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Quantum fluctuations of radiation pressure
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Quantum fluctuations of electromagnetic radiation pressure are discussed. We use an approach based on the
guantum stress tensor to calculate the fluctuations in velocity and position of a mirror subjected to electro-
magnetic radiation. Our approach reveals that radiation pressure fluctuations in the case of a coherent state are
due to a cross term between vacuum and state dependent terms in a stress tensor operator product. Thus
observation of these fluctuations would entail experimental confirmation of this cross term. We first analyze the
pressure fluctuations on a single, perfectly reflecting mirror, and then study the case of an interferometer. This
involves a study of the effects of multiple bounces in one arm, as well as the correlations of the pressure
fluctuations between arms of the interferometer. In all cases, our results are consistent with those previously
obtained by Caves using different methods. We argue that the agreement between the different methods
supports the reality of the cross term and justifies the methods used in its evaluation.
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[. INTRODUCTION arises from a cancellation between the cross term and the
fully normal ordered term. In Sec. IV, we turn to the discus-

Classically, a beam of light falling on a mirror exerts a sion of an interferometer. We first study the effects of mul-
force and the force can be written as the integral of the Maxdiple bounces in a single arm, and reproduce the r¢4.2|
well stress tensor. When we treat this pr0b|em guantum mé'hat the effect of the radiation pressure fluctuations grows as
chanically, then the force undergoes fluctuations. This is 4he square of the number of bounces. We also show how our
necessary consequence of the fact that physically realizabRPproach may be used to discuss the situation where the
quantum states are not eigenstates of the stress tensor opdfgerferometer arms are FabryiBecavities. Finally, we dis-
tor. These radiation pressure fluctuations play an importarguss the correlation between the fluctuations in the two in-
role in limiting the sensitivity of laser interferometer detec- terferometer arms, and show why they are in fact uncorre-
tors of gravitational radiation, as was first analyzed by Cavedated. Our results are summarized and discussed in Sec. V.
[1,2]. His approach is based on the photon number fluctua-
tions in a coherent state, and we will r(_afer to it as the photc_Jn Il. ENERGY-MOMENTUM TENSOR FLUCTUATIONS
number approach. The purpose of this paper is to examine
radiation pressure fluctuations using the quantum stress ten- It is well known that stress tensor operators can be renor-
sor. This requires the correlation function of a pair of stressnalized by normal ordering:
tensor operators, which will be discussed in Sec. Il. There it
is shown that the correlation function can be decomposed T =T (Tu)o 1)
into three parts: a term which is fully normal-ordered, a state . . .
l/ri]gvevzzngser:nvﬁl?eﬁgéﬁg,t:rnrg laalet(\:n:g; tt?lremva\\lzlzgﬁg (f:ﬁlr;tz‘?/\_/hich is subtraction of the_,- Minkowski vacyum_ expect_ation
tions and the matter content of the quantum state. It is thi@alue' However, the quantityT,,,(x)::T,,(x"):) is sl di-

. . . Lo ergent in the limit thatx’ —x. The divergent part of this
cross term which will be of greatest interest in this paper, a%uantity can be decomposed into a state-independent part

it is responsible for the radiation pressure fluctuations in & '~ <i-1c Jependent part. To do So. we mav use the follow-
coherent state. These fluctuations will be discussed in Seﬁ,]g identity wh?ch foIIovF\)/s from Wick's theorei/‘n'

[Il for the case of a laser beam impinging upon a single,
perfectly reflecting mirror. The analysis will be done first N o o )
using the photon number approach, and then using the stress: #1832 ¢3¢4:=:b1b2b3bs: +: h1d3:(b2ba)o

tensor approach. In the latter case, we show how the calcu- . : . :

lations may be performed in coordinate space, where an in- Tid1¢ai{$ads)ot i dadsi{ 1l
tegration over space and time is needed to remove a singu- +:dops{Prd3)oT{(P1d3)o{ Padado
larity in the cross term. We then show how to obtain the

same result more simply using an orthonormal basis of wave +(b1ba)o( b23)0- 2

packet modes. In Sec. Ill D, we examine the case of a single
mode number eigenstate, and show that the radiation prestere the ¢; are free bosonic fields and), denotes the
sure fluctuations vanish. In the stress tensor approach, thidinkowski vacuum expectation value. The first term is fully
normal-ordered, the next four are cross terms and the final
two are pure vacuum terms. The physics of these various
*Email address: wu@cosmos.phy.tufts.edu terms was discussed in R¢8]. Here ¢»; and ¢, are evalu-
"Email address: ford@cosmos.phy.tufts.edu ated at poink, whereasp,; and ¢, are evaluated at point .
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In the coincidence limitx'—x, the fully normal-ordered F(x,x')
term is finite, but the cross term and vacuum terms diverge. (T ()T (X)) cross= ’ — (7)
The singularity of the cross term is of particular significance (x=x")

because, unlike the vacuum term, it is state-dependent. The " ) ) )

fully normal-ordered term will not contribute to the fluctua- WhereF(x.x") is a,rgg_ular function of the spacetime poirts

tions so long as the quantum state is a coherent state. T X', and &k—x")" is the squared geodesic distance be-

pure vacuum term will also not contribute so long as wetWeen them. Integrals of the correlation function appear to be

restrict our attention to the differences between a given quarformally divergent, but nonetheless may be defined by an

tum state and the vacuum state. integration by parts procedure. Suppose for the sake of illus-
If the quantum state is other than a coherent state, ther&ation that the integrations are over time only, and note that

are also state-dependent stress tensor fluctuations in the fully ,
normal ordered term. These fluctuations were discussed in 1 _ 1097 9 N2

