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Exact spinor-scalar bound states in a quantum field theory with scalar interactions

Volodymyr Shpytko* and Jurij Darewych
Department of Physics and Astronomy, York University, Toronto, Ontario, Canada M3J 1P3

~Received 28 December 2000; published 26 July 2001!

We study two-particle systems in a model quantum field theory in which scalar particles and spinor particles
interact via a mediating scalar field. The Lagrangian of the model is reformulated by using covariant Green’s
functions to solve for the mediating field in terms of the particle fields. This results in a Hamiltonian in which
the mediating-field propagator appears directly in the interaction term. It is shown that exact two-particle
eigenstates of the Hamiltonian can be determined. The resulting relativistic fermion-boson equation is shown
to have Dirac and Klein-Gordon one-particle limits. Analytical solutions for the bound state energy spectrum
are obtained for the case of massless mediating fields.
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I. INTRODUCTION

There are few examples of analytically solvable relativ
tic two-body wave equations, particularly equations deriv
from quantum field theory~QFT!. The principal exception is
the case of spinless~scalar! particles interacting via a medi
ating scalar field, the so-called scalar Yukawa or Wic
Cutkosky model. This model, therefore, has served as a
vorite testing ground for methods of solving bound-st
problems in QFT, beginning with the Wick-Cutkosky@1,2#
solution of the Bethe-Salpeter equation in the ladder appr
mation.

In earlier papers@3,4# it was shown that the scalar Yukaw
model can be recast in a form such thatexact two-body
eigenstates of the Hamiltonian, in the canonical equal-t
formalism, can be determined for the case where there ar
free ~physical! quanta of the mediating ‘‘chion’’ field~i.e.
only virtual chions!. This is achieved by the partial elimina
tion of the mediating chion field by means of Green’s fun
tions, by the use of the Feshbach-Villars formulation for t
scalar particle fields, and by the use of an ‘‘empty’’ vacuu
state. The resulting two-particle bound state mass spect
for the case of massless chion exchange, was found to

E65Am1
21m2

262m1m2A12
a2

n2, ~1.1!

where a is the effective dimensionless coupling consta
andn51,2, . . . is theprincipal quantum number.

It is evidently of interest to extend the method employ
in Refs.@3,4# to include spinor particle fields. As a first ste
we apply it to a generalized Yukawa model consisting
fermions, described by a spinor fieldC, and of bosons, de
scribed by a scalar fieldw, interacting via a mediating scala
field x. The Lagrangian of this model is presented in Sec.
A reformulation of the scalar particle field into two
component Feshbach-Villars form is given in Sec. III. Qua
tization of the model is summarized in Sec. IV, while t
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Hamiltonian is presented in Sec. V. An unconvention
‘‘empty’’ vacuum state is introduced, and one-particle eige
states are obtained, in Sec. VI. Relativistic two-partic
eigenstates are determined in Sec. VII, and their radial
composition is presented in Sec. VIII. Analytical solutions
the radial equations are obtained and discussed for
massless-exchange case in Sec. IX. Concluding remarks
given in Sec. X.

Before proceeding to the main body of our paper we su
marize and briefly discuss earlier purely scalar model res
@3,4#, for which the relativistic two-body bound-state spe
trum is given in Eq.~1.1!. This will set the stage for the
scalar-fermion system, which shares some features with
purely scalar model.

Expression~1.1! for E(a/n) has the shape of a distorte
semicircle. Indeed, in terms of the variablesx5(E22m1

2

2m2
2)/2m1m2 andy5a/n, Eq. ~1.1! corresponds to half of

the circle x21y251. The upper branchE1 of the energy
eigenvalue@Eq. ~1.1!# starts atm11m2 whena is zero, and
decreases monotonically to the valueEc5Am1

21m2
2 whena

reaches the critical valueac5n, beyond which the energy
ceases to be real. This behavior is reminiscent of what h
pens for the one-body Klein-Gordon-Coulomb and Dira
Coulomb systems. From E15m11m22 1

2 m1m2 /(m1
1m2)a2/n21O(a4) it is clear thatE1(a) has the correct
nonrelativistic Schro¨dinger ~Balmer! limit. It also has the
expected Klein-Gordon one-body limit~with scalar Coulom-
bic potential!, namely E62m1→6m2A12a2/n2 as m1
→`.

The lower branch,E2 , which starts fromum12m2u, rises
monotonically with increasinga to meet the upper branch a
Ec . From

E25um12m2u1
1

2S m1m2

um12m2u D a2

n2 1O~a4!

for m1Þm2, andE25m(a/n)1O(a3) for m15m25m, it
is clear that the lower branch does not have the Balmer li
at small a, and so is ‘‘unphysical’’ in this sense. The un
physical lower branch arises because an ‘‘empty’’ vacu
was used, so that positive and negative energy solut

of
.,
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b

y
f

r

n

n
ve

an

in
e

n-
ite
ra
s-
m

o
ca
th

it

,
es

can

ple

s in
ce

ving
rm
an-
with

ly.
on
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~rather than particles and antiparticles! are retained, and this
means that solutions with two-body energies of the typem1
1m2 , m12m2 , 2m11m2, and2m12m2 occur. However,
the use of the empty vacuum is the price that needs to
paid for obtaining analytical solutions.

