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Exact spinor-scalar bound states in a quantum field theory with scalar interactions
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We study two-particle systems in a model quantum field theory in which scalar particles and spinor particles
interact via a mediating scalar field. The Lagrangian of the model is reformulated by using covariant Green’s
functions to solve for the mediating field in terms of the particle fields. This results in a Hamiltonian in which
the mediating-field propagator appears directly in the interaction term. It is shown that exact two-particle
eigenstates of the Hamiltonian can be determined. The resulting relativistic fermion-boson equation is shown
to have Dirac and Klein-Gordon one-particle limits. Analytical solutions for the bound state energy spectrum
are obtained for the case of massless mediating fields.

DOI: 10.1103/PhysRevD.64.045012 PACS nuntder11.10.Ef, 11.10.St

[. INTRODUCTION Hamiltonian is presented in Sec. V. An unconventional
“empty” vacuum state is introduced, and one-particle eigen-
There are few examples of analytically solvable relativis-states are obtained, in Sec. VI. Relativistic two-particle
tic two-body wave equations, particularly equations deriveceigenstates are determined in Sec. VII, and their radial de-
from quantum field theoryQFT). The principal exception is composition is presented in Sec. VIII. Analytical solutions of
the case of spinlesscalaj particles interacting via a medi- the radial equations are obtained and discussed for the
ating scalar field, the so-called scalar Yukawa or Wick-massless-exchange case in Sec. IX. Concluding remarks are
Cutkosky model. This model, therefore, has served as a faggiven in Sec. X.
vorite testing ground for methods of solving bound-state Before proceeding to the main body of our paper we sum-
problems in QFT, beginning with the Wick-Cutkosk¥,2] marize and briefly discuss earlier purely scalar model results
solution of the Bethe-Salpeter equation in the ladder approxit3,4], for which the relativistic two-body bound-state spec-
mation. trum is given in Eq.(1.1). This will set the stage for the
In earlier paper§3,4] it was shown that the scalar Yukawa scalar-fermion system, which shares some features with the
model can be recast in a form such thatact two-body  purely scalar model.
eigenstates of the Hamiltonian, in the canonical equal-time Expression(1.1) for E(a/n) has the shape of a distorted
formalism, can be determined for the case where there are reemicircle. Indeed, in terms of the variables: (E?—m?
free (physica) quanta of the mediating “chion” fieldi.e. ~ —m3)/2m;m, andy=a/n, Eq. (1.1) corresponds to half of
only virtual chiong. This is achieved by the partial elimina- the circle x?>+y?=1. The upper branclE_ of the energy
t@on of the mediating chion field by means of Gregn’s func-eigenvalug Eq. (1.1)] starts atm; +m, when« is zero, and
tions, by the use of the Feshbach-Villars fo[mulat|9n for thegecreases monotonically to the valEig= '/m? + m3 whena
scalar particle fields, and by the use of an “empty” vacuum q,ches the critical value,=n, beyond which the energy
state. The resulting two-particle bound state mass spectiungeases to be real. This behavior is reminiscent of what hap-
for the case of massless chion exchange, was found to be pens for the one-body Klein-Gordon-Coulomb and Dirac-
Coulomzb , systeTs. From E, =m;+m,— sm;m,/(m;
2 5 @ +m,)a’/n“+0(a”) it is clear thatE . (a) has the correct
E.= \/m1+m2i2mlm2 1_F’ (1.0 nonrelativistic Schrdinger (Balmep limit. It also has the
expected Klein-Gordon one-body limivith scalar Coulom-
where « is the effective dimensionless coupling constant,bic potential, namely Ei—ml—>im2\/l—a2/n2 as m
andn=1,2, ... is theprincipal quantum number. — 0,
It is evidently of interest to extend the method employed  The lower branchE_ , which starts fronjm; —my|, rises
in Refs.[3,4] to include spinor particle fields. As a first step monotonically with increasing to meet the upper branch at
we apply it to a generalized Yukawa model consisting ofg_. From
fermions, described by a spinor field, and of bosons, de-
scribed by a scalar fiel@, interacting via a mediating scalar

2

2
field y. The Lagrangian of this model is presented in Sec. Il. m } mm; \a
A reformulation of the scalar particle field into two- E-=lm m2|+2 [m;—m,| F+O(a)

component Feshbach-Villars form is given in Sec. Ill. Quan-
tization of the model is summarized in Sec. IV, while the
for my#m,, andE_=m(a/n)+0(a®) for m;=m,=m, it
is clear that the lower branch does not have the Balmer limit
*Permanent address: Institute for Condensed Matter Physics @t small @, and so is “unphysical” in this sense. The un-
the Ukrainian National Academy of Sciences, 1 Svientsitskii Str.,physical lower branch arises because an “empty” vacuum
Lviv 79011, Ukraine. was used, so that positive and negative energy solutions
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(rather than particles and antipartidlese retained, and this (e T *

means that solutions with two-body energies of the type p=— (V¥ H 0207 ¢). @9
+my, My—my, —my+my, and—m;—m, occur. However,  Equation(2.4) has the formal solution

the use of the empty vacuum is the price that needs to be

paid for obtaining analytical solutions. X=Xo+ X1, (2.6)