I , ——=————In(t—t")". 8
Refs.[4—7], especially in a context where the stress tensor is (t—t")4 12 52 5172
the source of gravity. The normal ordered term is always
finite and does not present a divergence problem, in contragt the function F vanishes sufficiently rapidly at the end-
to the cross term. The latter term can only be made meamoints of the integrations, we can write

ingful if one examines space or time integrated quantities

and has a prescription for defining the resulting integrals. We F(tt") 1
may schematically express the expectation value of a product f dt dt’ AVERiRET dt dt’
of stress tensor operators as (t=t")
<' 7 p0'>_<'T,uVTp¢r->+<T,U,VTpa>cross+<T,u,VTpa>O! Xln(t—t’)z—z—zF(t,t’). (9)
3 at? at’

where the three terms on the right-hand side are, respegjs procedure provides a way to define integrals with sin-
tively, the fully normal ordered term, the cross term, and theyy|ar integrands, and has been discussed by various authors

vacuum term. For a single mode coherent siaje [8,9]. As we will see below in Sec. lll B and in the Appen-
) et o dix, the integrals of the cross term which describe radiation
(AT T 12y =(2l T, 202 T 02 2). (4 pressure fluctuations can be made finite by a similar proce-
. dure.
In such a state, the fluctuations of the stress tensor are de-
scribed by quantities of the form
IIl. INDUCED MOMENTUM FLUCTUATIONS OF A
(ATH=(T, =T, 02 =T 0 D erosst (T Do- SINGLE MIRROR
(5) It is well known from classical physics that a beam of

light falling on a reflecting or absorbing surface exerts a
ressure. This pressure may be computed by integration of
fie appropriate component of the Maxwell stress tensor over
the surface. It may also be computed by counting photon
momenta. Let us illustrate the latter method, which we will
©  call the “ph : inci
photon number” approach. If an incident mono-
8hromatic beam of angular frequeneyand energy density

physical meaning to the pure vacuum term. It presumably’ s_triI_<es a surfa(_:e, the mean number_ of p_hotons striking per
describes fluctuations of the stress tensor components in tjt ime per unit area fsp/w. If the light is perfectly re-
Minkowski vacuum state. More precisely, if one measures d/€cted, each photon imparts a momentua @ the surface,
spacetime averaged component, the result of the measureSulting in a radiation pressure 0p2As expected, both the
ment should undergo fluctuations which vary as an invers§!'€SS tensor and the photon number approaches yield the
power of the size of the averaging region. However, in a>aMe answer. o
non-vacuum state, the magnitude of the cross term will grow However, these calculation give only a mean value. The
as the mean energy density in the state. Thus there will be @diation pressure should undergo fluctuations about this
regime in which the effects of the cross term dominate thos&€an- In the photon number viewpoint, these fluctuations
of the vacuum term. arise from fluctuations in the rate of photons striking the
We must resolve the issue of the state-dependent divegurface. In the stress tensor viewpoint, the fluctuations arise

gences in the cross term if it is to have any physical contenf?€cause the quantum state of the radiation field is not an
This issue was discussed by us in REf], where it was eigenstate of pressure. The main purpose of this section is to

shown that although the stress tensor correlation function is

singular in the coincidence limit, integrals of this function

over space and time can still be well-defined. The cross term!units in which% =c=1 will be used throughout this paper. Elec-
in the stress tensor correlation function has the form tromagnetic quantities are in Lorentz-Heaviside units.

If we are interested only in the changes(ih T?) when the

guantum state is varied, then the pure vacuum term can

ignored, and only the cross term is important:
<AT2>—><:TMV:2>CTOSS'

Note that we do not mean to suggest that there is n
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examine radiation pressure fluctuations in a single mode co- Consider a mirror of masm which is oriented perpen-
herent state from both viewpoints, and to compare the redicularly to thex-direction. If the mirror is at rest at time
sults. In one subsection, Sec. Il D, we will also examine the=0, then at time = 7 its velocity in thex-direction is given
case of a single mode photon number eigenstate. classically by

A. The photon number approach 0= %J‘TdtJ‘ da Ty, (16)
In this approach, the radiation pressure fluctuates because o JA

of statistical fluctuations in the numbers of photons strikingwhere_l___ is the Maxwell stress tensor, afidda denotes an
the surface. Suppose that a beam of light with angular fre: 1 ’

. . . integration over the surface of the mirror. Here we assume
quencyw is described by a single mode coherent statg, . L . :
. N - that there is radiation present on one side of the mirror only.
an eigenstate of the annihilation operatajz)=2z|z). The

: . ; L Otherwise, Eq(16) would involve a difference i, across
mean number of photons which strike a mirror in timés . L o . :
the mirror. When the radiation field is quantizel); is re-

(ny=(a'a)=|z|?. (100  placed by the normal ordered operatds;:, and Eq.(16)
becomes a Langevin equation. The dispersion in the mirror’s
If the mirror is perfectly reflecting, then the mean momen-velocity becomes
tum transferred is the expectation value of the operator

