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Multi-Skyrmion solutions for the sixth order Skyrme model

I. Floratos* and B. Piette†

Department of Mathematical Sciences, University of Durham, Durham DH1 3LE, United Kingdom
~Received 2 April 2001; published 23 July 2001!

Following Marleau, we study an extended version of the Skyrme model to which a sixth order term has been
added to the Lagrangian and we analyze some of its classical properties. We compute the multi-Skyrmion
solutions numerically for up toB55 and show that they have the same symmetries as the usual Skyrmion
solutions. We use the rational map ansatz introduced by Houghton, Manton, and Sutcliffe to evaluate the
energy and the radius for multi-Skyrmion solutions of up toB56 for both theSU(2) andSU(3) models and
compare these results to the ones obtained numerically. We show that the rational map ansatz works as well for
the generalized model as for the pure Skyrme model.
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I. INTRODUCTION

Recent mathematical developments within the area
nonperturbative methods have established the Skyrme m
as the strongest candidate for an effective low energy the
of quantum chromodynamics~QCD!. The model was origi-
nally proposed by Skyrme@1# to describe hadron interac
tions. However, it was mainly ignored, until it was show
@2–4# that in the largeNc limit, where Nc is the number of
colors, this nonlinear theory can describe the low ene
limit of QCD. This revived the Skyrme model and since th
significant progress has been made towards the unders
ing of its properties resulting to a relatively successful d
scription of nuclear interactions.

The Skyrme model is described by anSU(N) valued field
U(xW ,t) which must satisfy the boundary conditionU→I as
uxW u→`, where I is the unit matrix. This condition ensure
finiteness of the energy for any field configuration and it a
implies that the three-dimensional Euclidean space on wh
the model is defined can be compactified intoS3. As a result,
the Skyrme fieldU corresponds to mappings fromS3 into
SU(N). Skyrme’s idea was to interpret the winding numb
associated with these topologically nontrivial mappings
the baryon charge.

The model is described by the Lagrangian

LSk5
Fp

2

16
Tr RmRm1

1

32a2
Tr@Rm ,Rn#@Rn ,Rm#, ~1!

where Rm5(]mU)U21 is the right chiral current,Fp

5189 MeV is the pion decay constant anda is a dimension-
less parameter. The first term in Eq.~1! is the nonlinears
model and one can easily show using a scaling argument
with this term alone static solutions cannot exist. The sa
argument shows that one must add to the Lagrangian te
involving higher derivatives. This argument led Skyrme
add the second term, usually referred to as the Skyrme t
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in Eq. ~1! which is the simplest one that preserves t
SU(N) and Lorentz invariances.

The Skyrme model can be generalized by adding te
involving higher order derivatives in the Lagrangian~1!
@5–8#. Doing this, one introduces extra parameters that
be tuned in to increase the quality of the Skyrme model as
effective low energy limit of QCD. For example, in Ref
@5,9# the sixth-order term was used to take into account
v-meson interactions when computing the central nucle
nucleon potential. In a different context Marleau studied
model where a large number of higher order terms were
cluded in the Lagrangian@6–8# and where, to avoid the in
troduction of a large number of extra parameters, the coe
cients of these extra terms were all related to the coeffic
of the Skyrme model.

In this paper we will consider the simplest possible exte
sion of the Skyrme model, i.e., defined by the Lagrangian~1!
to which we add the sixth-order term

L65c6 Tr@Rm ,Rn#@Rn ,Rl#@Rl ,Rm#. ~2!

The unknown coefficientc6 denotes the strength of this term
and will be left as a free parameter of the model. This p
ticular choice of a sixth-order term is not accidental as it
the only term that preserves the Lorentz invariance and
SU(N) symmetry of the model and leads to an equation
motion that does not involve derivatives of order higher th
two. This is the term that was used in Ref.@5#.

In this paper we will focus our attention on the sta
solutions of the extended Skyrme model and thus cons
fields that do not depend on time. It is also convenient
define the dimensionless parameterk5192c6Fp

2 a4 and

to introduce the dimensionless unitsy5xA2/

(aFp)A11A11k so that the energy of the model can b
written as

E52LE dxW 3S 1

2
Tr Ri

21
12l

16
Tr@Ri ,Rj #

2

1
1

96
l Tr@Ri ,Rj #@Rj ,Rk#@Rk ,Ri # D , ~3!
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I. FLORATOS AND B. PIETTE PHYSICAL REVIEW D64 045009
where L5Fp /(4A2a)A11A11k and l5k/(1
1A11k)2. The parameterL is the energy scale of th
model. In what follows it will be convenient to use the d
mensionless energy expressed in the so-called topolog
units: i.e.,

Ẽ5
E

12p2L
. ~4!

