7 (A)

(ii) The issue of how to weigh a single zero-frequency
solution in the sums over modes need not be solfad Where in both cases ©<n<. Clearly we find for a single
though we shall solve)itbecause both the trivial and the kink kink the same set of momenta in E@2) as for theKK
sector have one such solution for twisted boundary condisystem. The mass formula for a single kink then reads
tions.

(iii) In going from P and AP in the trivial sector to TP and 1
TAP in the kink sector, 1/2 degree of freedom is lost on the Mﬁl):—h
averagé. (It is radiated away at the boundary, in agreement

N

n=—N

N N
0+wB+m+22 wr?— 2 wﬁ’(o)}
n=2

with [12]. When the boundary conditions change there is no 1 —2 N-1 N-1
reason to expect that the number of degrees of freedom re- + 77 0+ wg+ > oht Y wh-22 oh©
mains the samg. n=-N n=1 n=0
(iv) One must average over the four sets of boundary +AM,
conditions for the following reasonsga) in order to get the
correct answefthe same as from thEK system, (b) the _fiwp Adk
contributions from TP or TAP in the kink sector are differ- _T_ﬁm_ﬁJ'o 25 @ OTAM,. 33

ent, so one may expect to need a particular combination of
both, (c) the chiral rotation from one set of boundary condi- we used the fact that in the nontrivial periodic case the so-
tions in the trivial sector links to two sets of boundary con-|ytion with n=0 is excluded, and the solutions with=
ditions in the kink sector(d) in order that the localized 41 andn=—1 both yieldk=0, giving the termm. In the
boundary energy of Table I cancels, aigjiin order that the  nontrivial antiperiodic case the solutions with=—1 and
delocalized boundary energy given in Table Il cancels.  n=0 are excluded. This yieldéy construction the correct

(v) For fixed boundary conditions, no degrees of freedommass for the bosonic kinKin fact the P and AP conditions
are lost, but now one zero-frequency solution can be attacheghch give the same correct value for the bosonic fluctua-
to the boundary or to the kink. More specifically, for visible tions) In the KK system we had two zero modes, and this
boyndary conditions there is always one zero-freq_uency So'orresponds to having one zero mode in each éf the kink
lution attached to the boundary, and when a kink is prese ectors
there is always one zero-frequency solution attached to the Let us now turn to the fermionic fluctuations. In this case

kink. This yields four possible contributions; see Table IIl. the issue of what set of boundary conditions to use is much

more subtle. As explained earlier, the correct set of boundary

conditions consists of periodic and antiperiodic, both twisted
We now give some details. We start with periodic bound-and untwisted, considered in both trivial and kink sectors.

ary conditions for the bosonic fluctuations in KK system: The formula for the mass correction from the fermions then

n(—L)=7(L) and 7'(—L)=7'(L). We could use the reads

sphaleron solution discussed before as background, or we 1 1

could usegyk(x) to avoid elliptic functions at the price of (P A T (P+A)

not having a solution of the classical field equationsxat 4( JTrivial sector 4( Jkink sector

=0. For the fluctuations this makes negligildéxponentially

B. Explicit computations

. 1
smal) difference. +(TP+TAP). - —(TP+TAP).; _
The quantization condition for the double system k.2 2! JTrivial sector— 7 ink sector
+26(k)=2mn, —o<n<w. For the single kink we find (34)

As mentioned earlier, the first and the last lines appear

*To avoid confusion, note that for the calculation of the kink masshaturally when one reduces the kink-antikink system to a

one must take equal numbers of modes in the trivial and kink sectopingle kink, so they do separately give the right result. Now

for each set of boundary conditions, but what these numbers are e check that the full set of sums also gives the correct
not important; they may differ from one set to another. answer.
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First, we address the issue of fermionic=0 solutions
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which gives the following asymptotic expressions for fer-

under these boundary conditions. The formal solutions of thenion components:

Dirac equation withw=0, Eq.(8) and(9), are given by Eq.
(10) for the case of the kink background and by

S TS
= v = a,e™

0
for the case of the trivial backgroun#i,;,=m/y2\. Adjust-
ing the coefficientsa; and a,, one may try to satisfy the
boundary conditions in Eq34). This results in the numbers
of w~0 solutions in particular sectors given by Table IlI.

(39

gi(kx=002) y ge-itkx=012)
¢1:{ei(kx+5/2)+aei(kx+5/2), x~L, (40)
and, from the Dirac equatiofY),
gi(kx=012-012) _ g o=ilkx=512-002) 0
o= [ gl (Kxc+ 812+012) _ g a=ilkxt 12+002) g (41

Requiring periodicity, it is cledf that it can be achieved

Next we consider the continuous spectrum. The quantizegither fora=1, kL+é+6=2mn or for a=—1, kL+6
tion conditions for P and AP boundary conditions in the =27n, and only positiven are needed to produce distinct

trivial sector are obvious.