1 T T
p=2wn. (11) <Av2>=—2f dtf dt’ f daf da’ [(:Tyu(X) Ty X')0)
m=Jo 0 A A
The dispersion of this momentum is given by — (T 0 Toe(X):. (17)
2\ _ 2\ __ 2_ 2 2\ __ 2
(Ap%)=(p%) —(P)*=40"(n) = (n)"). (12) As discussed above, when the quantum state of the radiation

field is a coherent state and we ignore the pure vacuum term,

In a coherent state, then the dispersion if,, is given by the cross term alone,

<n2>_<n>2:<a’raa‘ra>_<a1‘a>2 and
=((a"h2a?)+(a'a)—(a'a)? 1 (7 (7
: (a09)= = [ at[ av [ da da (10T eros
:<a a>:<n>_ (13) m=Jo 0 A A
(18)
Thus
The components of the energy-momentum tensor for the
(Ap?y=4wi(n)=4w Ap T, (14) electromagnetic field ar@_orentz-Heaviside units are used
here
wherep is the mean energy density of the incident beam, and i oo o
Ais its cross sectional area. If the mirror is a free body with T=38"T"-(E'E'+B'B)), (19)
massm, the mean squared velocity fluctuation is S
TO = €IKEIBK, (20)
5 wAp
(Av%)=4——>1. (19  and
m
T°°=£(E2+ B?) (21)
B. The stress tensor approach 2 ’

An alternative approach to the problem of radiation pres- . A ) )
sure fluctuations is the method of stress tensor fluctuations. fi€reE' andB' are Cartesian components of the electric and
is well known that one can calculate the force on a surface bjn@gnetic fields, respectively. In particular,
integration of the relevant component of the stress tensor 1
over that surface. It thus seems reasonable to expect that the _T(E2. 2. p2, R2
fluctuations in this force can also be computed from the Tox Z(EV+E2+BV+Bz)' (22
guantum stress tensor. There is, however, a problem which
needs to be resolved in this approach. This is that products of We now assume that a linearly polarized plane wave is
stress tensor operators are not well defined at coincidemtormally incident and is perfectly reflected by the mirror.
points. Even the integrals of these products are formally diTake the polarization vector to be in tlyedirection, so that
vergent and need a regularization. A regularization schemg&,=B,=0. At the location of the mirrofz, =0, and onlyB,
was used in our previous wof8] and will be adopted again contributes to the stress tensor. Thus, when we apply{&q.
in this paper. The main idea is to treat the measuring proceds find (T, (X) Txx(X'))cross» the only nonzero quadratic
as a switch-on-switch-off process and do an integrations byormal-ordered product will b&B,(x)B,(x"):). The result
parts. is
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(T Tux(X')oross=(:BoX)B,(x'):)(B,(X)B,(x'))o.  The second term is an image term
(23

o (Ba(t1,X1)By(t2,%2))10=(B(t1,X1)By(t2,%X2) Yol 2, — ,-
The zcomponent of the magnetic field operator may be ex-
pressed in terms of mode functions as (32

Both terms give equal contributions to the radiation pressure
B,(x)=>, (a,B,+al B*) (24)  fluctuations on a mirror located at=0.
eoeTee We can now combine these results to write Ep) as

where the mode function is 2| |2
2y 7= 7
B, = —2C cogwx) e *t. (25) e A f day f daz ) (33

HereC is the coefficient for box normalization in a volurke where

_\/2 2_
€= AV (26) f dtlf —t) 3cos(wt1)cos{wt2),

2_p2
The coherent state is an eigenstate of the annihilation opera- [(tl 270l (34
tor
a12)=5,1,212), e "
wherez is a complex number a=(z-2)*~ (Y1-y2)* (35
=|z|e” . (28) and
The expectation value of the normal ordered product of field b2=(y1—y,)*+ (21— 2)% (36)

operators is now
Here we have sap=arg(z) =0, as it just shifts the origin of
(2]:B,(t1)B,(t5):|z)=16C?|z|*coq wt; + ) time, and taken the location of the mirror to bexat0. The
integralJ is evaluated in the Appendix in the limit of large

X coq wt,+ ¢)cog wXq)COF wX5). with the result

(29)
The vacuum magnetic fie_Id two-point fu_ncti_on in the pres- J= {[bz(b2+a)w +b?—3a]sinbw
ence of a perfectly reflecting plane a0 is given by 16b5
(Ba(t1,X1)By(ts,X5) o= (By(t1,%1)By(t2,%a) o +wb(3a—b?)cosbw}. (37
+(Ba(ty,%1)By(t2,X2))10- The singularities in the integrand of E@4) are third order

(30) poles, which are evaluated using an integration by parts.
We next need to perform the spatial integration over the
The first term is the two-point function for empty space,  area of the mirror which is illuminated by the laser beam.
Assume that the illuminated region is a disk of radRiand
(Ba(t1,%1)By(t2. %) )eo hence aredA=7R?, and that the incident flux is uniform
_ 12 v |2_ 2 over this disk.(This assumption is not essential, but simpli-
_(timty) I %l* - 2(z,- 2y) (31) fies the calculations!f we take the origin for theda, inte-
7 (t1—t5)? =[xy = %[ *]° gration to be ay,=z,=0, then

IEJ dazf da; [b?(b?+a)w?+b%—3a]sinbw+ wb(3a—b?)cosbw] b™°
A A

R 2@ 1
ZZJ dazf rdr da—s[wr(rz—3rzsin20)cos{wr)+[3rzsir120+ r4w?—r?(1+r2sirfw?)]sin(wr)]
0 0 r

2,2\ i _
=2wf dasz(ler ro)sinfwr)—wr cos{wr)dr 39

r2
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Further assume th&> 1. Then we can leR—x in the
upper limit of ther integration. Theda, integration now
simply contributes a factor oA, and we have

©(1+ w?r?)sin(wr) — or cog wr
I~2wAf( or9)sin(er) — o S(w)dr

0 r?

o 2\ qij _
=27rwAf (1+u9)sin(u) ucos{u)du

0 u?