Interestingly, the same spectrum Eq.~1.1! was obtained
previously by Berezin, Itzykson, and Zinn-Justin@5# as poles
of the scattering matrix in eikonal approximation, b
Todorov @6#, using a ‘‘quasipotential’’ one-time reduction o
the ladder Bethe-Salpeter equation, by Savrin and Troole@7#
as a solution of the ladder Bethe-Salpeter equation with
tarding propagators, and recently by Tretyak and Shpytko@8#
in a Fokker action formulation. Berezin, Itzykson, and Zin
Justin stated that their analysis implies that Eq.~1.1! con-
tains, in perturbation-theory language, all recoil, ladder, a
crossed ladder effects, but no radiative corrections. Howe
as pointed out recently@9#, results analogous to Eq.~1.1! but
for the massive chion exchange case~specifically form/m
50.15), lie somewhat above the numerical Feynm
Schwinger calculations of Nieuwenhuis and Tjon@10#, which
contain all effects save for radiative corrections.

The method of elimination of mediating fields, used
Refs. @3,4#, is to some extent similar to that used in th
formalism of Fokker action integrals in relativistic mecha
ics. Although the Fokker action formalism deals with a fin
number of degrees of freedom, in the case of scalar inte
tions its quantized counterpart@8# leads to the same expre
sion @Eq. ~1.1!# for the energy as a function of quantu
numbern as that obtained in Refs.@3,4#. The difference is in
different definitions ofn in the two treatments. This is due t
different definitions of scalar interactions in the mechani
and QFT pictures, and by quantization ambiguities of
classical Fokker action.

II. LAGRANGIAN FOR THE SCALAR-FERMION MODEL
AND ITS REFORMULATION

Our starting point in this paper is the Lagrangian dens
(c5\51)

L5C̄~ ign]n2g1x2m1!C1]nw* ]nw2m2
2w* w2g2w* wx

1
1

2
]nx]nx2

1

2
m2x2, ~2.1!

whereC is a spinor particle field,w is a scalar particle field
and x is the mediating scalar field, which can be massl
(m50) or massive (mÞ0).

The fields of model~2.1! satisfy the equations

~ ign]n2g1x2m1!C50, ~2.2!

~]n]n1m2
21g2x!w50, ~2.3!

and the conjugates of Eqs.~2.2! and ~2.3!, as well as

~]n]n1m2!x5r, ~2.4!

with
04501
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r52~g1C̄C1g2w* w!. ~2.5!

Equation~2.4! has the formal solution

x5x01x1 , ~2.6!

where

x15^D* r&ªE dx8D~x2x8!r~x8!, ~2.7!

dx5dNxdt ~in N11 dimensions!, x0(x) satisfies the homo-
geneous~or free field! equation

~]n]n1m2!x050, ~2.8!

and D(x2x8) is a covariant Green’s function~or chion
propagator, in the language of QFT! such that

~]n]n1m2!D~x2x8!5dN11~x2x8!. ~2.9!

Equation~2.9! does not specifyD(x2x8) uniquely since,
for example, any solution of the homogeneous equation
be added to it without invalidating Eq.~2.9!. This allows for
a certain freedom in the choice ofD(x), as is discussed in
standard texts~e.g. Refs.@11,12#!. Substitution of the formal
solution @Eq. ~2.6!# into Eqs.~2.2! and ~2.3! yields the ‘‘re-
duced’’ equations

„ign]n2g1~x01x1!2m1…C50, ~2.10!

~]n]n1m2
2!w52g2~x01x1!w.

~2.11!

These equations are derivable from the action princi
d*dxL50, corresponding to the Lagrangian density

L5C̄~ ign]n2m1!C1]nw* ]nw2m2
2w* w1x0r

1
1

2
r^D* r&, ~2.12!

provided thatD(x2x8)5D(x82x).
QFT’s based on Eqs.~2.1! and~2.12! are equivalent in the

sense that they lead to identical invariant matrix element
various order of covariant perturbation theory. The differen
is that, in the formulation based on Eq.~2.12!, the interaction
term that contains the chion propagatorD(x2x8) leads to
Feynman diagrams that correspond to processes invol
virtual chions only. On the other hand, the interaction te
that containsx0 corresponds to Feynman diagrams that c
not be generated by the previous term, such as those
external~physical! chion lines.

The reformulated Lagrangian@Eq. ~2.12!# contains two
types of interactions: ‘‘local’’ interactions,x0r, of the par-

ticle densitiesw* (x)w(x) andC̄(x)C(x) with the free me-
diating field x0(x), and the ‘‘nonlocal’’ interaction,
1
2 r^D* r&, in which the chion propagator appears explicit
This may seem like a complication rather than simplificati
2-2
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EXACT SPINOR-SCALAR BOUND STATES IN A . . . PHYSICAL REVIEW D64 045012
of the theory based on Eq.~2.1!. However, as we will show,
Eq. ~2.12! leads to a model for which exact eigenstates of
Hamiltonian can be obtained.

