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Light-front-quantized QCD in the light-cone gauge: The doubly transverse gauge propagator
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The light-front ~LF! quantization of QCD in the light-cone gauge has a number of remarkable advantages,
including explicit unitarity, a physical Fock expansion, the absence of ghost degrees of freedom, and the
decoupling properties needed to prove factorization theorems in high-momentum transfer inclusive and exclu-
sive reactions. We present a systematic study of LF-quantized gauge theory following the Dirac method, and
construct a Dyson-WickS-matrix expansion based on LF time-ordered products. The free theory gauge field is
shown to satisfy the Lorentz condition as an operator equation as well as the light-cone gauge condition. Its
propagator is found to be transverse with respect to both its 4 momentum and the gauge direction. The
interaction Hamiltonian of QCD can be expressed in a form resembling that of covariant theory, except for
additional instantaneous interactions which can be treated systematically. The renormalization constants in YM
theory are shown to satisfy the identityZ15Z3 at one-loop order. The QCDb function, computed in the
noncovariant light-cone gauge, agrees with that known in the conventional framework. Some comments are
also made about the relationship of our LF framework, with a doubly transverse gauge propagator, to the
analytic effective charge and renormalization scheme defined by the pinch technique, the unitarity relations,
and the spectral representation. LF quantization thus provides a consistent formulation of gauge theory, despite
the fact that the hyperplanesx650 used to impose boundary conditions constitute characteristic surfaces of a
hyperbolic partial differential equation.
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I. INTRODUCTION

The quantization of relativistic field theory at a fixe
light-front time t5(t2z/c)/A2, which was proposed by
Dirac @1# half a century ago, has found important applic
tions @2–5# in both gauge theory and string theory@6#. The
light-front ~LF! quantization of QCD in its Hamiltonian form
provides an alternative to lattice gauge theory for the co
putation of nonperturbative quantities such as the spect
and the light-front Fock state wave functions of relativis
bound states@3#. LF variables have also found natural app
cations in other contexts, such as in the quantization of~su-
per! string theory and M theory@6#. Light-front quantization
has been employed in the non-Abelian bosonization@7# of
the field theory ofN free Majorana fermions, and was used
the demonstration of the asymptotic freedom of the Ya
Mills theory b function@8#. The requirement of microcausa
ity @9# implies that the LF framework is more appropriate f
quantizing@10# the self-dual~chiral boson! scalar field.

Since LF coordinates are not related to conventional
ordinates by a finite Lorentz transformation, the descriptio
of the same physical result may be different in the equal-t
~instant form! and equal-LF-time~front form! formulations
of the theory. This was in fact found to be the case in a rec
study@11,12# of some soluble two-dimensional gauge theo
models, where it was also demonstrated that LF quantiza
is very economical in displaying the relevant degrees of fr
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dom, leading directly to a physical Hilbert space. The cor
sponding Fock representation is boost independent, since
front form has seven kinematical Poincare´ generators@1,12#,
including Lorentz boost transformations, compared to o
six in the instant form framework. LF time-ordered perturb
tion theory is much more economical than equal tim
ordered perturbation theory, since only graphs with partic
with positive LF momentap15(p01p3)/A2 appear. LF-
time-ordered perturbation theory was also applied@13,14# to
massive fields. It was used in the analysis of the evolution
deep inelastic structure functions@15# and the evolution of
the distribution amplitudes which control hard exclusive p
cesses in QCD@16#. Recently, the light-cone~LC! gauge on
the light front was used to analyze the forces between fi
colored sources@17#, the string structure of QCD at largeNC

@18#, and spontaneous symmetry breaking phenomena w
out zero modes@19#. There have also been interesting app
cations to supersymmetric theories on the light front@20#.

It has been conventional to apply LF quantization
gauge theory in the light-cone gaugeA15A25(A0

1A3)/A250, since the transverse degrees of freedom of
gauge field can be immediately identified as the dynam
degrees of freedom, and ghost fields can be ignored in
quantum action of the non-Abelian gauge theory@16,21,22#.
LF quantization of quantum chromodynamics in the L
gauge thus has a number of remarkable advantages, inc
ing explicit unitarity, a physical Fock expansion, and t
complete absence of ghost degrees of freedom. In addi
the decoupling of gluons to propagators carrying high m
menta and the absence of collinear divergences in irreduc
©2001 The American Physical Society06-1
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PREM P. SRIVASTAVA AND STANLEY J. BRODSKY PHYSICAL REVIEW D64 045006
diagrams in the LC gauge are important tools for proving
leading-twist factorization of soft and hard gluonic corre
tions in high-momentum-transfer inclusive and exclusive
actions@16#. On the negative side, any noncovariant gau
brings in the breaking of manifest rotational invariance,
stantaneous interactions, and, apparently, a more diffi
renormalization procedure@21–23#.

In this paper we will discuss the LF quantization of QC
gauge field theory in the LC gauge, employing the Dyso
Wick S-matrix expansion@24# based on LF-time-ordere
products@25#. We shall first study the gauge-fixed quantu
action of the theory on the LF. The LF Hamiltonian fram
work will then be constructed following the Dirac metho
@26,27#, which allows one to self-consistently identify th
independent fields and their commutation relations in
presence of the LC gauge condition and other constraint
also allows us to study@26# the Lorentz covariance prope
ties of the theory.

The LF framework is a severely constrained dynami
theory with many second-class constraints. These can
eliminated by constructing Dirac brackets, and the theory
be quantized canonically by the correspondence principl
terms of areduced numberof independent fields. The com
mutation relations among the field operators are also fo
by the Dirac method, and they are used to obtain
momentum-space expansions of the fields. For example
nondynamical projection of a fermion field can be eliminat
using a nonlocal constraint equation. The gauge-field qu
tization of themasslessfield in the LC gauge in front form
theory is studied. Using the derived commutators, we fi
that the LF-quantized free gauge theory simultaneously
isfies the covariant gauge condition]•A50 as an operato
condition as well as the light-cone gauge condition. The F
rier transform of the free theory gauge field and its propa
tor in momentum space then follow straightforwardly. T
removal of the unphysical components of the fields result
@2,28# tree-level instantaneous interaction terms which c
be evaluated systematically~see Secs. IV and V!. The instan-
taneous light-cone gauge interactions of the light-fro
Hamiltonian are incorporated into nonperturbative a
proaches such as discretized light-cone quantization~DLCQ!
@29#.