Interestingly, the same spectrum HEG.1) was obtained
previously by Berezin, ltzykson, and Zinn-Jusitf] as poles  where
of the scattering matrix in eikonal approximation, by
Todorov[6], using a “quasipotential” one-time reduction of . , , ,
the ladder Bethe-Salpeter equation, by Savrin and Trigtle x1=(D P>‘=f dx'D(x=x")p(x"), 27
as a solution of the ladder Bethe-Salpeter equation with re-
tarding propagators, and recently by Tretyak and Shpj8ko dx=d"xdt (in N+ 1 dimensions xo(x) satisfies the homo-
in a Fokker action formulation. Berezin, ltzykson, and Zinn-geneougor free field equation
Justin stated that their analysis implies that Efl) con-
tains, in perturbation-theory language, all recoil, ladder, and (9,0"+ u?) xo=0, (2.8
crossed ladder effects, but no radiative corrections. However,
as pointed out recentl®], results analogous to E(L.1) but  and D(x—X") is a covariant Green’s functioor chion
for the massive chion exchange cdseecifically for u/m propagator, in the language of QF3uch that
=0.15), lie somewhat above the numerical Feynman-

Schwinger calculations of Nieuwenhuis and T[d®d], which (9,0"+ u?)D(x—x")=""H(x=x"). 29
contain all effects save for radiative corrections.

The method of elimination of mediating fields, used in  Equation(2.9) does not specif{d (x—x") uniquely since,
Refs. [3,4], is to some extent similar to that used in the for example, any solution of the homogeneous equation can
formalism of Fokker action integrals in relativistic mechan- be added to it without invalidating E2.9). This allows for
ics. Although the Fokker action formalism deals with a finite@ certain freedom in the choice 8f(x), as is discussed in
number of degrees of freedom, in the case of scalar interagtandard text¢e.g. Refs[11,12)). Substitution of the formal
tions its quantized counterpd®] leads to the same expres- Solution[Eg. (2.6)] into Egs.(2.2) and (2.3) yields the “re-
sion [Eq. (1.1)] for the energy as a function of quantum duced” equations
numbern as that obtained in Reff3,4]. The difference is in

different definitions oh in the two treatments. This is due to (iy"d,—91(xo+ x1) —M)¥=0, (2.10
different definitions of scalar interactions in the mechanical

and QFT pictures, and by quantization ambiguities of the (3,0 +m3) e=—0a( X0+ X1) ®.
classical Fokker action. (2.1

These equations are derivable from the action principle

II. LAGRANGIAN FOR THE SCALAR-FERMION MODEL 5fdx£=0, corresponding to the Lagrangian density

AND ITS REFORMULATION

Our starting point in this paper is the Lagrangian density L=W(iy"d,~ M)W +3,0* 3o~ Mip* o+ xop
(c=h=1)
1
. +5p(D*p), (212
L=V (iy"9,~gix— M)V +3,0* "o~ Me* o~ o0 ox 2
1 , 5 5 provided thatD (x—x’)=D(x' —x).
T 5hXTXT X 2.1 QFT’s based on Eq$2.1) and(2.12 are equivalent in the
sense that they lead to identical invariant matrix elements in

whereV is a spinor particle fieldp is a scalar particle field, yarious'order of covar.iant perturbation theory. 'I_'he diﬁerence
and y is the mediating scalar field, which can be masslesés that, in the formulation based on Hg.12), the interaction

(1.=0) or massive f#0). term that cc_>ntains the chion propagaf®@(x—x") Iead; to
The fields of model2.1) satisfy the equations Feynman diagrams that correspond to processes involving
virtual chions only. On the other hand, the interaction term
(iy"d,—gix—my)¥=0, (2.2 that containsyg corresponds to Feynman diagrams that can-
not be generated by the previous term, such as those with
(9,0"+m2+gax) 9=0, 2.3 external(physica) chion lines.

