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Multi-Skyrmion solutions for the sixth order Skyrme model
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Following Marleau, we study an extended version of the Skyrme model to which a sixth order term has been
added to the Lagrangian and we analyze some of its classical properties. We compute the multi-Skyrmion
solutions numerically for up t8=5 and show that they have the same symmetries as the usual Skyrmion
solutions. We use the rational map ansatz introduced by Houghton, Manton, and Sutcliffe to evaluate the
energy and the radius for multi-Skyrmion solutions of uBte 6 for both theSU(2) andSU(3) models and
compare these results to the ones obtained numerically. We show that the rational map ansatz works as well for
the generalized model as for the pure Skyrme model.
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I. INTRODUCTION in Eqg. (1) which is the simplest one that preserves the
SU(N) and Lorentz invariances.
Recent mathematical developments within the area of The Skyrme model can be generalized by adding terms
nonperturbative methods have established the Skyrme modiglvolving higher order derivatives in the Lagrangidh)
as the strongest candidate for an effective low energy theorjb—8]. Doing this, one introduces extra parameters that can
of quantum chromodynamid€®CD). The model was origi- be tuned in to increase the quality of the Skyrme model as an
nally proposed by Skyrmé¢l] to describe hadron interac- effective low energy limit of QCD. For example, in Refs.
tions. However, it was mainly ignored, until it was shown [5,9] the sixth-order term was used to take into account the
[2—4] that in the largeN,. limit, where N, is the number of w-meson interactions when computing the central nucleon-
colors, this nonlinear theory can describe the low energyucleon potential. In a different context Marleau studied the
limit of QCD. This revived the Skyrme model and since thenmodel where a large number of higher order terms were in-
significant progress has been made towards the understancluded in the Lagrangiaf6—8] and where, to avoid the in-
ing of its properties resulting to a relatively successful detroduction of a large number of extra parameters, the coeffi-

scription of nuclear interactions. cients of these extra terms were all related to the coefficient
The Skyrme model is described by 8tJ(N) valued field  of the Skyrme model.
U(x,t) which must satisfy the boundary conditith—1 as In this paper we will consider the simplest possible exten-

|>?|—>oo, wherel is the unit matrix. This condition ensures 5'°" qf the Skyrme mo_del, l.e., defined by the Lagrangian
to which we add the sixth-order term

finiteness of the energy for any field configuration and it also
implies that the three-dimensional Euclidean space on which
the model is defined can be compactified iBfoAs a result, Le=ce TR, ,RI[R, ,RMIR, ,R¥]. 2
the Skyrme fieldU corresponds to mappings fro8¢ into
SU(N). Skyrme’s idea was to interpret the winding number
associated with these topologically nontrivial mappings a
the baryon charge.

The model is described by the Lagrangian

The unknown coefficientg denotes the strength of this term
Sind will be left as a free parameter of the model. This par-
ticular choice of a sixth-order term is not accidental as it is
the only term that preserves the Lorentz invariance and the
SU(N) symmetry of the model and leads to an equation of
E2 1 motion that does not involve derivatives of order higher than
Ls=-=TrR,R*+ —TI[R, R'][R,,R“], (1)  two. This is the term that was used in RE3].
16 # 3232 " | : : . .
n this paper we will focus our attention on the static
solutions of the extended Skyrme model and thus consider
where RM=((9MU)U’1 is the right chiral current,F_  fields that do not depend on time. It is also convenient to
—189 MeV is the pion decay constant aais a dimension-  define the dimensionless parameter=192%¢F2a* and
less parameter. The first term in E) is the nonlinears to introduce the dimensionless unitsyzx\/E/
model and one can easily show using a scaling argument th / T
with this term alone static solutions cannot exist. The sam ér:itg)n ;SJF 1+« so that the energy of the model can be
argument shows that one must add to the Lagrangian terms
involving higher derivatives. This argument led Skyrme to

add the second term, usually referred to as the Skyrme term, E _Af d§3(%Tr RZ+ 11—6)\ TR R 2
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where  A=F_/(42a)V1+V1+x and A=«/(1 - 1 0
+1+«)2 The parameterA is the energy scale of the R=————aF;R. 1
model. In what follows it will be convenient to use the di- V2V1+ 1+«

mensionless energy expressed in the so-called topological

units: i.e., One can see from the definition BfandR that the ratio
of energy or matter radius for different solutions only de-
~ E pends on\. In the following section we will evaluate the
E= . (4) : ; : ;
1272\ energy and radius of multi-Skyrmion solutions for the gen-

eral model and evaluate these two quantities with the corre-

We have chosen this parametrization of the model so thaaponding value for the single Skyrmion and compare them
\ €[0,1] describes the mixing between the Skyrme term andlirectly to the experimental ratio
the sixth-order term(2). When\A =0 our model reduces to
the usual pure Skyrme model while wher=1 the Skyrme Eg Eg(\) Rg Rg(\)
term vanishes and the model reduces to what we refer to in Es, E (N Re—s "R )
what follows as the pure Sk6 model. B=1 B=1