The QCD interaction Hamiltonian is constructed in Se
IV where we restore the dependent componentsA1 andc2

in the expression. It then takes a form close to that of co
riant gauge theory without ghost terms, plus instantane
interactions which are straightforward to handle in t
Dyson-Wick perturbation theory.

The renormalization procedure in our framework is illu
trated in Sec. V by considering the non-Abelian Yang-Mi
gauge theory. The equalityZ15Z3 is explicitly demonstrated
to one loop in our doubly transverse gauge framework,
the b function is found to agree with that known in th
conventional Feynman gauge calculation. The results
compared with those found@21,22,30# in the conventional
LC gauge equal-time framework. Gluon self-energy com
from quark loops is also computed. A calculation of t
electron-muon scattering amplitude in QED is used to sh
the relevance of instantaneous interactions for recovering
04500
e
-
-
e
-
lt

-

e
It

l
be
n
in

d
e
he

n-

d
t-

-
-

in
n

t
-

.

-
us

d

re

g

w
he

Lorentz invariance. We recall that the Dyson-Wick expa
sion was used@31# to renormalize two-dimensional scala
field theory on the LF with nonlocal interactions. Append
C comments on the understanding in the gluon self-energ
a noncovariant log term, which arises from another ba
noncovariant divergent integral, present in the noncovar
gauge under study. Its relevance in the context of the spe
representation and unitarity is briefly touched upon. T
complete renormalization of QCD in our framework, inclu
ing the verification of Slavnov-Taylor identities, will be con
sidered in a forthcoming paper.

II. QCD ACTION IN THE LIGHT-CONE GAUGE

The LF coordinates are defined asxm5@x15x25(x0

1x3)/A2, x25x15(x02x3)/A2,x'#, where x'5(x1,x2)
5(2x1 ,2x2) are the transverse coordinates, andm52,
1,1,2. The coordinatex1[t will be taken as the LF time,
while x2 is the longitudinal spatial coordinate. We can
course choose a convention where the roles ofx1 andx2 are
interchanged. The equal-x1 quantized theory already con
tains information about the equal-x2 commutator@11,12#.
The LF components of any tensor, for example, the ga
field, are similarly defined, and the metric tensorgmn may be
read from AmBm5A1B21A2B12A'B'. Also, k1 indi-
cates the longitudinal momentum, whilek2 is the corre-
sponding LF energy.

The quantum action of QCD in the LC gauge is describ
in standard notation by the following Lagrangian density:

LQCD52
1

4
FamnFmn

a 1BaA2
a 1 c̄aD 2

abcb1c̄ i~ igmDm
i j

2md i j !c j . ~1!

Herec j is a quark field with a color indexj 51 . . .Nc for a
SU(Nc) color group, Am

a is the gluon field,Fmn
a 5]mAn

a

2]nAm
a 1g fabcAm

b
mAc

n the field strength, D m
ac5(dac]m

1g fabcAm
b ), Dm

i j c j5(d i j ]m2 igAm
a tai j )c j , ta[la/2, a

51 . . . (Nc
221) is the gauge group index, andc̄a andca are

anti-commuting ghost fields. In writing the quantum acti
we introduce auxiliary Lagrange multiplier fieldsBa(x), and
add, to the Lagrangian, thelinear gauge-fixing term (BaA2

a ),
which is a traditional procedure. In addition we are to a
required add ghost terms such that action~1! becomes invari-
ant under Becchi-Rouet-Stora~BRS! symmetry@32# transfor-
mations.

It is worth recalling the corresponding procedure f
implementing a covariant gauge-fixing condition. For e
ample, in the Feynman gauge one adds the term (Ba]mAam
1BaBa/2) to the Lagrangian. The quadraticBaBa term is
allowed on dimensional considerations. However in the c
of the LC gauge, the auxiliary fieldBa carries a canonica
dimension 3, and as such a quadratic term is not allowe
Eq. ~1!. We mention yet another example: the quantum
tion for constructing@10# a quantized theory of a self-dua
scalar field ~chiral boson! in two-dimensional space-time
One starts by adding the traditional linear termB]2f to the
free scalar field Lagrangian. Its LF quantization can be p
6-2
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LIGHT-FRONT-QUANTIZED QCD IN THE LIGHT-CONE . . . PHYSICAL REVIEW D 64 045006
formed without any violation of the principle of microcau
sality, in contrast to what occurs in the conventional tre
ment. The quantized theory is found to be trivial, indicati
that the traditional Lagrange multiplier method breaks do
at the quantum level. However, if we add to the theory
additionalB2 term, which is allowed on dimensional consi
erations, the LF quantization of the improved theory do
produce a satisfactory description@10# of the quantized left
and right movers. The theory also contains, as a special c
the well-known Floreanini-Jackiw action@33#, giving a plau-
sible reason for the success of that model.

The quark field term in LF coordinates reads, in the no
tion of Appendix B, as

c̄ i~ igmDm
i j 2md i j !c j5 iA2c̄1

i g0D1
i j c1

j 1c̄1
i ~ ig'D'

i j

2md i j !c2
j 1c̄2

i @ iA2g0D2
i j c2

j

1~ ig'D'
i j 2md i j !c1

j # ~2!

This shows that the minus componentsc2
j are in fact non-

dynamical~Lagrange multiplier! fields without kinetic terms.
The variation of the action with respect toc̄2

j andc2
j leads

to the gauge-covariant constraint equation

iA2 D2
i j c2

j 52~ ig0g'D'
i j 2mg0d i j !c1

j , ~3!

and its conjugate. Thec2
j components may thus be elim

nated in favor of the independent dynamical componentc1
j .

This gives rise to instantaneous terms in the interac
Hamiltonian given in Sec IV and the free theory propaga
of c1 is found @28# to be causal and to carry no instant
neous term.

III. GAUGE FIELD PROPAGATOR IN THE LC GAUGE

The quadratic terms in the Lagrangian density which
termine the free gauge-field propagators are

1

2
@F12

a F12
a 12F1'

a F2'
a 2F12

a F12
a #1BaA2

a 1 c̄a]2ca.

~4!

We observe that in the front form framework, the fieldsA1
a

as well asBa have no kinetic terms, and they enter in t
action as auxiliary multiplier fields. Also, since the gho
fields decouple, it is sufficient to study the free Abeli
gauge theory with the following action:

E d2x'dx2H 1

2
@~F12!22~F12!