solutions. In particular fon=1, k=0 one computes from

We now address the TP conditions in the trivial sector. Ifthe latter sety, |,—o={1— 3 tanif[m(x—L/2)/2]}(1+a) =0,

one puts
Y =e >+ ge ik (36)
then it follows from the Dirac equatiofv) that
ry = gl (KX 012) _ g i 012) (37)

where we defing such thate'??= —k/w+im/w. Twisted
periodic conditions reag;(0)= ¢»(L) and ¢,(0)= ¢ (L).
We inserty; , and solve fora; this gives the quantization
condition

Qi(kL+02) _ ¢ Qi012_ gikL
a= o kL o102

—e

o i(KL+012) 4 1 - (38)

which can be rewritten as skiL=0, i.e.kL= 7n. Notice that
if one changek— —k in Egs. (36) and (37), thene'#?—
—e 72 so thata—1/a, and Eqs.(36) and (37) stay the
same up to normalization. Therefore negativdo not pro-

duce new independent solutions. There is formally a solution_

with n=0, i.e. k=0, but for this solution Eq(38) yields a
1 and then Eqs(36) and (37) yield 4= ,=0 every-
where, so we must also exclude=0.

For TAP conditions in the trivial sector one gets the same

result(which is obvious: one changes the sign/gfand then
requires twisted periodic conditions @i and — ¢,).

The P boundary conditions in the kink sector correspond_

to standing wave solutions of the Dirac equati@ which
were found in2]. The general solution of the Dirac equation
for ¢, reads

— oxik L 3 Hm(x—L/Z) 4k?
ya(x) =expk| x— 5 || — 3 tantf———— P
6ik m(x—L/2) ik L
+ ?tan > +aexp—Ik| x— 5
m(x—L/2) 4Kk?
6ik m(x—L/2)
— FtanhT (39

so by the Dirac equatiog,=0. Thus this solution must be
excluded, just like th&=0 solution in TP of the kink sector.

The situation with AP conditions in the kink sector is
quite analogous. The antiperiodicity is achieved by putting
a=—1, kL+6+6=2wn+7 or by a=1, kL+46=27mn
+ar. In particular there seems to be a solutionnatO, k
=0 in the first set. This solution is excluded by the same
argument as before: it is easy to check that in this aase
=»,=0 everywhere.

The TP conditions in the kink sector were worked out in
[3]; the computation for the TAP case in the kink sector is
again straightforwardit turns out that these two sets of
boundary conditions are the only ones consistent with plane
wave solutions; sef3]).

Thus, the quantization conditions for fermions are:
I. Nontwisted

(1) Periodic trivial sectorkL=2n, all n.

(2) Antiperiodic trivial sectorkL=2zn+ , all n.
(3) Periodic kink sector: (a) kL+ 8+ 6=2mn,
1,2,3... and(b) KL+ 6=27wn, n=2, ... .

(4) Antiperiodic kink sector(a) kL+ 6+ 0=2mn+, n
=1,2,... andb) KL+ 6=27n+m, n=1,2, ... .

Il. Twisted

(5) Twisted periodic trivial sector(a) kL=2wn, n
=1,2,... andb) kL=27wn+m, n=0,1,2 ... .

(6) Twisted antiperiodic trivial sectorfa) kL=2mn, n
1,2,... andb) kL=27n+x, n=0,1,2 ... .

(7) Twisted periodic kink sectorkL+ 5+ 6/2=2n, all

n, n#0.

(8) Twisted antiperiodic kink sectokL+ 5+ 6/2=27n
+ar, aln n#0,—1.

We now work out the mass corrections due to fermions in
the kink background for each fixed set of boundary condi-
tions separately. In all the sums we keep equal numbers of
modes in both trivial and nontrivial sectordor these fer-
mionic corrections we subtract the contributions in the kink
sector from the contributions in the trivial secor.

We start with P boundary conditions. The fermions give
the contribution

n

alternatively, an explicit calculation similar to E¢38) yields
sin(kL+6)/2]=0 or sif(kL+ 5+ 6)2]=0.
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s N 5 N s N Note the presence of a “half-mode” contributidmm/4 rep-
M{D(P)= > > 01~ D wga)— > >, wap—0 resenting the boundary energy, which as expected appears
n=-N n=1 n=2 with opposite signs in théP + AP) and (TP + TAP) sums.
hwg To find out whether this boundary energy is localized or not,
—T+AMf we consider the difference of the mode densities of TP

+ TAP minus P+ AP in the trivial sector* One computes
S5+ g)+AMf (42) for the density difference of continuum modes with TP

hos | pmeh fA K
= — — m [
2 027 +TAP versus P-AP boundary condition$?

where we have taken into account ome=0 fermionic de-
gree of freedom in the kink sector; see Table lll.

