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Quantum fluctuations of radiation pressure
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~Received 28 December 2000; published 23 July 2001!

Quantum fluctuations of electromagnetic radiation pressure are discussed. We use an approach based on the
quantum stress tensor to calculate the fluctuations in velocity and position of a mirror subjected to electro-
magnetic radiation. Our approach reveals that radiation pressure fluctuations in the case of a coherent state are
due to a cross term between vacuum and state dependent terms in a stress tensor operator product. Thus
observation of these fluctuations would entail experimental confirmation of this cross term. We first analyze the
pressure fluctuations on a single, perfectly reflecting mirror, and then study the case of an interferometer. This
involves a study of the effects of multiple bounces in one arm, as well as the correlations of the pressure
fluctuations between arms of the interferometer. In all cases, our results are consistent with those previously
obtained by Caves using different methods. We argue that the agreement between the different methods
supports the reality of the cross term and justifies the methods used in its evaluation.
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I. INTRODUCTION

Classically, a beam of light falling on a mirror exerts
force and the force can be written as the integral of the M
well stress tensor. When we treat this problem quantum
chanically, then the force undergoes fluctuations. This i
necessary consequence of the fact that physically realiz
quantum states are not eigenstates of the stress tensor o
tor. These radiation pressure fluctuations play an impor
role in limiting the sensitivity of laser interferometer dete
tors of gravitational radiation, as was first analyzed by Ca
@1,2#. His approach is based on the photon number fluct
tions in a coherent state, and we will refer to it as the pho
number approach. The purpose of this paper is to exam
radiation pressure fluctuations using the quantum stress
sor. This requires the correlation function of a pair of stre
tensor operators, which will be discussed in Sec. II. Ther
is shown that the correlation function can be decompo
into three parts: a term which is fully normal-ordered, a st
independent vacuum term, and a ‘‘cross term’’ which can
viewed as an interference term between the vacuum fluc
tions and the matter content of the quantum state. It is
cross term which will be of greatest interest in this paper
it is responsible for the radiation pressure fluctuations i
coherent state. These fluctuations will be discussed in
III for the case of a laser beam impinging upon a sing
perfectly reflecting mirror. The analysis will be done fir
using the photon number approach, and then using the s
tensor approach. In the latter case, we show how the ca
lations may be performed in coordinate space, where an
tegration over space and time is needed to remove a si
larity in the cross term. We then show how to obtain t
same result more simply using an orthonormal basis of w
packet modes. In Sec. III D, we examine the case of a sin
mode number eigenstate, and show that the radiation p
sure fluctuations vanish. In the stress tensor approach,
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arises from a cancellation between the cross term and
fully normal ordered term. In Sec. IV, we turn to the discu
sion of an interferometer. We first study the effects of m
tiple bounces in a single arm, and reproduce the result@1,2#
that the effect of the radiation pressure fluctuations grows
the square of the number of bounces. We also show how
approach may be used to discuss the situation where
interferometer arms are Fabry-Pe´rot cavities. Finally, we dis-
cuss the correlation between the fluctuations in the two
terferometer arms, and show why they are in fact unco
lated. Our results are summarized and discussed in Sec

II. ENERGY-MOMENTUM TENSOR FLUCTUATIONS

It is well known that stress tensor operators can be ren
malized by normal ordering:

:Tmn:5Tmn2^Tmn&0 , ~1!

which is subtraction of the Minkowski vacuum expectati
value. However, the quantitŷ:Tmn(x)::Trs(x8):& is still di-
vergent in the limit thatx8→x. The divergent part of this
quantity can be decomposed into a state-independent
and a state-dependent part. To do so, we may use the fol
ing identity, which follows from Wick’s theorem:

:f1f2 ::f3f4 :5:f1f2f3f4 :1:f1f3 :^f2f4&0

1:f1f4 :^f2f3&01:f2f3 :^f1f4&0

1:f2f4 :^f1f3&01^f1f3&0^f2f4&0

1^f1f4&0^f2f3&0 . ~2!

Here thef i are free bosonic fields and̂&0 denotes the
Minkowski vacuum expectation value. The first term is ful
normal-ordered, the next four are cross terms and the fi
two are pure vacuum terms. The physics of these vari
terms was discussed in Ref.@3#. Heref1 andf2 are evalu-
ated at pointx, whereasf3 andf4 are evaluated at pointx8.
©2001 The American Physical Society10-1
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CHUN-HSIEN WU AND L. H. FORD PHYSICAL REVIEW D64 045010
In the coincidence limit,x8→x, the fully normal-ordered
term is finite, but the cross term and vacuum terms dive
The singularity of the cross term is of particular significan
because, unlike the vacuum term, it is state-dependent.
fully normal-ordered term will not contribute to the fluctu
tions so long as the quantum state is a coherent state.
pure vacuum term will also not contribute so long as
restrict our attention to the differences between a given qu
tum state and the vacuum state.

If the quantum state is other than a coherent state, th
are also state-dependent stress tensor fluctuations in the
normal ordered term. These fluctuations were discusse
Refs.@4–7#, especially in a context where the stress tenso
the source of gravity. The normal ordered term is alwa
finite and does not present a divergence problem, in con
to the cross term. The latter term can only be made me
ingful if one examines space or time integrated quanti
and has a prescription for defining the resulting integrals.
may schematically express the expectation value of a pro
of stress tensor operators as

^:Tmn ::Trs :&5^:TmnTrs :&1^TmnTrs&cross1^TmnTrs&0 ,

~3!

where the three terms on the right-hand side are, res
tively, the fully normal ordered term, the cross term, and
vacuum term. For a single mode coherent stateuz&,

^zu:TmnTrs :uz&5^zu:Tmn :uz&^zu:Trs :uz&. ~4!