212F1'F2'#1BA2J ,

~5!

whereFmn stands for (]mAn2]nAm) in the present section
The gauge field equations of motion arehAm5]m(]•A)
2Bdm

2 , A250, m52,1,' and'51,2; as a consequenc
]2B50. The canonical momenta following from Eq.~5! are
p150, pB50, p'5F2' , and p25F125(]1A2

2]2A1), which indicates that we are dealing with a co
strained dynamical system. The Dirac procedure will be f
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lowed in order to construct the self-consistent Hamilton
theory which is required for performing canonical quantiz
tion. The canonical Hamiltonian density is

Hc5
1

2
~p2!21

1

2
~F12!

22A1~]2p21]'p'!2BA2

~6!

The primary constraints following from Eq.~5! arep1'0,
pB'0 andh'[p'2]2A'1]'A2'0, where' stands for
theweak equalityrelation. We now require the persistency
t of these constraints employing the preliminary Ham
tonian, which is obtained by adding to the canonical Ham
tonian the primary constraints multiplied by the undet
mined Lagrange multiplier fieldsu1 , u' , anduB . In order
to obtain Hamilton’s equations of motion, we initially as
sume standard Poisson brackets for all the dynamical v
ables present in Eq.~6!.

We are then led to the following secondary constraints

F[]2p21]'p''0,
~7!

A2'0,

which are already present in Eq.~6! multiplied by Lagrange
multiplier fields. Also requiring the persistency ofF andA2

leads to another secondary constraint:

C[p21]2A1'0. ~8!

The procedure stops at this stage, and no more constr
are seen to arise, since further repetition leads to equat
which would merely determine the multiplier fields.

Let us now analyze the nature of the phase-space c
straints. In spite of the gauge-fixing term introduced in t
initial Lagrangian, on the canonical LF phase space th
still remains a first class constraintpB'0. An inspection of
the equations of motion shows that we may add@26#, to the
set of constraints found above, an additional external c
straintB'0. This would make the whole set of constraints
the theory second class. Dirac brackets satisfy the prop
such that we can set the above set of constraints asstrong
equality relations inside them. The equal-t Dirac bracket
$ f (x),g(y)%D , which carries this property, is straightforwar
to construct. Hamilton’s equations now employ Dirac brac
ets rather than Poisson ones. The phase-space constrain
the light front—p150, h'50, A250, F50, C50, pB
50, andB50—thus effectively eliminateB and all the ca-
nonical momenta from the theory. The surviving dynamic
variables areA' , while A1 is a dependent variable whic
satisfies]2(]2A12]'A')50. ThereducedHamiltonian is
found to be

H0
LF5

1

2E d2x'dx2F ~]2A1!21
1

2
F''8F

''8G , ~9!

where we have retained the dependent variableA1 for con-
venience.

The canonical quantization of the theory at equalt is
performed via the correspondencei $ f (x),g(y)%D
6-3
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PREM P. SRIVASTAVA AND STANLEY J. BRODSKY PHYSICAL REVIEW D64 045006
→@f(x),g(y)# where the latter indicates the commutato
among the corresponding field operators. The equal-LF-t
commutators of the transverse components of the gauge
are found to be

@A'~t,x2,x'!,A'8~t,y2,y'!#5 id''8K~x,y!,

where K(x,y)52(1/4)e(x22y2)d2(x'2y'). The com-
mutators are nonlocal in the longitudinal coordinate, b
there is no violation@9# of the microcausality principle on
the LF. At equal LF time, (x2y)252(x'2y')2,0, is non-
vanishing for x'Þy' but d2(x'2y') vanishes for such
spacelike separation. The commutators of the transv
components of the gauge fields are physical, having the s
form as the commutators of scalar fields in the front fo
theory.

The Heisenberg equations of motion employing Eq.~9!
lead to the Lagrange equations for the independent fi
which assures us of the self-consistency@26# of the front
form Hamiltonian theory in the LC gauge. We also find th
the commutators ofA1 are identical to the ones obtained b
substitutingA1 by (]' /]2)A' . This is a consequence of th
definition of the Dirac bracket itself and manipulations on
with the partial derivatives. Hence, in the free LC gau
theory on the LF, we obtain the Lorentz condition]A50 as
an operator equation as well. The LF commutators of
gauge field may be realized in momentum space by the F
rier transform

A'~x!5
1

A~2p!3
E d2k'dk1

u~k1!

A2k1
@a'~t,k1,k'!e2 i k̄•x

1a'
† ~t,k1,k'!eik̄•x#, ~10!

where k̄•x5k1x22k'x', and a' and a'
† are operators

which satisfy the equal-t canonical commutation relation
with the nonvanishing ones given b
@a'(t,k1,k'),a

'8
† (t,k81,k8')# 5d''8 d3(k2k8), where

d3(k2k8)[d(k12k81)d2(k'2k'8). The Heisenberg
equation of motion forA'(x) then leads toa'(t,k1,k')
5a'(k1,k')exp(2ik2x1) wherek2 is defined through the
dispersion relation 2k2k15k'k'. The operatorsa'(k1,k')
anda†

'(k1,k') are thus associated with themasslessgauge
field quanta. The Fourier transform@Eq. ~10!# may then be
rewritten as

A'~x!5
1

A~2p!3
E d2k'dk1

u~k1!

A2k1
@a'~k1,k'!e2 ik•x

1a'
† ~k1,k'!eik•x#, ~11!

wherek•x5(k2x11k1x21k'x') andkmkm50. The Fou-
rier transform@Eq. ~11!# is of the typical form of thefront
form theory where the bosonic fields satisfy nonlocal
commutation relation; it does not carry in it any explic
information on the mass of the field. The commutators ofA1

are realized if we write for its Fourier transform
04500
e
ld

t

se
e

ds

t

t

e
u-

A1~x!5
1

A~2p!3
E d2k'dk1

u~k1!

A2k1
@a1~k1,k'!e2 ik•x

1a1
† ~k1,k'!eik•x#, ~12!

wherea1(k) is determined from@k1a1(k)1k'a'(k)#50.
The free propagators in momentum space are deri

straightforwardly. We find

^0uT~A'
a ~x!A

~'8!

b
~0!!u0&5^0u@u~t!A'

a ~x!A
~'8!

b
~0!

1u~2t!A
~'8!

b
~0!A~' !

a ~x!#u0&

5
idab

~2p!4E d4k e2 ik•x
2g''8
k21 i e

~13!

where we have restored the gauge indexa. In view of Eq.
~12!, we may write the gauge field propagator in the L
gauge in the following form

^0uT~Am
a ~x!An

b~0!!u0&5
idab

~2p!4E d4k e2 ik•x
Dmn~k!

k21 i e
,

~14!

where we have defined

Dmn~k!5Dnm~k!52gmn1
nmkn1nnkm

~n•k!
2

k2

~n•k!2
nmnn .