. X FOr AP 1 the P+ AP sector there is no localized boundary energy, and
boundary conditions one obtains

the delocalized boundary energy density is proportional tc?.1/
N 5 N 5 N 5 Hence, from R-AP we get no boundary energy at all, but the rea-
1 _ @B son we subtract it from the TPTAP is to make the result conver-
Mg )(AP)_ﬁnZo wz)_f nzl @aa)™ 2 nzl w‘”’)_O_T gent. P+AP really defines the energy of the trivial vacuum.
2First, we find the proper normalization for the continuum
modes. From Eq(38) one finds for TP and TAP conditions in the
trivial sectorkL=7n and then Eq(38) yieldsa, and Eqs(36) and
(37) yield 4, and s,
l/lle{[e—i0/2+ ( _ 1)n]eikx+ [ei 012 __ ( _ 1)n]e—ik><}
and aggin, one~0 fermionic degree of f_reedom in the kink Yro=A{[ e 1024 (—1)"]gilkx+012)
sector is counted in the sum. The result is exactly the same as , ,
in the case of P boundary conditions. —[e/"2=(=1)Ne o2}
For TP one does not have an~0 degree of freedom, so With k=7n/L and cos@/2)= —k/w, sin(@2)=m/w. HereAis a
constant which we will fix for the normalization. For the absolute

+AM;

. fl(l)B h hJAdk , 5 0
——T+ m+ OEQ) +§

+AM; (43

. N N N fog values one obtains
M )(TP):E nzl @sa) T 5 nzo wa)_ﬁnZl onT 5 +AM¢ [n]?=|A44+2 cog2kx— 0]—2 cog2kx]}
WAZFTE  hwg  Am o= |A{4+2 co$2kx+ 6] —2 co$ 2kx]}

and the density of thath mode, normalized to unity, is

1 1
[P+ ulP= { 1+ Scog 2k (cosb-1).
+AMs. (44

+
4 2 4
Adk 0
+h| —o'| 6+
0 2m 2 Using also the expression for the zero m@@6), one gets for the
total density in the trivial sector with TP and TAP conditions
For TAP, however, we get a result that is different from the

result(44) for TP: protprar=2X (4 D+ 25 D [l >+ | 92121
n
N N N
h f hw B o
METAP) =5 2 weat5 2wy~ 2, w8)_—B =2mw
? " 2 n=0 n=1 2 l_efsz
+AM; .
ANAZ+ M fog N 37im +T 21 [2+coq2kx)(cosf—1)]
_ B 2
4 2 4

where the first term stands for the tww=0 solutions. For the P
Adk and AP conditions in the trivial sector we get simphg+ pap

+ﬁJo E‘” +AM;. (49) =(1/L)(1+2’r‘,‘:12). Neglectinge™ ™ terms and identifyingc=0

with x=L as the boundary at=0 for —L/2<x=<L/2, we get for

Actually, only the averages (PAP)/2 and (TP-TAP)/2 are  (he difference of TR TAP and PrAP

invariant under th&,-gauge symmetryy— — ¢. It is easy to

compute these averages, which of course do not have linear

divergences. In terms d¥{"), the fermionic contribution to

the mass of the kink in Eq1), they can be written as

5-}—0
2

{pretprast—{pp+part

—2mPcog 2(mn/L)X]
=1 (mn/L)?>+n?

1 Am 1 1|2 [~ dk2mPcoq2kx)
M (1) MOy —ome2X_ 4 |2 | oo R
SIMEV(P)+ MDA =MD+, (46) ame M- T4 51 | o
—2me” 2mix|_ me" 2mjx|
v @) (1) M@
1[M (TP)+ M (TAP) =M fim (47
2 f f f 4 —me 2mx
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1 from the KK system, which has no boundary energy, it
EHPTP(X) +p1ar(X)}cont= 1Pp(X) + pap(X)}cond should be correct regardless of boundary conditions. What is
lost by these methods, and this might well be described as an

=dk m2cog 2kx) M omix advantage, is the calculation of the total energy, including
"o W: —5€ ' (48 the boundary energy. Clearly, this type of regulation gives

correctly thelocal energy density associated with the bound-

so that the mode density is localized around the boundanf'y: if there is_ suph, because the local density is insensitive to
and leads to a net mode number slift= — %. This compu- (9(1/L) co_ntrlbutlons from the bottom of_ the spectrum. By
tation for Majorana fermions in the trivial sector is equiva- COnservation of energy, therefore, what it does not necessar-
lent to the result of Jackiw and Relji3] for Dirac fermions 1y give correctly is the delocalized energy associated with
in the presence of a kink. Indeed, a little thought shows thath® boundary. Put differently, in this type of scheme there is
fermions in the trivial sector “feel” the twisted periodic NO reliable information about the delocalized energy, but
boundary conditions as equivalent to a kiftk antikink of ther_e is rellat_)le mformatlo_n about the_mass_ of the kmk,_em-
zero width. bodied in a single, global integral. By invoking the principle
Instead of the mode density, we may also compute th@f cluster decomposition, with its implication that in a cor-

energy density. Using J% cos@k)dk/vkZ+ m?=K(am) rect calculation there cannot be any delocalized energy, one
[where K(x) is the modified Bessel functidrio obtain for ~MaY circumvent even the one disadvantage of these schemes.
the energy density However, as we have seen, with mode regulation one may

check the principle directly.