In such a state, the fluctuations of the stress tensor are
scribed by quantities of the form

^nT2&5^:Tmn :2&2^:Tmn :&25^:Tmn :2&cross1^:Tmn :2&0 .

~5!

If we are interested only in the changes in^nT2& when the
quantum state is varied, then the pure vacuum term ca
ignored, and only the cross term is important:

^nT2&→^:Tmn :2&cross. ~6!

Note that we do not mean to suggest that there is
physical meaning to the pure vacuum term. It presuma
describes fluctuations of the stress tensor components in
Minkowski vacuum state. More precisely, if one measure
spacetime averaged component, the result of the meas
ment should undergo fluctuations which vary as an inve
power of the size of the averaging region. However, in
non-vacuum state, the magnitude of the cross term will gr
as the mean energy density in the state. Thus there will
regime in which the effects of the cross term dominate th
of the vacuum term.

We must resolve the issue of the state-dependent di
gences in the cross term if it is to have any physical cont
This issue was discussed by us in Ref.@3#, where it was
shown that although the stress tensor correlation functio
singular in the coincidence limit, integrals of this functio
over space and time can still be well-defined. The cross t
in the stress tensor correlation function has the form
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^Tmn~x!Trs~x8!&cross5
F~x,x8!

~x2x8!4
, ~7!

whereF(x,x8) is a regular function of the spacetime pointsx
and x8, and (x2x8)2 is the squared geodesic distance b
tween them. Integrals of the correlation function appear to
formally divergent, but nonetheless may be defined by
integration by parts procedure. Suppose for the sake of il
tration that the integrations are over time only, and note t

1

~ t2t8!4
52

1

12

]2

]t2

]2

]t82
ln~ t2t8!2. ~8!

If the function F vanishes sufficiently rapidly at the end
points of the integrations, we can write

E dt dt8
F~ t,t8!

~ t2t8!4
52

1

12E dt dt8

3 ln~ t2t8!2
]2

]t2

]2

]t82
F~ t,t8!. ~9!

This procedure provides a way to define integrals with s
gular integrands, and has been discussed by various au
@8,9#. As we will see below in Sec. III B and in the Appen
dix, the integrals of the cross term which describe radiat
pressure fluctuations can be made finite by a similar pro
dure.

III. INDUCED MOMENTUM FLUCTUATIONS OF A
SINGLE MIRROR

It is well known from classical physics that a beam
light falling on a reflecting or absorbing surface exerts
pressure. This pressure may be computed by integratio
the appropriate component of the Maxwell stress tensor o
the surface. It may also be computed by counting pho
momenta. Let us illustrate the latter method, which we w
call the ‘‘photon number’’ approach. If an incident mono
chromatic beam of angular frequencyv and energy density
r strikes a surface, the mean number of photons striking
unit time per unit area is1 r/v. If the light is perfectly re-
flected, each photon imparts a momentum 2v to the surface,
resulting in a radiation pressure of 2r. As expected, both the
stress tensor and the photon number approaches yield
same answer.

However, these calculation give only a mean value. T
radiation pressure should undergo fluctuations about
mean. In the photon number viewpoint, these fluctuatio
arise from fluctuations in the rate of photons striking t
surface. In the stress tensor viewpoint, the fluctuations a
because the quantum state of the radiation field is not
eigenstate of pressure. The main purpose of this section

1Units in which\5c51 will be used throughout this paper. Elec
tromagnetic quantities are in Lorentz-Heaviside units.
0-2
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QUANTUM FLUCTUATIONS OF RADIATION PRESSURE PHYSICAL REVIEW D64 045010
examine radiation pressure fluctuations in a single mode
herent state from both viewpoints, and to compare the
sults. In one subsection, Sec. III D, we will also examine
case of a single mode photon number eigenstate.

A. The photon number approach

In this approach, the radiation pressure fluctuates bec
of statistical fluctuations in the numbers of photons strik
the surface. Suppose that a beam of light with angular
quencyv is described by a single mode coherent state,uz&,
an eigenstate of the annihilation operator,auz&5zuz&. The
mean number of photons which strike a mirror in timet is

^n&5^a†a&5uzu2. ~10!

If the mirror is perfectly reflecting, then the mean mome
tum transferred is the expectation value of the operator

p52vn. ~11!

The dispersion of this momentum is given by

^Dp2&5^p2&2^p&254v2~^n2&2^n&2!. ~12!

In a coherent state,

^n2&2^n&25^a†aa†a&2^a†a&2

5^~a†!2a2&1^a†a&2^a†a&2

5^a†a&5^n&. ~13!

Thus

^Dp2&54v2^n&54v Ar t, ~14!

wherer is the mean energy density of the incident beam, a
A is its cross sectional area. If the mirror is a free body w
massm, the mean squared velocity fluctuation is

^Dv2&54
vAr

m2
t. ~15!

B. The stress tensor approach

An alternative approach to the problem of radiation pr
sure fluctuations is the method of stress tensor fluctuation
is well known that one can calculate the force on a surface
integration of the relevant component of the stress ten
over that surface. It thus seems reasonable to expect tha
fluctuations in this force can also be computed from
quantum stress tensor. There is, however, a problem w
needs to be resolved in this approach. This is that produc
stress tensor operators are not well defined at coincid
points. Even the integrals of these products are formally
vergent and need a regularization. A regularization sche
was used in our previous work@3# and will be adopted again
in this paper. The main idea is to treat the measuring proc
as a switch-on-switch-off process and do an integrations
parts.
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Consider a mirror of massm which is oriented perpen
dicularly to thex-direction. If the mirror is at rest at timet
50, then at timet5t its velocity in thex-direction is given
classically by

v5
1

mE
0

t

dtE
A
da Txx , ~16!

whereTi j is the Maxwell stress tensor, and*Ada denotes an
integration over the surface of the mirror. Here we assu
that there is radiation present on one side of the mirror o
Otherwise, Eq.~16! would involve a difference inTxx across
the mirror. When the radiation field is quantized,Ti j is re-
placed by the normal ordered operator :Ti j :, and Eq.~16!
becomes a Langevin equation. The dispersion in the mirr
velocity becomes

^Dv2&5
1

m2E0

t

dt E
0

t

dt8 E
A
da E

A
da8 @^:Txx~x!::Txx~x8!:&

2^:Txx~x!:&^:Txx~x8!:&#. ~17!