III. FESHBACH-VILLARS FORMULATION
OF THE SCALAR FIELD

We rewrite the scalar fieldw of this model in the
Feshbach-Villars~FV! formulation @13#. The reason for do-
ing so is that this leads to a QFT Hamiltonian which
Schrödinger-like in form, for which exact eigensolutions ca
be obtained. In the FV formulation, the fieldw and its time
derivativeẇ are replaced by a two-component vector whi
is defined as

f5F f15
1

A2m2

~m2w1 i ẇ !

f25
1

A2m2

~m2w2 i ẇ !
G , ~3.1!

so that, for example, 2m2w* w5(f1* 1f2* )(f11f2)
5f†htf, whereh andt are matrices:

h5F1 0

0 21G and t5F 1 1

21 21G . ~3.2!

In the FV formulation the equation of motion~2.3! takes on
the form

i ḟ52
1

2m2
¹2tf1m2hf1

g2

2m2
tfx, ~3.3!

or, upon using Eq.~2.6!, the form

i ḟ52
1

2m2
¹2tf1m2hf1

g2

2m2
tf~x01^D* r&!,

~3.4!

where

r52S g1C̄C1
g2

2m2
f†htf D .

Equations~3.4! and ~2.10! are derivable from the La
grangian density

LFV5C̄~ ign]n2m1!C1 if†~x!hḟ~x!

2
1

2m2
¹f̄~x!•¹f~x!2m2f†~x!f~x!1x0r

1
1

2
r^D* r&, ~3.5!

wheref̄5f†htf.
04501
e
IV. QUANTIZATION

The momenta corresponding tof1 andf2 are

pf1
5

]LFV

]ḟ1

5 if1* , pf2
52 if2* . ~4.1!

Thus the Hamiltonian density is given by the expression

H~x!5C†~x!ĥ1~x!C~x!1f†~x!hĥ2~x!f~x!2x0~x!r~x!

2
1

2
r~x!^D* r&, ~4.2!

where ĥ1(x)52 iaW •¹1m1b, ĥ2(x)5t(21/2m2)¹2

1m2h, and where we have suppressed terms l
¹•@f̄(x)¹f(x)# that vanish upon integration and applic
tion of Gauss’ theorem. We use canonical equal-time qua
zation, whereupon the nonvanishing anticommutation re
tions and commutation relations are

$Ca~x,t !,Cb
†~y,t !%5dabdN~x2y!, a,b51 . . . 4,

@fa~x,t !,fb
†~y,t !#5habd

N~x2y!, a,b51,2, ~4.3!

wherehab are elements of theh matrix @Eq. ~3.2!#. Using
these commutation relations, the Hamiltonian operator
be written as

H5E dNx@H0~x!1Hx~x!1HI~x!#, ~4.4!

where~suppressing the Hamiltonian of the free chion field!

H0~x!5C†~x!ĥ1~x!C~x!1f†~x!hĥ2~x!f~x!, ~4.5!

Hx~x!52x0~x!r~x! ~4.6!

and

;HI~x!;52
g1

2

2 E dx8D~x2x8!C̄~x!@C̄~x8!C~x8!#C~x!

2
g2

2

8m2
2E dx8D~x2x8!f̄~x!@f̄~x8!f~x8!#f~x!

2
g1g2

4m2
E dx8D~x2x8!f̄~x!@C̄~x8!C~x8!#f~x!

2
g1g2

4m2
E dx8D~x2x8!C̄~x!@f̄~x8!f~x8!#C~x!,

~4.7!

and where we have used commutation relations~4.3! to re-
order f̄(x)f(x)f̄(x8)f(x8) as f̄(x)@f̄(x8)f(x8)#f(x)

and C̄(x)C(x)C̄(x8)C(x8) as C̄(x)@C̄(x8)C(x8)#C(x).
Note that no infinities are dropped upon performing a ‘‘no
mal ordering’’ of scalar field operators, since none arise
account of the property thatt250. However, in the case o
the spinor field, reordering yields an infinite constant whi
2-3
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can be absorbed into the total energy of the system.
course, one can simply start from the normal-ordered Ham
tonian. We stress that this normal ordering is not the sam
the conventional one@14#, since we normal order the entir
field operators,f,c and f†,c†, not positive and negative
frequency parts individually. For this reason, we denote it
;H; rather than as :H:.

As already mentioned,HI contains a covariant chion
propagator; hence in conventional covariant perturba
theory it leads to Feynman diagrams with internal ch
lines. On the other hand,Hx leads to Feynman diagram
with external chions. However, we shall not pursue covari
perturbation theory in this work, and so shall not consid
that approach further. Rather, we shall consider an appro
that leads to some exact eigenstates of Hamiltonian~4.4!, but
with Hx50.

V. TRUNCATED MODEL

In what follows we shall consider a truncated model
which the termHx in Eq. ~4.4! is suppressed. Such a Ham
tonian is appropriate for describing systems for which th
is no annihilation or decay into chions, or chion-phion
psion scattering.

In the Schro¨dinger picture we can taket50. Therefore,
we shall use the notation that, sayf(x,t50)5f(x), etc., for
the QFT operators. This allows us to express the interac
part of Hamiltonian~4.7! as

;HI~x!;52
g1

2

2 E dNx8G~x2x8!C̄~x!@C̄~x8!C~x8!#C~x!

2
g2

2

8m2
2E dNx8G~x2x8!f̄~x!@f̄~x8!f~x8!#f~x!