We have chosen this parametrization of the model so
lP@0,1# describes the mixing between the Skyrme term a
the sixth-order term~2!. When l50 our model reduces to
the usual pure Skyrme model while whenl51 the Skyrme
term vanishes and the model reduces to what we refer t
what follows as the pure Sk6 model.

The Euler-Lagrange equations derived from Eq.~3! for
the static solutions are given by

] i S Ri2
1

4
~12l!@Rj ,@Rj ,Ri ##2

1

16
l@Rj ,@Rj ,Rk#

3@Rk ,Ri ## D50. ~5!

As mentioned above, an important property of the Skyr
model is that its field corresponds to a mapping fromS3 into
SU(N) and asp3@SU(N)#5Z each configuration is charac
terized by a an integer which can be obtained explicitly
evaluating the expression

B5
1

24p2ER3
dxW3« i jk Tr~RiRjRk!, ~6!

which following Skyrme’s idea is interpreted as the bary
number. Moreover the following inequality holds for eve
configuration:

Ẽ>A12lB. ~7!

Our extended Skyrme model depends on three param
Fp , a, andc6 or using the dimensionless unitsL, k, andl.
To determine the physical values for these parameters
can evaluate different quantities. As our analysis will
purely classical, we will use for this purpose the total ene
~3! and the isoscalar mean square matter radius given by@10#

R2[^r 2& I 505

E
0

`

dr r 2 rB~r !

E
0

`

dr rB~r !

, ~8!

where

rB~r !54pr 2 B0~r !. ~9!

Notice that after performing the scalingx→xA2/

(aFp)A11A11k we can define the matter radius evaluat
in dimensionless units as
04500
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R̃5
1

A2A11A11k
aFp R. ~10!

One can see from the definition ofẼ andR̃ that the ratio
of energy or matter radius for different solutions only d
pends onl. In the following section we will evaluate the
energy and radius of multi-Skyrmion solutions for the ge
eral model and evaluate these two quantities with the co
sponding value for the single Skyrmion and compare th
directly to the experimental ratio

EB

EB51
5

ẼB~l!

ẼB51~l!
,

RB

RB51
5

R̃B~l!

R̃B51~l!
. ~11!

So far all the studies of the classical properties of gen
alized Skyrme models have been focusing on the prope
of the single skyrmion (B51) @5–9#. In Sec. II we compute
numerically multi-Skyrmion configurations forB52 to 5
and compare the energy and the radius of these solut
with the experimental values.

It was shown recently@11,12# that multi-Skyrmion con-
figurations, i.e.,B>2, can be studied systematically using
an approximation the so-called harmonic map ansatz. In S
III we approximate the multi-Skyrmion solution both for th
SU(2) andSU(3) model using this ansatz. We compare t
results obtained with the numerical solutions and we sh
that the harmonic map ansatz provides a good approxima
for the multi-Skyrmion solutions of the extended model
well.

II. NUMERICAL SOLUTIONS

In this section we investigate the multi-Skyrmion sol
tions of the extendedSU(2) Skyrme model by solving the
static Euler-Lagrange equation~5! of the model numerically.
Computing the static solutions of such a three-dimensio
model is rather difficult and requires a large amount of co
puting power. As one has to be very careful when asses
the accuracy of such numerical results, we give a discus
of the numerical methods that we have used in the Appen

To compute the solution numerically, it is more conv
nient to describe theSU(2) fields using a four-componen
vector f of unit length, ufu251, which is related to the
unitary field by U5f0I 1 i tW•fW where I is the unit matrix
andtW are the Pauli matrices. The expression for the ene
~4! then becomes

Ẽ5
1

12p2ER
ufmu21

12l

2
@ ufmu42~fm•fn!2#1

l

6
@ ufmu6

23ufmu2~fn•fk!212~fm•fn!~fk•fm!~fn•fk!#,

~12!

and the Euler-Lagrange equations derived from Eq.~12!, af-
ter adding a Lagrange multiplier to impose the constra
ufu251, are given by
9-2
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fmmS 11~12l!ufnu21
1

2
lufnu2ufku22

1

2
l~fn•fk!2D1ufmu2•f1~12l!„~fn•fnm!fm2~fmm•fn!fn

2~fm•fn!fnm1ufmu4f2~fm•fn!2f…1lS fm~fn•fnm!ufku22fm~fn•fk!~fn•fkm!

2fn~fm•fmk!~fn•fk!2fn~fn•fkk!ufmu22fnk~fn•fk!ufmu21fnm~fk•fm!~fn•fk!

1fn~fk•fmm!~fn•fk!1fn~fk•fm!~fn•fkm!1
1

2
@ ufmu623ufmu2~fn•fk!212~fm•fn!~fk•fm!~fn•fk!#f D

50. ~13!