The Euler-Lagrange equations derived from ES8j. for
the static solutions are given by

(12)

So far all the studies of the classical properties of gener-
alized Skyrme models have been focusing on the properties
1 1 of the single skyrmionB=1) [5-9]. In Sec. Il we compute

Ri—Z(l—)\)[Rj R ,Ri]]—E)\[RJ— J[Rj Rl numerically multi-Skyrmion configurations fadB=2 to 5
and compare the energy and the radius of these solutions

J;

with the experimental values.
X[Rk,Ri]]> =0. (5) It was shown recently11,12 that multi-Skyrmion con-
figurations, i.e.B=2, can be studied systematically using as

As mentioned above, an important property of the Skyrmein @pproximation the so-called harmonic map ansatz. In Sec.
model is that its field corresponds to a mapping fréfrinto Il we approximate the mult-|-Skyr.m|on solution both for the
SU(N) and asms[ SU(N)]=2Z each configuration is charac- SU(2) andSU(3) model using this ansatz. We compare the

terized by a an integer which can be obtained explicitly by'@Sults obtained with the numerical solutions and we show
evaluating the expression that the harmonic map ansatz provides a good approximation

for the multi-Skyrmion solutions of the extended model as

1 well.
= w3ciik R.
B 247szRde e Tr(RiR;Ry), (6)

II. NUMERICAL SOLUTIONS

which following Skyrme’s idea is interpreted as the baryon |, this section we investigate the multi-Skyrmion solu-

num_ber. Moreover the following inequality holds for every tions of the extende®U(2) Skyrme model by solving the
configuration: static Euler-Lagrange equati@®) of the model numerically.
Computing the static solutions of such a three-dimensional
model is rather difficult and requires a large amount of com-
epéjting power. As one has to be very careful when assessing
the accuracy of such numerical results, we give a discussion
w%f the numerical methods that we have used in the Appendix.
To compute the solution numerically, it is more conve-

E=1-\B. 7)

Our extended Skyrme model depends on three paramet
F ., @ andcg or using the dimensionless units k, and\.
To determine the physical values for these parameters,
can evaluate different quantities. As our analysis will be . : . .
purely classical, we will use for this purpose the total energ)p'ert‘t to defscnt')telthstl;(Z) ;'Ekljs u?]'.n% a foulr-(t:oc;n?orlﬁnt
(3) and the isoscalar mean square matter radius givéa@y veg or ¢_ of unit fength, _¢1| Shw 'C_ IS reag 0 ) €
unitary field by U= ¢gl +i7- ¢ wherel is the unit matrix
J“dr (2 po(r) and = are the Pauli matrices. The expression for the energy
P (4) then becomes

R?=(r?)_o= fx ;
o B[ 1 T b (9,071 G114,
where
_3|¢M|2(¢V ¢K)2+2(¢M ¢V)(¢K ¢,u,)(¢v ¢K):|'
pB(r):47TrZBO(r)- (9) (12)

Notice that after performing the ~scaling—x+2/ and the Euler-Lagrange equations derived from #&8), af-
(aF,) V1+V1+ k we can define the matter radius evaluatedter adding a Lagrange multiplier to impose the constraint
in dimensionless units as |#|?=1, are given by
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FIG. 1. E(\) andR()) for theB=1 solutions.
1 1
Buu| 1+ (1=1)|, |2+ §x|¢>y|2|¢K|2—§M¢V~¢K>2) +pul? d+ A=) (S b1 b= (Pup ) b,

_(d),u ¢I/)¢I/,u+|¢y,|4¢_(¢,u,' ¢V)2¢)+)\ ¢/,L(¢V ¢I/,LL)|¢K|2_ qs,u((ﬁv' ¢K)(¢V ¢K,u)

- d)v( d),u ¢,LLK)(¢V ¢K) - ¢v( d)v' ¢KK)| ¢,LL|2_ ¢VK(¢V' ¢K)| ¢,u|2+ (;bu,u(qSK' ¢,u)(¢u ¢K)