2
g1g2

4m2
E dNx8G~x2x8!f̄~x!@C̄~x8!C~x8!#f~x!

2
g1g2

4m2
E dNx8G~x2x8!C̄~x!

3@f̄~x8!f~x8!#C~x!, ~5.1!

where

G~x2x8!5E
2`

`

D~x2x8!dt8

5
1

~2p!NE dNpeip•(x2x8)
1

p21m2 . ~5.2!

Explicitly, for N53 spatial dimensions this becomes

G~x2x8!5
1

4p

e2mux2x8u

ux2x8u
, ~5.3!

for N52 it is
04501
f
il-
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G~x2x8!5
1

2p
K0~mux2x8u!, ~5.4!

where K0(z) is the modified Bessel function, whereas f
N51 it has the form

G~x2x8!5
1

2m
e2mux2x8u. ~5.5!

VI. EMPTY VACUUM AND ONE-PARTICLE
EIGENSTATES

As in Refs.@3,4#, we define an empty vacuum stateu0̃&,
such that

fau0̃&5Cau0̃&50. ~6.1!

This is different from the ‘‘Dirac vacuum’’u0& of conven-
tional QFT, which is annihilated by only the positive fre
quency parts ofw andC and by the negative frequency par
of w† andC†.

With definition ~6.1!, the one-particle scalar state define
as

u1f&5E dNxf†~x!h f ~x!u0̃&, ~6.2!

wheref (x) is a two-component vector, is an eigenstate of
truncated QFT Hamiltonian (Hx50) with eigenvalueE1
provided thatf (x) is a solution of the equation

ĥ2~x! f ~x!5E1f ~x!. ~6.3!

This is just the free-particle Klein-Gordon~KG! equation for
stationary states~in Feshbach-Villars form!. It has, of course,
all the usual negative-energy ‘‘pathologies’’ of the KG equ
tion. The presence of negative-energy solutions is a con
quence of the use of the empty vacuum.

Similarly, the state

u1C&5E d3xF̃a~x!Ca
†~x!u0̃& ~6.4!

is an eigenstate of ;H; with eigenenergyE1, provided that
the four coefficient amplitudesF̃a(x) are solutions of

$@h1~x!#ab2E1dab%F̃b~x!50 ~6.5!

or

@h1~x!2E1#F̃~x!50 ~6.6!

in matrix notation, that is provided the spinorF̃ is a solution
of the usual Dirac eigenvalue equation~6.6!. Note that sum-
mation on repeated spinor indicesa andb is implied in Eqs.
~6.4! and ~6.5!.
2-4
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VII. TWO-PARTICLE EIGENSTATES

We consider a mixed two-particle phion-plus-psion s
tem described by

u2&5E dNxdNyFa j~x,y!C†
a~x!f†

j~y!u0̃&, ~7.1!

where summation on repeated spinor and boson indicea
and j is implied. This state is an exact eigenstate of the tr
cated QFT Hamiltonian@Eq. ~4.4!, with Hx50#, provided
that the 432 coefficient matrixF5@Fa j # is a solution of the
two-body equation

ĥ1~x!F1@hĥ2~y!hFT~x,y!#T1V~x2y!g0@hthFT~x,y!#T

5EF, ~7.2!

where the superscript T stands for ‘‘transpose.’’ The poten
here is given by

V~x2y!52
g1g2

2m2
G~x2y! ~7.3!

whereG(x2y) is specified in Eqs.~5.2!–~5.5!. Alternatively,
we can regardu2& as a variational approximation to th
eigenstate of the complete Hamiltonian@Eq. ~4.4!#, since
^2uHxu2&50.

For u2& to be an eigenstate of the momentum opera
with eigenvaluePtotal50, it is necessary that the 432 ‘‘hy-
perspinor’’F(x,y) be of the formF(r), wherer5x2y. Let
us define

F~r!5Fs~r!

t~r! G , ~7.4!

where, inN53 spatial dimensions,

s~r!5FF11~r! F12~r!

F21~r! F22~r!G , t~r!5FF31~r! F32~r!

F41~r! F42~r!G .
~7.5!

Then Eq.~7.2! can be written as two coupled equations f
the 232 matricess(r), andt(r);

2 i s•,t~r!1$h@ ĥ2~r!1tV~r!#hsT~r!%T1~m12E!s~r!

50, ~7.6!

2 i s•,s~r!1$h@ ĥ2~r!2tV~r!#htT~r!%T2~m11E!t~r!

50. ~7.7!

In the absence of interactions~i.e., V50), these equations
have solutions with the following four types of energy eige
values: v(p,m1)1v(p,m2), 2v(p,m1)1v(p,m2),
v(p,m1)2v(p,m2), and 2v(p,m1)2v(p,m2), where
v(p,m)5Ap21m2. The first and last are positive- an
negative-energy eigenvalues, respectively, while the mid
04501
-

-

l

r

-
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two are ‘‘mixed.’’ The appearance of the negative energie
a reflection of our use of the empty vacuum state, as
cussed earlier.