FIG. 1. Ẽ(l) andR̃(l) for the B51 solutions.
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To compute theB51 solution, we use the so-calle
hedgehog ansatz

f5S sin f ~r ! sinu sin~w!

sin f ~r ! sinu cos~w!

sin f ~r ! cosu

cosf ~r !

D , ~14!

wherer, u, andw are the usual spherical coordinates. Plu
ging Eq.~14! into Eq. ~12! one minimizes the energy for th
profile function f (r ) which then has to satisfy an ordinar
differential equation. This is a very special case of the h
monic map ansatz discussed in the next section, so we
just say at this stage that the solutions are radially symme
and that thel dependence of the energy and the radius of
solutions are given in Fig. 1. The fact that the energy
creases withl is entirely due to our choice of parametriz
tion; the real quantities one has to look at are the energy
radius ratio~11!.

As described in the Appendix, solving Eq.~13! accurately
is rather difficult. For this reason the caseB52 was solved
differently. It is indeed well known that the usualB52 static
solution is axially symmetric@13–17# and we found that this
is also true for the extended Skyrme model. Knowing th
04500
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e
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,

we can reduce the system of equations for these solution
a two-dimensional system by using the ansatz

f5S sin f sing sin~2w!

sin f sing cos~2w!

sin f cosg

cosf

D , ~15!

wherew5atan(y/x). The two profile functionsf (r,z) and
g(r,z) are functions of the usual axial coordinatesr
5Ax21y2 and z and they satisfy the following boundar
conditions:

f ~0,0!5p, f ~r→`,z→`!50, f r~0,z!50,

g~0,z,0!50, g~0,z.0!5p, gRuR→`50, ~16!

whereR25r 21z2.
Substituting Eq.~15! into Eq. ~12! we get
9-3
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E5
1

6pE H F ~ f r
21 f z

2!1sin2 f ~gr
21gz

2!1
4

r2
sin2 f sin2 gG

1~12l!F 4

r2
sin2 f sin2 g@ f r

21 f z
21sin2 f ~gr

21gz
2!#1sin2 f ~ f rgz2 f zgr!2G1lF 4

r2
sin4 f sin2 g~ f rgz2 f zgr!2G J rdrdz

~17!

and the corresponding Euler-Lagrange equations are given by

S f rr1 f zz1
1

r
f rD2

2

r2
sin 2f sin2 g2

1

2
sin 2f ~gr

21gz
2!1~12l!H 4

r2
sin2 f sin 2g~ f rgr1 f zgz!1

1

r
sin2 f ~ f rgz

22 f zgrgz!

1
1

2
sin 2f ~ f rgz2 f zgr!21

4

r2
sin2 f sin2 gS f rr1 f zz2

1

r
f rD1

4

r2
sin 2f sin2 gF1

2
~ f r

21 f z
2!2sin2 f ~gr

21gz
2!G

1sin2 f $ f rrgz
21 f zzgr

222 f zrgzgr1 f rgzgzr2 f zgrrgz2 f rgzzgr1 f zgrgrz%J
1lH 8

r2
sin2 f sin 2f sin2 g~ f rgz2 f zgr!21

4

r2
sin4 f sin2 gS f rrgz

21 f rgzgzr22 f zrgrgz2 f zgrrgz1 f zzgr
21 f zgrgrz

2 f rgzzgr2
1

r
~ f rgz

22 f zgrgz! D2
4

r2
sin 2f sin2 f sin2 g~ f rgz2 f zgr!2J 50 ~18!

and

S grr1gzz1
1

r
grD1

sin 2f

sin2 f
~ f rgr1 f zgz!1

2

r2
sin 2g1~12l!H 4

r2
sin2 f sin 2g~gr

21gz
2!

1
4

r2
sin2 gS 2 sin 2f ~ f rgr1 f zgz!1sin2 f S grr1gzz2

gr

r D D1
1

r
~ f z

2gr2 f r f zgz!1 f z
2grr1 f r

2gzz

2
2

r2
sin 2g$ f r

21 f z
21sin2 f ~gr

21gz
2!%1 f zf zrgr2 f rrgzf z1 f r f rzgz22 f rgzr f z2 f zzgr f rJ

1lH 4

r2
sin2 f sin 2g~ f zgr2 f rgz!

21
4

r2
sin2 f sin2 gF f zf zrgr1 f z

2grr2 f rr f zgz22 f r f zgzr

1 f r f rzgz1 f r
2gzz2 f zzf rgr2

1

r
~ f z

2gr2 f r f zgz!G2
2

r2
sin2 f sin 2g~ f rgz2 f zgr!2J 50. ~19!
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The advantage of having a two-dimensional system is
we can use much larger grids and obtain much more accu
results. As discussed in the Appendix, we have also c
pared theB52 solutions obtained by solving Eq.~13! and
Eqs. ~18!, ~19! in order to evaluate the accuracy of th
method we used to solve Eq.~13! numerically.