The reformulated LagrangiafEq. (2.12)] contains two
types of interactions: “local” interactionsyqp, of the par-
ticle densitiesp* (x) ¢(x) and¥ (x) W (x) with the free me-

(9,0"+ u?)x=p, (2.4  diating field xo(x), and the *“nonlocal” interaction,
3p(D* p), in which the chion propagator appears explicitly.
with This may seem like a complication rather than simplification

and the conjugates of Eq&.2) and(2.3), as well as
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of the theory based on E.1). However, as we will show, IV. QUANTIZATION
Eqg.(2.12 leads to a model for which exact eigenstates of the

Hamiltonian can be obtained. The momenta corresponding #y, and ¢, are

Ley -, .
IIl. FESHBACH-VILLARS FORMULATION Py, = Py =11, Py,=—1¢3. (4.7)
OF THE SCALAR FIELD !

Thus the Hamiltonian density is given by the expression

H(X) =TT (x)1 (X)W (X)+ ¢ (X) 7ho(X) p(X) = x0(X) p(X)

We rewrite the scalar fieldp of this model in the
Feshbach-VillardFV) formulation[13]. The reason for do-
ing so is that this leads to a QFT Hamiltonian which is

Schralinger-like in form, for which exact eigensolutions can 1
be obtained. In the FV formulation, the field and its time —EP(XXD*P% (4.2
derivativec;o are replaced by a two-component vector which
is defined as where  hy(X)=—ia-V+mB,  hy(x)=7(—1/2m,)V?
+m,n, and where we have suppressed terms like
1 - V- [#(X)Vé(x)] that vanish upon integration and applica-
$1= \/Z—mz(m2<P+ o) tion of Gauss’ theorem. We use canonical equal-time quanti-
¢= , (3.1)  zation, whereupon the nonvanishing anticommutation rela-

tions and commutation relations are

1 )
hr=———=(Mro—ip)
vem: (W) Ty} = 8, x—y), @ B=1...4,

so that, for example, B¢*e=(41+¢2) (b1t d2) [ (x,1), by, 0)]= napdN(x—y), ab=12, @3
= ¢Tm¢, wheren and r are matrices:

where 7, are elements of they matrix [Eq. (3.2)]. Using

1 0 1 1 these commutation relations, the Hamiltonian operator can
7=, .| and 7=| 82 pe written as
0 1 1 1
In the FV formulation the equation of motid2.3) takes on H =J de[Ho(x)+HX(x)+H|(x)], (4.4
the form
where(suppressing the Hamiltonian of the free chion field
. 1 d-
R 92 . .
(=" o,V TP Mty Téx. B3 Ho(x) =W (0R ()W (X)+ 6'(X) 7ha(x) (%), (4.5
or, upon using Eq(2.6), the form Hy(X)= = x0(X)p(x) (4.6

and

L1 9
= = 5 VTt Mamdot o Td(xo+ (D*p)),

2
(3.9 ;H.<x>;=—%f dX' D (X=X )W (X[ W (X)W (X)]¥(x)

where o _
—Wf dx'D(x=x") $(x)[ S(x") $(x)]b(X)
- gZ + 2
p=—1 g1 VV+ —0o nrd]|. - =
S = 222 [ 4D (X GOOF (X () 1600
2
Equations(3.4) and (2.10 are derivable from the La- -
grangian density - o f dx' D(x—x )T ([ $(x") $(x") ¥ (x),
my
Lry=W(iy"d,~my) ¥ +i () nb(x) (4.7
B 1 g B N and wh_ere we hEve used commu_tation_relati@hs) to re-
2m, ¥ P V()= ma 00 S0+ xop order (X)) (X V$(x') as HHIH(X)S(x)1H(X)
1 and V(X)W (X)W (x")¥(x") as ¥ (x)[V(x")V(x") ¥ ().
+ §p<D*p>’ (3.5 Note that no infinities are dropped upon performing a “nor-

mal ordering” of scalar field operators, since none arise on
o account of the property thaf=0. However, in the case of
where =o' 97¢. the spinor field, reordering yields an infinite constant which
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can be absorbed into the total energy of the system. Of 1
course, one can simply start from the normal-ordered Hamil- G(x—x")= EKO(/I«|X_X’|)1 (5.4
tonian. We stress that this normal ordering is not the same as
t_he conventional ong14], STme we ”0”*_“’?" order the entire \ here Ko(2) is the modified Bessel function, whereas for
field operators,, and ¢',4', not positive and negative
N=1 it has the form
frequency parts individually. For this reason, we denote it as
;H; rather than asH:.