VIII. JP EIGENSTATES AND RADIAL REDUCTION
IN NÄ3 DIMENSIONS

Hamiltonian~4.4! of the theory commutes with the tota
angular momentum and parity operators. If the two-parti
state@Eq. ~7.1!# is to be an eigenstate ofJ3, where

J5E d3xC†~x,t !j~x!C~x,t !1E d3xf†~x,t !h l~x!f~x,t !,

~8.1!

with j(x)5 l(x)1s52 ix3,x1
1
2 s, then we require that the

hyperspinorF @cf. Eq. ~7.1!# must satisfy the equation

@ j 3~x!1 l 3~y!#F~x,y!5mJF~x,y!. ~8.2!

In other words, in the rest frame wherePtotalu2&50u2&, we
require that

S l 3~r!1
1

2
s3DF~r!5mjF~r!. ~8.3!

In a similar fashionJ2u2&5 j ( j 11)u2& implies that the ma-
trix F in the rest frame must satisfy the equation

S l21
3

4
1 l•sDF~r!5 j ~ j 11!F~r!. ~8.4!

The componentss and t of F satisfy Eqs.~8.3! and ~8.4!
individually.

For u2& to be a parity eigenstate, and sinceV(r ) is invari-
ant under space reflection, the matrixF(r) must have the
property that

bF~r!56F~2r!, ~8.5!

where the6 are the parity quantum numbers. This mea
that

s~2r!56s~r!, t~2r!57t~r!. ~8.6!

From Eqs.~8.3!–~8.6! it follows that

F~r!5Fs~r!

t~r! G
5F k1~r !z j ,mj

l 5 j 6(1/2)~ r̂! 2k2~r !z j ,mj

l 5 j 6(1/2)~ r̂!

q1~r !z j ,mj

l5 j 7(1/2)~ r̂! 2q2~r !z j ,mj

l5 j 7(1/2)~ r̂!
G ,

r̂5
r

r
, ~8.7!

where the upper sign corresponds to parity ‘‘1,’’ and the
lower to parity ‘‘2,’’ and k1 , k2 , q1, andq2 are radial func-
tions. The normalized ‘‘spinor harmonics’’z j ,mj

l 5 j 6(1/2)( r̂) are,

explicitly,
2-5
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z j ,mj

l 5 j 2(1/2)~ r̂!5
1

A2l 11 FAl 1mj1
1
2 Yl

mj 2(1/2)
~ r̂!

Al 2mj1
1
2 Yl

mj 1(1/2)
~ r̂!

G
~8.8!

and

z j ,mj

l 5 j 1(1/2)~ r̂!5
1

A2l 11 F Al 2mj1
1
2 Yl

mj 2(1/2)
~ r̂!

2Al 1mj1
1
2 Yl

mj 1(1/2)
~ r̂!

G ,

~8.9!

Finally, substituting Eq.~8.7! into Eqs.~7.6! and~7.7! we
find that the radial functions must satisfy the following sy
tem of four equations:

P̂s
7q11

P̂6
2

2m2
~k11k2!1~m11m2!k11V~r !~k11k2!5Ek1 ,

P̂s
7q22

P̂6
2

2m2
~k11k2!1~m12m2!k22V~r !~k11k2!5Ek2 ,

P̂s
6k11

P̂7
2

2m2
~q11q2!1~2m11m2!q12V~r !~q11q2!

5Eq1 ,

P̂s
6k22

P̂7
2

2m2
~q11q2!2~m11m2!q21V~r !~q11q2!

5Eq2 , ~8.10!
04501
-

whereV(r )52a(e2mr /r ) with a5g1g2/8pm2, and where
we have introduced the operators

P̂s
6
ª2

i

r H r
d

dr
1@16~ j 1 1

2 !#J ,

~8.11!

P̂6
2
ª2

1

r S r
d2

dr2
12

d

dr
2

~ j 11/2!~ j 11/261!

r D .

If we let E5«1m1 and consider them1→` limit of Eq.
~8.10!, we find thatq1 ,q2→0 while k11k2 satisfies the ra-
dial Klein-Gordon equation~with scalar coupling!. Similarly,
if m1 is replaced bym2 in this procedure, thenk2 ,q2→0
while q1 and 2 ik1 satisfy the radial Dirac equations~with
scalar coupling!. Thus equations Eqs.~8.10! have the ex-
pected one-body limits.

Defining q65q16q2 , andk65k16k2, then adding the
first two, and separately the last two, of Eqs.~8.10!, we ob-
tain

2 i
dq1

dr
5~E2m1!k12m2k21

i

r
@17~ j 1 1

2 !#q1 ,

~8.12!

2 i
dk1

dr
5~E1m1!q12m2q21

i

r
@16~ j 1 1

2 !#k1 .

Using definitions~8.11!, differentiating Eq.~8.12!, and sub-
stituting the result into Eqs.~8.10!, we obtain
2
i

2m2
F ~E1m11m2!q18 1

m2@17~ j 1 1
2 !#

r
~q11q2!G2

17~ j 1 1
2 !

2m2r
k18 1 F ~ j 1 1

2 !221

2r 2m2

1VGk1

1
m11m22E

2
~k11k2!50, ~8.13!

2
i

2m2
F ~m22m12E!q18 1

m2@17~ j 1 1
2 !#

r
~q12q2!G1

17~ j 1 1
2 !