1
+ ¢V(¢K ¢/.L/.L)(¢V ¢K)+ ¢V( ¢K ¢/.L)(¢V ¢K/.L)+ §[|¢M|6_3|¢#|2( ¢V ¢K)2+2(¢,U, ¢V)(¢K ¢M)(¢V ¢K)]¢

=0. (13

To compute theB=1 solution, we use the so-called we can reduce the system of equations for these solutions to
hedgehog ansatz a two-dimensional system by using the ansatz

sinf(r) sinésin(¢)

sinf(r) sin@cog ¢) sinf sing sin(2¢)
¢= sinf(r) cosé ' (14 B sinf sing cog2¢) s
cosf(r) ¢ sinf cosg '
cosf

wherer, 6, and ¢ are the usual spherical coordinates. Plug-
ging Eq.(14) into Eq.(12) one minimizes the energy for the
profile functionf(r) which then has to satisfy an ordinary where ¢ =atanf/x). The two profile functions (p,z) and
differential equation. This is a very special case of the harg(p,z) are functions of the usual axial coordinatgs
monic map ansatz discussed in the next section, so we wilk x/x2+y2 and z and they satisfy the following boundary
just say at this stage that the solutions are radially symmetrigonditions:
and that the. dependence of the energy and the radius of the
solutions are given in Fig. 1. The fact that the energy de-
creases with\ is entirely due to our choice of parametriza- f(0,0=m, f(p—x,z—x»)=0, f,(02)=0,
tion; the real quantities one has to look at are the energy and
radius ratio(11).
As described in the Appendix, solving E@.3) accurately g9(0z<0)=0, ¢g(0z>0)=m, 0grlr_»=0, (16)
is rather difficult. For this reason the caBe=2 was solved
differently. It is indeed well known that the usuBi= 2 static
solution is axially symmetri¢13—17 and we found that this whereR?=r2+ 22,
is also true for the extended Skyrme model. Knowing this, Substituting Eq(15) into Eq.(12) we get

045009-3



I. FLORATOS AND B. PIETTE PHYSICAL REVIEW D64 045009

=

+(1—\)

4
2. €2 o 2, 2 - -
(f2+15)+siP f(g2+g3) + ?sm2 f sir? g]

+A

4 .
Esm"’f sirfg(f,0,—f,9,)?

]pdpdz

17

4
?sinZ f sir? g[ f2+f2+sir? f(g2+g2) ] +sir? f(f .9, f,g,)?

and the corresponding Euler-Lagrange equations are given by

1 2 1 , 4 1 ,
f o+ fot ;fp —Esm2f S|nzg—§sm2f(gp+gz)+(l—)\) Esmzfsm29(fpgp+fzgz)+;sm2f(fpgz—fzgpgz)

1 4 1
+ 5 sin 2f(f ,9,— ,9,)°+ —sir? f sin? g( fopt T ;fp
p

4 o, |1 .
. +?sm 2f s|nzg[§(f§+ff)—smzf(g[2,+gf)

+sir? £{f,,,02+ f,,95— 2f,,0,0,+ ,9,9,,— 1,9,,,9,~ f ,0,9,+ fzgpgpz}]

8 . . . 4 .
+)\{;sm2f sin 2f sir g(f ,9,— f,9,)+ ;sm“ f sin? g( f o905+ 1,99, 2f,,9,9,~ F,9,,9,+ .95+ ,9,9,,

1 4 . .
- fpgzzgp—;(fpgﬁ—fzgpgz)> - ;sm 2f sir? f sir g(f,,0,— fzgp)z] =0 (18

and

1
gpp+ 02,1 ;gp

+sin 2f
Sir? f

2 4 ; 2., .2
(f,9,+f,9,)+ ;sm 29+ (1—\) ?smz f sin2g(g;+g;3)

g
gpp+ Oz~ ?P

4 . . 1
+ ;smz g( 2 sin 2f(f ,,+ f,g,) +sir? f + ;(fggp— f,f.9,)+129,,+f20,,
2 H 2 2 H 2 2
- ;sm 2g{fo+ f2+sir? fl9,+9) )+ f.f2,0,— f,,0.0 .+ f,f,.0,—2F ,9,,f,— 1,9,f,
2

4 . 4 .
+)\[—sm2f sin 29(f,9,— f,9,)°+ — sir? f sir? g[fzfngp+fﬁgpp—fpprgZ—prfzgzp
p