As already mentioned?{, contains a covariant chion G(X_X'):ie*/i\x*x’\_ (5.5
propagator; hence in conventional covariant perturbation 2p
theory it leads to Feynman diagrams with internal chion
lines. On the other handi, leads to Feynman diagrams VI. EMPTY VACUUM AND ONE-PARTICLE
with external chions. However, we shall not pursue covariant EIGENSTATES

perturbation theory in this work, and so shall not consider ~
that approach further. Rather, we shall consider an approach As in Refs.[3,4], we define an empty vacuum sta®,
that leads to some exact eigenstates of Hamiltofda$), but  such that
with H,=0.
¢2[0)="W,[0)=0. 6.2)
V. TRUNCATED MODEL
This is different from the “Dirac vacuum’0) of conven-
In what follows we shall consider a truncated model fortional QFT, which is annihilated by only the positive fre-
which the termi, in Eq. (4.4) is suppressed. Such a Hamil- quency parts of and'¥ and by the negative frequency parts
tonian is appropriate for describing systems for which thereyf o andw'.
is no annihilation or decay into chions, or chion-phion or  ijth definition (6.1), the one-particle scalar state defined
psion scattering. as
In the Schrdinger picture we can take=0. Therefore,
we shall use the notation that, sayx,t=0)= ¢(x), etc., for ~
the QFT operators. This allows us to express the interaction |1¢>:f dVx (%) f(x)[0), (6.2
part of Hamiltonian(4.7) as

5 wheref(x) is a two-component vector, is an eigenstate of the
I N N, , truncated QFT Hamiltonian’{,=0) with eigenvalueE,
Hi(x);=— ?f d*X Gx=x )T [P (X)) (X)) J¥ (x) provided thatf (x) is a solution of the equation
ng AN G(x=X) ([ S(X) (X )1(X) ha()T(x)=Eqf(x). ©.3
This is just the free-particle Klein-GorddKG) equation for
f dVx’ G(x—x )d)(x)[\p(x )W(x')]p(x)  Stationary staten Feshbach-Villars form It has, of course,
all the usual negative-energy “pathologies” of the KG equa-
tion. The presence of negative-energy solutions is a conse-
glng dVx’ G(x—x )xp(x) quence of the use of the empty vacuum.
Similarly, the state

9192
4am,

X[B(X) (X)W (x), (5.2) ) i
|1w>=f d*XF,() W (x)[0) (6.9
where
. is an eigenstate ofH; with eigenenergye,, provided that
G(x—x’):f D(x—x’)dt’ the four coefficient amplitudeB ,(x) are solutions of

. {[11(X) 10— E18,4)F 5(x)=0 65
=(2+)Nf deelp.(xx)pzj'Mz_ (5.2 1 s~ E16,5Fp

Explicitly, for N=3 spatial dimensions this becomes

or

[hi(x)—E;]F(x)=0 (6.6

—plx=x"
G(X—x )_ Le (5.3  in matrix notation, that is provided the spinris a solution
T x=x|’ of the usual Dirac eigenvalue equati6). Note that sum-
mation on repeated spinor indicesand g is implied in Egs.
for N=2 itis (6.4) and(6.5).
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VIl. TWO-PARTICLE EIGENSTATES two are “mixed.” The appearance of the negative energies is
a reflection of our use of the empty vacuum state, as dis-

We consider a mixed two-particle phion-plus-psion sys- .
P P plus-p YScussed earlier.

tem described by

~ VIIl. JP EIGENSTATES AND RADIAL REDUCTION
|2>=J dxdVyF,;(x, ¥, (x) 8T (»[0), (7.1) IN N=3 DIMENSIONS

Hamiltonian(4.4) of the theory commutes with the total
where summation on repeated spinor and boson indices angular momentum and parity operators. If the two-particle
andj is implied. This state is an exact eigenstate of the trunstate[Eq. (7.1)] is to be an eigenstate df, where
cated QFT HamiltoniadEq. (4.4), with +,=0], provided
that the 4< 2 coefficient matri¥-=[F ,;] is a solution of the _ 3oapst . 30 4t
two-body equation J=| &X' (X,D)j(X)P(x,t) + | d°x' (X, 1) 7l(X) d(X,1),

(8.2)
A i T T _ 0 T T
MOIEHL7ho() 7F N THVOENYInE (YT ith j(x) =1(x) + 5=~ ixX V,+ L e, then we require that the

=EF, (7.20  hyperspinorF [cf. Eq.(7.1)] must satisfy the equation

where the superscript T stands for “transpose.” The potential [13(¥) +13(IF(xy) =myF(x,y). (8.2

here is given by In other words, in the rest frame wheRg,,|2)=0|2), we

require that
9192

Vix—y)= =5 £G(x-y) (7.3 1
2
<I3(r)+ 503)F(r)=ij(r). (8.3
whereG(x—Yy) is specified in Eq95.2)—(5.5). Alternatively,
we can regard2) as a variational approximation to the In a similar fashion?|2)=j(j+1)|2) implies that the ma-
eigenstate of the complete HamiltonigEq. (4.4)], since trix F in the rest frame must satisfy the equation

(2|H,|2)=0.

