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Light-front-quantized QCD in the light-cone gauge: The doubly transverse gauge propagator
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The light-front(LF) quantization of QCD in the light-cone gauge has a number of remarkable advantages,
including explicit unitarity, a physical Fock expansion, the absence of ghost degrees of freedom, and the
decoupling properties needed to prove factorization theorems in high-momentum transfer inclusive and exclu-
sive reactions. We present a systematic study of LF-quantized gauge theory following the Dirac method, and
construct a Dyson-Wick-matrix expansion based on LF time-ordered products. The free theory gauge field is
shown to satisfy the Lorentz condition as an operator equation as well as the light-cone gauge condition. Its
propagator is found to be transverse with respect to both its 4 momentum and the gauge direction. The
interaction Hamiltonian of QCD can be expressed in a form resembling that of covariant theory, except for
additional instantaneous interactions which can be treated systematically. The renormalization constants in YM
theory are shown to satisfy the identi#; =25 at one-loop order. The QCIB function, computed in the
noncovariant light-cone gauge, agrees with that known in the conventional framework. Some comments are
also made about the relationship of our LF framework, with a doubly transverse gauge propagator, to the
analytic effective charge and renormalization scheme defined by the pinch technique, the unitarity relations,
and the spectral representation. LF quantization thus provides a consistent formulation of gauge theory, despite
the fact that the hyperplane$ =0 used to impose boundary conditions constitute characteristic surfaces of a
hyperbolic partial differential equation.
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[. INTRODUCTION dom, leading directly to a physical Hilbert space. The corre-
sponding Fock representation is boost independent, since the
The quantization of relativistic field theory at a fixed front form has seven kinematical Poincayenerator$1,12],
light-front time 7= (t—z/c)/\2, which was proposed by including Lorentz boost transformations, compared to only
Dirac [1] half a century ago, has found important applica-six in the instant form framework. LF time-ordered perturba-
tions [2-5] in both gauge theory and string thed§]. The tion theory is much more economical than equal time-
light-front (LF) quantization of QCD in its Hamiltonian form ordered perturbation theory, since only graphs with particles
provides an alternative to lattice gauge theory for the comwith positive LF momentap* = (p°+p?)/\2 appear. LF-
putation of nonperturbative quantities such as the spectrufime-ordered perturbation theory was also appli8,14] to
and the light-front Fock state wave functions of relativistic massive fields. It was used in the analysis of the evolution of
bognd s_tate§3]. LF variables have glso found n.atural appli- deep inelastic structure functiof$5] and the evolution of
cations in other contexts, such as in the quantizatio®ef ¢ gistribution amplitudes which control hard exclusive pro-
pen string theory and_M theor{6]. L|ght-front quantization  oqces in QCI16]. Recently, the light-coné.C) gauge on
has been employed in the non-Abelian bosonizafighof the light front was used to analyze the forces between fixed

the field theory oN free Majorana fermions, and was used in .
the demonstration of the asymptotic freedom of the Yang—C olored sourcefl7], the string structure of QCD at largé:

Mills theory B function[8]. The requirement of microcausal- [18], and spontaneous symmetry breaking phenomena with-

ity [9] implies that the LF framework is more appropriate for OUt_ zero mode$19]. Ther(_a have leo been |r_1terest|ng appli-
quantizing[10] the self-dualchiral boson scalar field. cations to supersymmetric theories on the light fric@].
Since LF coordinates are not related to conventional co- |t has been conventional to apply LF Euantlzanoon to
ordinates by a finite Lorentz transformation, the descriptiongauge theory in the light-cone gaugd™=A_=(A
of the same physical result may be different in the equal-timet A%)/\2=0, since the transverse degrees of freedom of the
(instant form and equal-LF-timefront form) formulations  gauge field can be immediately identified as the dynamical
of the theory. This was in fact found to be the case in a recerdlegrees of freedom, and ghost fields can be ignored in the
study[11,12 of some soluble two-dimensional gauge theoryquantum action of the non-Abelian gauge thef§,21,23.
models, where it was also demonstrated that LF quantizatiobF quantization of quantum chromodynamics in the LC
is very economical in displaying the relevant degrees of freegauge thus has a number of remarkable advantages, includ-
ing explicit unitarity, a physical Fock expansion, and the
complete absence of ghost degrees of freedom. In addition,
*Email address: prem@uerj.br or prem@chpf.br the decoupling of gluons to propagators carrying high mo-
"Email address: sjbth@slac.stanford.edu menta and the absence of collinear divergences in irreducible
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diagrams in the LC gauge are important tools for proving the_orentz invariance. We recall that the Dyson-Wick expan-
leading-twist factorization of soft and hard gluonic correc-sion was used31] to renormalize two-dimensional scalar
tions in high-momentum-transfer inclusive and exclusive refield theory on the LF with nonlocal interactions. Appendix
actions[16]. On the negative side, any noncovariant gaugeC comments on the understanding in the gluon self-energy of
brings in the breaking of manifest rotational invariance, in-&@ noncovariant log term, which arises from another basic
stantaneous interactions, and, apparently, a more difficufoncovariant divergent integral, present in the noncovariant
renormalization procedur@1—23. gauge under study. Its relevance in the context of the spectral
In this paper we will discuss the LF quantization of QCD fepresentation and unitarity is briefly touched upon. The
gauge field theory in the LC gauge, employing the Dyson_pomplete r_e_nor_mallzatlon of QCD in our fr_a_mewo_rk, includ-
Wick Smatrix expansion[24] based on LF-time-ordered N9 the \{erlflcat|on of _SIavnov-Taonr identities, will be con-
products[25]. We shall first study the gauge-fixed quantum Sidered in a forthcoming paper.
action of the theory on the LF. The LF Hamiltonian frame-
work will then be constructed following the Dirac method Il. QCD ACTION IN THE LIGHT-CONE GAUGE
[26,27], which allows one to self-consistently identify the : ' s o0
independent fields and their commutation relations in the -ghe LF ‘iofrd'”_a‘eg aréa defll’lfd as=[x L__X*I()é
presence of the LC gauge condition and other constraints. it X N2, X =x, = (=X 2 x], wh_erex = (x".x7)
also allows us to studj26] the Lorentz covariance proper- — (X1, ~Xz) are the transverse coordinates, gne —,
ties of the theory. + 12 ]’he coordlna.tez =7 will pe taken as the LF time,
The LF framework is a severely constrained dynamicalVhile X is the longitudinal spatial COOI’dIn?.te. We can of
theory with many second-class constraints. These can HePUrse choose a convention where the roles’oandx — are
eliminated by constructing Dirac brackets, and the theory caff'térchanged. The equal- quantized theory already con-
be quantized canonically by the correspondence principle iffinS information about the equel- commutator[11,12.
terms of areduced numbeof independent fields. The com- The LF components of any tensor, for example, the gauge
mutation relations among the field operators are also foun#€ld are similarly d‘if'n‘_ad’ and the ”leti'c tensar, may be
by the Dirac method, and they are used to obtain théead fromA”B,=A"B"+A"B"—~A'B". Also, k™ indi-
momentum-space expansions of the fields. For example, tfédtes the longitudinal momentum, while™ is the corre-
nondynamical projection of a fermion field can be eliminatedSPonding LF energy. . _ _
using a nonlocal constraint equation. The gauge-field quan- The quantum action of QCD in the LC gauge is described
tization of themasslesdield in the LC gauge in front form in standard notation by the following Lagrangian density:
theory is studied. Using the derived commutators, we find
tht the LF—quaptized free gauge theory simultaneously sat- Locp=— EFaMVFa +BaAR +§1Dibcb+$(i YDl
isfies the covariant gauge conditienA=0 as an operator 4 “V a
condition as well as the light-cone gauge condition. The Fou-
rier transform of the free theory gauge field and its propaga-
tor in momentum space then follow straightfqrwardly. Th?Here ) is a quark field with a color indek=1 . . .N, for a
removal of the unphy3|cal comppnents pf the fields re_sults '%U(NC) color group, A% is the gluon field, F2 =g, A2
[2,28 tree-level instantaneous interaction terms which can a abcab ac BT v Je
be evaluated systematicallyee Secs. IV and M The instan- — A, TOFTAL AT, the f'_eld strength, D),"= (6%,
taneous i : - - +gfaPeaby DUyi=(819,—igA3t2l)yl, t3=)\%2, a
ght-cone gauge interactions of the light-front © 2 Iz u L
Hamiltonian are incorporated into nonperturbative ap-=1 ... (N3—1) is the gauge group index, acl andc® are
proaches such as discretized light-cone quantizabdiCQ)  anti-commuting ghost fields. In writing the quantum action