2
m
6TP+TAP(X) - EP+AP(X) =—h 7K0(2m|X|), (49) C. The Z, gauge symmetry

It still remains to show that a single solution wits= 0
for fermions in a given sector with given boundary condi-
‘tions does not correspond to any degree of freedom at all,
and also to discuss the effect of such a solution on the Hil-
bert space. In the mode expansion of the Majorana field, the
coefficientcy of the zero mode is a single, idempotent Her-
mitian operator. This follows from the equal-time canonical
1 anticommutation relations. The ground state may be chosen
7[M DP)+MOAP) +MB(TP)+M(TAP) =M. as an eigenstatéof c,, so|groundy=3(1+cg)|Q). Con-
sequently, all states in the Hilbert space may be obtained by
(50 the action of local operators dground). No such operator

Adding this result to Eq(33), one recovers the correct result Would connecé(lfco)m) with %(1_C9)|Q>- For ¢, this
for the SUSY kinkM{Y | namely Eq.(1). is true by construction, but more complicated operators have

With these results one may address the discrepancy fgither one factoc, or no fact_orco, and in bOth cases one
M@ obtained by mode regularization betwef®] and the ~N€Ver Ieaves_ the half of t_he Hilbert space one is in. The ot_her
accepted valuél). In [2] Eq. (60) the authors computed the half of the Hilbert space is a copy of the first under the action

one-loop correction to the energy using mode regularizatioff! the discreteZ, symmetry which maps fermion fields
for fixed periodic boundary conditions. Thus they shouldNt© —#. TheZ, symmetry is actually a discrete gauge sym-

have obtained )+ #m/4 [where the latter term is the lo- metry becaus_e it Ieave_s all observalilespectation va_llues of
calized boundary energy for periodic conditions in the kinkOP€rators which contain an even number of fermion fields
sector, as indicated in E¢46)], and they did. Their calcula- Nvariant, just as in quantum mechanics phase factors of a
tion was a correct application of mode regularization, but€ontinuousu(1) symmetry multiplying state vectors are not
gave the total effect of changing from trivial to kink back- OPServable. o _ _
ground with fixed periodic boundary conditions, including ~ 1h€ Z2 Symmetryi— — ¢ is hidden: That is, the kink
the boundary energy which is not part of the localized quan9round state (& co)[Q2) is not manifestly invariant under it
tum correction to the mass of the kink. (cq is mapped mto—_ Cg underZ,). A bej[ter way of defining _
This brings up another question: Why do the methods ofhe ground state might be to say that it consists of a set with
[3] [where @/dm)S e was first evaluatedand of[4] (en-  the two elements (£¢o)|Q) and (1-co)|Q). The state
ergy cut-off using a smooth interpolating functioget the (11 Co)[2) is then simply a representative. Clearly, with
accepted answer for the mass of the kink, even though i#Nis definition the ground state i&, gauge invariant and
these methods no information is used about the bottom coritNique. On the other hand, it has been observed byeRit.
tinuum modes, as in mode regularization? Answer: Thd14l that the ground state is not annihilated by tlieear-
boundary conditions in these works do not change the den-
sity of states. Therefore, a formula depending only on the
density of states through the phase shif$[3] and[4] do) B3At first sight it may seem strange to have a ground state that is
will give an answer for the mass independent of the boundhalf fermionic and half bosonic, but in 2 dimensions there is less
ary conditions. Because that formula agrees with the resullistinction between fermions and bosons.

which is also localized around the boundary, and leads to

net boundary energy for twisted periodic boundary condi

tions in the trivial sectorgM,,,q=#%m/4. This proves that

there is no delocalized energy in E¢46) and(47), in com-

plete accord with the principle of cluster decomposition.
The average of Eq$42)—(45) or (46)—(47) gives
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ized supersymmetry generat@,. Rather it is mapped into invisible, but globally changes a system whose lowest state
itself, because), is proportional toc,.!* Thus, half of the s the trivial vacuum to one whose lowest state is a kink, or
supersymmetry is spontaneously broken, as has long beenore precisely, a half-sphaleron: For a circle of circumfer-
known, but at the same time the unbreakabjegauge sym- ence 2. with a sphaleron in metastable equilibrium, join any
metry only is hidden, i.e., not manifest. two points, making a circle of circumferente The match-
The necessity of averaging over more than one set aing or boundary conditions on the half-sphaleron are pre-
boundary conditions implies a refinement of the assertion bgisely those of the second, symmetry, and because the
Shifman et al[6] that boundary conditions are unimportant lowest energy configuration in this domain must be a kink
if one computes the energy by calculating a regulated, renortor equally well, an antikink slightly squeezed because it is
malized energy density and integrating this density only inon a circle, it is obvious that the field is precisely that of half
the region of the kink. One might expect the error in thisthe sphaleron. The main, if not the only difference, from the
calculation to be exponentially small, associated with expofull sphaleron is that there is no instability, because there is
nential localization of the boundary energy. As discussedo possibility of kink-antikink annihilation in the presence of
earlier, with the appropriate averaging over boundary condithe jump condition. As with the sphaleron,Lifis too small,
tions the total delocalized energy vanishes, which is cleathen the lowest solution is Simplygassica= 0. However, for
because for th&K system there is no delocalized energy. largerL, the half-sphaleron becomes absolutely stable. It is,
Explicit calculation shows that the difference in the trivial however, not a BPS solution even at the classical level, be-
sector between the AP and P contributions to the delocalizeg@use the BPS bound can be saturated only on the infinite
energy(the only kind there is in this caseis of order 1L.  line.
Thus one can indeed forget about delocalized energy from This discussion complements a recent analysis by Binosi
the trivial sector. However, the differeno@2 between sums et al. [15] of solitons with winding number-1 in anN=2
for TP and TAP conditions in the kink sector represents asupersymmetric theory with a potential depending on a com-
translationally invariant contribution to the energy, which plex ¢ and periodic irfR ¢. It is clear that there is quantum
would imply a spurious finite shift in the energy of the kink. tunneling between soliton and antisoliton in both cases.
Thus the assertion if6] that the kink mass may be cal- However, theifN=2 soliton is quantum unstable but classi-
culated by integrating only over, say, the half-space surcally saturates the BPS bound, whereas our kink is quantum
rounding the kink, and staying well away from the boundary stable but already violates the BPS bound at the classical
indeed is correct, but with the proviso that boundary condijeye|. A tentative conclusion from these two examples is that