.For_|2> to be an eige_:nfstate of the momentum operator |2+§+|_0 F(r=j(j+1)F(r). (8.4)
with eigenvalueP,,,=0, it is necessary that thexd2 “hy- 4
erspinor”F(x,y) be of the formF(r), wherer=x—y. Let i
Es dgfine () () y The components andt of F satisfy Eqgs.(8.3) and (8.4
individually.
s(r) For|2) to be a parity eigenstate, and siné@) is invari-
F(r)= , (7.4  ant under space reflection, the matfXr) must have the
t(r) property that
where, inN=3 spatial dimensions, BF(r)==xF(—r), (8.5
[Fll(r) Flz(r)} |:F31(r) F32(r)} where the=x are the parity quantum numbers. This means
= ) = . that
Faa(r)  Faxr) Faa(r)  Far) a
s(—r)==s(r), t(—r)=%t(r). (8.9

Then Eq.(7.2) can be written as two coupled equations for grom Egs.(8.3)—(8.6) it follows that
the 2xX 2 matricess(r), andt(r);

s(r)
—i o V(0 +{ [ hp(r) + V(1) 19sT(N} T+ (Mg~ E)s(r) FIO=1 ()
=0, (7.6 kl(r)g}’:rgji(UZ)(F) _kz(r)fz,:n{ji(llz)(h
—ia-Vs(r)+{n[ho(r) = V(1) ]t (N} = (M + E)t(r) AN 0 a0 |
=0. (7.7) "
r=-, 8.
In the absence of interactiorise., V=0), these equations r @9
have solutions with the following four types of energy eigen- ) _
values:  w(p,my)+w(p,my), — w(p,my) + w(p,m,), where the upper sign corresponds to parity, qnd the
o(p,m;) —w(pmy), and —w(p,m)—w(p,m,), where lower to parity “—,” and k4, k,, g;, andq, are radial func-

w(p,m)=p?+m?. The first and last are positive- and tions. The normalized “spinor harmonicg’}’:rgji(l/z)(F) are,
negative-energy eigenvalues, respectively, while the middlexplicitly,
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/ e Iy @2) whereV(r_)z—a(e*’”/r) with a=g,9,/87m,, and where
A==y = . Y " we have introduced the operators
M . -~
1m V2l +1 \/I—mj+%Y|m’+(1/2)(r)
(8.9 ., i d o
g=—rirgy H1=(+2)],
and
(8.11
o 1 [ ViemriymT @R fo 1 @ d (+12(+12eY)
= r= , fi=— = r—=+2—— :
im0 i1 —\/I+mj+%Y|mj+(l/2)(F) * rl gr2 “dr r

(8.9
=e+ — 0 .
Finally, substituting Eq(8.7) into Eqgs.(7.6) and(7.7) we I(];Vilg IsceEfinZ thr;;q?nqdzio; i:/(:]e“;tl?lerlkz satlilsr:‘]igsozhsqra—
find that the radial functions must satisfy the following sys- iz, Klein-Gordon equatio(with scalar coupling Similarly,
tem of four equations: if m, is replaced bym, in this procedure, thet,,q,—0
while g, and —ik, satisfy the radial Dirac equatior{gith
scalar coupling Thus equations Eqg¥8.10 have the ex-
pected one-body limits.
Defining - =q;*q,, andk.=k;*k,, then adding the

. 2
M;q;+ _2m_ (kitkp)+(my+my)ky+V(r)(ky+ k) =EKky,
2

o ﬁ’i first two, and separately the last two, of E¢8.10, we ob-
H;Qz_Z_mz(kl"‘k2)+(m1_m2)k2_v(r)(k1+kz):Ekzy tain

ey I —idq+—E—m)k —mok +i—1—'+l)

Mkt 5 (0t Qo) + (=Mt Mp) gy = V(r)(ds+) ar — (Emmukemmokt [ (4 2)]a.

(8.12
—Ea dk. i
—i WZ(EJF m;)g, —myq_+ F[li(l +2) 1k .

2
M ko= 5 (G0t G2) = (M1 + M)A V() (G +62)

Using definitions(8.11), differentiating Eq.(8.12), and sub-
=EQy, (8.10 stituting the result into Eq€8.10, we obtain

o e ' T 2myr T 2r’m, ’
m;+m,—E
T(k++k_):0, 819
L Pl 1) PN DU O [ it Vit AW
2ms (MmN r (@ —a- 2myr 2r?m, +
ml_mz—E
2 (k+_k7):O, (814)
,  Mel1x(j+3)] 1+(+3)  [(+H2-1
" 2m, (mz—m1+E)k+++(k++k,) 9 i “vlq,
_m1+m2—E
+t——%—(9:+9.)=0, 815
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S P L et Rt 20 O Il Rt 2D L€ Rt 2l
2m, (mz-+m; —E)k r (ki —k-) 2myr a+ 2r?m, q-
m1+m2+E
—— % (a+—9-)=0, 816

where q’, =dq, /dr, etc. Equations(8.13—(8.16) do not energy solutions of Eq8.19. This means that if there are

containg” andk’ . Therefore, solving Eqs8.12 for q_ positive-energy bound states, then there are no bound states
and k_, putting Q. =—ik,, and substituting into Egs. for the negative-energy solutions or vice versa. This is simi-
(8.13 and(8.15 [or into Egs.(8.14 and(8.16] leads to the lar to what occurs for the scalar Yukawa mog@}4].