=47 wA.

] d [sinu
Sinu ﬁ T

:ZWwAf du
0

(39

In the last step, we used [gdusinu
=lim__ fodusinue ““=1. Thus we have

8C2z|2wAT

(Av?)= 5 (40)
m

The energy density in the incident wave can be written as

2
w|z
p= |V| =2C?|7?, (41)
so we can express the velocity fluctuations as
Awp
2\ _
(Av)=4 2 T. (42

PHYSICAL REVIEW 34 045010

Let the magnetic field operat@,(x) be expanded in terms
of a complete set of positive frequency wave packet modes

{u;(x)}:

Bz(x):ij‘, [au;(0)+a]uf (x)]. (44)

For our purpose, we take these modes to be fairly sharply
peaked in frequency and use the normalization condition

* 3 _E
Uj Ujr d°x= (,L)J 5“!, (45)

2
wherew; is the mean frequency of packetMore generally,
we should expand the vector potenthalin terms of wave
packetsf; :

A=Y (ajgjfj+H.c),
]

where(f;,f;,)=6;;; and(f;,f;,) is the Klein-Gordon inner
product. Then the modag are expressed as derivatives of
the modesf;. Consider a single mode coherent stateas

the quantum state, and let the mode be a wave pagket
Then with a suitable choice of the phase of this mode func-
tion, we can write

(:BX)B(x"):) =2 ?[uo(x) +ug () J[ug(x") + ug (x")].

(46)

Note that the integrals ifAp?) are of the form/dtda
rather thanf d3x. If the integrand is a function df—x alone,
or t+x alone, these are equivalent:

Note that this result agrees with that from the photon count-

ing approach, Eq15).

C. The wave packet approach

fidt f(t—x)= fwwdu f(u)= f:du f(—u)

Here we wish to provide an alternative derivation of the
momentum fluctuations of a single mirror using the stress
tensor approach. Rather than performing all of the calcula-
tions in coordinate space, as was done in Sec. lll B, we will,,
use an approach based upon wave packet modes. This ap-
proach will prove useful in discussing interferometer noise.
Assume that the occupied mode is a wave packet which is
sharply peaked at frequeney. Using Eq.(18) and Eq.(23)
for a coherent state, the momentum fluctuation becomes

=fw dx f(t—x) (47)

fm dtf(t+x)=fm dx f(t+x),

(48)

where u=t—x. However, when the mirror is presentg
(Ap?)=m(Av?) contains pieces moving in both directions:
Up=Up, *+ UgR; (49
- [ dtda | v dat (Tu0 T ) erss
whereuy, is the incident wave packet angy, is the reflected
wave packet. The key feature that we will use is thatis
orthogonal tou; (j #0), butug andugg are not orthogonal
to each other. Inserting Eg44) and Eq.(46) into Eq. (43

yields

=f dtdaf dt’ da’(:B,(x)B,(x"):)
X(By(X)B,(x"))q. (43

045010-5
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1
<Ap2>=|zl2j dtdaf dt/da/[uo(x)"‘UE(X)][UO(X')+U3(X/)]E; [uj () Uk (X") +uf (X)uj(x)]

=222, Re“ dtdaf dt’ da’up(x)ug (X" )u¥ (x)uj(x")
J

=222, Re{fuo(x)uj*(x)dtda’fu’g(x’)uj(x’)dt’da
i

2
f Ug(X)ug (x)dtda| .

=2

(50

Using Eq.(49), the integral in the last expression becomes main line of development and discuss the case of a single

I=f Ug(x)ud (x)dt da
:f dtda(ug;+Uor) (Ug +Ugg)
:f dt da(|ug|®+[uor|*+ Ug Ugr+ UgiUor) - (5)

Here the only difference between, andugg is their direc-
tion of travel. If ug=f(t—x), thenugg="f(t+x), andug,
=Ugr at the mirror, and

f dtda Lb|U3sz dtda L6|UOR=f dtda|U0||2

:f dtda|U0R|2. (52)

Thus

I=f uo(x)u’g(x)dtda=4f dtda|u0,|2=4f d3x|ug|?
=2w,
and the momentum fluctuation becomes

(Ap?)=40?|z|?=4w¥(n). (53

This is same as the result of the photon number counting
approach, Egs(15), and of the integration by parts in Sec.

Il B, Eq. (42).

D. A number eigenstate

mode number eigenstate. It is apparent in the photon number
approach that there should not be any radiation pressure fluc-
tuations in such a state. In the stress tensor approach, the
situation is less clear, as both the fully normal-ordered term
and the cross term are nonzero.

We assume that the quantum sthtg is a number eigen-
state of a single mode. Expand the magnetic field operator in
terms of complete set of mode functions using E2f) to
find the expectation value of the fully normal ordered term

(N[ Te() Tox(X'):[N)

=%<nlzB§(x)B§(x'>:ln>

= %n(n— 1)[B*?(x)B2(x')+B2(x)B*?(x")
+4|B,(X)[?[B,(x")|]. (54)

HereB,, is the mode function for the occupied mode, and is
assumed to be given by Eq25) and(26). A similar proce-
dure leads to the result for the cross term

(N[ Tox(X) 1 Toe(X ") :[Mycross
=(n|:B,(X)B,(X"):|N)}{(BX)B,(X"))o
=n[B,(X)BE(X") + B (X)By,(X" ) (BX)By(X"))o-

(55

The mean pressure is

(T )n=(n[: Te(x):IN)=n[B,(X)[?.  (56)

Most of this paper deals with single mode coherent states. The momentum deviation due to the fully normal ordered
However, in this subsection, we wish to turn aside from theterm becomes

(nl:Ap% Iy =(:0% )y~ (:p:)3= [ dtda [ dt’ dar (T Tl b (X0 TlX )30

n(n
4

_1)fdtdafdt’da’ (Bj,z(x)Bf)(x’)vLBf,(x)B’,f,z(x’))—nfdtdafdt’da’|Bw(x)|2|Bw(x’)|2.