—mé'h)yl. (1)

[29]. we introduce auxiliary Lagrange multiplier fiel@s'(x), and
The QCD interaction Hamiltonian is constructed in Sec.add, to the Lagrangian, thimear gauge-fixing termB2A?),
IV where we restore the dependent componéntsand ¢ _ which is a traditional procedure. In addition we are to also

in the expression. It then takes a form close to that of covarequired add ghost terms such that actibnbecomes invari-
riant gauge theory without ghost terms, plus instantaneouant under Becchi-Rouet-StofBRS) symmetry{ 32] transfor-
interactions which are straightforward to handle in themations.
Dyson-Wick perturbation theory. It is worth recalling the corresponding procedure for
The renormalization procedure in our framework is illus-implementing a covariant gauge-fixing condition. For ex-
trated in Sec. V by considering the non-Abelian Yang-Mills ample, in the Feynman gauge one adds the teBfv{A,,
gauge theory. The equali, =Z; is explicitly demonstrated +B2#B?/2) to the Lagrangian. The quadratR?B? term is
to one loop in our doubly transverse gauge framework, anéllowed on dimensional considerations. However in the case
the B function is found to agree with that known in the of the LC gauge, the auxiliary fiel8? carries a canonical
conventional Feynman gauge calculation. The results ardimension 3, and as such a quadratic term is not allowed in
compared with those founf21,22,3Q in the conventional Eq. (1). We mention yet another example: the quantum ac-
LC gauge equal-time framework. Gluon self-energy comingtion for constructing/10] a quantized theory of a self-dual
from quark loops is also computed. A calculation of thescalar field(chiral boson in two-dimensional space-time.
electron-muon scattering amplitude in QED is used to showDne starts by adding the traditional linear teB#_ ¢ to the
the relevance of instantaneous interactions for recovering thigee scalar field Lagrangian. Its LF quantization can be per-
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formed without any violation of the principle of microcau- lowed in order to construct the self-consistent Hamiltonian
sality, in contrast to what occurs in the conventional treattheory which is required for performing canonical quantiza-
ment. The quantized theory is found to be trivial, indicatingtion. The canonical Hamiltonian density is

that the traditional Lagrange multiplier method breaks down
at the quantum level. However, if we add to the theory an

additionalB? term, which is allowed on dimensional consid-

erations, the LF quantization of the improved theory does

produce a satisfactory descriptiphO] of the quantized left

ché(w—)% %(Flz)z—A+(&_7T_+&LTrL)— BA_
(6)

and right movers. The theory also contains, as a special casEhe primary constraints following from E5) are 7" ~0,

the well-known Floreanini-Jackiw actid3], giving a plau-
sible reason for the success of that model.

mg~0 and7yt=7"—3Jd_A, +d, A_~0, where~ stands for
theweak equalityrelation. We now require the persistency in

The quark field term in LF coordinates reads, in the nota Of these constraints employing the preliminary Hamil-

tion of Appendix B, as
Yiy*Dy—md") g =iV2y! /DLy + 4yl (iy' DY
—mé') g+ [12y°D ¢l
+(i Dl —may g, ] ¥

This shows that the minus componemts are in fact non-
dynamical(Lagrange multiplierfields without kinetic terms.

The variation of the action with respectfé, andy/!_ leads
to the gauge-covariant constraint equation

iV2DU ! =—(iy°y D —my08)yl, 3)

and its conjugate. The' components may thus be elimi-
nated in favor of the independent dynamical componént
This gives rise to instantaneous terms in the interactio
Hamiltonian given in Sec IV and the free theory propagato
of ¢ is found[28] to be causal and to carry no instanta-
neous term.

Ill. GAUGE FIELD PROPAGATOR IN THE LC GAUGE

tonian, which is obtained by adding to the canonical Hamil-
tonian the primary constraints multiplied by the undeter-
mined Lagrange multiplier fields, , u, , andug. In order
to obtain Hamilton’s equations of motion, we initially as-
sume standard Poisson brackets for all the dynamical vari-
ables present in Ed6).

We are then led to the following secondary constraints:

(I)Er?,ﬂ'7+r9l7rL~0,

@)
A_~0,

which are already present in E@) multiplied by Lagrange
multiplier fields. Also requiring the persistency @fandA_
leads to another secondary constraint:

V=7 +J_A,~0. (8)

ﬁ'he procedure stops at this stage, and no more constraints

are seen to arise, since further repetition leads to equations
which would merely determine the multiplier fields.

Let us now analyze the nature of the phase-space con-
straints. In spite of the gauge-fixing term introduced in the
initial Lagrangian, on the canonical LF phase space there

The quadratic terms in the Lagrangian density which deStill remains a first class constrainz;~0. An inspection of

termine the free gauge-field propagators are
1 a a a a ara apa | ~a a
SIFS_Fi_+2F% F2, —FLF]]+BA% +c%_c?
4

We observe that in the front form framework, the fielsfs
as well asB? have no kinetic terms, and they enter in the

the equations of motion shows that we may &2, to the

set of constraints found above, an additional external con-
straintB~0. This would make the whole set of constraints in
the theory second class. Dirac brackets satisfy the property
such that we can set the above set of constraintstrasg
equality relations inside them. The equalPirac bracket
{f(x),9(y)}p » which carries this property, is straightforward
to construct. Hamilton’s equations now employ Dirac brack-

action as auxiliary multiplier fields. Also, since the ghostets rather than Poisson ones. The phase-space constraints on

fields decouple, it is sufficient to study the free Abelian
gauge theory with the following action:

1
fdzxidx(E[(F+)2—(F12)2+2FﬂFL]+BA],
)

whereF ,, stands for §,A,—d,A,) in the present section.
The gauge field equations of motion areA,=d,(d-A)
-Bé6,, A_=0, u=—,+,1 andl =1,2; as a consequence,
d_B=0. The canonical momenta following from E@) are
7t=0, wg=0, w'=F_,, and 7 =F,_=(d.A_
—d_A,), which indicates that we are dealing with a con-

strained dynamical system. The Dirac procedure will be fol-performed

the light front—=* =0, »*=0, A_=0, ®=0, V=0, 7g
=0, andB=0—thus effectively eliminat® and all the ca-
nonical momenta from the theory. The surviving dynamical
variables areA, , while A, is a dependent variable which
satisfiesd) _(d_A,—d,A,)=0. ThereducedHamiltonian is
found to be

1 1 ,
HBF:EJ d?xtdx | (9_AL )%+ EFLL’FLL )

where we have retained the dependent varidblefor con-
venience.