final system of two radial Dirac-like equations: We also note that for the mixed-energy solutions of the

type E=m;—m,—¢, where we takem;>m, for definite-
1+(j+1) m ness, we find that t_he correspor_lding nonrelativistic_ reduction
Q,++—2 +——2V(r)q+—ezq+=0, leads to an equation exactly like Eq8.19, but with an
r E unphysical reduced masgs,=m;m,/(m;—m,). This indi-
(8.17 cates that Eq48.17) also admit “unphysical” mixed-energy
solutions, in addition to the positive- and negative-energy

15(j+32) m; : o ! . . S
-q,————q, + EV(r)Q+— €,Q,=0, solutions. This is consistent with our earlier observation in
r Sec. VIl regarding the solutions for the “free-particle” case
with V=0.
where The coupled equation.17) can be solved readily, for
arbitrary massu of the mediating scalar field, by standard
. _(E-my—my)(E—m; +m,) numerical techniques. On€@, andq. have been obtained,
! 2E ’ k_ andq_ can be determined from Eq&.12. This, then,
determines=(r) completely, for anyd” state.
52:(E+ m;+m,)(E+my mz). 8.18

2E IX. TWO-BODY BOUND STATES IN 3 +1 FOR MASSLESS

CHION EXCHANGE
If we make the replacemerE=m;+m,+¢, and assume

that|e|,|V|<m, .m,, then equations Eqe8.17) reduce to We consider the solution of Eq$8.17 for N=3 and

massless chion exchangies., u=0), in which case the in-
terparticle  potential is  Coulombic [i.e., V(r)=

,  K(k+1) —(919,/87m,) (1/r)], and analytical solutions for the eigen-
Qi r2 Q++2m(e = V(r)Q. =0, values and eigenfunctions can be obtained. Thus, putting

mym, — A Br ry—1+v — A Br ry—1+v
m, = Q.=e ;Oajr , g.=e Zob’r ,

-T2
MM (8.19 9.0

which comprises just the reduced radial Sclinger equa- We obtain

tion for the relative motion of the two particles of massas

andm,, with |=j+1/2 if k=j+1/2=1 andl=j—1/2 if (k+y+v)a,+ab,—Ba, ,—eb, =0,
=—(j+1/2)=—(1+1). Thus the positive-energy solutions

have the expected nonrelativistic limit. On the other hand,

for the negative-energy solutions Bf= — (m; +m,+¢) and (k—y—v)b,—aa,+pb, 1—€a, =0,
le|,|V]<m;,m,, Egs.(8.17) reduce to (9.2
k(k—1) where
qzr—r—ZQ++2mr[8+V(f)]qu=0, (8.20
-~ m
a=a—2, _ 919 k=*(j+3), v=012....

a= ,
which is the radial Schdinger equation, with =j+1/2 if E 8mm,
k=—(j+1/2)=—1 andl=]—1/2 if k=] +1/2=1+1. We ©.3
note that the sign oW(r) is effectively reversed for the

negative-energy solutions, relative to that for the positive-The casev=0, witha,_;=b,_;=0, givesy= x>+ a?.
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In addition, forQ, ,q, to be well behaved at infinity,
series(9.1) must terminate av=n'=0. Then Egs.(9.2),
with v=n"+1 anda, ,;=b, =0, give the energy spec-
trum formula

where B=+—¢€;€,.

9.9

n=012...

Note that positive square roots must be choseryfandg in

PHYSICAL REVIEW D64 045012

where
2_m2_ m2
E“—mi—m;

W:
2mym,

The eigenvalue spectrum equati@®.5 is not symmetric
with respect to the particle masses. This reflects the different
nature of the particles. The massg belongs to the spinor
particle and the magss, corresponds to the scalar one. Note

that by puttingn=n’+/(j +3)2+ («®m3/E?) one can re-

order that the wave functions be well behaved at the origifVrite Eq.(9.5) in the form

and at infinity. Sincen’=0 and y and B are positive, it
follows from Eq.(9.4) thata must be positive, which, from
its definition in Eqs.(9.3), means that fog;g,>0 [i.e., an
attractive potentiaM(r)=—a/r], the energy eigenvalug
must be positive. This, together with the requirement that

this fermion-scalar system witkcalar Coulombic coupling
must lie in the domaifm;—m,|<E<m;+m,, exactly as
for the scalar Yukawa modél.1) [4].