~15!

Here nm is a null 4-vector gauge direction, whose comp
nents are chosen to benm5dm

1 , nm5dm
2 . We note that

Dml~k!Dn
l~k!5D'm~k!Dn

'~k!52Dmn~k!,

kmDmn~k!50, nmDmn~k![D2n~k!50,

Dlm~q!Dmn~k!Dnr~q8!52Dlm~q!Dr
m~q8!. ~16!

The property that the gauge-field propagatori D mn(k)/(k2

1 i e) is transverse not only to the gauge directionnm but
also tokm , i.e., it is doubly transverse, leads to apprecia
simplifications in the computations in QCD, as illustrat
below. In a sense our gauge propagator corresponds to
form used in the Landau gauge, but here it is derived in
context of the noncovariant LC gauge. As usual with non
variant gauges, the propagator contains a noncovariant p
added to the covariant~Feynman gauge! propagator. It dif-
fers from the propagators derived@21,22,30# in equal-time
quantized LC gauge QCD. The form@Eq. ~14!# of the propa-
gator reminds us of the rules, in the context of the o
fashioned perturbation theory, laid down in Ref.@16# a long
time ago, in the context of LF quantization. In Sec. V we w
comment on the problem of handling the singularity ne
(n•k)'0 present in the propagator.

We can introduce the operatorsb(') and b†
(') , (')

5(1) and ~2!, representing the two independent states
transverse polarizations of a massless photon. They are
6-4
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LIGHT-FRONT-QUANTIZED QCD IN THE LIGHT-CONE . . . PHYSICAL REVIEW D 64 045006
sumed to obey the standard canonical commutation relat
@b(')(k

1,k'),b('8)
† (k81,k8')#5d (')('8)d

3(k2k8). We
write a'(k)5( ('8) E('8)

' (k) b('8)(k), whereE(')
m (k) indi-

cate the two independent polarization 4 vectors. A con
nient set may be chosen to be,

E(')
m ~k!5E(')m~k!52D'

m~k!, ~17!

which has the properties

(
(')51,2

Em
(')~k!En

(')~k!5Dmn~k!,

gmnEm
(')~k!En

('8)~k!5g''8, ~18!

kmEm
(')~k!50, nmEm

(')[E2
(')50. ~19!

The Fourier transform of the gauge field may then be
pressed in the standard form

Ama~x!5
1

A~2p!3
E d2k'dk1

u~k1!

A2k1 (
(')

E(')
m ~k!

3@b(')
a ~k1,k'!e2 ik•x1b(')

†a ~k1,k'!eik•x#,

~20!

where the LC gaugeA2
a 50, along with the Lorentz condi

tion, is already incorporated in it. The momentum space
pressions of LF energy and momentum confirm the interp
tation of b(') and b(')

† as the Fock space operators
annihilation and creation of massless transverse gauge-
quanta. Only the physical transverse degrees of freedom
pear in the gauge-field expansion.

IV. QCD HAMILTONIAN IN THE LC GAUGE

The Dyson-Wick perturbation theory expansion in the
teraction representation requires that we separate the
Hamiltonian into a free theory component and a couplin
constant-dependent interaction piece.

The equations of motion in LF coordinates followin
from Eq. ~1! give

2i ]2c2
i 52i ]2c̃2

i 1gg'A'
a ~ ta! i j g1c1

j ~21!

and

2i ]1c1
i 5~ ig']'1m!g2c2

i 1gg'A'
a ~ ta! i j g2c2

j

22gA1
a ~ ta! i j c1

j , ~22!

along with

]2~]2A1
a 2]2Ã1

a !52g fabcA'
b ]2A'c

1gc̄ ig1~ ta! i j c j ,
~23!

where we define@2# Ã1
a and c̃2

i by ]2Ã1
a 5]'A'

a and

2i ]2c̃2
i 5( ig']'1m)g1c1

i , respectively. The combina

tion (c1
i 1c̃2

i ), wheng50, satisfies the free Dirac equatio
04500
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Hence the interaction Hamiltonian in the LC gauge,A2
a 50,

can be rewritten1 in the following useful form@2#:

Hint52Lint52g c̄ igm~ ta! i j c jAm
a 1

g

2
f abc~]mAn

a

2]nAm
a !AbmAcn1

g2

4
f abcf adeAbmAdmAcnAen

2
g2

2
c̄ ig1gmAm

a ~ ta! i j
1

i ]2
gnAn

b~ tb! jkck

2
g2

2 S 1

i ]2
j a

1D S 1

i ]2
j a

1D , ~24!

where

j a
15c̄ ig1~ ta! i j c j1 f abc~]2Abm!Acm, ~25!

and a sum over distinct quark and lepton flavors~in QED!,
not written explicitly, is understood in Eq.~25! and ~24!.

The perturbation theory expansion in the interaction r
resentation, where we time order with respect to the LF ti
t, can now be built following the Dyson-Wick@24# proce-
dure. There are no ghost interaction terms to consider.
instantaneous interaction contributions@the last two terms in
Eq. ~24!# can be dealt with systematically. Such terms a
also required in Abelian QED theory, obtained by suppre
ing in the above interaction the additional terms of nona
lian theory. For example, the tree levelseagull term domi-
nates the classical Thomson formulas for the scattering a
vanishingly small photon energies. The instantaneous co
terterms also serve to restore the manifest Lorentz inv
ance, which was broken by the use of a noncovariant
gauge and a noncovariant propagator. The information on
LC gauge is encoded in the remarkable properties of
gauge-field propagator in the LF framework. Some of t
vertices in momentum space required for the illustratio
below are summarized in Appendix A.

V. ILLUSTRATIONS

A. Electron-muon scattering

The contribution to the matrix element from the mediati
of the gauge field is

2e2@ ūe~p18!gmue~p1!ūm~p28!gnum~p2!#
i D mn~q!

q21 i e
,

~26!

where q52p181p15p282p2. Using the mass-shell condi
tions for the external lines, this reduces to

1We note that the dependent fieldc2 and A1 occur only in the
first two terms of Eq.~24!.
6-5
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2 ie2F ūe~p18!gmue~p1!ūm~p28!gnum~p2!
2gmn

q21 i e

2
1

q12
ūe~p18!g1ue~p1!ūm~p28!g1um~p2!G . ~27!

The second term here originates from the noncovariant te
in the gauge propagator. It is easily shown to be compens
for by the instantaneous contribution to the matrix elem
deriving from the corresponding last term in Eq.~25!, of
Abelian QED theory. The familiar covariant expression f
the matrix element is then recovered.