(57)
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Integrals such agdt Bf,(x) contain rapidly oscillating inte- m,
grands. We will assume that these integrals average to zero

and can be ignored. The remaining integrals, involjiag|?

are straightforward. The result for the contribution of the

fully normal ordered term to the momentum deviation is

(:Ap%),=—4n w?

The cross term is

In

(AP} cgoss= | tda [ it dar (nf:8,008,0¢ )

X(BA(X)B4(X"))o S Out m,
u

NN

=8n|C|2f dtdaf dt’ da’ coswx coswx’
FIG. 1. The essentials of a Michelson interferometer. An input
><COSw(t—t’)(BZ(X)BZ(X’)>O=4nw2. laser beam“In” ) is split by the beam splitter S. The split beam
bounces times(hereb=3) in each arm between a free mass; (
(58 or my) and a fixed mirror 1, or M,) before being recombined to

. . . form the output bean“Out” ). The mirrors of interest for the ra-
Note that the cross term calculation is almost identical to th’*?jiation pressure fluctuations are located on the free masses.

calculation in the case of a coherent state. The momentum

deviation due to the fully normal ordered term and the cross \/_P
term cancel out each other and yield zero momentum devia- AX. =D @ 7312 (62)
tion e '

(n|Ap?|ny=(n|:Ap*|n)+(n[Ap®[N)cross=0, (59 whereP = Ap is the mean power in the laser beam. There is

o ) . another source of noise in the interferometer, the photon
which is expected in the photon number approach. This calzqnting error, also known as shot noise. This arises from the
culation shows the agreement between the photon NUMbHcerainty in the location of an interference fringe when a

and the stress tensor approaches. In the stress tensor &pite number of photons are counted, and is of order
proach, the fluctuations in the normal ordered term are anti- ’

correlated with those described by the cross term. 1

AXpe= (63

IV. NOISE IN AN INTERFEROMETER 2bJwPr

~ A primary application of the result in Sec. Il Ais to es- |f we minimize the net squared position uncertainty
timate the radiation pressure noise in an interferomégsae

Fig. 1) The laser beam bouncdstimes in an arm of the (Aer)2+(Ach)2 (64)
interferometer before being recombined. The masses at the

end of each arm are subject to velocity and position uncefyith respect toP, the result is the optimum power
tainty due to the radiation pressure fluctuations.

m
A. Position uncertainty in the photon number approach Popt=m. (65
In this subsection, we will review the conventional, pho-
ton number approach to calculating interferometer nOiSQ/\/henp:popt, the position uncertainty becomes
[1,2]. The effect of multiple bounces is accounted for by
multiplying the momentum operator in E¢L1) by a factor T
of b AX=AXgq= \[ﬁ (66)

p=2bwn. (60)
known as thestandard quantum limit
This introduces a factor di? in the mean squared velocity ~ The standard quantum limit is the position uncertainty

fluctuation which one obtains after time by preparing a particle in a
wave packet state with initial spatial widttx, and momen-
Ap2)=4b? wAp 61) tum spreadAp=mAxqy/7. After time = has elapsed, the

(v m spread in the width of the wave packétp 7/m, is of the

order of Axgy. Thus the standard quantum limit can be inter-
The root mean squared position uncertainty of each mirropreted as being the minimum position uncertainty which can
due to radiation pressure fluctuations is then of order be maintained for a time of the order of
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B. Position uncertainty in the stress tensor approach of correlations, and a justification for this assumption was
Here we wish to look in more detail at how the position 91Ven by Cavezil]. In the present context, there is a corre-
uncertainty arises in a description involving the quantumfation term.(Axlz) which takes the form of Eq68) V_V'th X1
stress tensor. The position of each mass is disturbed by tH&! oneé mirror andx, on th_e other_ mirror. _We will argue
pressure fluctuations, leading to an error in the measuremeRg!OW in Sec. IV D 2 that this term is negligible compared to
of the optical path length. The displacement of a given maséAx’) for each arm separately.

is described by the time integral of E.6)
C. Multiple bounces in one arm

T [t
X—X(0)= %J' f f Tux(X1)da,dt,dt. (67) 1. A delay line
°eaA Now we wish to consider the situation where a laser beam
The dispersion in position is then given by an expressiorPounces several times between a pair of mirrors, as illus-
analogous to Eq(17) trated in Fig. 1. This arrangement is sometimes called a “de-
lay line.” Suppose that the beam is recycletimes within a

1 (T single interferometer arm. We have already seen that in the
(AX2>E<X2>—(X>2=—ZJ f daldazf f dtdt’ photon number approach, the momentum fluctuation of the

m=JAJA 070 end mirror,(Ap?) is now proportional td?. Specifically,

X ftft,K:Txx(Xl)::Txx(xz):>_<:Txx(Xl):> <Ap2>=b2<Ap2>l, (71)
oJo

where(Ap?), is the single bounce result given in E&3).
One can understand this result in the following way: if there

. is a fl ion in the number of photons entering the inter-
As before, only the cross term in the stress tensor quctuaL-S a fluctuatio the number of photons entering the inte

X(:Tyu(X2):)1dt,dt,. (68

tions will contribute when the quantum state is a coheren eromete_r arm, that quctL!ation is maintained on each of the
state. If we use this fact, and then take the second derivativg. oo < bounges. d sl_|ghtly more than the expected num-
with ;espect tor. we can’ write Ber of phptons hit the mirror on the first bounce, the same

’ excess will reappear on later bounces. One can picture the

same photons as simply recyclibgtimes. However, in the
ffdt ffdt f da f day(T,(ty) stress tensor approach, it is less obvious howkthéactor
o ‘o 2 ! 2L Dod will arise. This factor requires that the stress tensor fluctua-
tions at the different spots on the mirror be exactly correlated
T [V with one another.