As discussed above, when the quantum state of the radia
field is a coherent state and we ignore the pure vacuum te
then the dispersion inTxx is given by the cross term alone
and

^Dv2&5
1

m2E0

t

dtE
0

t

dt8E
A
daE

A
da8^Txx~x!Txx~x8!&cross.

~18!

The components of the energy-momentum tensor for
electromagnetic field are~Lorentz-Heaviside units are use
here!

Ti j 5d i j T002~EiEj1BiBj !, ~19!

T0i5e i jkEjBk, ~20!

and

T005
1

2
~E21B2!. ~21!

HereEi andBi are Cartesian components of the electric a
magnetic fields, respectively. In particular,

Txx5
1

2
~Ey

21Ez
21By

21Bz
2!. ~22!

We now assume that a linearly polarized plane wave
normally incident and is perfectly reflected by the mirro
Take the polarization vector to be in they-direction, so that
Ez5By50. At the location of the mirror,Ey50, and onlyBz
contributes to the stress tensor. Thus, when we apply Eq~2!
to find ^Txx(x)Txx(x8)&cross, the only nonzero quadratic
normal-ordered product will bê:Bz(x)Bz(x8):&. The result
is
0-3
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CHUN-HSIEN WU AND L. H. FORD PHYSICAL REVIEW D64 045010
^Txx~x!Txx~x8!&cross5^:Bz~x!Bz~x8!:&^Bz~x!Bz~x8!&0 .
~23!

The z-component of the magnetic field operator may be
pressed in terms of mode functions as

Bz~x!5(
v

~av Bv1av
† Bv* !, ~24!

where the mode function is

Bv522 C cos~vx! e2 ivt. ~25!

HereC is the coefficient for box normalization in a volumeV

C5A v

2V
. ~26!

The coherent state is an eigenstate of the annihilation op
tor

av8uz&5dv8vzuz&, ~27!

wherez is a complex number

z5uzue2 if. ~28!

The expectation value of the normal ordered product of fi
operators is now

^zu:Bz~ t1!Bz~ t2!:uz&516C2uzu2cos~vt11f!

3cos~vt21f!cos~vx1!cos~vx2!.

~29!

The vacuum magnetic field two-point function in the pre
ence of a perfectly reflecting plane atz50 is given by

^Bz~ t1 ,x1!Bz~ t2 ,x2!&05^Bz~ t1 ,x1!Bz~ t2 ,x2!&E0

1^Bz~ t1 ,x1!Bz~ t2 ,x2!& I0 .

~30!

The first term is the two-point function for empty space,

^Bz~ t1 ,x1!Bz~ t2 ,x2!&E0

5
~ t12t2!21ux12x2u222~z12z2!2

p2@~ t12t2!22ux12x2u2#3
. ~31!
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The second term is an image term

^Bz~ t1 ,x1!Bz~ t2 ,x2!& I05^Bz~ t1 ,x1!Bz~ t2 ,x2!&E0uz2→2z2
.

~32!

Both terms give equal contributions to the radiation press
fluctuations on a mirror located atz50.

We can now combine these results to write Eq.~18! as

^Dv2&5
32C2uzu2

p2m2 E
A
da1 E da2 J ~33!

where

J5E
0

t

dt1E
0

t

dt2
~ t12t2!22a

@~ t12t2!22b2#3
cos~vt1!cos~vt2!,

~34!

with

a5~z12z2!22~y12y2!2 ~35!

and

b25~y12y2!21~z12z2!2. ~36!

Here we have setf5arg(z)50, as it just shifts the origin of
time, and taken the location of the mirror to be atx50. The
integralJ is evaluated in the Appendix in the limit of larget,
with the result

J5
pt

16b5
$@b2~b21a!v21b223a#sinbv

1vb~3a2b2!cosbv%. ~37!

The singularities in the integrand of Eq.~34! are third order
poles, which are evaluated using an integration by parts.

We next need to perform the spatial integration over
area of the mirror which is illuminated by the laser bea
Assume that the illuminated region is a disk of radiusR and
hence areaA5pR2, and that the incident flux is uniform
over this disk.~This assumption is not essential, but simp
fies the calculations.! If we take the origin for theda1 inte-
gration to be aty25z250, then
I[E
A
da2E

A
da1 @b2~b21a!v21b223a#sinbv1vb~3a2b2!cosbv] b25

52E da2E
0

R

r dr E
0

2p

du
1

r 5
†vr ~r 223r 2sin2u!cos~vr !1@3r 2sin2u1r 4v22r 2~11r 2sin2uv2!#sin~vr !‡

52pE da2E
0

R~11v2r 2!sin~vr !2vr cos~vr !

r 2
dr. ~38!
0-4
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QUANTUM FLUCTUATIONS OF RADIATION PRESSURE PHYSICAL REVIEW D64 045010
Further assume thatR@v21. Then we can letR→` in the
upper limit of the r integration. Theda2 integration now
simply contributes a factor ofA, and we have

I'2pAE
0

`~11v2r 2!sin~vr !2vr cos~vr !

r 2
dr

52pvAE
0

`~11u2!sin~u!2u cos~u!

u2
du

52pvAE
0

`

du Fsinu2
d

du S sinu

u D G54pvA. ~39!