B. b function in Yang-Mills theory

In this section we will illustrate the renormalization pr
cedure in LF-quantized LC gauge QCD by an explicit co
putation to one loop, for simplicity, in the pure non-Abelia
Yang-Mills theory. Gross and Wilczek@34# and Politzer@35#
computed theb function in QCD from the gluonic vertex in
the conventional theory. The corresponding LF computat
becomes simpler because the gauge propagator in the
gauge is transverse with respect to bothkm and the gauge
directionnm, and ghost fields are absent.

1. Gluon self-energy corrections

The propagator modification is given by

dab

iD ld~q!

q2
1daa8

iD lm~q!

q2
Pa8b8

mn
~q!db8b

iD nd~q!

q2
1•••.

~28!

The contribution to the gluon polarization tensorPab
mn(q)

coming solely from the three-gluon interaction is@Fig. 1~a!#

FIG. 1. Yang-Mills self-energy to one loop.~a! Gluon self-
energy diagramPab

mn(q). ~b! Tadpole diagram containing vertexV1,
vanishing in dimensional regularization.~c! Nonvanishing tadpole
diagram containing vertexV2.
04500
s
ed
t

r

-

n
LC

Pab
mn~q!5E ddk

~2p!d

1

2
~2gd!2f adcf bcdF

mab~2q,2k,k1q!

3Fnsr~q,2k2q,k!
iD bs~k1q!

~k1q!2

iD ar~k!

k2

5
1

2
g2dabCAPmn~q!. ~29!

Here, associated with the three outgoing momentap1
l , p2

m ,
andp3

n , satisfying (p11p21p3)m50, we define

Flmn~p1 ,p2 ,p3!5~p12p2!nglm1~p22p3!lgmn

1~p32p1!mgnl

52Flnm~p1 ,p3 ,p2!, ~30!

use f adcf bcd52CAdab , and write

Pmn~q!5m42dE ddk

~2p!d

1

@k21 i e# @~k1q!21 i e#
I mn~q,k!,

~31!

with

I mn~q,k!5@2~2k1q!mgab1~k2q!bgma

1~2q1k!agmb#Dar~k!@2~2k1q!ngrs

1~k2q!sgnr1~2q1k!rgns#Dsb~k1q!.

~32!

The dimensionless coupling is indicated byg, while gd
5(m)(42d)/2g, and m indicates the mass parameter asso
ated with the dimensional regularization which we will b
adopting.

We first note that every internal gluon line carries a fac
Dmn , and the polarization vector of an external gluon
E(')

m 52D'
m . The object of interest relevant in the renorma

ization of the theory under consideration is clearly the co
bination Dlm(q)Pab

mn(q)Dnd(q). We may therefore use th
transversity properties ofDmn(q) to simplify the original ex-
pression, and instead consider the following reduced exp
sion for I mn in the integrand:

I mn~q,k!5@2~2k1q!mgab22qbgma12qagmb#

3Dar~k!@2~2k1q!ngrs

22qsgnr12qrgns#Dsb~k1q!. ~33!

Explicitly,
6-6
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I 1152~2k1q!1~2k1q!1

I 1'5I'152~2k1q!1~2k1q!'12~2k1q!1

3F 1

~k1q!1
2

1

k1GS' ~34!

I''852~2k1q!'~2k1q!'822@~2k1q!'S'8

1~2k1q!'8S'#F 1

~k1q!1
2

1

k1G
24 g''8S'S'F 1

~k1q!12
1

1

k12G
28 S'S'8

1

k1~k1q!1
,

where

Sm[Sm~k,q!5~kmq12qmk1!

52Sm~q,k!5Sm~k1aq,q!5Sm~k,q1bk!.
~35!

Here the properties Dr
'(k)5@2dr

'1(k'/k1)dr
1#,

Dmn(k)Dmn(k)52, and Dlm(q)D'
m(k)52Dl'(q) were

used to simplify the expressions.
In order to carry out the renormalization procedure,

will need to isolate divergent terms in the matrix eleme
We will adopt dimensional regularization, since it preserv
all gauge symmetries. The singularities in the Feynm
propagators of the dynamical componentsA' and c1 are
given by the standard causal prescription. The 1/k1 singular-
ity will be handled by the Mandelstam@36# and Leibbrandt
@37# prescription in the LC gauge. A derivation of this pr
scription was also given@21# in the context of equal-time
canonical quantization. One can also justify the Mandelsta
Leibbrandt ~ML ! procedure by noting that in a two
dimensional massless theory on the LF, the causal pres
tion for the k2'0 singularity in 1/k2[1/(2k1k2) is
identical to that given by the causal ML prescription for t
1/k1 singularity. Since we wish to have consistent analy
continuation in the number of dimensionsd, the dimensional
regularization plus ML prescription appears be a mathem
cally sound procedure.

The ML prescription is often written as

1

q•n
5 lim

e→0

~q•n* !

~q•n!~q•n* !1 i e
, ~36!

wheree→01 and the light-like 4-vectornm* represents the
dual ofnm with the components given by,nm* 5dm

2 . We recall
that such a pair of null vectors,nm andnm* , arise quite natu-
rally in the LF framework, for example, in the LF-quantize
04500
e
.
s
n

-

ip-

c

ti-

QCD in covariant gauge@28#, when we define2 the linearly
independent set of four gauge-field polarization vectors.

Unlike the principal value prescription for 1/k1, which
would enter in conflict with the causal prescription for 1/k2,
the causalnm* prescription is consistent with both Wick rota
tion and power counting@22,21#.

The divergent part ofPmn may be computed straightfor
wardly, employing an available list of integrals@22,21#. We
find

div P115
2

3
q12I div,

div P1'52
10

3
q1q'I div, ~37!

div P''852F11

3
~q2g''82q'q'8!28 q1q2g''8G I div.

Here (2p)4I div52ip2/(42d)→ ip2(2/e), with d5(42e)
ande→01, is the pole term in the divergent integral

~2p!4m42dE ddk

~2p!d

1

k2~k2q!2
5 ip2FNe2 ln

2q2

m2
1•••G

1o~e!, ~38!

where

Ne5F2

e
2gE1 ln~4p!G .

The expressions ofP11 and P'' agree with the corre-
sponding expressions computed in Ref.@22#, in the conven-
tional LC gauge QCD, where a different gluon propaga
was used. However, the expression forP''8 is found to be
different. As a consequence, in LF-quantized theory we fi
covariant as well as noncovariant divergent terms in

Dlm~q!Pab
mn~q!Dnd~q!5

g2

16p2
CAdabS 2

11

3
q218q1q2D

3 i FNe2 ln
2q2

m2
1•••GDld~q!.