X Toolt2) Jerosst fo dt fo dtzf da We can understand this by returning to E§0). If the
integrations run over all time and over the entire area of the
mirror, then they pick up contributions from all of the

X j daa( T T)TXX(tZ»C“’SS} €9 bounces. Let us first suppose that the spots formed on suc-
cessive bounces overlap on the same region of the mirror. In

Now we need to assume that the laser beam is switched on this case, the mode functiar, is approximately periodic for
the past and then switched off in the future. This issue wa$ periods:

discussed in Ref.3], where integrations by parts were per-

formed in order to deal with the singular behavior of the Uo(t,x)~Ug(t+2Ln,x), n=12,...pb=1. (72
cross term. The asymptotic condition insures that the surface i ,

terms arising in the integrations all vanishes. In the preserk€t the first bounce occur at time=0, and subsequent
calculation, we require that the normal ordered factors vanishounces at=2Ln. More precisely, these are the mean times

att=r, and hence the second term on the right-hand side dtt Which the wave packet hits the mirror. LEbe some time
Eq. (69 vanishes. The remaining term is proportional toInterval which is long compared to the length of the wave

2
dr? m?

(Av?), so that packet, but short compared td. 2Equation(51) becomes
2 (ap?)=|z*12, (73
o 2\ _ 2
d72<AX Yy=2(Av?). (70 where

Thus if (Av?)o 7, then (Ax?)ec7%. This calculation is the |:f°° dtf da u(x) U (x)

justification for Eq.(62). —

2Ln+T

There are two major issues to be studied in the remainder b
= dtJ da uy(x)ug (). (74
T

of this section. One is to study the effects of multiple 21
bounces within one arm of the interferometer, which will be =0 JoLn-
done in the following subsection. The other is to study

whether there are any correlations between the two arm$Jote that the time intervals which are ignored in going from
The discussion in Sec. IV A implicitly assumed the absencehe first form to the second are ones in whigj=0 on the
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§ u, of bouncesp’, can be defined by
, 1
|R|?P =5 (76)
et -
R Thus the energy stored in an occupied wave packet mode is
Uy reduced by a factor of afterb’ bounces. We can then write
\ B , In2
- G |R|2=e"n2P %1—?, b'>1. (77)
R’u
\ 0 The effect of the finite reflectivity of the left mirror is to
introduce a factor oR each time the wave packet returns to
the right mirror. Recall that the magnetic field moag has
no phase shift upon reflection from the perfect mirror. We
= can express this as the following condition on the mode
M m function:
FIG. 2. A Fabry-Peot cavity. Here the right mirrom is per- Uo(t+2Ln,x)=R"uy(t,x), n=0,1,2..., —-T<t<T.
fectly reflecting, and the left mirravl is partially reflecting, with a (79

reflection amplitudeR. An initial wave packetu, returns tom as

Ru, on the first bounce, a%u, on the second bounce, etc. That is,up(t,x) for = T<t<T is the initial form of the wave

packet when it hits the left mirror for the first time. The

mirror, that is, in between bounces. However, the periodicity2POV€ relation gives its form when it returns for tié time.
property, Eq(72), implies that each term in the sum is equal. We can now use this relation to write the analog of Eq.
Furthermore, each term gives the same contributioh ds (74):

was found in the single bounce case:

szm dtf da uy(X)ug (x)
T — o0
I=bJ dtf da Uy(x)ug (X) =2bw. (75)

-T

T
_ => dtf daF!‘uoR*”(x)u’o‘(x)z—zll,
Thus we obtain Eq(72). n=0J-T 1-|R]

Note that it does not matter whether the spots formed on (79
the various bounces actually overlap on the mirror or not. If
they do not, then E(72) is replaced by a more complicated wherel;=1(b=1). We can now combine this with E¢0)
relation involving an offset in position for the different to write
bounces. However, once the area integration is performed,
this is irrelevant, and we still obtain E¢74). Note that we o0
are assuming that on all bounces, the beam is nearly perpen- (Ap >_<
dicular to the mirror.

!

b 2
m) (Ap%)1. (80)

This result is the analog of E¢71) for the case of a Fabry-
2. A Fabry-Peot cavity Paot cavity. In both cases, the momentum fluctuations grow

The delay line arrangement sketched in Fig. 1 and disf:ls the square of the effective number of bounces.