In the last step, we used *0
` du sinu

5lim
a→0

*0
` du sinue2au51. Thus we have

^Dv2&5
8C2uzu2vAt

m2
. ~40!

The energy density in the incident wave can be written a

r5
vuzu2

V
52C2uzu2, ~41!

so we can express the velocity fluctuations as

^Dv2&54
Avr

m2
t. ~42!

Note that this result agrees with that from the photon cou
ing approach, Eq.~15!.

C. The wave packet approach

Here we wish to provide an alternative derivation of t
momentum fluctuations of a single mirror using the str
tensor approach. Rather than performing all of the calcu
tions in coordinate space, as was done in Sec. III B, we
use an approach based upon wave packet modes. Thi
proach will prove useful in discussing interferometer noi
Assume that the occupied mode is a wave packet whic
sharply peaked at frequencyv. Using Eq.~18! and Eq.~23!
for a coherent state, the momentum fluctuation becomes

^Dp2&5m2^Dv2&

5E dt daE dt8 da8 ^Txx~x!Txx~x8!&cross

5E dt daE dt8 da8^:Bz~x!Bz~x8!:&

3^Bz~x!Bz~x8!&0 . ~43!
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Let the magnetic field operatorBz(x) be expanded in terms
of a complete set of positive frequency wave packet mo
$uj (x)%:

Bz~x!5(
j

@aj uj~x!1aj
†uj* ~x!# . ~44!

For our purpose, we take these modes to be fairly sha
peaked in frequency and use the normalization condition

E uj* uj 8 d3x5
1

2
v j d j j 8 , ~45!

wherev j is the mean frequency of packetj. More generally,
we should expand the vector potentialA in terms of wave
packetsf j :

A5(
j

~aj êj f j1H.c.!,

where^ f j , f j 8&5d j j 8 and^ f j , f j 8& is the Klein-Gordon inner
product. Then the modesuj are expressed as derivatives
the modesf j . Consider a single mode coherent stateuz& as
the quantum state, and let the mode be a wave packeu0.
Then with a suitable choice of the phase of this mode fu
tion, we can write

^:Bz~x!Bz~x8!:&5uzu2@u0~x!1u0* ~x!#@u0~x8!1u0* ~x8!#.

~46!

Note that the integrals in̂Dp2& are of the form*dt da
rather than*d3x. If the integrand is a function oft2x alone,
or t1x alone, these are equivalent:

E
2`

`

dt f~ t2x!5E
2`

`

du f~u!5E
2`

`

du f~2u!

5E
2`

`

dx f~ t2x! ~47!

and

E
2`

`

dt f~ t1x!5E
2`

`

dx f~ t1x!, ~48!

where u5t2x. However, when the mirror is present,u0
contains pieces moving in both directions:

u05u0I1u0R, ~49!

whereu0I is the incident wave packet andu0R is the reflected
wave packet. The key feature that we will use is thatu0 is
orthogonal touj ( j Þ0), butu0I andu0R are not orthogonal
to each other. Inserting Eq.~44! and Eq.~46! into Eq. ~43!
yields
0-5
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^Dp2&5uzu2E dt daE dt8 da8@u0~x!1u0* ~x!#@u0~x8!1u0* ~x8!#
1

2 (
j

@uj~x!uj* ~x8!1uj* ~x!uj~x8!#

5uzu2(
j

ReF E dt daE dt8 da8u0~x!u0* ~x8!uj* ~x!uj~x8!G
5uzu2(

j
ReF E u0~x!uj* ~x!dt da8 E u0* ~x8!uj~x8!dt8 daG

5uzu2F E u0~x!u0* ~x!dt daG2

. ~50!
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Using Eq.~49!, the integral in the last expression become

I 5E u0~x!u0* ~x!dt da

5E dt da~u0I1u0R!~u0I* 1u0R* !

5E dt da~ uu0I u21uu0Ru21u0Iu0R* 1u0I* u0R! . ~51!

Here the only difference betweenu0I andu0R is their direc-
tion of travel. If u0I5 f (t2x), then u0R5 f (t1x), and u0I
5u0R at the mirror, and

E dt da u0Iu0R* 5E dt da u0I* u0R5E dt da uu0I u2

5E dt da uu0Ru2. ~52!

Thus

I 5E u0~x!u0* ~x!dt da54E dt da uu0I u254E d3xuu0I u2

52v,

and the momentum fluctuation becomes

^Dp2&54v2uzu254v2^n&. ~53!

This is same as the result of the photon number coun
approach, Eqs.~15!, and of the integration by parts in Se
III B, Eq. ~42!.

D. A number eigenstate

Most of this paper deals with single mode coherent sta
However, in this subsection, we wish to turn aside from
04501
g

s.
e

main line of development and discuss the case of a sin
mode number eigenstate. It is apparent in the photon num
approach that there should not be any radiation pressure
tuations in such a state. In the stress tensor approach
situation is less clear, as both the fully normal-ordered te
and the cross term are nonzero.

We assume that the quantum stateun& is a number eigen-
state of a single mode. Expand the magnetic field operato
terms of complete set of mode functions using Eq.~24! to
find the expectation value of the fully normal ordered ter

^nu:Txx~x!Txx~x8!:un&

5
1

4
^nu:Bz

2~x!Bz
2~x8!:un&

5
1

4
n~n21!@Bv*

2~x!Bv
2 ~x8!1Bv

2 ~x!Bv*
2~x8!

14uBv~x!u2uBv~x8!u2#. ~54!

HereBv is the mode function for the occupied mode, and
assumed to be given by Eqs.~25! and~26!. A similar proce-
dure leads to the result for the cross term

^nu:Txx~x!::Txx~x8!:un&cross

5^nu:Bz~x!Bz~x8!:un&^Bz~x!Bz~x8!&0

5n@Bv~x!Bv* ~x8!1Bv* ~x!Bv~x8!#^Bz~x!Bz~x8!&0 .