2 1, 2, ,
+fpprgZ+fngZ_fZprgp_;(fzgp_fpfzgz) _;SlnszInzg(fng_fng) =0. (19)

The advantage of having a two-dimensional system is thagnergy ratio decreases when the coefficient of the sixth-order
we can use much larger grids and obtain much more accuraterm increases while on the other hand, the radius ratio in-
results. As discussed in the Appendix, we have also comcreases thus making the multi-Skyrmion solution broader in
pared theB=2 solutions obtained by solving E¢L3) and all cases except fdd=2. Tables | and Il compare the energy

Egs. (18), (19) in order to evaluate the accuracy of the @nd radius ratio of the pure Skyrme and the pure Ské models
method we used to solve E6L3) numerically with the experimental values. We notice that the predicted

. . values for the energy are smaller than the experimental val-
To compute the solutions fd8>2 we solved the stalic o5 54 that the addition of the sixth-order term makes the

equations(13) using finite differences and the relaxation gnergy ratio even smaller. On the other hand, the addition of
method(see the Appendix.In Figs. 2-5, we present the  the sixth-order term makes the multi-Skyrmion solution
dependence of the energy and radius ratio forBre2 to  proader, except wheB=2, but the actual values are still
B=5 multi-Skyrmion solutions. We see that in each case thenuch smaller than the experimental ones.
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FIG. 2. E(\) andR()) ratio of B=2/B=1 for the numericaSU(2) solutions.
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FIG. 4. E(\) andR(\) ratio of B=4/B=1 for the numericaBU(2) solutions.
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FIG. 5. E(\) andR(\) ratio of B=5/B=1 for the numericaBU(2) solutions.

Another observation we made is that the symmetries ofy the hedgehog ansatris a unit length vector describing
the multi-Skyrmion solutions for the general mod'el are thethe one-to-one mapping of the two-sphere into itself and
same as for the pure Skyrme model. The solutionsBor ¢ (y) s a profile function satisfying the boundary conditions
=2, 3, and 4 Skyrmion have, respectively, the shape of g(g)=+ andg(«)=0. The rational map ansatz consists in
torus, a tetrahedron, and a cube while 85 Skyrmion using for n(8,¢) harmonic maps frome? into S? while
solution has the sami@,q symmetry. keeping the same boundary conditions §oiOne can easily

It is a well know problem that the binding energies pre- . i
dicted by the Skyrme model are too large and that the radiu%.hOW that the baryon number for such a configuration is

of the classical solutions is too small. One usually argues thaqlven_ by the d(.agree of the harmonic map. ToAapproxmate a
quantizing the model will somewhat solve this problem.Solution of a given baryon charge, one takesridhe most

Adding the sixth-order term does not improve this: the en-9eneral rational map of the given degree, inserts the ansatz

ergy binding is even stronger and the multi-Skyrmion solu-Nto the expression for the energy and tries to minimize this
tions are broader except f@=2. expression with respect to the parameters of the rational map

and the profile functiong. When doing so, the integration
over the radiug and the angular variablesand ¢ decouple
and the rational map appears only in two expressions inte-
In this section we will use the rational map ansatz tograted over the whole sphere. One of them can be evaluated
compute configurations that approximate solutions of the exexplicitly and is equal to the degree of the harmonic map
tended Skyrme model. We will then use these configurationghile the other must be minimized with respect to the pa-
to evaluate the energy and radius of the multi-Skyrmion conframeters of the rational map. Doing so leads to a unique
figurations, check how these properties dependioand rational map, up to an arbitrary rotation, which describes the
compare these results to the ones obtained for the numericahgular dependence of the Skyrmion configuration. Then one
solutions. minimizes the effective energy by solving the Euler-
The rational map ansatz, introduced by Houghetral.  Lagrange equation for the profile functign The configura-
[11] is an extension of the hedgehog ansatz found byions obtained by this construction have the same symmetries
Skyrme, which using the usual polar coordinates is given byas the exact solutiorjd 3,14 and their energies are only 1 or
2 percent highef11].

IIl. HARMONIC MAP ANSATZ

U(r,0,¢)=exdig(rn(6,¢)- o]. (20
TABLE II. Experimental radius ratidRg /Rg-; and values ob-

_TABLE I. Experimental energy rati@s /Eg—,, and values ob-  iaina for the numerical solutions. The experimental val(ies
tained for the numerical solutions. The experimental valisV) correspond to nuclei with minimum magk0,20—22.

correspond to isotopes with minimum md4$].