To compute the solutions forB.2 we solved the static
equations~13! using finite differences and the relaxatio
method~see the Appendix.! In Figs. 2–5, we present thel
dependence of the energy and radius ratio for theB52 to
B55 multi-Skyrmion solutions. We see that in each case
04500
at
te
-

e

energy ratio decreases when the coefficient of the sixth-o
term increases while on the other hand, the radius ratio
creases thus making the multi-Skyrmion solution broade
all cases except forB52. Tables I and II compare the energ
and radius ratio of the pure Skyrme and the pure Sk6 mo
with the experimental values. We notice that the predic
values for the energy are smaller than the experimental
ues and that the addition of the sixth-order term makes
energy ratio even smaller. On the other hand, the additio
the sixth-order term makes the multi-Skyrmion soluti
broader, except whenB52, but the actual values are sti
much smaller than the experimental ones.
9-4
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FIG. 2. Ẽ(l) andR̃(l) ratio of B52/B51 for the numericalSU(2) solutions.

FIG. 3. Ẽ(l) andR̃(l) ratio of B53/B51 for the numericalSU(2) solutions.

FIG. 4. Ẽ(l) andR̃(l) ratio of B54/B51 for the numericalSU(2) solutions.
045009-5
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FIG. 5. Ẽ(l) andR̃(l) ratio of B55/B51 for the numericalSU(2) solutions.
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Another observation we made is that the symmetries
the multi-Skyrmion solutions for the general model are
same as for the pure Skyrme model. The solutions foB
52, 3, and 4 Skyrmion have, respectively, the shape o
torus, a tetrahedron, and a cube while theB55 Skyrmion
solution has the sameD2d symmetry.

It is a well know problem that the binding energies pr
dicted by the Skyrme model are too large and that the ra
of the classical solutions is too small. One usually argues
quantizing the model will somewhat solve this proble
Adding the sixth-order term does not improve this: the e
ergy binding is even stronger and the multi-Skyrmion so
tions are broader except forB52.

III. HARMONIC MAP ANSATZ

In this section we will use the rational map ansatz
compute configurations that approximate solutions of the
tended Skyrme model. We will then use these configurati
to evaluate the energy and radius of the multi-Skyrmion c
figurations, check how these properties depend onl and
compare these results to the ones obtained for the nume
solutions.

The rational map ansatz, introduced by Houghtonet al.
@11# is an extension of the hedgehog ansatz found
Skyrme, which using the usual polar coordinates is given

U~r ,u,w!5exp@ ig~r !n̂~u,w!•s#. ~20!

TABLE I. Experimental energy ratioEB /EB51, and values ob-
tained for the numerical solutions. The experimental values~MeV!
correspond to isotopes with minimum mass@19#.

Experiment Numerical solutions
B Energy~MeV! Ratio Skyrme ratio Sk6 ratio

1 939
2 1876.1 1.99798 1.9009 1.8395
3 2809.374 2.99188 2.7650 2.7103
4 3728.35 3.97055 3.6090 3.5045
5 4668.795 4.97209 4.5000 4.3780
04500
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In the hedgehog ansatzn̂ is a unit length vector describing
the one-to-one mapping of the two-sphere into itself a
g(r ) is a profile function satisfying the boundary conditio
g(0)5p andg(`)50. The rational map ansatz consists
using for n̂(u,w) harmonic maps fromS2 into S2 while
keeping the same boundary conditions forg. One can easily
show that the baryon number for such a configuration
given by the degree of the harmonic map. To approxima
solution of a given baryon charge, one takes forn̂ the most
general rational map of the given degree, inserts the an
into the expression for the energy and tries to minimize t
expression with respect to the parameters of the rational
and the profile functionsg. When doing so, the integratio
over the radiusr and the angular variablesu andw decouple
and the rational map appears only in two expressions i
grated over the whole sphere. One of them can be evalu
explicitly and is equal to the degree of the harmonic m
while the other must be minimized with respect to the p
rameters of the rational map. Doing so leads to a uniq
rational map, up to an arbitrary rotation, which describes
angular dependence of the Skyrmion configuration. Then
minimizes the effective energy by solving the Eule
Lagrange equation for the profile functiong. The configura-
tions obtained by this construction have the same symme
as the exact solutions@13,14# and their energies are only 1 o
2 percent higher@11#.

TABLE II. Experimental radius ratioRB /RB51 and values ob-
tained for the numerical solutions. The experimental values~fm!
correspond to nuclei with minimum mass@10,20–22#.