The canonical quantization of the theory at equais
via the correspondencei{f(x),9(y)}o
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—[f(x),0(y)] where the latter indicates the commutators 1 ok _

among the corresponding field operators. The equal-LF-time A, (x)= j d?ktdkt —=[a, (k" kt)e kX

commutators of the transverse components of the gauge field V(2m)? V2k™

are found to be Fal (k' kbelk] (12)
[AL (T XX AL (my Ty ) ]=1600K(XY), wherea., (K) is determined fronfk*a, (k) +k'a, (k)]=0.

The free propagators in momentum space are derived
where K(x,y)=—(1/4)e(x” —y~)8*(x" —y"). The com-  straightforwardly. We find
mutators are nonlocal in the longitudinal coordinate, but
there is no violatiof 9] of the microcausality principle on <0|T(Af(X)Aby (0))|0>:<0|[0(7')A?_(X)Abi, (0)
the LF. At equal LF time,X—y)?= — (x* —y*)?<0, is non- o o)

vanishing forxiaﬁ_yl but 8°(x*—y*) vanishes for such +0(—T)A( (0)A7,(x)]|0)
spacelike separation. The commutators of the transverse

components of the gauge fields are physical, having the same i 53P PR INE,
form as the commutators of scalar fields in the front form = WJ d*ke™ Xm
theory. (13)

The Heisenberg equations of motion employing E%).
lead to the Lagrange equations for the independent fieldghere we have restored the gauge indexn view of Eq.
which assures us of the self-consiste@p| of the front  (12), we may write the gauge field propagator in the LC
form Hamiltonian theory in the LC gauge. We also find thatgauge in the following form
the commutators o, are identical to the ones obtained by 0
substitutingA ;. by (d, /d_)A, . This is a consequence of the a b Dy
definition of the Dirac bracket itself and manipulations on it <O|T(AM(X)AV(O))|O> Ktie’
with the partial derivatives. Hence, in the free LC gauge (14)
theory on the LF, we obtain the Lorentz conditioA=0 as
an operator equation as well. The LF commutators of thévhere we have defined
gauge field may be realized in momentum space by the Fou-

7|k X

rier transform _ o nk,+nk, K
X D,uv(k)_DV,u(k)_ g,u,V+ (nk) (n~k)2nMnV.
1 (k™) o (15
A ()= fdzkldw [a,(r,k" kb)e kX
V(2m)® Vak® Heren, is a null 4-vector gauge direction, whose compo-
+aI(7_'k+'kL)eiExL (10)  nents are chosen to lbg,= 5, , n*=§*_. We note that
_ D, (k)DX(k)=D, ,(k)D%(k)=-D,(k),
where k-x=k*x~—k'x", anda, anda' are operators (D1 =D, (0D, (k) k)
which satisfy the equat- canonical commutation relations k“D , (k)=0, n“D,(k)=D_,(k)=0,
with  the  nonvanishing  ones  given by r r !
[a (7.k* kY),a],(r.k " k)] =01 8*(k—k'), where  p, (q)D*"(k)D,,(q')=—D,,(q)DX(q"). (16)

B(k—k)=8(kT—k' )% (k*—k*'). The Heisenberg . .

equation of motion forA, (x) then leads toa, (r,k* k')  The property that the gauge-field propagat@r,,(k)/(k*
=a, (k" ,k")exp(-ik x") wherek™ is defined through the +ie) is tra.nsve.rs-e not only to the gauge directiop buF
dispersion relation 8 k* =k"k". The operators, (k* k") also tok,,, i.e., it is doubly transverse, leads to appreciable
andaT (kJr ki) are thus associated with ths|esgauge Simplifications in the Computations in QCD, as illustrated

field quanta. The Fourier transforfiEq. (10)] may then be below. In a sense our gauge propagator corresponds to the
rewritten as form used in the Landau gauge, but here it is derived in the

context of the noncovariant LC gauge. As usual with nonco-
o(k*) variant gauges, the propagator contains a noncovariant piece
f d2ktdk* [a, (kT kb)e kX added to the covariariFeynman gaugepropagator. It dif-
V(2m)® V2kt fers from the propagators derivg@1,22,3Q in equal-time
_ quantized LC gauge QCD. The forgq. (14)] of the propa-
+al (k" khek ], (1) gator reminds us of the rules, in the context of the old-
fashioned perturbation theory, laid down in Rgf6] a long
wherek-x= (k" x*+k*x~+k, x") andk“k,=0. The Fou-  time ago, in the context of LF quantization. In Sec. V we will
rier transform[Eq. (11)] is of the typical form of thefront ~ comment on the problem of handling the singularity near
form theory where the bosonic fields satisfy nonlocal LF(n-k)~0 present in the propagator.
commutation relation; it does not carry in it any explicit ~We can introduce the operatotg,, and bT(L), (L)
information on the mass of the field. The commutatordof =(1) and(2), representing the two independent states of
are realized if we write for its Fourier transform transverse polarizations of a massless photon. They are as-

A (x)=
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sumed to obey the standard canonical commutation relatioridence the interaction Hamiltonian in the LC gaugé,=0,
[b(l)(k*,kL),b(Tl,)(k’*,k’L)]z5(L)(L,)é\°’(k—k’). We  can be rewrittehin the following useful form(2]:
write a* (k)= E(i,)(k) b ry(k), whereEf y(k) indi-

cate the two independent polarization 4 vectors. A conve- — avii vina . 9anc a

nient set may be chosen to be, Hint=~ Lint=— 9 ¢/ (1) YA+ SFPN9,A,
Ef.)(k)=E®*(k)=—~D*(k), 17 2

(L) 1 —(9VAZ)Ab'uACV+gZfabcfadeAbMAd’uAcyAev

which has the properties

_g_z_i+,uaaijivbbjkk
S EQED(K)=D,,(K), 2 VY YAy ALY
g

(=12
21 N1,
g EL(EL (k=g L, (18 — Sl el ) (24)
L) (k)= L)) =
keE()(k)=0, ntEQ)=E")=0. 19 where
The Fourier transform of the gauge field may then be ex- o
pressed in the standard form Ja=¢'y (1) P+ fap 9 Ap, ) A, (25)
AF3(X)= ! J d?ktdk* oK) Z E()(K) and a sum over distinct quark and lepton flavéns QED)
1 ’
V(2m)® 2k @) not written explicitly, is understood in Eq25) and (24).
X[ba)(k+’ki)e—ik~x+bzrf)(k+’kL)eik~x], The perturbation theory expansion in the interaction rep-

resentation, where we time order with respect to the LF time
(200 7, can now be built following the Dyson-Wick24] proce-
dure. There are no ghost interaction terms to consider. The
instantaneous interaction contributidiise last two terms in
; . X Eq. (24)] can be dealt with systematically. Such terms are
pressions of LF energy and momentum confirm the interpre required in Abelian QED theory, obtained by suppress-
tation of by and b(,) as the Fock space operators of i iy the above interaction the additional terms of nonabe-
annihilation and creation of massless transverse gauge-fie|g, theory. For example, the tree levatagullterm domi-

quanta. Only the physical transverse degrees of freedom apates the classical Thomson formulas for the scattering at the

where the LC gaugé&® =0, along with the Lorentz condi-
tion, is already incorporated in it. The momentum space ex

pear in the gauge-field expansion. vanishingly small photon energies. The instantaneous coun-
terterms also serve to restore the manifest Lorentz invari-
IV. QCD HAMILTONIAN IN THE LC GAUGE ance, which was broken by the use of a noncovariant LC