Experiment Numerical solutions Experiment Numerical solutions
B Energy(MeV) Ratio Skyrme ratio SK6 ratio B Radius(fm) Ratio Skyrme ratio Sk6 ratio
2 1876.1 1.99798 1.9009 1.8395 2 1.9715 2.73819 1.3549 1.308
3 2809.374 2.99188 2.7650 2.7103 3 1.59 2.2083 1.5080 1.5570
4 3728.35 3.97055 3.6090 3.5045 4 1.49 2.06944 1.6850 1.7420
5 4668.795 4.97209 4.5000 4.3780 5 1.8890 1.9250
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This construction was later generalized by loannidou i _
et al. [12] to approximate solutions of th8U(N) Skyrme B= ﬁj dédé Tr(PLagP,d:P]). (25)
model using harmonic maps fro8f into CPN~ . The gen-

eralized ansatz takes the form As Z and M are independent of they can be minimized

with respect to the parameters of the harmonic maps. In what

follows we will prove thatM is identically zero so onlyZ

— e 29(NINF| 4 (2i9() _ 1)p 21 will have to be minimized, something which was already
€ [1+(e P89, (2 done in Refs[11] and[12]. The minimization of the energy

with respect to the profile functiog(r) is then straightfor-

u(r,6,¢)= e2i9(n[P(6,¢)~1/N]

where P(6,¢) is anNXN projector. As we want to study
. . ward.

some solutions of th&U(3) model as well, we will use the To prove thatM vanishes, we need to use some proper-
generalized construction. At this stage it is convenient to. _ ) ' —
introduce the complex coordinage=tan(6/2)e'¢ which cor- €S of the projectors given by E22), where df/9¢=0.
responds to the stereographic projection of the unit spherE'rSt of all, it is easy to check that
onto the complex plane.

The procedure to minimize the energy is the same as the

one outlined above where the projector will be taken as a o ]
harmonic map fron&? into CPN"1, i.e., a projector of the where P, denotes the derivative & with respect tof and

PP,=0 and P,P=P;, (26)

form [18] from this we have
foft PP,P=0 and thusP=0. (27
=—> (22 _ _
|f]? Using Eq.(27) we notice that

wheref is aN components complex vector whose entries are TI[P,Pe]"=Tr(PP—PzP,)"
all rational functions ot. The degree of the harmonic map is _ N,/ _a\n n
given by the highest degree of the component$ afd the =TI(PP™+ (= 1)(PPYT]

baryon number is again given by that degree. =[1-(—1)"] T (PP)"] (28)
Substituting the ansati2l) in the general expression of

the energy density4) we get proving that
-~ 1 Tr[P;,P¢"=0 for n odd, (29
E=§f dr| ANgZr2+2Nsirf g[1+(1—\)g?]

and thus thatM in Eq. (24) is identically zero.
a sirf' g 2 sinf g) As a result, the energy densit23) simplifies further and
2

sin . S
. 9T SOty - if we treat\andZ as two parameters then one can minimize
r r r the energyE by solving the following Euler-Lagrange equa-
(23)  tions forg:

+(1-N)T

where 1—\ sirg A sintg
Orr 1+2N—AN 2 A_N 4
2
A= (N— 1), +2 L I)\ sinfg . 1 sin2g
o Ay r Ay r2

sirfg

i _
N=— | d&deTr(|a.P|?),
277f £dETr(|9¢PI%) x(/\/[(l—)\)gf—l]+I 5 (xg?—1+>\))=0.
r

| —
7= o | dedg1+ g2 TP, %9
We see from our analysis that the harmonic maps for the
i extended Skyrme model are the same one as the usual
M= _f dédé(1+]¢?)* Tr([9:P,3:P1%). (24) Skyrme model. The harmonic map ansatz predicts thus that
87 the solutions of the usual and the extended Skyrme models
have the same symmetries. This has been confirmed by the
The integral AV is nothing but the energy of the two- numerical solutions. The only difference, for the ansatz, be-
dimensional EuclideartCPN"! & model and for the har- tween the two models comes from the profile function. This
monic projector it is equal to the degree of the harmonic majis due to the presence of the extra terms appearing in Eqg.
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TABLE lIl. Harmonic mapsf (&) minimizing the angular integral for SU(2) [11] andSU(3) [12,23.
The 5* and 5** configurations denote saddle points that we also consider.