Experiment Numerical solutions
B Radius~fm! Ratio Skyrme ratio Sk6 ratio

1 0.72
2 1.9715 2.73819 1.3549 1.308
3 1.59 2.2083 1.5080 1.5570
4 1.49 2.06944 1.6850 1.7420
5 1.8890 1.9250
9-6
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This construction was later generalized by Ioannid
et al. @12# to approximate solutions of theSU(N) Skyrme
model using harmonic maps fromS2 into CPN21. The gen-
eralized ansatz takes the form

U~r ,u,w!5e2ig(r )@P~u,w!2I /N#

5e22ig(r )/N@ I 1~e2ig(r )21!P~u,w!#, ~21!

where P(u,w) is an N3N projector. As we want to study
some solutions of theSU(3) model as well, we will use the
generalized construction. At this stage it is convenient
introduce the complex coordinatej5tan(u/2)eiw which cor-
responds to the stereographic projection of the unit sph
onto the complex plane.

The procedure to minimize the energy is the same as
one outlined above where the projector will be taken a
harmonic map fromS2 into CPN21, i.e., a projector of the
form @18#

P~ f !5
f ^ f †

u f u2
, ~22!

wheref is aN components complex vector whose entries
all rational functions ofj. The degree of the harmonic map
given by the highest degree of the components off and the
baryon number is again given by that degree.

Substituting the ansatz~21! in the general expression o
the energy density~4! we get

Ẽ5
1

3pE drS ANgr
2r 212N sin2 g@11~12l!gr

2#

1~12l!I sin4 g

r 2
1lI sin4 g

r 2
gr

21
2

3
lMsin6 g

r 4 D ,

~23!

where

AN5
2

N
~N21!,

N5
i

2p E djdj̄ Tr~ u]jPu2!,

I5
i

4pE djdj̄~11uju2!2 Tr~@]jP,]j̄P#2!,

M5
i

8pE djdj̄~11uju2!4 Tr~@]jP,]j̄P#3!. ~24!

The integral N is nothing but the energy of the two
dimensional EuclideanCPN21 s model and for the har-
monic projector it is equal to the degree of the harmonic m
04500
u

o

re

e
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e

p

B5
i

2pE djdj̄ Tr~P@]j̄P,]jP# !. ~25!

As I and M are independent ofr they can be minimized
with respect to the parameters of the harmonic maps. In w
follows we will prove thatM is identically zero so onlyI
will have to be minimized, something which was alrea
done in Refs.@11# and@12#. The minimization of the energy
with respect to the profile functiong(r ) is then straightfor-
ward.

To prove thatM vanishes, we need to use some prop
ties of the projectors given by Eq.~22!, where ] f /]j̄50.
First of all, it is easy to check that

PPj50 and PjP5Pj , ~26!

wherePj denotes the derivative ofP with respect toj and
from this we have

PPjP50 and thusPj
250. ~27!

Using Eq.~27! we notice that

Tr@Pj ,Pj̄#
n5Tr~PjPj̄2Pj̄Pj!

n

5Tr@~PjPj̄ !
n1~21!n~Pj̄Pj!

n#

5@12~21!n# Tr@~PjPj̄ !
n# ~28!

proving that

Tr@Pj ,Pj̄#
n50 for n odd, ~29!

and thus thatM in Eq. ~24! is identically zero.
As a result, the energy density~23! simplifies further and

if we treatN andI as two parameters then one can minimi
the energyẼ by solving the following Euler-Lagrange equa
tions for g:

grr S 112N 12l

AN

sin2 g

r 2
1I l

AN

sin4 g

r 4 D
1

2

r
grS 12I l

AN

sin4 g

r 4 D 1
1

AN

sin 2g

r 2

3S N@~12l!gr
221#1I sin2 g

r 2
~lgr

2211l!D 50.

~30!

We see from our analysis that the harmonic maps for
extended Skyrme model are the same one as the u
Skyrme model. The harmonic map ansatz predicts thus
the solutions of the usual and the extended Skyrme mo
have the same symmetries. This has been confirmed by
numerical solutions. The only difference, for the ansatz,
tween the two models comes from the profile function. T
is due to the presence of the extra terms appearing in
9-7
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TABLE III. Harmonic mapsf (j) minimizing the angular integralI for SU(2) @11# andSU(3) @12,23#.
The 5* and 5** configurations denote saddle points that we also consider.