tions which provide infrared regulation in this calculation tunneling between soliton and antisoliton is likely to be the
must respect th&, gauge symmetry: All of the boundary ,ost generic feature for such systems.

conditions considered above may be visualized as jump con- \va now are in a position to address an issue glossed
_dltlons f_or wave functions defined ona circle. The e_ffec_t Ofover above: How general is the statement that the methods of
introducing aZ, flux through that circle when a kink is

i itions?
present would be to interchange TP and TAP conditions, b 2r]1eacl:)(:15[p3i]cu§:1es clgg:?grn\?v?\?ct:h ?rf\esb;l::gtigl dscggilg?\r/]vso'rk
we have seen that there is one fewer mode just above the . readv in the Introduct is that of '
mass threshold for TAP than for TP. Because the coupling tS}S mentioned . (irea y In the Infroduction, s that o
this flux is a discrete form of a continuous gauge symmetry, Supersymmetric” - boundary ~ conditions ¢(0)= 1,(0)

a change in the number of states for the continuous version ?(L)=#1(L)=0. There are two reasons for this failure.

(i.e., complex fermion fieldswould correspond to the abrupt First, the mentioned Dirac spinor copdition; are equivalent to
disappearance of a unit of conserved charge, constituting &#'€rgy-dependent boundary conditions in a Sctimger
anomalous violation of the gauge invariance. To prevenfquation, and hence do change the density of states.
such an anomaly, it is necessary and sufficient to use a reggecondly, this choice of boundary conditions obviously vio-
lation that preserves the gauge invariance, namely, descriiates the second, symmetry, under whichy,(0)= ¢ (L)
ing the system as an incoherent, equal, superposition of TR0 in the kink sector ,(0)= ¢, (L) =0 in the trivial sec-
and TAP boundary conditions. It is for this reason that in thetor. To average over a set of fixed boundary conditions while
discussion of the energy sums involving four differentrespecting theZ, symmetry, one must have both these
boundary conditions we have further bundled the sums intehoices in both sectors. Indeed, doing so will remove the
pairs, (TP + TAP) (essential bundlingand (P + AP) (al-  logarithmic divergence mentioned earlier, and also will re-
lowed but not essential bundlihg produce the change in density of states between trivial and

There is anotheZ, symmetry of the action, the transfor- kink sectors due to the kink alon€The details for these
mation ¢— — ¢, and simultaneously the twisk— + ;.  boundary conditions will be worked out explicitly elsewhere
This transformation imposed as a jump condition is locally[16].)

Should both these discrete symmetries be considered

YUsing  Q=[[d,py*y ¥+Uy’¢ldx one finds Q,
~ [ (9yb) 1dx. Sincedy ey is proportional to the zero mode in  °The BPS equation, ¢+ U(¢) =0 at the point where is maxi-
¥, see Eq.10), and orthogonal to the nonzero modes, one findsmal (and thusd,¢=0) requires that)(4)=0, but then the only
Q,~Co. solution is¢=m/2\.
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gauge symmetries? As we have seen already, the setond sphaleron(i.e., kink and antikink symmetrically placed on a
is similar to the first in that each one when applied to a jumgcircle), and isolated kink, we find a very different behavior
condition has global implications. The first introduces a half-from that for bosons, namely, the numberof 0 degrees of
quantum of flux thl’ough the circle on which the fields arefreedom(one in theEK System is half the numbétwo) of
defined, while the second converts the sector with kink numfermionic w~0 solutions: The two zero modes in the Dirac
ber 0 mod 2 into the sector with kink number 1 mod 2.equation for the fermions together give one annihilation and
Nevertheless, while globally significant, both these jumppne creation operator in the expansion of the fermion field,
conditions may be applied at any point, and there will be Nthence one degree of freedom.