The Dyson-Wick perturbation theory expansion in the in.gauge and a noncovariant propagator. The information on the

) ) : C gauge is encoded in the remarkable properties of the
teraction representation requires that we separate the fdgauge-fiel d propagator in the LF framework. Some of the

Hamiltonian into a free theory component and a COUpIing_vertices in momentum space required for the illustrations
constant-dependent interaction piece. below are summarized inpA end?xA
The equations of motion in LF coordinates following PP :
from Eq. (1) give
. ) o~ . ; V. ILLUSTRATIONS
2i9_ ' =2i9_J' +gy-AT () Tyl (21
A. Electron-muon scattering

and The contribution to the matrix element from the mediation
. ) . : of the gauge field is
200, 0, =(iv"a, +m)y g+ gy ARy gl gange et
iy — — D,.,(a)
—29AT(t) YL (22 ~ € ue(P1) ¥ Ue(POUL(PY) Y U (P -
along with (26)
9_(0_A* —9_A2)=—gfapAPd AL +gyly™ (1) g, where q=—p}+p;=p5—pP,. Using the mass-shell condi-

(23)  tions for the external lines, this reduces to

where we defing2] A2 and ' by 9_A%=4, A® and

R B + i ; i
2id_ iﬁ_——g}’Lfﬂij)?’ ., respectively. The combina-  iye note that the dependent fiefel andA. occur only in the
tion (4. + '), wheng=0, satisfies the free Dirac equation. first two terms of Eq(24).
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v di% 1 ) ap
ab(Q)_J' (27T)d E(_gd) fadcfbch (—q,—k,k+Q)

1
£ iD 4, (k+q) iD,,(k
XFvop(q,_k_q,k) B ( q) p( )
(k+q)? k?
b k,d k,d 1 ,
1 1
2 i i 2 ] . Here, associated with the three outgoing momeajtaps,
] andpj, satisfying @, +p,+p3)*=0, we define
(@wa) Vi (qv.b) @ua) Vo (qv.b)

F v ) ' = - 1% + - v
FIG. 1. Yang-Mills self-energy to one looga) Gluon self- nur P1:P2:Ps) = (P1=P2) 0t (P2 P3)a0

energy diagranil,(q). (b) Tadpole diagram containing vert&x, +(p3— pl)ﬂgv)\
vanishing in dimensional regularizatiofc) Nonvanishing tadpole
diagram containing vertey,. =—Fru(P1,P3,P2), (30
usef gcfpcg= — Cadap, and write
~ €2 Ua(P1) 7 Ue( POUL(P3) YU (P2) 2 2+|E
I+ (g)=p** f o : 1#7(q,k)
1 — q)=n . . q.K),
— ——Ue(P) Y Ue(P1UL(PY) ¥ UL(P2) | (27) (2m)" [K*+ie] [(k+q)?+ie] a
q

The second term here originates from the noncovariant termaith
in the gauge propagator. It is easily shown to be compensated
for by the instantaneous contribution to the matrix element ., _r_ paB — ) Bara
deriving from the corresponding last term in E@5), of 1@ k) =[~(2k+a)"g™+ (k=a)7g
Abelian QED theory. The familiar covariant expression for +(29+k)*g*PID (K[ — (2k+q)"g"”
the matrix element is then recovered.
+(k=a)?9""+(29+k)’9"7]D,g(k+0).

B. B function in Yang-Mills theory (32
In this section we will illustrate the renormalization pro- The di ionl ling is indicated hil
cedure in LF-quantized LC gauge QCD by an explicit com- " € (L'P;PZS'O” ejs (_:oglp Ing 'Sh indicated ly while gq .
putation to one loop, for simplicity, in the pure non-Abelian = () 79, and p indicates the mass parameter associ-
Yang-Mills theory. Gross and Wilczelg4] and Politze35] ated with the dimensional regularization which we will be
computed the3 function in QCD from the gluonic vertex in adoptln_g. . . .
the conventional theory. The corresponding LF computatio We first note that every internal gluon line carries a factpr
becomes simpler because the gauge propagator in the L oo and the polarization vector of an external gluon is

gauge is transverse with respect to bathand the gauge E()= DX . The object of interest relevant in the renormal-
directionn®, and ghost fields are absent. ization of the theory under consideration is clearly the com-

bination D, ,(q)I155(q)D,5(q). We may therefore use the
1. Gluon self-energy corrections transversity properties @*”(q) to simplify the original ex-
pression, and instead consider the following reduced expres-

The propagator modification is given by sion for |“* in the integrand:

iDys(q) M(q) v Ws(q) 1#7(q,K) =[ — (2k+q)*g*#—29Pg"*+ 2q*g"F]
ab q2 5aa’ I ,b,( )5b’b
_ VPO
28) XD (K[~ (2k+0a)"g
—20°9""+209°9"7]D ;5(k+q). (33

The contribution to the gluon polarization tensdr;(q)
coming solely from the three-gluon interaction[isg. 1(a)] Explicitly,
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1t+=2(2k+q)"(2k+q)*
| Tt =11+ =2(2k+q) " (2k+q)t +2(2k+q) "

X

. 1ig (34)
(k+q)" k|

144 =2(2k+ )t (2k+ )t —2[(2k+0), S,/

+(2k+q), 'S, ]

t 1
(k+q)* Kk

—4g't's;s,

1 N 1
(k+q)+2 k+2

-8S, S, —,
T K (k)

PHYSICAL REVIEW D 64 045006

QCD in covariant gaugg28], when we defingthe linearly
independent set of four gauge-field polarization vectors.

Unlike the principal value prescription for K7, which
would enter in conflict with the causal prescription fok?,/
the causah;j prescription is consistent with both Wick rota-
tion and power counting22,21].