cussed above implies a precise humber of bounces. Another
possibility, which is more likely to be used in actual interfer-
ometers, is the Fabry-Ra cavity, illustrated in Fig. 2. Here In an equal arm interferometer with a perféldss-free
at least one of the mirrors is partially reflecting, leading to a50-50 beam splitter, the input power is divided equally be-
finite storage time for a wave packet in the cavity. We will tween the two arms. In the late 1970s, there was a contro-
discuss the case where the mirror on the free mass is asersy over whether radiation pressure fluctuations will create
sumed to be perfect, but the opposite mirror in the cavity isnoise in such an interferometer. The arguments reviewed at
not. This assumption allows us to continue to use our previthe beginning of this section leading to the standard quantum
ous expressions, especially E43). If the mirror on the free limit, Eq. (66), assume that the radiation pressure fluctua-
mass is not perfect, then it is necessary to modify this extions in the two arms are uncorrelated. However, one would
pression and include electric field terms as well. expect that a fluctuation which sends more power into one
Let R be the complex reflection amplitude for the imper- arm will cause a corresponding deficit in the other arm. This
fect mirror, so thatR|? is the fraction of the power reflected would lead to anticorrelated pressure fluctuations. Caves
on each bounce. We assume that once inside the cavity, [4,2] resolved this controversy in the context of the photon
given wave packet mode bounces an infinite number ofiumber approach. He showed that when vacuum modes
times, but with diminishing amplitude. The effective numberwhich enter an unused port of the interferometer are in-

D. The equal arm interferometer
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Region 1 (rug+t upr*+(tug+r’' u)t*=ug (85
Beam-splitter

and

(rU0+t,U1)t,*+(t UO+r,U1)r,*:U1 (86)

for a no-loss, perfect beam splitter. Both equations here will
lead to the reciprocity relation Eq483). For a 50-50 beam
_— splitter,r' =r, t" =t. Without losing generality, we may take
the coefficients to be

-~ A9
Region 2 r= \/Ee '
v and
FIG. 3. Here u and v represent the two incident wave packets, 1 »
r,t are the complex reflectivity and transmissivity for mode u, and t= Ee v

r’,t’ are those for mode v.

where ¢, ,¢; are the phase change due to reflection and

cluded, the fluctuations are uncorrelated. In this SlJbsect'orﬁansmission, respectively. Plug them into the reciprocity re-
we will rederive this result using the stress tensor approacr]aﬁon Eq.(83), and the phase difference becomes

1. Properties of a beam splitter
nmT

Let us consider a perfect beam splittésee Fig. 3. It A=¢,—d=—, n=135.... (87)
needs to satisfy the reciprocity relations, originally derived 2

by Stokes in 1849, . . . L . .
y This phase difference is crucial in the discussion of the mo-

[r|=r"], |t|=]t'], (81)  mentum correlation of the two end mirrors in interferometer.
2 2 2. Correlation between two arms
r[*+t*=1 (82 . S
In a quantum mechanical treatment of the radiation field
and in the presence of a beam splitter, one often speaks of light
entering one port of the interferometer and of vacuum enter-
PR 4Rt =0 (83) ing the other, unused pofrL,2,10. From our point of view,

this language is misleading. Vacuum modes are everywhere,

Wherer,t are the Comp|ex reﬂectivity and transmissivity for and are entering both portS. Furthermore, there are an infinite

light incident from one side and ,t’ for light from the other number of such vacuum modes, and one would like to see

side. The first equation, E¢81), arises from the assumption More clearly which ones are actually relevant in a given situ-

that the reflectivity is the same from both sides. The othe@tON.

two equations are due to the additional assumption of a no- Assume that wave packep (the occupied modewith a

loss beam splitter. particular frequency is incident on the beam splitter. It will
Assume that we send in a wave packgtinto the beam  reflectr ug to mirror 1 and transmitu, to mirror 2 (see Fig.

splitter in thex direction. Then it will reflect the amoumtu, ~ 3)- Similarly, at mirror 1 there are modes; reflected from

to region 1 and transmittu, to region 2. If this is a no-loss the vacuum fields coming from the input port anaj trans-

beam splitter, then the inverse operation will bring the re-Mitted from the vacuum fields coming from the output port.

flected and transmitted wave packets back to the originatt mirror 2, we have vacuum modési; andr uy in addition
incident wave packet, to the occupied modd,u,. If we consider the momentum

difference transferred to the mirrops= p;— p,, then the de-
(F Ug)r* + (t Ug)t* = U, 84) viation becomes

which leads to Eq(82). If there is another wave packaf (Ap?)=(Ap3)+(Ap5)—2(Ap;1Ap,). (88)
coming into the beam splitter from thedirection as well as

the oneug from x, then in region 1 we have the transmitted Now in arm 1 the incident wave packetrisiy and the com-
wave packet’ u; in addition to the reflected wave packet plete set of wave packets from vacuum ar&;r(u;

rug. Similarly we gettug+r’uy in region 2. Again the +3,tu,). Follow the reasoning leading to E¢G0) in the
inverse operation yields the relations one arm case; the momentum dispersion of mirror 1 becomes

045010-10



QUANTUM FLUCTUATIONS OF RADIATION PRESSURE PHYSICAL REVIEW 34 045010
*
(Apf)=|z|2Re{f dtf darug ; ruj+2k tu, Jdt’f da’r*u{;(; ruﬁ—; tuk>

o5 L L& .
dt | da ugug dt | daugug

* iA —iay= 2

4Re[(1+e )(1+e )] 5
Here we used the result=n/2 from Eq.(87). The momentum dispersion of mirror Ap3), will be the same aéAp?).
The correlation between mirrors is

2

=|zJ? (89)

(AplAp2>=|z|2Re{fdtf daru 2}: ruj+§k: t Uy

21
fdtfdauoug

*ZRe{(l+eiA)(1+e‘A)]:|z|2

*
fdt’Jda’t*uZ;(E tuj+ >, ruk)
i X

21
fdtfdauoug

*ZRe[iZi]zo. (90)

=|2?