SU(2) SU(3)
B Harmonic Mapf (j) I Harmonic Mapf (j) I
1 (j,1)t 1 (j,1)t 1
2 (j2,1)t 5.81 (j2,A2j,1)t 4
3 @j(j22A3i ),A3i j221# t 13.58 (0.46(j311),j2,2j) t 10.51
4 (j412A3i j211,j422A3i j211)t 20.65 (j4,2.7191j2,1)t 18.05
5 @j(j41bj21a),aj42bj211# t, 35.75 (j522.7j,2j411,9/2j3) t 27.26

a53.07,b53.94
5* @j(j425),25j411# t 52.05
5** ( j5,1)t 84.425
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~30!. In Table III we list the minimizing harmonic maps tha
we will use later together with the corresponding value foI
@11,12,23#.

A. Energy and radius ratios for the SU„2… model

In this section, we analyze how the properties of t
multi-Skyrmions rational map ansatz depend on the par
eterl. Using the value ofI given in Table III, we compute
the profileg by solving Eq.~30! and evaluate both the tota
energy and the radius of the configurations. In Figs. 6–9,
show the energy ratio and the radius ratio defined in Eq.~11!
for different values of the baryon number. At this stage
would like to remind the reader thatl50 corresponds to the
pure Skyrme model whilel51 is equivalent to the pure Sk
model. Moreover, the ratio presented on the figures only
pends onl i.e., the mixing between the two Skyrme term
WhenB>6, the graphs we obtained were all similar to F
9.

When comparing these results with the numerical so
tions, we notice first of all that the energy ratio predicted
the ansatz is always too large. Apart from this, the predict
for the energy is rather good except for the caseB52 where
the energy difference between the numerical solution and
rational map ansatz is 7 times as large for the Sk6 mo
04500
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e

e

e-
.
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-
y
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he
el

than for the pure Skyrme model.
We also notice that the graphics obtained for the num

cal solutions do not exhibit local minima as observed on
graphs obtained for the harmonic map ansatz. The only
ception is the radius ratio obtained for theB55 exact solu-
tion but the effect is so small that it could be a numeric
artifact.

The radius ratio obtained with the harmonic map ansat
always too large when compared with the radius ratio of
exact solution. ForB52, the radius ratio increases withl
and the error only gets worse asl increases. The caseB
53 is rather surprising as the radius ratio has a deep lo
minimum around the valuel50.3; this is where the relative
error is the smallest, otherwise the relative error is sma
for the pure Sk6 model than for the pure Skyrme model. T
casesB54 andB55 are very similar: the radius ratios de
crease whenl increases and the error for the pure Sk6 mo
is very small especially whenB54. We can thus conclude
that the harmonic map ansatz produces good approximat
to the solutions of the generalized Skyrme model and
error is in most cases smaller for the pure Sk6 model than
the pure Skyrme model, the only exception being the c
B52.

So far we have examined the behavior of the model
harmonic maps that minimize the angular integralI and cor-
FIG. 6. Ẽ andR̃ ratio of B52/B51 as a function ofl for the SU(2) harmonic map ansatz.
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FIG. 7. Ẽ andR̃ ratio of B53/B51 as a function ofl for the SU(2) harmonic map ansatz.

FIG. 8. Ẽ andR̃ ratio of B54/B51 as a function ofl for the SU(2) harmonic map ansatz.

FIG. 9. Ẽ andR̃ ratio of B55/B51 as a function ofl for the SU(2) harmonic map ansatz.
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I. FLORATOS AND B. PIETTE PHYSICAL REVIEW D64 045009
FIG. 10. Ẽ andR̃ ratio of B55* /B51 as a function ofl for the SU(2) harmonic map ansatz.

FIG. 11. Ẽ andR̃ ratio of B55** /B51 as a function ofl for the SU(2) harmonic map ansatz.

FIG. 12. Ẽ andR̃ ratio of B52/B51 as a function ofl for the SU(3) harmonic map ansatz.
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FIG. 13. Ẽ andR̃ ratio of B53/B51 as a function ofl for the SU(3) harmonic map ansatz.

FIG. 14. Ẽ andR̃ ratio of B54/B51 as a function ofl for the SU(3) harmonic map ansatz.

FIG. 15. Ẽ andR̃ ratio of B55/B51 as a function ofl for the SU(3) harmonic map ansatz.
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FIG. 16. Ẽ andR̃ ratio of B56/B51 as a function ofl for the SU(3) harmonic map ansatz.
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respond to minimum energy configurations. We have n
considered harmonic maps that correspond to saddle p
of the energy forB55. The reason behind this selection li
on the fact that the binding energies of the multi-Skyrmi
solutions are much larger than the experimental values.
this reason, we have considered the two harmonic mapB
55* andB55** given in Table III. The first one has octa
hedral symmetry whereas the second gives a toroidal Sky
field @11#.

For the case ofB55* , shown in Fig. 10, we see that th
binding energy is slightly larger than 5 for the pure Skyrm
model and that it decreases when the strength of the s
order term increases, going through the experimental va
4.97 whenl'0.1. The second case, shown in Figs. 11–
is the only example where we have seen a local maxima
the energy ratio that is larger than the energy of both the p
Skyrme and Sk6 model.