The divergent part of[#” may be computed straightfor-
wardly, employing an available list of integrdl22,21]. We
find

divH++: §q+2|div,
10 :
diVH+J_:_?q+qJ_|dlv, (37)

) 11 , , o
divIT:t :Z[E(QZQLL —q-qt)—8q*q gt |19k,

Here (2m)419% =2i 72/(4—d)—in?(2le), with d=(4—¢)

where and e— 0+, is the pole term in the divergent integral
S.=S.(k,a)=(k,a" —q,k") d% 1 —q?
(2m)% K2(k—q)? ?
=—S,(q,k)=S,(k+aq,q)=S,(k,q+bk).
(35 +o(e), (39

Here the  properties D, (k)=[—d,+(k*/k")5;], where

D#"(k)D,,(k)=2, and D,,(q)Df(k)=—D,,(q) were

used to simplify the expressions. N.=
In order to carry out the renormalization procedure, we

will need to isolate divergent terms in the matrix element._l_he expressions off** and IT-* agree with the corre-

We will adopt dimensional regularization, since it preserves, - ina exoressions comnuted in R&2]. in the conven-
all gauge symmetries. The singularities in the Feynmal P g exp P !

propagators of the dynamical componedts and g, are ional LC gauge QCD, where a different gluon propagator

given by the standard causal prescription. THe Iingular- ~ Was used. However, the expression Fbr~ is found to be
ity will be handled by the Mandelstafi36] and Leibbrandt dlffergnt. As a consequence, in LF—quanuzed theory we find
[37] prescription in the LC gauge. A derivation of this pre- covariant as well as noncovariant divergent terms in
scription was also givefi21] in the context of equal-time .
canonical quantization. One can also justify the Mandelstam- v _
Leibbrand'?(ML) procedure by notijng ft);lat in a two- Dy u(@IZ5(a)D,s(a) = T%ZCA%b
dimensional massless theory on the LF, the causal prescrip-

2
;— 7E+|n(477)}

11
—§q2+8q+q‘)

tion for the k?~0 singularity in 1k?’=1/(2k"k™) is . -q?

identical to that given by the causal ML prescription for the XifNe—In—0+--- D) 4(q).
1/k™ singularity. Since we wish to have consistent analytic K

continuation in the number of dimensiodsthe dimensional (39

regularization plus ML prescription appears be a mathemati- o ) _
cally sound procedure. Also, in view of the properties oD ,,, the computation of

The ML prescription is often written as Eqg. (39) does not require an evaluation of components other
than those given in Eq37). We also note that
1 -n*
—=1lim (a-n) —, (36)
AN .o (g-n)(g-n*)+ie

Ze(H) = (1k/Ik%)/42, ) =(1,~k/k%/2, ande®=[0,e(k;1)],
e®=[0,e(k;2)], wheree(k;1), e(k;2), andk/|k| constitute the

. . *
wheree—0+ and the light-like 4-vecton, represents the s a1 orthonormal set of 3 vectors. In the LC gaugye* =1,

dual ofn,, with .the components given by;i=§; . We recall  n.n=n*.n*=0, and, associated with any 4 vectg, we may
that such a pair of null vectors,, andn), , arise quite natu-  define the four vectorsy; and g,y by gy, (n-n*)=(n*-qn,
rally in the LF framework, for example, in the LF-quantized +n-q n}) andq,),=0,— 0,
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q,1#"=2(q*+ 2k.q)[(2k+q)*+(9°g**—q*g"#)] @ (Pr.a)
X D4(K+Q)D (K. (40)

The corresponding divergent part is shown to be

div g, I1"#(q)=—8q-q*2D%(q)1 %", (41

which allows us to compute div I~ (q)=(2q?
2Zqg*q)19" by settingu=+.

Result (39) obtained here is different from earlier LC
gauge computatiorf®22] in the conventional framework. The
noncovariant piece@ q~N., in Eq.(39), however, is com-
pensated for by an equal contribution, but with opposite sign,
which arises from the tadpole graphs. The connection be-
tween tree-graph computations in the conventional light- ()
cone gauge formalism and light-cone time-ordered perturba-
tion theory were discussed in Ref88—41].

The computation of the loop corrections to the gluon self-
energy illustrates the essential difference between the light 1
front and conventional formalisms. There are two tadpole 2
graphs[Figs. 1b) and Xc)] to be considered. The one asso- (g.a)
ciated with the four-gluon coupliny, gives a vanishing
result, but the contribution coming from the instantaneous
interactionV,(p1,P2,P3,P4) is found to be nonvanishing in
dimensional regularization due to the momentum depen-
dence of the vertex itself. The divergent part of the matrix
element is easily reduced to

(Porb.b) (Pa,C.V) (Po.b.H) (Ps,CV)

FIG. 2. Three-gluon vertex diagram®) Triangle diagram(b)
Swordfish diagram containing vert®b; the other two diagrams are
obtained by cyclic permutations of the external line indices.
Swordfish diagrams containing vert&s; the other two diagrams
|D’“’( k) are obtained by cyclic permutations of the external line indices.

k D)\/,L(q) VS(Q)

k" —q* 2
k*+q™*

d¥% 1
—d
M4 f(z )dz(g)Aab

k*+q”*
kt—q”*

The divergent part in Eq43) is «q? which ensures that the
—2q%q” vanishing gluon mass remains unaltered due to the one-loop
— |n—2 gluon self-energy correction.
M The multiplicative renormalization constait;, which

corrects the gluon propagator, is defined by

2

= lTWZ(3A5ab(—f3q+q_)i N

" |Pasta): 42 Dyo(a@) _ iD\y0)

Z30ap—5 =0ap— ,

q q

Here we made use of the useful identity _
D,,.(a)D*"(k)D, 5(a)=D,(q) to arrive at the second line. v ,'D (q)Huv (@) 8 'Dvﬁ(q)
The usual shift operation in dimensional regularization is aa bt OB
used to bring the integral to another type of basic divergent
integral[22] which is, however, noncovariant. On adding the T (44)
tadpole contributiodEqg. (42)] to Eqg.(39) the net coefficient
of (N_+1In x?) in the gluon self-energy correction is covari- and we obtain
ant, since the noncovariagt g~ terms mutually cancedkee

i ini i 2 112
also Appendix ¢. Retaining only the pole term, we find Za=1+ g CA_(_> (45)
1672 3
o 2 11
Dy (@IIZ5 (@)D 5(a) = — 1672 Cabap| — 3 =@ 2. Vertex corrections
In pure Yang-Mills theory the gluon vertex corrections to
i E D, 5(q) (43) the one-loop approximation arise from the three-gluon inter-
) ra\Q action alone, the triangle diagraffig. 2(@)], and from the
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two types ofswordfishgraphs{Figs. 2b) and Zc)] in which  variant terms vanish. The divergent part of the one-loop cor-
one of the two vertices carries a four-gluon interaction,rection from the triangle diagram has the form
which may be of typeV, or typeV,, while the other one _gfach)\#y(plaDZyDS)Kl with

contains a three-gluon interaction. The complete vertex to
orderg® is written as Q2
N—In—+---

(51
2

A= ¢ C 1)
1_1671'2 A3
_gfab(.\?:)\,u.l/: _gfab(:I:F)\;LV+A)\;LV](pl=p21p3)
— where Q2= — (p,+ p3)?. It is covariant and different from
=~ 9fapFru(P1P2,Pa)(1HA). (46)  yhe gne found21,27 in the equal-time LC gauge framework

Consider, first, the triangle diagram. Since, as remarkeefvhere a different propagator is used, and the corresponding

above, each gluon line carries with it a factor@fwe will expressions contain noncovariant pieces.