It is convenient to rewrite Eq9.4) in the form

—€,6,>0 implies that the bound-state energy spectrum for,

2

a
1- =,

E?=mZ+m3+2m;m, =

(9.6

which formally coincides with the energy spectruq.
(1.1] for two scalar particles with scalar interaction obtained
in Refs.[3,4]. But here the “quantum numberi depends on
the energy.

Equation(9.5) is exact and gives the energy spectrum of
the two-particle(scalar plus fermionsystem. However, the
explicit determination of the functiok=E(a,m;,m,) for
various states requires the solution of an algebraic equation
of the sixth order irE2. By contrast, the inverse dependence

, 5 [e% m2_ o
n’+ Ko+ ——= > (9.5 . . '
E 1-w a=a(E,m;,m,) is relatively simple:
|
. 2mEV1—w?[2m;n’ E+ k?(E2+m2—m3)2+4mZm3n’2(1—w?)]

(E?+mi—mj)®

9.7)

This solution, though analytical, is not particularly transpar-branch curve straddling the vertical asymptote corresponds
ent, except for some special cases, such as the equal-maesm;/m,=1/2. The vertical asymptote occurs &/m,

states withn’ =0 (i.e.,n=n'+j+1/2=j+1/2), for which

9.9

wherem=m,;=m,. This shows that equal-mass bound states

are possible only forr<<2n for n’=0 (i.e.n=j + 3) states,
and thate=0 at the critical value otx,=2n. However, for
n’'>0 states of the equal-mass case, the shapgé(al) is
quite unlike the quarter circlEEq. (9.8)]. Rather,E(«) de-
creases monotonically frorg(0)=2m towards zero, asv
— 00,

As an example, in Fig. 1 we plai(E)/n for n’ =0 states
(for which n=j+1/2), for three different mass combina-
tions. The equal-mass curve is labeleg/m,=1, and cor-
responds to the quarter circle of E(.8). The deformed
semicircle corresponds to; /m,=2. The apex of this curve
is the critical value ofa beyond which there are no real
solutions for the two-particle bound state m&ssThe two-

=/1—(m;/m,)?=/3/2. There is a real solutioR for any
value of @ for this m;/m,<1 case. Note that every one of
the curves lies in the domaijm; —m,|<E<m;+m,.

We can, of course, evaluate and pltetE) for anyn’,j

o
34" -
|
Ploima_1
25 Pooyme 2
R
1.5
11 ’ %_2
05 ] !I \\
/ i \ E
0 05 1 15 2 25 3™

FIG. 1. Plot ofa/n vs E/m, for n’=0 (n=j+ 1/2) states of
three different mass combinations, wheng is the fermion mass
andm, is the boson mass.
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state and any values of; andm,, using the analytical for- m 2
. . . . 1 o

mula [Eq. (9.7)]. However, it is instructive to outline the E+(—< 1) =m,+m; Im
general behavior ofE(«), without specifying particular m; (n"+Va "+ k)
cases. )

First of all, we recall that normalizable bound-state solu- n my a
tions (for which 8>0) occur only for|m;—m,|<E<m, My 2(n’ +\aZ+ k?)2
+m,. There are two branches to the solutiB(«), much
like for the scalar Yukawa moddEq. (1.1)] described in 2a?
Sec. |. The upper branck,(«) begins with the Balmer x| 1= a2+ (' + a2+ 2)
form

m;\2
+0|| — . (9.9
E 1 mlmz az O 4 m2
MM e m, nZ2 (a")

) ... The first term in the square brackets is just the Dirac one
at low «a, then decreases monotonically towards a I|m|t|ngb0dy energy spectrum for a Coulombic potentialar cou-

v?lute E%- There is also a lower “unphysical” branch that pjing) "and the second one gives the first order correction in
starts off as

my /mo.
For m,/m;<1 the expansion yields the scalar or Klein-
2 Gordon limit:
_ 1 mlmz o 4

E,—|m1—m2|+ Emﬁz+0(a )
for my #m, but asE _ =ma/n+ O(«?) for m;=m,=m, and m, a? m, o
increases monotonically towak,. The lower branch is not E+(m—< 1) =my+m; I-—=+ o3
of Balmer form at lowa. ! n L2n

The qualitative behavior oE(«) is different for the fer- m.\2

mionlike casen;<m, and the scalarlike casa;>m,. This +0 _2) H ) (9.10
is evident from the one-body limits, described below. For the m

fermionlike case there are bound-state solutions for all values

of @, no matter how large. Indeed, as—x, the UPPer The first term in square brackets coincides with the Klein-
branch E. (a) approaches the valuE;=\m;—mi from  Gordon one-body energy spectrum in a Coulombic potential
above, while the lower brandd_(«) approaches this value (scalar coupling while the second gives the first-order cor-
from below. ThusE=E_.= \/mzz—ml2 is a horizontal asymp- rection to it, in powers ofn,/m;.

tote of E(«) for the fermionlike cases.