B. Energy and radius ratios for the SU„3… model

In this section we look at the harmonic maps configu
tions for theSU(3) models@12#. The harmonic maps that w
will use and the corresponding values ofI are all given in
Table III. The singleSU(3) skyrmion is the well-known
hedgehog ansatz and it is just an embedding of theSU(2)
solution.

Notice that the numerical constantAN appearing in Eqs.
~30! and~23! is now equal to 4/3. We should stress here t
these configurations approximate solutions that are belie
to be saddle points of the energy. Their energy is larger t
the correspondingSU(2) embeddings and they have a d
ferent symmetry as well. It is interesting to notice that unli
theSU(2) model, the energy of theB52 solutions increase
with l. For a givenB and a fixed value ofl, the energy ratio
of these configurations is always larger than the energy r
of the correspondingSU(2) solutions, while on the othe
hand, the radius ratios is always smaller.

It is also interesting to notice that thel dependence of the
energy and radius ratios obtained for a givenB looks very
similar to the curve obtained for theSU(2) model for B
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21 Skyrmions. This can be explained by performing t
change of variabler→rk, where

k25
~12l!

2
$11A114l/@AN~12l!2#%,

and rewrite Eq.~23! as

Ẽ5
ANk

3p E drS AN gr
2 r 212N8 sin2 g @11~12l8!gr

2#

1~12l8!I8
sin4 g

k2r 2
1l8I8

sin4 g

r 2
gr

2D ~31!

whereN85N/AN , I85I/AN , andl85l/k4. The function
k(l) monotonically decreases fromk(0)51 to k(1)
5AN

21/4 and so it is relatively close to 1 for all values ofl.
In Table IV, we give the values ofN8 andI8 for theSU(3)
ansatz and we notice that theSU(3) solutions forB54 and
B55 are closely related to theSU(2) solutions for, respec-
tively, B53 andB54.

In Tables V and VI we compare the energies and
radius ratios, obtained for theSU(2) andSU(3) model us-
ing the rational map ansatz. We also compare these va
with the SU(2) numerical solutions.

TABLE IV. N8 andI8 for the SU(3) ansatz.

SU(2) SU(3)
N I N I N8 I8

2 5.81 3 10.51 2.25 7.88
3 13.58 4 18.05 3 13.54
4 20.65 5 27.26 3.75 20.44
5 35.75 6 37.33 4.5 28
9-12
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C. Conclusions

We have studied an extension of the Skyrme model
fined by adding to the Lagrangian a sixth-order term. W
have computed the multi-Skyrmion solutions of the extend
model for up toB55 and we have shown that they have t
same symmetry as the pure Skyrme model. We have
lyzed the dependence of the energy and radius of the cla
cal solution with respect to the coupling constantl. We
found that the addition of the sixth-order term makes
multi-Skyrmion solution more bound than in the pu
Skyrme model and that it also reduces the solution rad
We have also used the harmonic map ansatz to approxim
the numerical solutions and we found that the ansatz wo
as well, and in many cases even better, for the exten
model than for the pure Skyrme model.
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APPENDIX

In this appendix we describe the numerical methods
we have used to compute our numerical solutions.

1. 3-dimensional solutions

To compute the three dimensional solutions described
Sec. II, we discretized the static equations using finite diff

TABLE V. Energy ratio,EB /EB51, for the SU(2) numerical
solutions, and theSU(2) andSU(3) rational map ansatz configu
ration.

SU(2) Numerical
Solutions SU(2) SU(3)

B
Skyrme

ratio
Sk6
ratio

Skyrme
ratio

Sk6
ratio

Skyrme
ratio

Sk6
ratio

2 1.9009 1.8395 1.96223 1.95407 1.98468 1.995
3 2.7650 2.7103 2.88541 2.82888 2.95280 2.937
4 3.6090 3.5045 3.69164 3.52850 3.84491 3.760
5 4.5000 4.3780 4.65685 4.45345 4.72485 4.567
6 5.54105 5.26743 5.57660 5.3373

TABLE VI. Radius ratio,EB /EB51, for the SU(2) numerical
solutions, and theSU(2) andSU(3) rational map ansatz configu
ration.

SU(2) Numerical
Solutions SU(2) SU(3)

B
Skyrme

ratio
Sk6
ratio

Skyrme
ratio

Sk6
ratio

Skyrme
ratio

Sk6
ratio

2 1.3549 1.308 1.37023 1.39403 1.20691 1.2343
3 1.5080 1.5570 1.63107 1.62894 1.45491 1.478
4 1.6850 1.7420 1.78911 1.746286 1.63002 1.627
5 1.8890 1.9250 2.013822 1.95551 1.78149 1.755
6 2.178298 2.09768 1.909141 1.85991
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ences and we solved them using the relaxation method.
also corrected the first order and second order derivative
the fieldf as described in Ref.@24#. We used fixed boundary
conditions, taking the vacuum value for the field on t
edges of the grid.