simplify the expressions right from the start by making use The total contribution fro_m e"%"h type of swordfish dia-
of the presence of the fact®,,(py)D,+.(p2) D, .(ps) gram comes from three similar diagrams, the two others be-
NANML Y u u\M2 v/ vA\M3/»

coming from the external gluon lines. The matrix element for{ﬂg (;Z?S;;uggglgrg?qt&etﬂ:Zzog)iebr)r/];yc:foﬁeﬁ?:;at%nes r?ét
the one loop correction to ordef is written as 9 i

divergent contribution following from the_two types of dia-
grams is given by-gf.ndFy .. (P1,P2,P3) A2, with

1
(_95)( - ECAfabc (i)gT)\Mv(pllp21p3)7 (47)

2 2

— 9
where we have usefl,,ip fry e fecrar = (Cal2)fapc. A fac- A2_16772 Cal=4) Nf_ln?Jr T (52)
tor of i comes from each of the gluon propagators, and the
expression fom™*"(py,p,,p3) is given by[Fig. 2(@)] The noncovariant terms cancel out, leading to the covariant

resulth (see below. The gluon vertex renormalization con-
stantZ, is defined byA=(A;+A»),

f ddq Daa'(q)Dﬁﬁ’(k)D'y'y’(l)
(2m)9 (g®+ie)(kK>+ie)(12+ie)

1
X[(pl_q)ﬁga)\—i_(q_k)}\gaﬂ—i_(k_pl)ag}\ﬁ] _gfabCF)\MV(pllp2!p3)Z_1: _gfabCF)\MV(plipZ!p?:)
XT(=ad=10)Y0% *+(p,— ¥ g¥™+ (1 +q)*q® ¥ —
[(—9—p2)"g" #+(p2—D* g+ (I +q)*g* 7] W (1+D), (53
X[(—k+1)"g? 7 +(=1=p3)? 9" +(ps+k)" g’ "], :
and we obtain
(48)
1 2 11} (2
wherek=—(q+py), |=(q—p2), p1+p.+p3=0, and the —=1—g—CA<_ (_) 54
D’s associated with the external gluon lines are understood. Z; 1672 3/ \e€
Proceeding as before, we may instead consider the fol-
lowing reduced expression: We find Z;=23 in our doubly transverse gauge frame-
work in the LC gauge LF-quantized theory. The gauge cou-
j d%) D, (@)D g (KD, (1) pling constant renormalization constatyf is defined byZ,
- 32 ] ; ;
2m)0 (G2 +ie)(Ke+ie)(12+ie) f?)rerlll(Z3) . In lowest-order perturbation theory, it has the
x[pfg™ +q'g*’—pig"’] ,
’ ' ' Z——l—(Z )*1/2%1_ 9 C E 3
X[=p2g” #+pz 97" +0"g" 7] AL 6.2 M6/ le
X[-k'g?" —pf'g" +pyg? . (49 , (1
=1—g Bo ; y (55)
The divergent terms iT**” are then easily identified, and
may be rewritten as follows: where By=(1/16m2) (11C/3)>0. This agrees with the re-
q¢ 1 sult found[34,35 in QCD, in the conventionahstant form
Sj d [2g g“k”+ psorg”{D%(1)— D" (k)} framework when the quark fields are ignof@@]. The com-
(2m)9 g%k?1? “ “ putation of the 8 function and the discussion of the

\ o P N asymptotic freedom is made following the standard proce-
—k"gp3{D%(q) ~ DA(D} —k'q“pHDLK) ~ DMUMD dure[43,44.
(50) A sketch of the computation involved in the swordfish
diagrams is presented here. The matrix element simplifies
The contribution to the divergent part comes solely from theconsiderably due to the nice properties of Bhes, leading to
first term, since the divergent terms coming from the noncothe reduced form
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1 1 2 1 ddq 1 H H a o (23 a' ,V a’V ! a' ! v
5(—Igd)§CAfabcf WWIDaaf(q)lDﬁ,ﬁf(k)Z[pfg *—pigf+a'g*FI[AgT “gf Y+ Bg "gf #+Cg* F gl
(56)
|
where use alsg)D,/,(p1)=0 andD _,=0. When we add to this
N N result the two expressions obtained from the present one by
A=3— (a+p2)” (Patk) the cyclic permutations of 3-tupleg{,\,a), (p,,u,b), and
(d—p2)* 2 1 (ps,v,c), the noncovariant pieces drop out, leading to the
4 4 covariant expression fak, given above.
B=—3+ (k+p2) " (P3+a) The divergent terms arising from each type of swordfish
(q—p3) ™2 ’ graph contain covariant as well as noncovariant pieces. The
contribution corresponding to the usual four-gluon vengx
c 2(k— ) (ps—p2) " 57 in our framework agrees with the one found in the earlier LC
(q+k)*2 ' gauge cpmputatior{éZl_,ZZ], in the conventional framework_.

It thus gives us a consistency check of our calculations, since
with a multiplication by the factor the computation here is insensitive to thgnykzlk+2 term
Dyn(P1)D,ru(P2)D,r,(p3) being understood. The inte- in our gauge propagator. The doubly transverse gauge propa-
grand may be simplified further, and recast as gator of the LF quantized theory greatly simplifies the com-

. 5 5 . 5 5 putation: in compensation for the few extra interaction verti-
p’[—g**(AD,(k)—BD;(q))+g""(AD4(q) —BDA(k)) ces, there are no ghost interactions.

+Cg*"(ADX(q) ~ DX(K))]+q g (A+B) +2Cq g,

(59) C. Gluon self-energy corrections from the quark loop

5 For each flavoff of quark, the net gluon self-energy con-
where u=1=1,2 only. The divergent terms then can be tribution arising from a quark loop is found to acquire the
picked up straightforwardly. Some of them drop out if we usual form

do%  Tr(k+my) y“(k+d+my)y”
(2m9 [K—mZ][(k+q)?—mF]

I =(-1) (ig)?2 1% w*4(0)? f (59
1

where the factoD, ,(q)D,s(q) is understood. It is easily shown that the noncovariant contributions either vanish or are
mutually canceled. Hence

. ) g 4 .
div Dy (DIIAD,o(Q) = —— Saa Tp(ng)wq)u
167

m?—x(1—x)g?
u? ’

(60)

1
NE—6J dx x(1—x)In
0

WhereEijt?‘-taETFéaa,. The contributions fromi1{?) " or  The net contribution to coefficient of the pole term in the

ijji !
) aa gluon self-energy becomes

1'[;';),“_ are automatically suppressed in viewdf, =0, as

they should be, sincd_=0 in the LC gauge. We have used diVDM(Q)[H;'“;,+H;';),“V]Dyg(q)
D\.(@) (9g*"—0“q")D,5(a) = —q’Dys(q).  (61) o o 11 4 T),(z 5
= ’ _— + — —
For the total numben; of massless quarks, we find 162 2e @ T3 CatgneTe I 2 Pasla),
div D, ,()TTL,""D,5(q) (63
92 4 —q? which leads to
= —— 8.2 Te[ 3N 2>i N.—In—-+---|D .
1671'2 aa F(B fq qu )\ﬁ(q) Z L gz (11C 4 . )<2) (64)
= — — ——n — ,
(62) 7 1er21 3 A 37T Fle
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with where a functional integral technique and the Foldy-
Wouthuysen transformation is employed.