~39!

Also, in view of the properties ofDmn , the computation of
Eq. ~39! does not require an evaluation of components ot
than those given in Eq.~37!. We also note that

2e(1)5(1,kW /k0)/A2, e(2)5(1,2kW /k0)/A2, ande(1)5@0,eW (k;1)#,

e(2)5@0,eW (k;2)#, whereeW (k;1), eW (k;2), andkW /ukW u constitute the
usual orthonormal set of 3 vectors. In the LC gaugen•n* 51,
n•n5n* •n* 50, and, associated with any 4 vectorqm we may
define the four vectorsquu and q(') by quum (n•n* )5(n* •q nm

1n•q nm* ) andq(')m5qm2quum .
6-7
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qnI mn52~q212k.q!@~2k1q!m1~qbgma2qagmb!#

3Db
r ~k1q!Dra~k!. ~40!

The corresponding divergent part is shown to be

div qnPnm~q!528 q2q12D1
m ~q!I div, ~41!

which allows us to compute div P21(q)5( 10
3 q2

2 22
3 q1q2)I div by settingm51.
Result ~39! obtained here is different from earlier LC

gauge computations@22# in the conventional framework. Th
noncovariant piece 8q1q2Ne , in Eq. ~39!, however, is com-
pensated for by an equal contribution, but with opposite s
which arises from the tadpole graphs. The connection
tween tree-graph computations in the conventional lig
cone gauge formalism and light-cone time-ordered pertu
tion theory were discussed in Refs.@38–41#.

The computation of the loop corrections to the gluon se
energy illustrates the essential difference between the li
front and conventional formalisms. There are two tadp
graphs@Figs. 1~b! and 1~c!# to be considered. The one ass
ciated with the four-gluon couplingV1 gives a vanishing
result, but the contribution coming from the instantaneo
interactionV2(p1 ,p2 ,p3 ,p4) is found to be nonvanishing in
dimensional regularization due to the momentum dep
dence of the vertex itself. The divergent part of the mat
element is easily reduced to

m42dE ddk

~2p!d

1

2
~ ig2!CAdabF2S k12q1

k11q1D 2

2S k11q1

k12q1D 2G iD mn~k!

k2
Dlm~q!Dnd~q!

5
g2

16p2
CAdab~28q1q2!i FNe2 ln

22q1q2

m2

1•••GDld~q!. ~42!

Here we made use of the useful identi
Dlm(q)Dmn(k)Dnd(q)5Dnd(q) to arrive at the second line
The usual shift operation in dimensional regularization
used to bring the integral to another type of basic diverg
integral@22# which is, however, noncovariant. On adding t
tadpole contribution@Eq. ~42!# to Eq.~39! the net coefficient
of (Ne1 ln m2) in the gluon self-energy correction is covar
ant, since the noncovariantq1q2 terms mutually cancel~see
also Appendix C!. Retaining only the pole term, we find

Dlm~q!Pab
mn~q!Dnd~q!5

g2

16p2
CAdabS 2

11

3
q2D

3 i S 2

e DDld~q!. ~43!
04500
,
e-
t-
a-

-
t-
e

s

-
x

s
t

The divergent part in Eq.~43! is }q2 which ensures that the
vanishing gluon mass remains unaltered due to the one-
gluon self-energy correction.

The multiplicative renormalization constantZ3, which
corrects the gluon propagator, is defined by

Z3dab

iD ld~q!

q2
5dab

iD ld~q!

q2

1daa8

iD lm~q!

q2
Pa8b8

mn
~q!db8b

iD nd~q!

q2

1•••, ~44!

and we obtain

Z3511
g2

16p2
CA

11

3 S 2

e D . ~45!

2. Vertex corrections

In pure Yang-Mills theory the gluon vertex corrections
the one-loop approximation arise from the three-gluon int
action alone, the triangle diagram@Fig. 2~a!#, and from the

FIG. 2. Three-gluon vertex diagrams.~a! Triangle diagram.~b!
Swordfish diagram containing vertexV1; the other two diagrams are
obtained by cyclic permutations of the external line indices.~c!
Swordfish diagrams containing vertexV2; the other two diagrams
are obtained by cyclic permutations of the external line indices
6-8
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two types ofswordfishgraphs@Figs. 2~b! and 2~c!# in which
one of the two vertices carries a four-gluon interactio
which may be of typeV1 or type V2, while the other one
contains a three-gluon interaction. The complete vertex
orderg3 is written as

2g fabcFlmn52g fabc@Flmn1Dlmn#~p1 ,p2 ,p3!

52g fabcFlmn~p1 ,p2 ,p3!~11D̄ !. ~46!

Consider, first, the triangle diagram. Since, as remar
above, each gluon line carries with it a factor ofD we will
simplify the expressions right from the start by making u
of the presence of the factorDl8l(p1)Dm8m(p2)Dn8n(p3),
coming from the external gluon lines. The matrix element
the one loop correction to orderg2 is written as

~2gd
2!S 2

1

2
CAf abcD ~ i !3Tlmn~p1 ,p2 ,p3!, ~47!

where we have usedf aa8b8 f bb8c8 f cc8a85(CA/2) f abc . A fac-
tor of i comes from each of the gluon propagators, and
expression forTlmn(p1 ,p2 ,p3) is given by@Fig. 2~a!#

E ddq

~2p!d

Daa8~q!Dbb8~k!Dgg8~ l !

~q21 i e!~k21 i e!~ l 21 i e!

3@~p12q!bgal1~q2k!lgab1~k2p1!aglb#

3@~2q2p2!gga8m1~p22 l !a8ggm1~ l 1q!mga8g#

3@~2k1 l !ngb8g81~2 l 2p3!b8gng81~p31k!g8gb8n#,

~48!

wherek52(q1p1), l 5(q2p2), p11p21p350, and the
D8s associated with the external gluon lines are understo

Proceeding as before, we may instead consider the
lowing reduced expression:

8E ddq

~2p!d

Daa8~q!Dbb8~k!Dgg8~ l !

~q21 i e!~k21 i e!~ l 21 i e!

3@p1
bgal1qlgab2p1

aglb#

3@2p2
gga8m1p2

a8ggm1qmga8g#

3@2kngb8g82p3
b8gng81p3

g8gb8n#. ~49!