~55!

The mean pressure is

^:Txx~x!:&n5^nu:Txx~x!:un&5nuBv~x!u2. ~56!

The momentum deviation due to the fully normal order
term becomes
^nu:Dp2:un&n5^:p2:&n2^:p:&n
25E dt daE dt8 da8 „^:Txx~x!Txx~x8!:&n2^:Txx~x!:&n^:Txx~x8!:&n…

5
n~n21!

4 E dt daE dt8 da8 „Bv*
2~x!Bv

2 ~x8!1Bv
2 ~x!Bv*

2~x8!…2n E dt daE dt8 da8 uBv~x!u2uBv~x8!u2.

~57!
0-6
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Integrals such as*dt Bv
2 (x) contain rapidly oscillating inte-

grands. We will assume that these integrals average to
and can be ignored. The remaining integrals, involvinguBvu2
are straightforward. The result for the contribution of t
fully normal ordered term to the momentum deviation is

^:Dp2:&n524n v2.

The cross term is

^nuDp2un&cross5E dt daE dt8 da8 ^nu:Bz~x!Bz~x8!:un&

3^Bz~x!Bz~x8!&0

58nuCu2E dt daE dt8 da8 cosvx cosvx8

3cosv~ t2t8!^Bz~x!Bz~x8!&054nv2.

~58!

Note that the cross term calculation is almost identical to
calculation in the case of a coherent state. The momen
deviation due to the fully normal ordered term and the cr
term cancel out each other and yield zero momentum de
tion

^nuDp2un&5^nu:Dp2:un&1^nuDp2un&cross50, ~59!

which is expected in the photon number approach. This
culation shows the agreement between the photon num
and the stress tensor approaches. In the stress tenso
proach, the fluctuations in the normal ordered term are a
correlated with those described by the cross term.

IV. NOISE IN AN INTERFEROMETER

A primary application of the result in Sec. III A is to es
timate the radiation pressure noise in an interferometer.~See
Fig. 1.! The laser beam bouncesb times in an arm of the
interferometer before being recombined. The masses a
end of each arm are subject to velocity and position unc
tainty due to the radiation pressure fluctuations.

A. Position uncertainty in the photon number approach

In this subsection, we will review the conventional, ph
ton number approach to calculating interferometer no
@1,2#. The effect of multiple bounces is accounted for
multiplying the momentum operator in Eq.~11! by a factor
of b

p52bvn. ~60!

This introduces a factor ofb2 in the mean squared velocit
fluctuation

^Dv2&54b2
vAr

m2
t. ~61!

The root mean squared position uncertainty of each mi
due to radiation pressure fluctuations is then of order
04501
ro

e
m
s
a-

l-
er
ap-
ti-

he
r-

e

r

Dxrp5b
AvP

m
t3/2, ~62!

whereP5Ar is the mean power in the laser beam. There
another source of noise in the interferometer, the pho
counting error, also known as shot noise. This arises from
uncertainty in the location of an interference fringe when
finite number of photons are counted, and is of order

Dxpc5
1

2bAvPt
. ~63!

If we minimize the net squared position uncertainty

~Dxrp!21~Dxpc!
2 ~64!

with respect toP, the result is the optimum power

Popt5
m

2vt2b2
. ~65!

WhenP5Popt , the position uncertainty becomes

Dx5Dxsql5A t

m
, ~66!

known as thestandard quantum limit.
The standard quantum limit is the position uncertain

which one obtains after timet by preparing a particle in a
wave packet state with initial spatial widthDx0 and momen-
tum spreadDp5mDx0 /t. After time t has elapsed, the
spread in the width of the wave packet,Dp t/m, is of the
order ofDx0. Thus the standard quantum limit can be inte
preted as being the minimum position uncertainty which c
be maintained for a time of the order oft.

FIG. 1. The essentials of a Michelson interferometer. An inp
laser beam~‘‘In’’ ! is split by the beam splitter S. The split bea
bouncesb times~hereb53) in each arm between a free mass (m1

or m2) and a fixed mirror (M1 or M2) before being recombined to
form the output beam~‘‘Out’’ !. The mirrors of interest for the ra
diation pressure fluctuations are located on the free masses.
0-7
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B. Position uncertainty in the stress tensor approach

Here we wish to look in more detail at how the positio
uncertainty arises in a description involving the quant
stress tensor. The position of each mass is disturbed by
pressure fluctuations, leading to an error in the measurem
of the optical path length. The displacement of a given m
is described by the time integral of Eq.~16!

x2x~0!5
1

mE
0

tE
0

tE
A
Txx~x1!da1dt1dt. ~67!

The dispersion in position is then given by an express
analogous to Eq.~17!

^Dx2&[^x2&2^x&25
1

m2EA
E

A
da1da2E

0

tE
0

t

dt dt8

3E
0

tE
0

t8
@^:Txx~x1!::Txx~x2!:&2^:Txx~x1!:&

3^:Txx~x2!:&#dt1dt2 . ~68!

As before, only the cross term in the stress tensor fluc
tions will contribute when the quantum state is a coher
state. If we use this fact, and then take the second deriva
with respect tot, we can write

d2

dt2
^Dx2&5

2

m2 F E
0

t

dt1E
0

t

dt2E da1E da2^Txx~ t1!

3Txx~ t2!&cross1E
0

t

dt8E
0

t8
dt2E da1

3E da2^Txx~t!Txx~ t2!&crossG . ~69!