It is worth stressing that the doubly transverse propagator
obtained here follows from a straightforward application of
the well-tested standard Dirac method for constructing a
in our ghost-free LC gauge LF-quantized QCD framework.Hamiltonian formulation for constrained dynamical systems.
We also did not perform any renormalization of the gaugdt differs from the singly transverse propagator usually used
parameter, required in the conventional covariant gaugé the literature in the context of equal-time LC gauge QCD.
theory framework. A complete discussion of QCD in our In the equal-time formalism the last tem#n”k?/n-kn-k of

2
g2 (11 2 2
—-1/2_ _ —
Z; V=1 2<6CA 3NiTe || - (65)

framework will be given elsewher@5]. the doubly transverse gauge propagator is absent, so that
both transverse and longitudinal gluonic modes propagate.
VI. CONCLUSIONS The instantaneous interaction terms generated by the LC

gauge in the LF are also not present in the analysiasiaint

The canonical quantization of LC gauge QCD in the frontform noncovariant gauge QCD based on functional integral
form theory has been derived, employing the Dirac procequantization. Even when one allows for counterterms ob-
dure to construct a self-consistent LF Hamiltonian theorytained by imposing21,22,3Q constraints of covariance or
The formulation begins with the gauge-fixed BRS invariantby requiring an extended BRS symmetry, the gauge propa-
quantum action, but the final result is ghost free. The intergators employed in that framework do not possess the very
action Hamiltonian is obtained in a simple form by retaining useful properties carried by the doubly transverse gauge LF
the dependent componers. and¢_ . Its form closely re-  framework. We have illustrated the correspondence between
sembles the interaction Hamiltonian of covariant theory, exthe two formulations of light-cone gauge with a simple tree-
cept for the presence of instantaneous interactions which aggraph calculation of electron-muon scattering in QED. The
analogous to the Coulomb interactions in transverse gaugénstantaneous terms in the LF interaction Hamiltonian restore
The Dyson-Wick perturbation theory expansion based onhe manifest Lorentz covariance of the matrix element which
equal-LF-time ordering is then constructed in a mannefvas broken by the noncovariant gauge and the noncovariant
which allows one to perform high-order computations in aterms in the doubly transverse gauge propagator. The same is
straightforward fashion. Our formulation of the light-front found true in non-Abelian gauge theory.

Hamiltonian matches the rules of light-front-time-ordered The singularities in the noncovariant pieces of the field
perturbation theory16]. propagators may be defined using the causal LC gauge ML
In our formulation of gauge theory, the free gauge fieldprescription for I4*. The power-counting rules in LC gauge

satisfies the Lorentz condition as an operator equation, agen become similaf49,21,5Q to those found in covariant
well as the light-cone gauge constraint. Since the propagat@jauge theory, as the illustrations show. We have demon-
of the massless gauge field is doubly transverse both witktrated explicitly the equality; =25 and Z,=(Z3) 2 at
respect to the 4 momentum and the 4 vectgrof the gauge one loop in Yang-Mills theory. This is expected to be true in
direction, the propagating gluons have only two physical dehigher orders as well. Also, because of the Slavnov-Taylor
grees of freedom, and no ghost fields need to be considereidientities[44], the corrections to thgqg vertex would be
The physical transverse polarization vectors of the gluongompensated for by those arising from the quark field renor-
may be conveniently identified & ,(k)=—D/(k), sothat = malization; such that the coupling constant renormalization
each gluon line, external or internal, carries with it a factor ofarises only from the gluonic self-energy.
D,.. The remarkable properties of these factors give rise to Computations in our ghost-free framework require com-
much simplification already at the start of computations. parable effort to calculations in the covariant gauge, because
Unitarity relations[46] such as the optical theorem are of the remarkable simplifications arising due to the doubly
manifest within each Feynman diagram, rather than as a corntransverse LC gauge propagator. Higher-loop computations
sequence of cancelations over sets of diagrg#3. This  should be possible in our formalism by making advantageous
allows one to construct effective charges analogous to thase of techniquef49] which have recently been developed
Gell-Mann—Low running coupling of QED based on the to handle multiloop integrals involving noncovariant inte-
structure of self-energy diagrams using the pinch techniqugrands.
[48]. Since the absorptive part of these contributions are The renormalization procedure of LF-quantized gauge
based on physical cross sections, one can define a physidhakeory in light-cone gauge theory is thus similar to that of
and analytic renormalization scheme for QCD. conventional covariant gauge theory. The additional interac-
The instantaneous interactions, in fact, are interesting byion terms are, in a sense the appropriate counterterms which
themselves. For example, the semiclassical limit of Thomsomrise naturally in the canonical quantization in the LF frame-
scattering is revealed at tree level in the LC or covariantwork. It is straightforward to show this in QED; a complete
gauge[28] on the LF. This is relevant since a systematicdiscussion for QCD will be given elsewhel45].
procedure to obtain the semiclassical limit seems to be lack- It is worth remarking that we have made aah hocchoice
ing in the front form theory. The LF framework may also be of only one (of the family) of the characteristic LF hyper-
useful for obtaining the nonrelativistic limit of a relativistic planesx*=const, in order to quantize the theory. The con-
field theory, for example, in the context of chiral perturbationclusions reached here and in the earlier wdikk,28 con-
theory. This is an alternative to the conventional frameworkfirm the conjecturg/11] concerning the irrelevance in the
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quantized theory of the fact that the hyperplarés=0 con- n,q,+q,n q
stitute characteristic surfaces of hyperbolic partial differen- D, (q)=| —g,,+ +————

tial equation. The Hamiltonian version can clearly be imple- n-q (n-q)
mented in discrete light cone quantizatigBLCQ) [29]
WhiCh has been shoy\{rﬁ] to have a continuu_m _Iir_nit. There direction. We chooseﬂzﬁz and n,’;zé; , the dual ofn,, .
IS no loss of causality in DLCQ when the infinite volume The useful properties of the projectbr,, are given in Eqs.
limit is properly handled52]. We also note that nonpertur- 16)—(19) #

bative computations are often done on the LF in the closel§ '
related(LC) gauged_A_~0, such as to demonstraf2]
the existence of theondensat®r ¢ vacua in the Schwinger i8;S(p) with
model.

2

NN, |,

whereq, is the gluon 4 momentum, amd, is the gauge

The quark propagatois

ptm y" N
p2—m?+ie 2pT pi-mitie
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igy 2.
APPENDIX A: FEYNMAN RULES Three-gluon vertex factas
The Dyson-Wick perturbation theory expansion on the LF — 0 fabcFaun(P1.P2.P3)-

can be realized in momentum space by employing the Fou-

rier transform of the fields and the propagators. Many of théiere (1,1,a), (p2,u,b), and (3,v,c) label the three glu-
rules of the Feynman diagrams—for example, the symmetr@ns at the vertex with outgoing momerya, p5, and pj
factor 1/2 for gluon loop, a minus sign associated with fer-with the associated gauge indicasb, andc, respectively.
mionic loops etc.—are the same as those found in the corflso F) ,,(P1,P2,P3) = (P1—P2),9x .+ (P2— P3)r0.»T (P3
ventional covariant frameworf44]. There are some differ- —pP1) 9.0 = —Fx,.(P1,P3,P2), andp,+p,+pz=0.