2m2r
k18 2F ~ j 1 1

2 !221

2r 2m2

1VGk1

1
m12m22E

2
~k12k2!50, ~8.14!

2
i

2m2
F ~m22m11E!k18 1

m2@16~ j 1 1
2 !#

r
~k11k2!G2

16~ j 1 1
2 !

2m2r
q18 1F ~ j 1 1

2 !221

2r 2m2

2VGq1

1
2m11m22E

2
~q11q2!50, ~8.15!
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2
i

2m2
F ~m21m12E!k18 1

m2@16~ j 1 1
2 !#

r
~k12k2!G1

16~ j 1 1
2 !

2m2r
q18 2F ~ j 1 1

2 !221

2r 2m2

2VGq1

2
m11m21E

2
~q12q2!50, ~8.16!
.

s
nd
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-

where q18 5dq1 /dr, etc. Equations~8.13!–~8.16! do not
containq28 and k28 . Therefore, solving Eqs.~8.12! for q2

and k2 , putting Q152 ik1 , and substituting into Eqs
~8.13! and~8.15! @or into Eqs.~8.14! and~8.16!# leads to the
final system of two radial Dirac-like equations:

Q18 1
16~ j 1 1

2 !

r
Q12

m2

E
V~r !q12e2q150,

~8.17!

2q18 2
17~ j 1 1

2 !

r
q11

m2

E
V~r !Q12e1Q150,

where

e15
~E2m12m2!~E2m11m2!

2E
,

e25
~E1m11m2!~E1m12m2!

2E
. ~8.18!

If we make the replacementE5m11m21«, and assume
that u«u,uVu!m1 ,m2, then equations Eqs.~8.17! reduce to

Q19 2
k~k11!

r 2
Q112mr„«2V~r !…Q150,

mr5
m1m2

m11m2
,

~8.19!

which comprises just the reduced radial Schro¨dinger equa-
tion for the relative motion of the two particles of massesm1
and m2, with l 5 j 11/2 if k5 j 11/25 l and l 5 j 21/2 if k
52( j 11/2)52( l 11). Thus the positive-energy solution
have the expected nonrelativistic limit. On the other ha
for the negative-energy solutions, ifE52(m11m21«) and
u«u,uVu!m1 ,m2, Eqs.~8.17! reduce to

q19 2
k~k21!

r 2
q112mr@«1V~r !#q150, ~8.20!

which is the radial Schro¨dinger equation, withl 5 j 11/2 if
k52( j 11/2)52 l and l 5 j 21/2 if k5 j 11/25 l 11. We
note that the sign ofV(r ) is effectively reversed for the
negative-energy solutions, relative to that for the positi
04501
,

-

energy solutions of Eq.~8.19!. This means that if there ar
positive-energy bound states, then there are no bound s
for the negative-energy solutions or vice versa. This is si
lar to what occurs for the scalar Yukawa model@3,4#.

We also note that for the mixed-energy solutions of t
type E5m12m22«, where we takem1.m2 for definite-
ness, we find that the corresponding nonrelativistic reduc
leads to an equation exactly like Eqs.~8.19!, but with an
unphysical reduced massmr5m1m2 /(m12m2). This indi-
cates that Eqs.~8.17! also admit ‘‘unphysical’’ mixed-energy
solutions, in addition to the positive- and negative-ene
solutions. This is consistent with our earlier observation
Sec. VII regarding the solutions for the ‘‘free-particle’’ cas
with V50.

The coupled equations~8.17! can be solved readily, for
arbitrary massm of the mediating scalar field, by standa
numerical techniques. OnceQ1 andq1 have been obtained
k2 andq2 can be determined from Eqs.~8.12!. This, then,
determinesF(r) completely, for anyJP state.

IX. TWO-BODY BOUND STATES IN 3 ¿1 FOR MASSLESS
CHION EXCHANGE

We consider the solution of Eqs.~8.17! for N53 and
massless chion exchange~i.e., m50), in which case the in-
terparticle potential is Coulombic @i.e., V(r )5
2(g1g2/8pm2)(1/r )#, and analytical solutions for the eigen
values and eigenfunctions can be obtained. Thus, putting

Q15e2br (
n50

ajr
g211n, q15e2br (

n50
bjr

g211n,

~9.1!

we obtain

~k1g1n!an1ãbn2ban212e2bn2150,

~k2g2n!bn2ãan1bbn212e1an2150,
~9.2!

where

ã5a
m2

E
, a5

g1g2

8pm2
, k56~ j 1 1

2 !, n50,1,2, . . . .

~9.3!

The casen50, with an215bn2150, givesg5Ak21ã2.
2-7
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In addition, for Q1 ,q1 to be well behaved at infinity
series~9.1! must terminate atn5n8>0. Then Eqs.~9.2!,
with n5n811 andan8115bn81150, give the energy spec
trum formula

n81g5
m1ã

b
n850,1,2, . . . where b5A2e1e2.

~9.4!

Note that positive square roots must be chosen forg andb in
order that the wave functions be well behaved at the or
and at infinity. Sincen8>0 and g and b are positive, it
follows from Eq.~9.4! that ã must be positive, which, from
its definition in Eqs.~9.3!, means that forg1g2.0 @i.e., an
attractive potentialV(r )52a/r #, the energy eigenvalueE
must be positive. This, together with the requirement th
2e1e2.0 implies that the bound-state energy spectrum
this fermion-scalar system withscalar Coulombic coupling
must lie in the domainum12m2u,E,m11m2, exactly as
for the scalar Yukawa model~1.1! @4#.