SU(2) SU(3)

B Harmonic Mapf (&) 7 Harmonic Mapf (&) 7

1 (£1) 1 (1) 1

2 (£2.1) 5.81 (£2.42¢,1) 4

3 [£(&2— 3i),Bi&2—1] 13.58 (0.46€3+1),£2,— &)t 10.51
4 (*+2Bi2+ 1423 2+1)t 20.65 €*2.719%2 1) 18.05
5 [£(&*+Db&%+a),aé*—be+ 1], 35.75 €°—2.7¢,26+ 1,9/2£%)! 27.26

a=3.07,b=3.94
5* [£(&*—5),—5&4+1] 52.05
G (&5,1) 84.425

(30). In Table Il we list the minimizing harmonic maps that than for the pure Skyrme model.
we will use later together with the corresponding valueZfor We also notice that the graphics obtained for the numeri-
[11,12,23. cal solutions do not exhibit local minima as observed on the
graphs obtained for the harmonic map ansatz. The only ex-
ception is the radius ratio obtained for tBe=5 exact solu-
tion but the effect is so small that it could be a numerical
In this section, we analyze how the properties of theartifact.
multi-Skyrmions rational map ansatz depend on the param- The radius ratio obtained with the harmonic map ansatz is
eter\. Using the value off given in Table Ill, we compute always too large when compared with the radius ratio of the
the profileg by solving Eq.(30) and evaluate both the total exact solution. FoB=2, the radius ratio increases with
energy and the radius of the configurations. In Figs. 6—9, wand the error only gets worse asincreases. The caf®
show the energy ratio and the radius ratio defined in(Ef). =~ =3 is rather surprising as the radius ratio has a deep local
for different values of the baryon number. At this stage weminimum around the valug=0.3; this is where the relative
would like to remind the reader that=0 corresponds to the error is the smallest, otherwise the relative error is smaller
pure Skyrme model while =1 is equivalent to the pure Sk6 for the pure Sk6é model than for the pure Skyrme model. The
model. Moreover, the ratio presented on the figures only decasesB=4 andB=5 are very similar: the radius ratios de-
pends om\ i.e., the mixing between the two Skyrme terms. crease when increases and the error for the pure Sk6 model
WhenB=6, the graphs we obtained were all similar to Fig.is very small especially wheB=4. We can thus conclude
9. that the harmonic map ansatz produces good approximations
When comparing these results with the numerical soluto the solutions of the generalized Skyrme model and the
tions, we notice first of all that the energy ratio predicted byerror is in most cases smaller for the pure Sk6 model than for
the ansatz is always too large. Apart from this, the predictiorthe pure Skyrme model, the only exception being the case
for the energy is rather good except for the cBse2 where B=2.
the energy difference between the numerical solution and the So far we have examined the behavior of the model for
rational map ansatz is 7 times as large for the Sk6 modéharmonic maps that minimize the angular integfand cor-

A. Energy and radius ratios for the SU(2) model
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FIG. 6. E andR ratio of B=2/B=1 as a function ok for the SU(2) harmonic map ansatz.
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FIG. 16. E andR ratio of B=6/B=1 as a function of for the SU(3) harmonic map ansatz.

respond to minimum energy configurations. We have next-1 Skyrmions. This can be explained by performing the
considered harmonic maps that correspond to saddle pointhange of variable —rk, where
of the energy foB=5. The reason behind this selection lies (1-0)
on the fact that the binding energies of the multi-Skyrmion o L7 —7
solutions are much larger than the experimental values. For k= 2 {141+ A0 ),
this reason, we have considered the two harmonic naps
=5* andB=5** given in Table Ill. The first one has octa-
hedral symmetry whereas the second gives a toroidal Skyrm@nd rewrite Eq(23) as
field [11].

For the case oB=5*, shown in Fig. 10, we see that the
binding energy is slightly larger than 5 for the pure Skyrme . Ak
model and that it decreases when the strength of the sixth- E= B
order term increases, going through the experimental value
4.97 when\~0.1. The second case, shown in Figs. 11-16, sinfg sinfg
is the only example where we have seen a local maxima for +(1-\")T' " +N'T 5
the energy ratio that is larger than the energy of both the pure ker
Skyrme and Sk6 model.

dr| ANg?r2+ 2N siPg[1+(1—\")g?]