local consequences at that point. However, there are two im- Thijs suggests that for an isolated kink, there is one boson
portant reasons not to describe the secBpds also a gauge zero mode degree of freedom, but only half a fermion zero
symmetry.(1) If one goes from real fields to complex fields, mode degree of freedom. This half is interpreted as being
so thatZ, becomedJ(1), then the first corresponds to stan- due to different boundary conditions for which the energies
dard gauge coupling, but the second would correspond tgyyst be averaged to give the correct mass shift. Two of the
axial gauge coupling. It is well known that this poundary conditions(periodic twisted and antiperiodic
U(1)xU(1) is an anomalous theory2) In the sector with  yisteq give a single zero mode in the Dirac equation, and
the second, jump condition, as mentioned earlier it is pos- o Hermitian coefficient, of this mode function in the
sible to describe paths in field configuration, with action pro-¢.mion field leaves the ground state invariant. There is no

portional to the circumference of the circle, connecting kinkdoublin - -
o ) L o g of the Hilbert space due to thés because the
and antikink. This would make no sense if kink and antlklnkStates (3 c0)|Q) and (1-co)| Q) are equivalent under the

were identical, as would be implied by treating the secand

as a gauge symmetry. One may see this also by considerir‘?g2 symmetryw.—> — . .

the sphaleron configuration, in which there may be a conven- | 1€ conclusion that the ground state is an eigenstate of a
tion used to define the kink, but the distinction between kink/€mionic operator is at first thought puzzling. It not only
and antikink is clear from the fact that they can annihilateViolates intuition based on widespread experience, but also
each other. Indeed, the same point is manifest already for tRPPears to contradict the well-known superselection rule for-
vacuum configuratiom= = const. For a finite-circumference bidding coherent superposition of states with even and odd
ring, there will be tunneling between the positive and negafermion numbers. Although Majorana fermions do not carry
tive values, leading to two nearly degenerate ground state®n additive, conserved fermion numier still the fermion
which are equal superpositions of the two values. Only foffield anticommutes with th&, factor (—1)F. However, in
infinite circumference do we have the thermodynamic limitone space dimension the distinction between bosons and fer-
in which spontaneous symmetry breaking occurs, and thenions is not pronounced, because there is no spin connected

two values are completely independent. to the statistics; for example, one can bosonize fermions in
string theory. The SUSY multiplet also is unusual: it con-
VI. CONCLUSIONS tains 2 states for the non-BPS c44¢ but only one state for

o . . _ the BPS case, as discusse and this article. Thus,
Mode regularization, i.e., the simple prescription that one se, as discussed @ 1S art us, the

. state (H-co)|Q) is not an exception to the superselection
subtracts vacuum energies for the same number of modesI but rath : d ted illustrati  that
with and without some background, differs from many other '€ DUt father a unique and unexpected Hustration of tha
regularization schemes in that the cutoff parameter need n&"le' .
be averaged over some continuous weight function which 1N€Z2 Symmetryy— — ¢ is actually a gauge symmetry
goes from unity at low energies to zero at high energies, as igecau§e it Ieaves. all pos§|ble observables invariant. That is,
necessary in particular for energy or momentum cugaff there is no conceivable fleld that could bg added to _the La-
This attractive feature gives a strong incentive to investigatdrangian as a perturbation and would give a coupling not
whether the scheme is universally applicable. Here we haviévariant undery— —¢. Thus there is no zero-frequency
studied mode regularization for the case of the kinklit 1) fermionic degree of freedom for these boundary conditions,
dimensions, including Majorana fermions. There is a well-and consequently one must include one more fermion than
known subtlety in counting boson zero modes, that zeroboson continuum mode in the mode regularization if one
frequency modes must be expressed as collective coordwishes to consider only TP and TAP boundary conditions.
nates, so that for each coordinate there is a conjugatéhe two other boundary conditiongeriodic and antiperi-
momentum, giving rise to raising and lowering operators jusbdic) each give in the kink sector two fermionic solutions
like those for nonzero frequencies. Thus the two bosoniavith w=0 (P) or o~0 (AP). Their coefficients yield one
zero modes of a widely separated kink-antikink system beannihilation and one creation operator in the Dirac field ex-
come two collective coordinates, and they correspond to twgansion, and hence one corresponding fermionic degree of
pairs of (P,X) variables, counting as two degrees of free-freedom, half localized at the kink and half localized at the
dom. This makes sense because it keeps the total number lndundary.
modes constant as the corresponding squared frequeficy  Evidently, the average of the sums with different bound-
goes to or through zero. ary conditions is equivalent to the loss of half a fermionic
For fermions the situation is less familiar. By studying thedegree of freedom. This half clearly is related to the half
problem in three closely related systems, kink-antikink,fermion charge found by Jackiw and RelpiB] when they
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considered Dirac fermions in the presence of a kink. For &irac fermion, still manifesting the Jackiw-Rebbi half
Majorana fermion the half degree of freedom of the kinkcharge, but in a delocalized form, whose precise specification
system was initially interpreted as one degree of freedom imlepends on what might otherwise have seemed an arbitrary

the KK system which was shared half by the kink and halfchoice of boundary conditions. .
by the antikink. The nonlocal character of this fermionic de- The combined thrust of all the recent works is to show

gree of freedom for the Elfsystem is still present for plain that new a'lspects coptlnqe to appear i,n under_standing a pro-
otype soliton, the kink in +1 dimensions, with a strong

periodic boundary conditions on the kink alone: The degre%’l_ L )
of freedom is localized half at the kinfoy ¢,) and half at int that the methods sharpened in this theoretical laboratory
are likely to have broader application.