It is convenient to rewrite Eq.~9.4! in the form

n81Ak21
a2m2

2

E2
5

a

A12w2
, ~9.5!
ar
m

te

-

l

04501
n

t
r

where

w5
E22m1

22m2
2

2m1m2
.

The eigenvalue spectrum equation~9.5! is not symmetric
with respect to the particle masses. This reflects the diffe
nature of the particles. The massm1 belongs to the spinor
particle and the massm2 corresponds to the scalar one. No

that by puttingñ5n81A( j 1 1
2 )21(a2m2

2/E2) one can re-
write Eq. ~9.5! in the form

E25m1
21m2

262m1m2A12
a2

ñ2
, ~9.6!

which formally coincides with the energy spectrum@Eq.
~1.1!# for two scalar particles with scalar interaction obtain
in Refs.@3,4#. But here the ‘‘quantum number’’ñ depends on
the energy.

Equation~9.5! is exact and gives the energy spectrum
the two-particle~scalar plus fermion! system. However, the
explicit determination of the functionE5E(a,m1 ,m2) for
various states requires the solution of an algebraic equa
of the sixth order inE2. By contrast, the inverse dependen
a5a(E,m1 ,m2) is relatively simple:
a5
2m1EA12w2@2m1n8E1Ak2~E21m1

22m2
2!214m1

2m2
2n82~12w2!#

~E21m1
22m2

2!2
. ~9.7!
nds

f

This solution, though analytical, is not particularly transp
ent, except for some special cases, such as the equal-
states withn850 ~i.e., n5n81 j 11/25 j 11/2), for which

a52nA12S E

2mD 2

or E52mA12S a

2nD 2

n5 j 1
1

2
, ~9.8!

wherem5m15m2. This shows that equal-mass bound sta
are possible only fora,2n for n850 ~i.e. n5 j 1 1

2 ) states,
and thatE50 at the critical value ofac52n. However, for
n8.0 states of the equal-mass case, the shape ofE(a) is
quite unlike the quarter circle@Eq. ~9.8!#. Rather,E(a) de-
creases monotonically fromE(0)52m towards zero, asa
→`.

As an example, in Fig. 1 we plota(E)/n for n850 states
~for which n5 j 11/2), for three different mass combina
tions. The equal-mass curve is labeledm1 /m251, and cor-
responds to the quarter circle of Eq.~9.8!. The deformed
semicircle corresponds tom1 /m252. The apex of this curve
is the critical value ofa beyond which there are no rea
solutions for the two-particle bound state massE. The two-
-
ass

s

branch curve straddling the vertical asymptote correspo
to m1 /m251/2. The vertical asymptote occurs atE/m2

5A12(m1 /m2)25A3/2. There is a real solutionE for any
value ofa for this m1 /m2,1 case. Note that every one o
the curves lies in the domainum12m2u,E,m11m2.

We can, of course, evaluate and plota(E) for any n8, j

FIG. 1. Plot ofa/n vs E/m2 for n850 (n5 j 11/2) states of
three different mass combinations, wherem1 is the fermion mass
andm2 is the boson mass.
2-8
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state and any values ofm1 andm2, using the analytical for-
mula @Eq. ~9.7!#. However, it is instructive to outline the
general behavior ofE(a), without specifying particular
cases.

First of all, we recall that normalizable bound-state so
tions ~for which b.0) occur only for um12m2u,E,m1
1m2. There are two branches to the solutionE(a), much
like for the scalar Yukawa model@Eq. ~1.1!# described in
Sec. I. The upper branchE1(a) begins with the Balmer
form

E15m11m22
1

2

m1m2

m11m2

a2

n2 1O~a4!

at low a, then decreases monotonically towards a limiti
value Ec . There is also a lower ‘‘unphysical’’ branch tha
starts off as

E25um12m2u1
1

2

m1m2

um12m2u
a2

n21O~a4!

for m1Þm2 but asE25ma/n1O(a3) for m15m25m, and
increases monotonically towardEc . The lower branch is no
of Balmer form at lowa.

The qualitative behavior ofE(a) is different for the fer-
mionlike casem1,m2 and the scalarlike casem1.m2. This
is evident from the one-body limits, described below. For
fermionlike case there are bound-state solutions for all va
of a, no matter how large. Indeed, asa→`, the upper
branch E1(a) approaches the valueEc5Am2

22m1
2 from

above, while the lower branchE2(a) approaches this valu
from below. ThusE5Ec5Am2

22m1
2 is a horizontal asymp-

tote of E(a) for the fermionlike cases.
In contrast, for scalarlike (m1 /m2.1) cases, there ar

bound-state solutions only for finitea<ac , beyond whichE
ceases to be real. The qualitative shape ofa(E) is that of a
distorted upper half-circle (ac being the apex!, reminiscent
of the scalar Yukawa result@Eq. ~1.1!#. The critical point,
Ec(ac) is the end-point for both branches for the scalarl
case. The critical value ofa varies withm1 /m2.0. We find
that ac /n.1 for all scalarlike cases. The valueac /n51
corresponds to the one-body Klein-Gordon limit (m1 /m2
→`) for which Ec2m150. Forn850 states,ac lies in the
domain 1<ac /n<2, where ac /n51 corresponds to the
equal-mass limit,m25m1 @cf. Eq. ~9.8!#. For n8.0 states,
ac /n generally increases with increasingn8, and becomes
arbitrarily large in the equal mass limit (m1 /m2→1). We
shall now discuss the limiting cases of the physical, up
branch ofE(a) in some detail.