o7 (32)

r

where N’ =N/Ay, T'=T/Ay, and\’=\/k* The function
k(\) monotonically decreases fronk(0)=1 to k(1)
In this section we look at the harmonic maps configura-= A ' and so it is relatively close to 1 for all values »of
tions for theSU(3) modelg12]. The harmonic maps that we |y Taple IV, we give the values of” andZ’ for the SU(3)
will use and the corresponding values Dare all given in  ansatz and we notice that tis4J(3) solutions forB=4 and
Table Ill. The singleSU(3) skyrmion is the well-known B=5 are closely related to tH8U(2) solutions for, respec-
hedgehog ansatz and it is just an embedding ofSh&2)  tjvely, B=3 andB=4.
solution. _ o In Tables V and VI we compare the energies and the
Notice that the numerical constaAf, appearing in Eqs. yadius ratios, obtained for tr®@U(2) andSU(3) model us-
(30) and(23) is now equal to 4/3. We should stress here thaling the rational map ansatz. We also compare these values
these configurations approximate solutions that are believegith the SU(2) numerical solutions.
to be saddle points of the energy. Their energy is larger than
the correspondingU(2) embeddings and they have a dif-
ferent symmetry as well. It is interesting to notice that unlike
the SU(2) model, the energy of thB=2 solutions increases
with \. For a giverB and a fixed value of, the energy ratio

B. Energy and radius ratios for the SU(3) model

TABLE IV. A7 andZ’ for the SU(3) ansatz.

Su(2) SU(3)

. : . N T N T N A
of these configurations is always larger than the energy ratio
of the correspondingU(2) solutions, while on the other 2 5.81 3 10.51 2.25 7.88
hand, the radius ratios is always smaller. 3 13.58 4 18.05 3 13.54
It is also interesting to notice that thedependence of the 4 20.65 5 27.26 3.75 20.44
energy and radius ratios obtained for a giv&nooks very g 35.75 6 37.33 45 28

similar to the curve obtained for th8U(2) model forB

045009-12



MULTI-SKYRMION SOLUTIONS FOR THE SIXTH . .. PHYSICAL REVIEW D64 045009

TABLE V. Energy ratio,Eg/Eg-4, for the SU(2) numerical ences and we solved them using the relaxation method. We
solutions, and th&U(2) andSU(3) rational map ansatz configu- also corrected the first order and second order derivatives of

ration. the field¢ as described in Ref24]. We used fixed boundary
: conditions, taking the vacuum value for the field on the
SU(2) Numerical edges of the grid.
Solutions SU(2) SU(3)

The values obtained for the energy and the radius with our
Skyrme  Ské  Skyrme  Sk6  Skyrme  Ské methods are affected by two sources of inaccuracy. The first
ratio ratio  ratio  ratio  ratio  rafio one is the finiteness of the grid which, by distorting the field
1.9009 1.8395 1.96223 1.95407 1.98468 1.995g5Slightly, increases the value of the energy. The second one is
27650 2.7103 2.88541 2.82888 2.95280 2.93759the fact that finite differences systematically underestimate
36090 35045 3.69164 3.52850 3.84491 3.760641€ value of the energy. One could of course hope that the
45000 43780 4.65685 445345 4.72485 4567660 effects car_1cel out, but as it is dn‘flcult to evaluate their

554105 526743 557660 5.33739 order of magnitude one has to experiment and reduce them
both as much as possible.
To reduce the edge effects, we computed the same solu-
C. Conclusions tions on grids of different sizek but keeping the lattice

We have studied an extension of the Skyrme model de§pgcingdx= L/N_con_stant, wherdl is the number of lattice
fined by adding to the Lagrangian a sixth-order term. wePoInts in each d|re(_:t|on. We then looked at how the energy
have computed the multi-Skyrmion solutions of the extendeé:ha.mged asa fun_ct|on of the size and chose a valuk for
model for up toB=5 and we have shown that they have thewh|ch the energy is only slightly affected by the edge effects.

same symmetry as the pure Skyrme model. We have ana- The finite difference scheme we used is of order two, so
lyzed the dependence of the energy and radius of the cIassVﬂhen we evaluate the total energy we can write
cal solution with respect to the coupling constant We
found that the addition of the sixth-order term makes the E=Eq+ E;dx+Epdx*+0(dx®). (A1)
multi-Skyrmion solution more bound than in the pure
Skyrme model and that it also reduces the solution radiu i theorv E.=0 but in practice it is a small but nonzero
We have also used the harmonic map ansatz to approximate .. . Y E1 ¥ .
coefficient induced by the edge effects. To improve the

the numerical solutions and we found that the ansatz works - . ;
evaluation of the energy for a given solution, we computed

as well, and in many cases even better, for the extendetg]e solution for at least three different valuesdof using a
model than for the pure Skyrme model. grid of sizeL for which the edge effects are sufficiently
small. We then fitted these values to the coefficiept E;,
andE, in Eq. (Al) gettingE, as a better estimation for the