In contrast, for scalarlikeng; /m,>1) cases, there are
bound-state solutions only for finite< «., beyond whichE
ceases to be real. The qualitative shapex() is that of a Next we consider the expansion®f («) in powers ofa.
distorted upper half-circled. being the apex reminiscent The result is
of the scalar Yukawa resufEg. (1.1)]. The critical point,

E.(a.) is the end-point for both branches for the scalarlike 1 a1

Expansion of E in powers of the coupling constant

case. The critical value af varies withm, /m,>0. We find ~ E+(@) =M1+ my— 2M 2 _gmra4

that a./n>1 for all scalarlike cases. The value./n=1

corresponds to the one-body Klein-Gordon limit,(/m, m;m, 1

— ) for whichE;.—m;=0. Forn’=0 statesg, lies in the X |

domain 1<a./n<2, where a./n=1 corresponds to the (my+my)7/n

equal-mass limitm,=m; [cf. Eq. (9.8)]. Forn’>0 states,

ac/n generally increases with increasimg, and becomes 5

arbitrarily large in the equal mass limitmg/m,—1). We —4 m; 1 +0(a (9.11)
shall now discuss the limiting cases of the physical, upper (m+my? 5. 1 ’

branch ofE(«) in some detail. n"i+s

One mass is large and the other is small wheren=n’+j+% and m,=m,m,/(m;+m,). We obtain

First we consider the one-body limits & (a), which  the expected nonrelativistic Balmer result @(a?). The
follow from Eg. (9.7) by making the substitution& =my(e O(a*) correction is not symmetric im; andm, due to the

+1), wheree=c;(m,/m,)+c,(my/my)?+- - -, and solv- different, fermionic and bosonic, natures of the particles. The
ing for the coefficientsc;. For m;/m,<1 we obtain the one body limits of Eq.(9.11) have the required Dirac and
fermionlike or Dirac limit: Klein-Gordon forms, as can be seen from the expressions
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1 a® 1
on? 87

m;
E+(_<1):m2+ml 4
my
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case where there is no decay, emission or absorption of real
(physica) chions(i.e., only “virtual” chions), we obtain ex-

act two-particle eigenstates of the Hamiltonian, using an un-
conventional “empty” vacuum state, which is annihilated by
both the positive- and negative-frequency parts of the
particle-field operators.

The resulting relativistic two-particle wave equation, for
the stationary states of the system, reduces to a pair of Dirac-
like radial equations for the variou¥” states. These equa-
tions are shown to have the radial Satirmer equation for
the relative motion of the two particles as the nonrelativistic

limit, and the Dirac and Klein-Gordon equatiofwgith scalar
coupling as the one-body limits. Analytical solutions for the
two-body bound-state eigenenergi@est massgsare ob-
m, 2 a 2 tained for the massless chion exchange=(0) case. The
E+(—< 1) =m+ mz[ 1-———+ shape of theE(a) or «(E) curves, wherex is the dimen-
my 2n*> 8n* sionless coupling constant, is discussed for various mass
Mo 2 combinationsm; /m, and variousJ® states.
+OH—2) ,ab ]
m;

(9.13 In the case of massive chion exchange#0), the eigen-
Note that Egs(9.12 and(9.13 are the same as the expan-

values and eigenfunctions must be obtained numerically,
which can be done easily by standard methods. We do not
sions of Eqs(9.9) and(9.10 in powers ofa, as they ought
to be.

4 m2a

My 2n2

present such solutions in this paper. Also, we do not discuss
the scattering-state solutions of the equations, though these
can be worked out readily.

Lastly, we mention that\-body eigenstates, wher&”
=3, and the corresponding relativisti®-body equations,

We have studied two-particle systems in a model QFT, ircan be worked out readily for the present model, as was
which fermions of masm; interact with bosons of mass,. ~ shown for the purely scalar model in R¢8], and for QED
The interaction is mediated by a real, scalar field of mass in Ref. [15]. Such equations are much more complicated,
(the “chion” field). The field equations were used to recastsince they possess all the complexity of relativistic many-
the Hamiltonian of the theory into a form in which the chion body equations. We do not discuss the=3 systems in this
propagator appears directly in the interaction term. For thgaper.
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