Now we need to assume that the laser beam is switched o
the past and then switched off in the future. This issue w
discussed in Ref.@3#, where integrations by parts were pe
formed in order to deal with the singular behavior of t
cross term. The asymptotic condition insures that the sur
terms arising in the integrations all vanishes. In the pres
calculation, we require that the normal ordered factors van
at t5t, and hence the second term on the right-hand sid
Eq. ~69! vanishes. The remaining term is proportional
^Dv2&, so that

d2

dt2
^Dx2&52 ^Dv2&. ~70!

Thus if ^Dv2&}t, then ^Dx2&}t3. This calculation is the
justification for Eq.~62!.

There are two major issues to be studied in the remain
of this section. One is to study the effects of multip
bounces within one arm of the interferometer, which will
done in the following subsection. The other is to stu
whether there are any correlations between the two ar
The discussion in Sec. IV A implicitly assumed the absen
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of correlations, and a justification for this assumption w
given by Caves@1#. In the present context, there is a corr
lation term^Dx12

2 & which takes the form of Eq.~68! with x1

on one mirror andx2 on the other mirror. We will argue
below in Sec. IV D 2 that this term is negligible compared
^Dx2& for each arm separately.

C. Multiple bounces in one arm

1. A delay line

Now we wish to consider the situation where a laser be
bounces several times between a pair of mirrors, as il
trated in Fig. 1. This arrangement is sometimes called a ‘‘
lay line.’’ Suppose that the beam is recycledb times within a
single interferometer arm. We have already seen that in
photon number approach, the momentum fluctuation of
end mirror,^Dp2& is now proportional tob2. Specifically,

^Dp2&5b2 ^Dp2&1, ~71!

where^Dp2&1 is the single bounce result given in Eq.~53!.
One can understand this result in the following way: if the
is a fluctuation in the number of photons entering the int
ferometer arm, that fluctuation is maintained on each of
successive bounces. If slightly more than the expected n
ber of photons hit the mirror on the first bounce, the sa
excess will reappear on later bounces. One can picture
same photons as simply recyclingb times. However, in the
stress tensor approach, it is less obvious how theb2 factor
will arise. This factor requires that the stress tensor fluct
tions at the different spots on the mirror be exactly correla
with one another.

We can understand this by returning to Eq.~50!. If the
integrations run over all time and over the entire area of
mirror, then they pick up contributions from all of th
bounces. Let us first suppose that the spots formed on
cessive bounces overlap on the same region of the mirro
this case, the mode functionu0 is approximately periodic for
b periods:

u0~ t,x!'u0~ t12Ln,x!, n51,2, . . . ,b21. ~72!

Let the first bounce occur at timet50, and subsequen
bounces att52Ln. More precisely, these are the mean tim
at which the wave packet hits the mirror. LetT be some time
interval which is long compared to the length of the wa
packet, but short compared to 2L. Equation~51! becomes

^Dp2&5uzu2 I 2, ~73!

where

I 5E
2`

`

dtE da u0~x!u0* ~x!

5 (
n50

b21 E
2Ln2T

2Ln1T

dtE da u0~x!u0* ~x!. ~74!

Note that the time intervals which are ignored in going fro
the first form to the second are ones in whichu050 on the
0-8
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QUANTUM FLUCTUATIONS OF RADIATION PRESSURE PHYSICAL REVIEW D64 045010
mirror, that is, in between bounces. However, the periodic
property, Eq.~72!, implies that each term in the sum is equ
Furthermore, each term gives the same contribution toI as
was found in the single bounce case:

I 5bE
2T

T

dtE da u0~x!u0* ~x! 52bv. ~75!

Thus we obtain Eq.~71!.
Note that it does not matter whether the spots formed

the various bounces actually overlap on the mirror or not
they do not, then Eq.~72! is replaced by a more complicate
relation involving an offset in position for the differen
bounces. However, once the area integration is perform
this is irrelevant, and we still obtain Eq.~74!. Note that we
are assuming that on all bounces, the beam is nearly per
dicular to the mirror.

2. A Fabry-Pérot cavity

The delay line arrangement sketched in Fig. 1 and d
cussed above implies a precise number of bounces. Ano
possibility, which is more likely to be used in actual interfe
ometers, is the Fabry-Pe´rot cavity, illustrated in Fig. 2. Here
at least one of the mirrors is partially reflecting, leading to
finite storage time for a wave packet in the cavity. We w
discuss the case where the mirror on the free mass is
sumed to be perfect, but the opposite mirror in the cavity
not. This assumption allows us to continue to use our pre
ous expressions, especially Eq.~43!. If the mirror on the free
mass is not perfect, then it is necessary to modify this
pression and include electric field terms as well.

Let R be the complex reflection amplitude for the impe
fect mirror, so thatuRu2 is the fraction of the power reflecte
on each bounce. We assume that once inside the cavi
given wave packet mode bounces an infinite number
times, but with diminishing amplitude. The effective numb

FIG. 2. A Fabry-Pe´rot cavity. Here the right mirrorm is per-
fectly reflecting, and the left mirrorM is partially reflecting, with a
reflection amplitudeR. An initial wave packetu0 returns tom as
Ru0 on the first bounce, asR2u0 on the second bounce, etc.
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of bounces,b8, can be defined by

uRu2b85
1

2
. ~76!

Thus the energy stored in an occupied wave packet mod
reduced by a factor of12 afterb8 bounces. We can then writ

uRu25e2 ln 2/b8'12
ln 2

b8
, b8@1. ~77!

The effect of the finite reflectivity of the left mirror is to
introduce a factor ofR each time the wave packet returns
the right mirror. Recall that the magnetic field modeu0 has
no phase shift upon reflection from the perfect mirror. W
can express this as the following condition on the mo
function:

u0~ t12Ln,x!5Rn u0~ t,x!, n50,1,2, . . . , 2T,t,T.
~78!

That is,u0(t,x) for 2T,t,T is the initial form of the wave
packet when it hits the left mirror for the first time. Th
above relation gives its form when it returns for thenth time.