The divergent terms inTlmn are then easily identified, an
may be rewritten as follows:

8E ddq

~2p!d

1

q2k2l 2
@2qlqmkn1p3

aqlqm$Da
n ~ l !2Da

n ~k!%

2knqlp2
a$Da

m~q!2Da
m~ l !%2knqmp1

a$Da
l~k!2Da

l~q!%#.

~50!

The contribution to the divergent part comes solely from
first term, since the divergent terms coming from the non
04500
,

to

d

e

r

e

d.
l-

e
-

variant terms vanish. The divergent part of the one-loop c
rection from the triangle diagram has the for
2g fabcFlmn(p1 ,p2 ,p3)D̄1 with

D̄15
g2

16p2
CAS 1

3D FNe2 ln
Q2

m2
1•••G ~51!

whereQ252(p21p3)2. It is covariant and different from
the one found@21,22# in the equal-time LC gauge framewor
where a different propagator is used, and the correspon
expressions contain noncovariant pieces.

The total contribution from each type of swordfish di
gram comes from three similar diagrams, the two others
ing constructed from the first one by cyclic permutations
the set of labels of the three external gluon lines. The
divergent contribution following from the two types of dia
grams is given by2g fabcFlmn(p1 ,p2 ,p3)D̄2, with

D̄25
g2

16p2
CA~24!FNe2 ln

Q2

m2
1•••G . ~52!

The noncovariant terms cancel out, leading to the covar
resultD̄2 ~see below!. The gluon vertex renormalization con
stantZ1 is defined byD̄5(D̄11D̄2),

2g fabcFlmn~p1 ,p2 ,p3!
1

Z1
52g fabcFlmn~p1 ,p2 ,p3!

3~11D̄ !, ~53!

and we obtain

1

Z1
512

g2

16p2
CAS 11

3 D S 2

e D . ~54!

We find Z15Z3 in our doubly transverse gauge fram
work in the LC gauge LF-quantized theory. The gauge c
pling constant renormalization constantZg is defined byZg
5Z1 /(Z3)3/2. In lowest-order perturbation theory, it has th
form

Zg5
Z1

~Z3!3/2
5~Z3!21/2'12

g2

16p2
CAS 11

6 D S 2

e D
512g2b0S 1

e D , ~55!

whereb05(1/16p2) (11CA/3).0. This agrees with the re
sult found@34,35# in QCD, in the conventionalinstant form
framework when the quark fields are ignored@42#. The com-
putation of the b function and the discussion of th
asymptotic freedom is made following the standard pro
dure @43,44#.

A sketch of the computation involved in the swordfis
diagrams is presented here. The matrix element simpli
considerably due to the nice properties of theD8s, leading to
the reduced form
6-9
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1

2
~2 igd

2!
1

2
CAf abcE ddq

~2p!d

1

q2k2
iD aa8~q!iD b,b8~k!2@p1

bgal2p1
agbl1qlgab#@Aga8mgb8n1Bga8ngb8m1Cga8b8gmn#,

~56!
-

be
e

by

he

sh
The

LC
.
nce

opa-
m-
rti-

-
e

where

A532
~q1p2!1~p31k!1

~q2p2!1 2
,

B5231
~k1p2!1~p31q!1

~q2p3!1 2
,

C52
~k2q!1~p32p2!1

~q1k!1 2
, ~57!

with a multiplication by the factor
Dl8l(p1)Dm8m(p2)Dn8n(p3) being understood. The inte
grand may be simplified further, and recast as

pr@2gl̃m̃~ADr
ñ~k!2BDr

ñ~q!!1gl̃ ñ~ADr
m̃~q!2BDr

m̃~k!!

1Cgmn~ADr
l̃~q!2Dr

l̃~k!!#1qlgm̃ñ~A1B!12Cqlgmn,

~58!

where m̃['51,2 only. The divergent terms then can
picked up straightforwardly. Some of them drop out if w
d

04500
use alsop1
lDl8l(p1)50 andD2m50. When we add to this

result the two expressions obtained from the present one
the cyclic permutations of 3-tuples (p1 ,l,a), (p2 ,m,b), and
(p3 ,n,c), the noncovariant pieces drop out, leading to t

covariant expression forD̄2 given above.
The divergent terms arising from each type of swordfi

graph contain covariant as well as noncovariant pieces.
contribution corresponding to the usual four-gluon vertexV1

in our framework agrees with the one found in the earlier
gauge computations@21,22#, in the conventional framework
It thus gives us a consistency check of our calculations, si
the computation here is insensitive to thenmnnk2/k12 term
in our gauge propagator. The doubly transverse gauge pr
gator of the LF quantized theory greatly simplifies the co
putation: in compensation for the few extra interaction ve
ces, there are no ghost interactions.

C. Gluon self-energy corrections from the quark loop

For each flavorf of quark, the net gluon self-energy con
tribution arising from a quark loop is found to acquire th
usual form
r are
Paa8
(F)mn

5~21! ~ ig !2(
i j

t i j
a t j i

a8 m42d~ i !2E ddk

~2p!d

Tr~k”1mf !g
m~k”1q”1mf !g

n

@k22mf
2# @~k1q!22mf

2#
. ~59!

where the factorDlm(q)Dnd(q) is understood. It is easily shown that the noncovariant contributions either vanish o
mutually canceled. Hence

div Dlm~q!Paa8
(F)mnDnd~q!5

g2

16p2
daa8 TFS 4

3
q2DDld~q!i FNe26E

0

1

dx x~12x!ln
mf

22x~12x!q2

m2 G , ~60!
e
where( i j t i j
a t j i

a85TFdaa8 . The contributions fromPaa8
(F)2n or

Paa8
(F)m2 are automatically suppressed in view ofDm250, as

they should be, sinceA250 in the LC gauge. We have use

Dlm~q! ~q2gmn2qmqn!Dnd~q!52q2Dld~q!. ~61!

For the total numbernf of massless quarks, we find

div Dlm~q!Paa8
(F)mnDnd~q!

5
g2

16p2
daa8TFS 4

3
nfq

2D i FNe2 ln
2q2

m2
1•••GDld~q!.

~62!
The net contribution to coefficient of the pole term in th
gluon self-energy becomes

div Dlm~q!@Paa8
mn

1Paa8
(F)mn

#Dnd~q!