One mass is large and the other is small

First we consider the one-body limits ofE1(a), which
follow from Eq. ~9.7! by making the substitutionsE5ma(«
11), where«5c1(mb /ma)1c2(mb /ma)21•••, and solv-
ing for the coefficientsci . For m1 /m2,1 we obtain the
fermionlike or Dirac limit:
04501
-

e
s

r

E1S m1

m2
,1D5m21m1HA12

a2

~n81Aa21k2!2

1
m1

m2

a2

2~n81Aa21k2!2

3S 12
2a2

Aa21k2~n81Aa21k2!
D

1OF S m1

m2
D 2G J . ~9.9!

The first term in the square brackets is just the Dirac o
body energy spectrum for a Coulombic potential~scalar cou-
pling!, and the second one gives the first order correction
m1 /m2.

For m2 /m1,1 the expansion yields the scalar or Klei
Gordon limit:

E1S m2

m1
,1D5m11m2HA12

a2

n2
1

m2

m1

a2

2n2

1OF S m2

m1
D 2G J . ~9.10!

The first term in square brackets coincides with the Kle
Gordon one-body energy spectrum in a Coulombic poten
~scalar coupling!, while the second gives the first-order co
rection to it, in powers ofm2 /m1.

Expansion of E in powers of the coupling constant

Next we consider the expansion ofE1(a) in powers ofa.
The result is

E1~a!5m11m22
1

2
mr

a2

n2
2

1

8
mra

4

3F S 11
m1m2

~m11m2!2D 1

n4

24
m2

2

~m11m2!2

1

n3S j 1
1

2D G1O~a6!, ~9.11!

where n5n81 j 1 1
2 and mr5m1m2 /(m11m2). We obtain

the expected nonrelativistic Balmer result atO(a2). The
O(a4) correction is not symmetric inm1 andm2 due to the
different, fermionic and bosonic, natures of the particles. T
one body limits of Eq.~9.11! have the required Dirac an
Klein-Gordon forms, as can be seen from the expression
2-9
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E1S m1

m2
,1D5m21m1H 12

a2

2n2
2

1

8
a4

3S 1

n4
2

4

n3S j 1
1

2D D
1

m1

m2 S a2

2n2
2

3a4

2n3S j 1
1

2D D 1OF S m1

m2
D 2

,a6GJ ,

~9.12!

E1S m2

m1
,1D5m11m2H 12

a2

2n2
2

a4

8n4
1

m2

m1

a2

2n2

1OF S m2

m1
D 2

,a6G J . ~9.13!

Note that Eqs.~9.12! and ~9.13! are the same as the expa
sions of Eqs.~9.9! and ~9.10! in powers ofa, as they ought
to be.

X. CONCLUDING REMARKS

We have studied two-particle systems in a model QFT
which fermions of massm1 interact with bosons of massm2.
The interaction is mediated by a real, scalar field of masm
~the ‘‘chion’’ field!. The field equations were used to reca
the Hamiltonian of the theory into a form in which the chio
propagator appears directly in the interaction term. For
s

04501
n

t

e

case where there is no decay, emission or absorption of
~physical! chions~i.e., only ‘‘virtual’’ chions!, we obtain ex-
act two-particle eigenstates of the Hamiltonian, using an
conventional ‘‘empty’’ vacuum state, which is annihilated b
both the positive- and negative-frequency parts of
particle-field operators.

The resulting relativistic two-particle wave equation, f
the stationary states of the system, reduces to a pair of Di
like radial equations for the variousJP states. These equa
tions are shown to have the radial Schro¨dinger equation for
the relative motion of the two particles as the nonrelativis
limit, and the Dirac and Klein-Gordon equations~with scalar
coupling! as the one-body limits. Analytical solutions for th
two-body bound-state eigenenergies~rest masses! are ob-
tained for the massless chion exchange (m50) case. The
shape of theE(a) or a(E) curves, wherea is the dimen-
sionless coupling constant, is discussed for various m
combinationsm1 /m2 and variousnJP states.

In the case of massive chion exchange (mÞ0), the eigen-
values and eigenfunctions must be obtained numerica
which can be done easily by standard methods. We do
present such solutions in this paper. Also, we do not disc
the scattering-state solutions of the equations, though th
can be worked out readily.

Lastly, we mention thatN-body eigenstates, whereN
>3, and the corresponding relativisticN-body equations,
can be worked out readily for the present model, as w
shown for the purely scalar model in Ref.@3#, and for QED
in Ref. @15#. Such equations are much more complicat
since they possess all the complexity of relativistic man
body equations. We do not discuss theN>3 systems in this
paper.
s
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