the boundary(by ). For our Majorana fermion we can . . .

interpret this fractionalization of degree of freedom as fol- Note added.We have rece_lved questions from various

lows: Suppose one starts in the trivial vacuum with periodicreaders concerning the _relat|on among the re_sults of the

boundary conditions, and one starts to rotate the right-han tony Brook([2—4] and this paper MIT [5.] and anegota

half of the constant background field by a Goldstone- ’14'.15’17 groups. We addres; these issues _here in more
explicit and complete form than in the Introduction.

Wilczek chiral rotatiorf 12]. This rotation produces a current . . .
112] P The Minnesota group obtained an expression for the en-

and changes the trivial vacuum to the kink vacuum. The densi f th | ch densi
periodic boundary condition in the kink sector stops the cur£19Y ensity}(x) as a sum of the central charge density

rent, and half a degree of freedom is accumulated at thé(x)_ and an extra term of the forr{_1Q,j(>.<)}. The latter
boundary. In the analysis of Jackiw and RebtB] the vanishes in the kink background, which@sinvariant. Thus

boundary was moved to infinity and thus they only found<H>:<§> locally, and this proves the saturation of the BPS
half a charge around the kink bound locally. They used higher-derivative regularization of

7 : 2 2 2 2 H i .
The results summarized here lead to a well-defined prothe kinetic terms)</ 9x= but not of9</gt* or the interactions;

cedure for applying mode regularization to a system in whicHis is a regularization scheme which does not involve higher
the boundary conditions naturally change between one sect§fne derivatives and preserves supersymmetry. The expres-
and another: In the difference of sums, require that the termgion for{(x) is a total derivativel,(W+Y). At the one-loop

of highest energy are matched in such a way that there is n§Vvel, the corrections frorW are canceled by the counter-
contribution to the quantum energy shift linearly divergentterm, whereasY =(1/2M?)[(d,¢)d,F —(92¢)F] yields a
with the maximum energy. Having thus matched the sums one-loop vacuum expectation value of the fokhf/M? be-

“at the top” one may count down to the bottom, and com- cause the regulated propagator for the fluctuations is propor-
pare the number of modes in each sum. For fixed boundarjonal to M?. This contribution they called an anomaly. In
condlyons, this 'pr'ocedure is equivalent to the usual mOd_ethe loop calculations they used the regularized Feynman
counting prescription. However, when the boundary Cond"propagator for infinite voluméwhich is unique if one im-
tions change, as from P AP to TP+ TAP, then the number - ,,5a5 caysalilymaking their expression for the local energy
of modes can changéFor the P, AP cases in the trivial yongiy independent of boundary conditions. The anomaly in

sector and the TP case in the kink sector there are equm ; ; : ;
. 1 ir formulation com ntirely from the ultraviolet r lar-
numbers of nonzero modes, but for the TAP case in the kink eir forinuiation comes entirely ro € ultraviolet regula

. Ization; boundary conditions, which are a form of infrared
sector there is one fewer zero modBecause the number L
. regularization, play no role.

goes down by 1 for TAP but zero for TP, the average loss is : : . .
1/2. Thus, one important conclusion from our work is that Using the local expressiof(x), they obtained the kink

there is a natural generalization of mode regularization to th&@SS Y integrating over a region containing the kink and
case when boundary conditions are not fixed. This may b&t@ying away from the boundaries, so that, unlike approaches
useful in other contexts. that compute the quantum corrections integrated over all

The nonlocality of one fermionic degree of freedom SPace, their analysis was not sensitive to the finite or even
clearly must be an essential feature of a theory where there fvergent boundary energies discussed in our paper. In par-
only one unpaired fermion state localized at a soliton. For théicular, by integrating only over a finite region around the
case of locally invisible boundary conditions both in thekink one can avoid even the delocalized boundary energy
trivial sector(P + AP) and in the kink sectofTP + TAP),  which we found for twisted periodic boundary conditions
the half charge is even more ethereal. It simply evaporateghis papey.
under the change in boundary conditions, as a consequence The MIT group wrote down formal expressions for the
of the chiral anomaly. integrated differencél —Z= [dx[ H(x) — £(x)] (in the Min-