We can now use this relation to write the analog of E
~74!:

I 5E
2`

`

dtE da u0~x!u0* ~x!

5 (
n50

` E
2T

T

dtE da Rnu0 R* n~x!u0* ~x!5
1

12uRu2
I 1 ,

~79!

whereI 15I (b51). We can now combine this with Eq.~50!
to write

^Dp2&5S b8

ln 2D 2

^Dp2&1 . ~80!

This result is the analog of Eq.~71! for the case of a Fabry
Pérot cavity. In both cases, the momentum fluctuations gr
as the square of the effective number of bounces.

D. The equal arm interferometer

In an equal arm interferometer with a perfect~loss-free!
50-50 beam splitter, the input power is divided equally b
tween the two arms. In the late 1970s, there was a con
versy over whether radiation pressure fluctuations will cre
noise in such an interferometer. The arguments reviewe
the beginning of this section leading to the standard quan
limit, Eq. ~66!, assume that the radiation pressure fluctu
tions in the two arms are uncorrelated. However, one wo
expect that a fluctuation which sends more power into o
arm will cause a corresponding deficit in the other arm. T
would lead to anticorrelated pressure fluctuations. Ca
@1,2# resolved this controversy in the context of the phot
number approach. He showed that when vacuum mo
which enter an unused port of the interferometer are
0-9
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cluded, the fluctuations are uncorrelated. In this subsect
we will rederive this result using the stress tensor approa

1. Properties of a beam splitter

Let us consider a perfect beam splitter.~See Fig. 3.! It
needs to satisfy the reciprocity relations, originally deriv
by Stokes in 1849,

ur u5ur 8u, utu5ut8u, ~81!

ur u21utu251 ~82!

and

r 8 t* 1r * t850, ~83!

wherer ,t are the complex reflectivity and transmissivity f
light incident from one side andr 8,t8 for light from the other
side. The first equation, Eq.~81!, arises from the assumptio
that the reflectivity is the same from both sides. The ot
two equations are due to the additional assumption of a
loss beam splitter.

Assume that we send in a wave packetu0 into the beam
splitter in thex direction. Then it will reflect the amountr u0
to region 1 and transmitt u0 to region 2. If this is a no-loss
beam splitter, then the inverse operation will bring the
flected and transmitted wave packets back to the orig
incident wave packet,

~r u0!r * 1~ t u0!t* 5u0 , ~84!

which leads to Eq.~82!. If there is another wave packetu1
coming into the beam splitter from they direction as well as
the oneu0 from x, then in region 1 we have the transmitte
wave packett8 u1 in addition to the reflected wave pack
r u0. Similarly we get t u01r 8 u1 in region 2. Again the
inverse operation yields the relations

FIG. 3. Here u and v represent the two incident wave pack
r ,t are the complex reflectivity and transmissivity for mode u, a
r 8,t8 are those for mode v.
04501
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~r u01t8 u1!r * 1~ t u01r 8 u1!t* 5u0 ~85!

and

~r u01t8 u1!t8* 1~ t u01r 8 u1!r 8* 5u1 ~86!

for a no-loss, perfect beam splitter. Both equations here
lead to the reciprocity relation Eq.~83!. For a 50-50 beam
splitter,r 85r , t85t. Without losing generality, we may tak
the coefficients to be

r 5
1

A2
ei fr

and

t5
1

A2
ei f t ,

where f r ,f t are the phase change due to reflection a
transmission, respectively. Plug them into the reciprocity
lation Eq.~83!, and the phase difference becomes

D5f r2f t5
np

2
, n51,3,5 . . . . ~87!

This phase difference is crucial in the discussion of the m
mentum correlation of the two end mirrors in interferomet

2. Correlation between two arms

In a quantum mechanical treatment of the radiation fi
in the presence of a beam splitter, one often speaks of l
entering one port of the interferometer and of vacuum en
ing the other, unused port@1,2,10#. From our point of view,
this language is misleading. Vacuum modes are everywh
and are entering both ports. Furthermore, there are an infi
number of such vacuum modes, and one would like to
more clearly which ones are actually relevant in a given s
ation.

Assume that wave packetu0 ~the occupied mode! with a
particular frequency is incident on the beam splitter. It w
reflectr u0 to mirror 1 and transmitt u0 to mirror 2 ~see Fig.
3!. Similarly, at mirror 1 there are modesr u j reflected from
the vacuum fields coming from the input port andt uk trans-
mitted from the vacuum fields coming from the output po
At mirror 2, we have vacuum modest uj andr uk in addition
to the occupied mode,t u0. If we consider the momentum
difference transferred to the mirrorsp5p12p2, then the de-
viation becomes

^Dp2&5^Dp1
2&1^Dp2

2&22^Dp1Dp2&. ~88!

Now in arm 1 the incident wave packet isr u0 and the com-
plete set of wave packets from vacuum are (( j r u j
1(kt uk). Follow the reasoning leading to Eq.~50! in the
one arm case; the momentum dispersion of mirror 1 beco

s,
0-10
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^Dp1
2&5uzu2ReF E dtE da r u0S (

j
r u j1(

k
t ukD * E dt8E da8 r * u0* S (

j
r u j1(

k
t ukD G

5uzu2U E dtE da u0u0* U2

*
1

4
Re@~11eiD!~11e2 iD!#5

uzu2

2
U E dtE da u0u0* U2

. ~89!