The values obtained for the energy and the radius with
methods are affected by two sources of inaccuracy. The
one is the finiteness of the grid which, by distorting the fie
slightly, increases the value of the energy. The second on
the fact that finite differences systematically underestim
the value of the energy. One could of course hope that
two effects cancel out, but as it is difficult to evaluate th
order of magnitude one has to experiment and reduce t
both as much as possible.

To reduce the edge effects, we computed the same s
tions on grids of different sizesL but keeping the lattice
spacingdx5L/N constant, whereN is the number of lattice
points in each direction. We then looked at how the ene
changed as a function of the size and chose a value forL for
which the energy is only slightly affected by the edge effec

The finite difference scheme we used is of order two,
when we evaluate the total energy we can write

E5E01E1dx1E2dx21O~dx3!. ~A1!

In theory, E150 but in practice it is a small but nonzer
coefficient induced by the edge effects. To improve t
evaluation of the energy for a given solution, we compu
the solution for at least three different values ofdx using a
grid of size L for which the edge effects are sufficient
small. We then fitted these values to the coefficientE0 , E1,
andE2 in Eq. ~A1! gettingE0 as a better estimation for th
energy. Notice also thatE2 is always negative and tha
uE1u* dx!uE2u. When this last condition is not satisfied on
must conclude that the edge effects are large and one m
increaseL. To check our evaluation we performed the sam
interpolation for the topological chargeQ5Q01Q1dx
1Q2dx21O(dx3). As we know that it must be an integerB,
the quantity (B2Q0)/B is a good estimation of the relativ
error on the topological charge but also on the energyE0.

For the solutionB52•••5 we used a box ranging from
28 to 8 in all directions and we used grids of 100 and 1
and 140 points. We also found that for a given value ofB, E2
did not change much withl. We were thus able to evaluat
it for a few values ofl and used an extrapolation for th
other values. We also found that after extrapolation the re
tive error on the topological charge, varied between 0.5
and 0.1%.

As an alternative method to evaluate the energy@14# one
can compute the quantityE/Q, as if E2 andQ2 were com-
parable, we would not have to compute the solutions
different values ofdx. Battye and Sutcliffe@14# found this
method to work extremely well with their discretization. Un
fortunately we found that with our discretization,Q2 is about
50% larger thanE2, both of which are negative, and as
result the value we get forE/Q decreases whendx decreases
and thus overestimates the energy value. Comparing the
data from Ref.@14# with ours, we find that our raw energy i

4
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more accurate but that the errors on our topological charg
roughly the same as that in Ref.@14#.

The energy values that we obtained for the pure Skyr
model, after extrapolation, all fit within 0.15% the valu
E/Q given in Ref.@14#. To evaluate the radius, we have us
the same method, but for this quantity the integrand
creases more slowly towards infinity and as a result the va
is more affected by the finiteness of the grid. We believe t
the overall behavior of the radius ratio graph can be trus
but some of the fine details might be numerical artifacts.

To double check our results, we have computed theB
52 axially symmetric solutions by solving Eqs.~18! and
~19! on a two-dimensional grid. This made it possible to u
many more points and much larger grids. When using
grid defined by zP@220,20# and r P@0,20# taking dx
50.05 the error was smaller than 0.1% and we found
exampleE52.3573 for the pure Skyrme model. This valu
fits the energy given in Ref.@14# within 0.04%. When com-
puting this solution by solving the three-dimensional eq
tion using the method described above, the difference
tween the two energies was less than 0.1%, thus valida
the methods that we used.
n

ys

ys
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Finally we would like to add that one difficulty in com
puting the energy of Skyrmion bound states is that one
mostly interested in the binding energies which are only
few percents of the total value. It is thus important to eva
ate the energy as accurately as possible. The fact that
independent numerical computations agreed with that of B
tye and Sutcliffe within around 0.1% increases the cred
one can have in both our results and theirs.

2. Profiles

To compute the profile functions for the hedgehog ans
or the harmonic map ansatz we have used the shoo
method with a fourth order Runge-Kutta integration sche
and we have also used a relaxation method. We have
every case compared the solutions obtained with grids
different sizes and different number of points to ensure t
our results were accurate and that they were not affected
edge effects. We were led to use very large grids,Rmax580,
to get an accurate value for the radius as well as up
160000 lattice points. We have also checked these result
using the relaxation method with a fourth order Runge-Ku
method with adaptive time-step.
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