The nonlocality is surprising because it appears to violataesota notation and forH and Z separately. By “formal”
the principle of cluster decomposition. However, Majoranawe mean mode sums represented as continuous integrals,
fermion charge is not an observable, and all vacuum expeawithout explicit discussion of either infrared or ultraviolet
tation values for observable fields still obey the principle. Ofregularization prescriptions. The Minnesota group criticized
course, if the fermion field carried an observable chargethis work becauséin addition to the formal character of the
such as fermion charge for a Dirac fermion, then the halfexpressionsthere seemed to be no contribution from any
would become a localized eigenvalue, as in the case analyzeshomaly. The MIT group used canonical commutation rela-
by Jackiw and Rebbi. Thus, the unadorned Majorana fermiotions for Heisenberg operators but did not regulate explicitly
interacting with the kink is a kind of “square root” of the (by point splitting or other standard methgdand it is well-
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known that without proper regularization Hamiltonian meth- +Adk/dw m Adk 1
ods miss anomalies. Having studied this problem in detail we AM= f (m F) = mf o (54)
have come to the conclusion that one can regularize the work 0
in [5] and discuss issues of boundary conditions. As we shall
show, with these additions, the expressions and resu[ts|of . . . .
for the integratedH—Z and H mar; be seen as not[o]nly in agreement with2]. Combining the two terms in Eq52)
correct but also directly equivalent to corresponding result9ne finds
of the other groups. We claim that both the Stony Brook and
the MIT results do contain the anomaly, albeit in integrated
form.

The MIT group wroteH —Z andH andZ in terms of only
two mode integrals of the formy, = [ w(k)| 7(x)|?dkdxand

l,= [ w(K)|7¢(x)|?dkdx Formally, all terms inH—Z can-
cel pairwise: degenerate boson and fermion modes give thas §(k) — 6(k) tends rapidly to zero for largk, one may
same contribution with opposite signs. We believe that thisomit the® (A —k), and Eq.(55) then becomes E@51). This
cancellation implicitly assumes SUSY boundary conditions establishes the equivalence of the Born subtraction in the
for which the 7, and 7, as well as the densities of states areMIT phase shift calculation with the improved momentum
equal for the bosons and for the fermions. The integrand foeut-off in [4]. As the latter has a clear physical meaning, the
H—Z therefore is the correct local densityhis was not former has been justified in our opinion. Recently, the MIT
mentioned ir[5]), and this density clearly vanishes. Thus thegroup has used dimensional regularization, and concluded
BPS bound is saturated locally, provided the same countethat it produces the term with®(k) if one only renormalizes
term is used forH{ and for{. by requiring absence of tadpoléast reference if5]).

The translation of the MIT group’s expressions fbrand To summarize, the recent revival of interest in the quan-
Z individually into the standard framework of regularization tum description of the supersymmetric kink started with the
and renormalization is more subtle. They start again from aistony Brook group(with Rebhan who brought back into
expression in terms df; andl,, but inside their continuum focus the problem of the saturation of the BPS bound for the
integrals overk they also need a counterterm, which they SUSY kink and the issue of multiplet shortenirg], justified
identify as the divergent contribution from the Born expan-Schonfeld’s calculation of the mass by an explicit regulariza-
sion of the scattering phase shift. With the help of this termtion (the so-called derivative regularization sche[@p, and
(and an identity based on Levinson’s theojethe integrals  suggested that there could be a local anomaly in the central
become manifestly convergent, so that no further regularizeeharge[3]. In the present paper we showed how to remove
tion seems required. On the other hand, the Minnesota grourmion boundary energies from the integrated quantum cor-
(and we using standard methods of quantum field theoryrection to the mass, either by averaging over suitable sets of
explicitly regularized the kink mass, and obtained the mas$oundary conditions, or by direct computation and subtrac-
renormalization counterterm from the requirement that tadtion of boundary contributions. The MIT group found an
pole graphs vanish. identity which, as we have shown here, can be used to prove

It remains to explain why the MIT approach of subtract- more than they claimed, namely, the local equality of energy
ing the Born term is also correct. Consider the followingand central charge densities. They also obtained an expres-

A 2m

_ [ dk d k B(k]®(A—k
M—fz“"m)&{[‘s( )= B (KIO(A—K)}. (55)

equation of MIT: sion for the mass using phase shift methods which is math-
dk d ematically equivalent in detail to that obtained by perturba-

N O _ B tive quantum field theory methods. The issue of multiplet

M f Zw(w m) dk[5(k) O (K)]. (52) shortening of massless multiplets was solved by the Minne-

. sota groud 6]. They went farther, establishing that there is a
Compare Eq(51) with the Stony Brook method for momen- |ocal anomaly in the central charge density, and providing an
tum cut-off explicit expression for that density, which makes their
method completely independent of the boundary conditions

M= fmj_kwi[f?(k)(A—lkl)]JrAM, (520  introduced for infrared regularizatidi6].
—o0 4T

dk
whgre@(A—|k|) is the cut-off function introduced ifd] ACKNOWLEDGMENTS
which states that above a certain energy the kink modes go
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[17], has discussed the multiplet structuréNie- 1 supersym-

We claim that this works wit6(k)= 65(k). This is easy to  metric models. Their results seem to be complementary to
prove: 55(k) = —m/k, and this yields and compatible with ours.

+oodk d
AM:J 2 (@-m [P000(A-[K)]. (53

—
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