Here we used the resultD5np/2 from Eq.~87!. The momentum dispersion of mirror 2,^Dp2
2&, will be the same aŝDp1

2&.
The correlation between mirrors is

^Dp1Dp2&5uzu2ReF E dtE da r u0S (
j

r u j1(
k

t ukD * E dt8E da8 t* u0* S (
j

t uj1(
k

r ukD G
5uzu2U E dtE da u0u0* U2

*
1

4
Re@~11eiD!~11eiD!#5uzu2U E dtE da u0u0* U2

*
1

4
Re@62i #50. ~90!
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We can see that there is no correlation between arms.
fluctuations are totally independent of each other. The dis
sion of the momentum difference becomes

^Dp2&52^Dp1
2&5uzu2S E dtE da u0u0* D 2

54^n&v2.

~91!

For b bounces, the dispersion is

^Dp2&b52b2^Dp1
2&54b2^n&v2. ~92!

This confirms that Eq.~61! gives the correct velocity disper
sion of each end mirror in the interferometer.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have shown how quantum fluctuations
radiation pressure arise from fluctuations of the stress te
operator. Our results are in agreement with those obta
previously using a photon number counting approach. In
approach, the radiation pressure fluctuations in a cohe
state are due entirely to the cross term in the product of st
tensors. This term is both dependent upon the quantum s
and is singular in the limit of coincident points. However, w
found that careful treatment of the integrals over space
time leads to a finite result. In other quantum states,
radiation pressure fluctuations are due both to the cross
and to the fully normal ordered term.

The cross term can be interpreted as representing the
terference between vacuum fluctuations and the real pho
present. Thus radiation pressure fluctuations in the stress
sor approach are driven by vacuum fluctuations. It is use
to compare the photon number and stress tensor approa
at this point. Both approaches yield the same answers fo
of the questions which were posed in this paper.~A possible
exception is the Fabry-Pe´rot cavity discussed in Sec. IV C
using only the stress tensor approach.! However, the concep
tual pictures presented by the two approaches are quite
ferent. In the photon number approach, the pressure fluc
tions on a single mirror are attributed to statistical variatio
in the number of photons striking the mirror. However, wh
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one wants to treat the problem of noise in an interferome
especially the lack of correlation between the fluctuations
the two arms, it is necessary to invoke vacuum fluctuatio
@1,2#. In our view, the stress tensor approach provides a m
unified description in which the role of vacuum fluctuatio
is clear from the outset. It is also likely to generalize mo
easily to complex situations. For example, all of the tre
ments of radiation pressure fluctuations, with which we
aware, assume that the end mirrors are perfectly reflect
However, the stress tensor approach could be easily ada
to account for the finite reflectivity of this mirror.

To our knowledge, radiation pressure fluctuations ha
not yet been actually observed. However, in the photon nu
ber approach they arise in a straightforward way from
momentum fluctuations of the incident radiation. Thus,
our view, it is difficult to doubt their reality. Radiation pres
sure fluctuations will play a role in laser interferometer d
tectors of gravity waves, especially in the future. At th
point, it should become possible to measure these fluc
tions experimentally. Confirmation of their existence can
viewed as experimental evidence for the reality of the cr
term.

Of special significance is the role of radiation pressu
fluctuations in understanding the fundamental physics
stress tensor fluctuations. It seems natural that the same
ciples which apply to the stress tensor as a source of pres
on a mirror should also apply to the stress tensor as a so
of gravity. We have seen that the cross term is essentia
understand radiation pressure fluctuations. It then follo
that the cross term must be included in the treatment
spacetime metric fluctuations driven by stress tensor fluc
tions.
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APPENDIX

In this appendix, we calculate the integralJ defined in Eq.
~34!. Defineu5t12t2 andv5t11t2. Next use the identities
0-11
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cos~vt1!cos~vt2!5
1

2
@cos~vu!1cos~vv !# ~A1!

and

E
0

tE
0

t

dt1dt25
1

2 S E
2t

0

duE
2u

u12t

dv1E
0

t

duE
u

2t2u

dv D .

~A2!

After evaluation of thev-integrations, we may write

J5E
0

t

du
~t2u!~u22a!

~u22b2!3
cosvu

2
1

2vE0

t

du
u22a

~u22b2!3
@sinvu1sinv~u22t!#.

~A3!

The second integral in the above expression approach
constant ast→`, whereas the first integral contributes
linearly growing term:

J;tE
0

`

du
u22a

~u22b2!3
cosvu

5
1

2
tE

2`

`

du
u22a

~u22b2!3
cosvu. ~A4!

This integral contains third-order poles atu56b. It can be
expressed as

J5
1

4
t~ I 11I 2!, ~A5!

where in I 1 we assume Imb.0 and in I 2 we take Imb
,0. Each of these integrals is in turn expressed as

I 65
1

2
~ I 611I 62!, ~A6!

where

I 615E
2`

`

du
u22a

~u22b2!3
eivu ~A7!
04501
a

and

I 625E
2`

`

du
u22a

~u22b2!3
e2 ivu. ~A8!

Each of these integrals is evaluated by closing the contou
integration in the appropriate half plane, and then evalua
the integral by a combination of integration by parts a
Cauchy’s theorem. For example, in the case ofI 11, we close
in the upper half plane and write

I 115
1

2E2`

`

du S d2

du2

1

u2bD u22a

~u1b!3
eivu

5
1

2E2`

`

du
1

u2b

d2

du2 F u22a

~u1b!3
eivuG

5p i H d2

du2 F u22a

~u1b!3
eivuG J

u5b

. ~A9!

Similarly, we find

I 1252p i H d2

du2 F u22a

~u2b!3
e2 ivuG J

u52b

, ~A10!

I 2152p i H d2

du2 F u22a

~u1b!3
e2 ivuG J

u5b

, ~A11!

and

I 225p i H d2

du2 F u22a

~u2b!3
eivuG J

u52b

. ~A12!

We may now combine all of these results to obtain the
pression forJ, Eq. ~37!. Note that this calculation involves
integrations by parts very similar to those used in Ref.@3#
and illustrated in Sec. II of the present paper.
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