One of us, I.F., would like to thank T. Weidig for useful energy. Notice also thaE, is always negative and that
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discussions during the ear|y part of this work. |E1|*dX<|E2| When this last condition is not satisfied one
must conclude that the edge effects are large and one must
APPENDIX increasel. To check our evaluation we performed the same

_ ) _ ) interpolation for the topological charg€= Qg+ Q.dx
In this appendix we describe the numerical methods that; g, dx2+ O(dx3). As we know that it must be an integBr

_ _ ) error on the topological charge but also on the endtgy
1. 3-dimensional solutions For the solutionB=2---5 we used a box ranging from

To compute the three dimensional solutions described in-8 to 8 in all directions and we used grids of 100 and 120

Sec. Il, we discretized the static equations using finite differand 140 points. We also found that for a given valuBdt,
_ ) _ did not change much with. We were thus able to evaluate

TABLE VI. Radius ratio,Eg/Eg-,, for the SU(2) numerical it for 5 few values ofA and used an extrapolation for the
solutions, and th&U(2) andSU(3) rational map ansatz configu- ther yalues. We also found that after extrapolation the rela-
ration. tive error on the topological charge, varied between 0.5%
and 0.1%.

As an alternative method to evaluate the end] one

SU(2) Numerical

Solutions SU(2 SU(3 . .
Skyrme k6 Skyrme ( )Sk6 Skyrme ( )Sk6 can compute the quantit/Q, as if E, and Q, were com-
ratio ratio ratio ratio ratio ratio parable, we would not have to compute the solutions for

different values ofdx. Battye and Sutcliff§ 14] found this
1.3549 1.308 1.37023 1.39403 1.20691 1.234384method to work extremely well with their discretization. Un-
15080 1.5570 1.63107 1.62894 1.45491 1.47897 fortunately we found that with our discretizatid@, is about
1.6850 1.7420 1.78911 1.746286 1.63002 1.6275550% larger tharE,, both of which are negative, and as a
1.8890 1.9250 2.013822 1.95551 1.78149 1.75505result the value we get fd/Q decreases whetx decreases
2178298 2.09768 1.909141 1.859916 and thus overestimates the energy value. Comparing the raw
data from Ref[14] with ours, we find that our raw energy is

o U N WN| @
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more accurate but that the errors on our topological charge is Finally we would like to add that one difficulty in com-
roughly the same as that in R¢i.4]. puting the energy of Skyrmion bound states is that one is

The energy values that we obtained for the pure Skyrménostly interested in the binding energies which are only a
model, after extrapolation, all fit within 0.15% the value few percents of the total value. It is thus important to evalu-
E/Q given in Ref[14]. To evaluate the radius, we have usedate the energy as accurately as possible. The fact that our
the same method, but for this quantity the integrand deindependent numerical computations agreed with that of Bat-
creases more slowly towards infinity and as a result the valutye and Sutcliffe within around 0.1% increases the credits
is more affected by the finiteness of the grid. We believe thapne can have in both our results and theirs.
the overall behavior of the radius ratio graph can be trusted i
but some of the fine details might be numerical artifacts. 2. Profiles

To double check our results, we have computed Bhe To compute the profile functions for the hedgehog ansatz
=2 axially symmetric solutions by solving Eq6l8) and  or the harmonic map ansatz we have used the shooting
(19) on a two-dimensional grid. This made it possible to usemethod with a fourth order Runge-Kutta integration scheme
many more points and much larger grids. When using thend we have also used a relaxation method. We have in
grid defined byze[—20,20 and re[0,20] taking dx  every case compared the solutions obtained with grids of
=0.05 the error was smaller than 0.1% and we found fodifferent sizes and different number of points to ensure that
exampleE=2.3573 for the pure Skyrme model. This value our results were accurate and that they were not affected by
fits the energy given in Ref14] within 0.04%. When com- edge effects. We were led to use very large gritjs, =80,
puting this solution by solving the three-dimensional equato get an accurate value for the radius as well as up to
tion using the method described above, the difference bet60000 lattice points. We have also checked these results by
tween the two energies was less than 0.1%, thus validatingsing the relaxation method with a fourth order Runge-Kutta

the methods that we used. method with adaptive time-step.
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