We can see that there is no correlation between arms. Thene wants to treat the problem of noise in an interferometer,
fluctuations are totally independent of each other. The dispeespecially the lack of correlation between the fluctuations in
sion of the momentum difference becomes the two arms, it is necessary to invoke vacuum fluctuations
[1,2]. In our view, the stress tensor approach provides a more

2 unified description in which the role of vacuum fluctuations

2\ 2\ _15]2 * | _ 2 . . . .

(Ap%)=2(Apy)=|z| (f dtf da Uo“o) =4n)o*. is clear from the outset. It is also likely to generalize more
(91) easily to complex situations. For example, all of the treat-

ments of radiation pressure fluctuations, with which we are

For b bounces, the dispersion is aware, assume that the end mirrors are perfectly reflecting.
However, the stress tensor approach could be easily adapted
(Ap?)p=2b%(Ap?)=4b*(n)w?. (92)  to account for the finite reflectivity of this mirror.

To our knowledge, radiation pressure fluctuations have
This confirms that Eq(61) gives the correct velocity disper- not yet been actually observed. However, in the photon num-

sion of each end mirror in the interferometer. ber approach they arise in a straightforward way from the
momentum fluctuations of the incident radiation. Thus, in
V. DISCUSSION AND CONCLUSIONS our view, it is difficult to doubt their reality. Radiation pres-

sure fluctuations will play a role in laser interferometer de-
In this paper, we have shown how quantum fluctuations ofectors of gravity waves, especially in the future. At that
radiation pressure arise from fluctuations of the stress tensgoint, it should become possible to measure these fluctua-
operator. Our results are in agreement with those obtainegons experimentally. Confirmation of their existence can be
previously using a photon number counting approach. In ougiewed as experimental evidence for the reality of the cross
approach, the radiation pressure fluctuations in a cohereférm.
state are due entirely to the cross term in the product of stress Of special significance is the role of radiation pressure
tensors. This term is both dependent upon the quantum statyctuations in understanding the fundamental physics of
and is singular in the limit of coincident points. However, we stress tensor fluctuations. It seems natural that the same prin-
found that careful treatment of the integrals over space angiples which apply to the stress tensor as a source of pressure
time leads to a finite result. In other quantum states, then a mirror should also apply to the stress tensor as a source
radiation pressure fluctuations are due both to the cross tergf gravity. We have seen that the cross term is essential to
and to the fully normal ordered term. understand radiation pressure fluctuations. It then follows
The cross term can be interpreted as representing the ihat the cross term must be included in the treatment of

terference between vacuum fluctuations and the real photorgacetime metric fluctuations driven by stress tensor fluctua-
present. Thus radiation pressure fluctuations in the stress tefions.

sor approach are driven by vacuum fluctuations. It is useful
to compare the photon number and stress tensor approaches ACKNOWLEDGMENTS
at this point. Both approaches yield the same answers for all

of the questions which were posed in this pagarpossible . i _ .
exception is the Fabry Pet cavity discussed in Sec. IV C 2 valgable dls_cussmns. Thls_work was supported in part by the
using only the stress tensor approadhiowever, the concep- National Science Foundation under Grant PHY-9800965.

tual pictures presented by the two approaches are quite dif-
ferent. In the photon number approach, the pressure fluctua-
tions on a single mirror are attributed to statistical variations In this appendix, we calculate the integdadefined in Eq.

in the number of photons striking the mirror. However, when(34). Defineu=t,—t, andv =t,+t,. Next use the identities

We would like to thank K. Olum and C. M. Caves for
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1
cos{wtl)cos(wtz)zE[coiwu)%—cos{wv)] (A1)
and
T(7 1 0 u+2r T 27—u
f f dtldtzz—(f duf dv+f duf dv).
0oJo 2\ )7 ) 0 u
(A2)
After evaluation of they-integrations, we may write
7 —u)(u’-a
J=j duucowu
0 (u2_b2)3
1 JTd u’-a 5
~341, m[smwwrsmw(u 7)].
(A3)

The second integral in the above expression approaches a
constant asr—o, whereas the first integral contributes a

linearly growing term:

J Fd ure
~ u coswu
1, (U2—b2)3 ®

Jx g u?—a
T U——m/——"—1—=
L (u2_b2)3

This integral contains third-order poleswat =b. It can be
expressed as

CcoSwu. (A4)

1
J=Z 7L+, (A5)

where inl, we assume Irb>0 and inl_ we take Inmb
<0. Each of these integrals is in turn expressed as

Ii:§(|i1+|i2)7 (AG)
where
| F d uta gou (A7)
+1— u @
S (U2—b?)3

PHYSICAL REVIEW D64 045010

and

U —a
b2)3

*I(,UU

(A8)

o= au

Each of these integrals is evaluated by closing the contour of
integration in the appropriate half plane, and then evaluating
the integral by a combination of integration by parts and
Cauchy’s theorem. For example, in the casé of, we close

in the upper half plane and write

| —1fwd d? 1 u’-a oo
72). M 4 u=b) by

1J'°° g 1 d?| u’-a Jou
= — u —_— ]
2)-»" u=bdu?[(u+b)?
[ d* | u'-a ] (A9)
=i — .
2 3
du“| (u+b) u—b
Similarly, we find
| D Bl Y (A10)
=—i{ — e '? ,
v du?| (u—b)? N
| L e (A11)
=iy — e'? ,
! du?| (u+b)3 -

and

| | & { u-a eiw“] (A12)
_o=1ly —= .
27T A (u—b)® —

We may now combine all of these results to obtain the ex-
pression forJ, Eq. (37). Note that this calculation involves
integrations by parts very similar to those used in R&f.
and illustrated in Sec. Il of the present paper.
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