ences: for example, the external quark line now carries a The four-gluon vertex factorare of two types in this
factor 6(p™)/m/p~, while the external gluon line a factor framework. V5259 is the usual momentum-independent
6(q")/\2q™ or that the Lorentz invariant phase space factorfour-gluon vertex of the covariant gauge theory, while
is now fd?p‘dpté(p*)/(2pT). The external gluon line VSEZ"Vﬁ(pl,pg,pg,m) is a new vertex generated by LC
carries the polarization vectdE#(l)(q)zEﬁ): —D#(q). gauge LF-quantized QCD, with the momentum dependence
Its properties and the sum over the two polarization states a@s Well, coming from the last term in the interaction Hamil-
given Sec. lIl. The notation for the quark field is given in tonian[Eq. (36)]:

Appendix B. Some of the momentum space vertices, used in )

Sec. V, are collected below, and others can be derived easily.\/?gftdv/%: —ig?[feabrecd grghr—g*hgn)

The gluon propagators +feaCfebd(gaMgBV_gaﬁgMV)+feadfecb(gavgﬂ,u

—g*+gh” Al
igabD,w(q), with 9“*g™")] (A1)

q’+ie and

. (P1=P2) " (P3—Pa) " (P1—P3) " (P2—Pa)*
Viauus(P1.P2.P3.pa) = +ig?| fofecgrgh + feacgebigerghu
2anvh (p1+p2) "2 (p1+p3)*?

— + _ +
+feadfe°bgaﬁgﬂ”(pl p4) (p3 pz) . (Az)

(p1+ps) 2
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Here (p1,@,a), (p,,u,b), (p3,v,c), and (p4,B,d) indicate
the four outgoing gluons at the vertex wifhy +p,+p3

TPa=

APPENDIX B: SPINOR FIELD ON THE LF

The notation fory matrices is as given in Bjorken and
Drell, and y* = (y°+ y%)/2, which satisfy §)?=(y")?
=0. TheA* =%y y"=(1/y2)y°y" are Hermitian projec-
tion operators. The spinor field on the LF is decompose
naturally into + projections Y= AU// z/;+ 4,//A+ ¢//
=g, +¢_, and y=yTy° =y +y_, Y Y-=0, Y.y
=0, etc.

The Fourier transform of the free spinor fidla8] is

1

/(2,”_)3 r==+

m )
X\ b pre

+d"O(p)o(p)e® ],

P(X) sz tdp*a(pT)

where
u(p)= ;[ﬁp*A*HW ¥y p A Ju®
(\2p*m)¥? . ’

and the constant spinors”) satisfy y%u®=u® and
3,00 =ru®™ with 3 ;=iy'9? andr = +. The normalization
and the completeness relations are

u(p)u®(p)=8,s=—v(p)v(p),

3, wopup=",
3, vpp=",

and C is the charge conjugation matrf24], while v(V(p)
=u(p).=C»*Tu(p)*.

The A* projection of is by construction very simple,
u(p)=(V2p T Im)YA(A*UM). ul(p) are eigenstates of
S 5 as well, whileu" correspond to rest frame spinors when

J2p* =m. The free propagator for the independent compo-

nenty, is

V2grA*

(q2—m2+ie)e

—iq-x

i ti _
wHWAMWmmm(zﬁfm

and we recall that@_y¢_=(iy-d, +m)y* ey, .
A detailed discussion of the properties of Dirac, Majo-

rana, and Wey! spinor fields, helicity and spin operators, and
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APPENDIX C

The self-consistent canonical quantization of the gauge
theory requires one to fix the gauge and add ghost fields in
order to ensure BRS symmetry. One must also choose a
regularization procedure in order to compute and manipulate
the divergent integrals present in the momentum-space rep-
resentation of the theory. In our context dimensional regular-
ization is convenient since it preserves the galagel BRS

ymmetry, thus making the task of renormalization simpler.

owever, the regularization procedure may break essential
properties of a physical theory, such as unitarity and intro-
duce ghost degrees of freedom at an intermediate stage. One
hopes that at the end of computations, when the regulariza-
tion is removed, that we recover the features associated with
the physical theory represented by the original Lagrangian. It
is worth recalling the case of the chiral Schwinger model,
where the regularization ambiguity itself leaves behind an
arbitrary parameter in the theory, which is physical and uni-
tary only for a certain range of the values of that parameter.
It was also shown a long time a¢|b3] that the Pauli-Villars
method of regularization corresponds to the introduction of
(regularization-dependenghost degrees of freedom in the
original theory. The dimensional regularization procedure,
along with the ML prescription, may also give rise to addi-
tional (hidden regularization-dependémhost contributions
to the divergent integrals[54]. The noncovariant
In(—29*q~) contribution in Eq.(42) to the gluon self-energy
has an unconventional branch cut when compared to the nor-
mal threshold branch point in E¢9). It is an indication, in
the dimensional regularization scheme with ML prescription,
of ghost states that do not propagate in the transverse direc-
tion. The sign of the cut in Eq42) is that of asymptotic
freedom, i.e., ghostly. In the gluon self-energy the sign of the
coefficient of InE-g?) term in Eq.(39) is consistent with the
spectral representation of "Ken-Lehmann, but that of
In(—29*q~) term is the opposite. In the renormalization of
the vertex functions, only Infg?) terms are found.

We note that the renormalization factors of Yang-Mills
theory, in a Feynman gauge employing dimensional regular-
ization, are

2

Z _1+—92 Ca 1>1 Z;=1+ —— 9 C 41>1
P16 A3 e T T qer? M3
while
- g>2 1 - g° 1
Z3=1+ECA;>1, Zl=1—rcm-2CA;<l,

such thatZ,/Z;=7,/Z5. The result is the same coupling
constant renormalization as in our LF framework:

2

Z,_ %

2 Iz,

g
16772

11
Zy= Cal 5 |N<L.

the generalized chiral invariance of massive Dirac equation

on the LF may be found in Ref5].

HereZ refer to the Faddeev-Popov ghost fields of the cova-
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riant gauge theory. We find that in this framewaZk>1, verse light-cone gauge, the renormalization of the three-
just as in the LF framework presented where, in additiongluon vertex receives a crucial one-loop contribution from
Zg=Z§1’2. This corresponds to the asymptotic freedomthe instantaneoug, interaction, as illustrated by the sword-
property of dimensionally regularized non-Abelian gaugefish diagram ofFig. 2(c)]. (This diagram is missing from the
theories due to the three-gluon’s nonlinear self-interaction. renormalization of the proper three-gluon vertex in the con-
If only physical degrees of freedom are present, waveventional light-cone gauge formalism since it is classified as
function renormalization requireg;<1; i.e, the probability —one particle reduciblg.Similarly, the tadpole grapliFig.
that the gluon is a bare gluon must be less than 1. As pointet{(c)] from V, must be included in computation of the gluon
out by Thorn[8], the fact thaZ;>1, in Yang-Mills theory, is ~ self-energy. Such_ a term does not have a conventional two-
in conflict with the unitarity and positivity of the Kian-  particle cut or Kden-Lehmann dispersion representation,
Lehmann spectral representation of the gluon propagatothus allowing forz$>1 [55]. We also note that our gauge
Note that in our light-front formulation of the doubly trans- propagator is not diagonal like that in the Feynman gauge.
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