5
g2

16p2
daa8q

2S 2
11

3
CA1

4

3
nf Tf D i S 2

e DDld~q!,

~63!

which leads to

Z3511
g2

16p2 S 11

3
CA2

4

3
nf TFD S 2

e D , ~64!
6-10
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with

Z3
21/2512

g2

16p2 S 11

6
CA2

2

3
nfTFD S 2

e D ~65!

in our ghost-free LC gauge LF-quantized QCD framewo
We also did not perform any renormalization of the gau
parameter, required in the conventional covariant ga
theory framework. A complete discussion of QCD in o
framework will be given elsewhere@45#.

VI. CONCLUSIONS

The canonical quantization of LC gauge QCD in the fro
form theory has been derived, employing the Dirac pro
dure to construct a self-consistent LF Hamiltonian theo
The formulation begins with the gauge-fixed BRS invaria
quantum action, but the final result is ghost free. The in
action Hamiltonian is obtained in a simple form by retaini
the dependent componentsA1 andc2 . Its form closely re-
sembles the interaction Hamiltonian of covariant theory,
cept for the presence of instantaneous interactions which
analogous to the Coulomb interactions in transverse ga
The Dyson-Wick perturbation theory expansion based
equal-LF-time ordering is then constructed in a man
which allows one to perform high-order computations in
straightforward fashion. Our formulation of the light-fron
Hamiltonian matches the rules of light-front-time-order
perturbation theory@16#.

In our formulation of gauge theory, the free gauge fie
satisfies the Lorentz condition as an operator equation
well as the light-cone gauge constraint. Since the propag
of the massless gauge field is doubly transverse both
respect to the 4 momentum and the 4 vectornm of the gauge
direction, the propagating gluons have only two physical
grees of freedom, and no ghost fields need to be conside
The physical transverse polarization vectors of the glu
may be conveniently identified asE(')

m (k)[2D'
m(k), so that

each gluon line, external or internal, carries with it a factor
Dmn . The remarkable properties of these factors give rise
much simplification already at the start of computations.

Unitarity relations@46# such as the optical theorem a
manifest within each Feynman diagram, rather than as a
sequence of cancelations over sets of diagrams@47#. This
allows one to construct effective charges analogous to
Gell-Mann–Low running coupling of QED based on th
structure of self-energy diagrams using the pinch techni
@48#. Since the absorptive part of these contributions
based on physical cross sections, one can define a phy
and analytic renormalization scheme for QCD.

The instantaneous interactions, in fact, are interesting
themselves. For example, the semiclassical limit of Thom
scattering is revealed at tree level in the LC or covari
gauge@28# on the LF. This is relevant since a systema
procedure to obtain the semiclassical limit seems to be la
ing in the front form theory. The LF framework may also b
useful for obtaining the nonrelativistic limit of a relativisti
field theory, for example, in the context of chiral perturbati
theory. This is an alternative to the conventional framewo
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where a functional integral technique and the Fold
Wouthuysen transformation is employed.

It is worth stressing that the doubly transverse propaga
obtained here follows from a straightforward application
the well-tested standard Dirac method for constructing
Hamiltonian formulation for constrained dynamical system
It differs from the singly transverse propagator usually us
in the literature in the context of equal-time LC gauge QC
In the equal-time formalism the last termnmnnk2/n•kn•k of
the doubly transverse gauge propagator is absent, so
both transverse and longitudinal gluonic modes propag
The instantaneous interaction terms generated by the
gauge in the LF are also not present in the analysis ofinstant
form noncovariant gauge QCD based on functional integ
quantization. Even when one allows for counterterms
tained by imposing@21,22,30# constraints of covariance o
by requiring an extended BRS symmetry, the gauge pro
gators employed in that framework do not possess the v
useful properties carried by the doubly transverse gauge
framework. We have illustrated the correspondence betw
the two formulations of light-cone gauge with a simple tre
graph calculation of electron-muon scattering in QED. T
instantaneous terms in the LF interaction Hamiltonian rest
the manifest Lorentz covariance of the matrix element wh
was broken by the noncovariant gauge and the noncova
terms in the doubly transverse gauge propagator. The sam
found true in non-Abelian gauge theory.

The singularities in the noncovariant pieces of the fie
propagators may be defined using the causal LC gauge
prescription for 1/k1. The power-counting rules in LC gaug
then become similar@49,21,50# to those found in covarian
gauge theory, as the illustrations show. We have dem
strated explicitly the equalityZ15Z3 and Zg5(Z3)21/2 at
one loop in Yang-Mills theory. This is expected to be true
higher orders as well. Also, because of the Slavnov-Tay
identities @44#, the corrections to theqqg vertex would be
compensated for by those arising from the quark field ren
malization; such that the coupling constant renormalizat
arises only from the gluonic self-energy.

Computations in our ghost-free framework require co
parable effort to calculations in the covariant gauge, beca
of the remarkable simplifications arising due to the dou
transverse LC gauge propagator. Higher-loop computati
should be possible in our formalism by making advantage
use of techniques@49# which have recently been develope
to handle multiloop integrals involving noncovariant int
grands.

The renormalization procedure of LF-quantized gau
theory in light-cone gauge theory is thus similar to that
conventional covariant gauge theory. The additional inter
tion terms are, in a sense the appropriate counterterms w
arise naturally in the canonical quantization in the LF fram
work. It is straightforward to show this in QED; a comple
discussion for QCD will be given elsewhere@45#.

It is worth remarking that we have made anad hocchoice
of only one ~of the family! of the characteristic LF hyper
planes,x15const, in order to quantize the theory. The co
clusions reached here and in the earlier works@11,28# con-
firm the conjecture@11# concerning the irrelevance in th
6-11
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quantized theory of the fact that the hyperplanesx650 con-
stitute characteristic surfaces of hyperbolic partial differe
tial equation. The Hamiltonian version can clearly be imp
mented in discrete light cone quantization~DLCQ! @29#
which has been shown@51# to have a continuum limit. There
is no loss of causality in DLCQ when the infinite volum
limit is properly handled@52#. We also note that nonpertu
bative computations are often done on the LF in the clos
related~LC! gauge]2A2'0, such as to demonstrate@12#
the existence of thecondensateor u vacua in the Schwinge
model.
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APPENDIX A: FEYNMAN RULES

The Dyson-Wick perturbation theory expansion on the
can be realized in momentum space by employing the F
rier transform of the fields and the propagators. Many of
rules of the Feynman diagrams—for example, the symm
factor 1/2 for gluon loop, a minus sign associated with f
mionic loops etc.—are the same as those found in the c
ventional covariant framework@44#. There are some differ
ences: for example, the external quark line now carrie
factor u(p1)Am/p1, while the external gluon line a facto
u(q1)/A2q1 or that the Lorentz invariant phase space fac
is now *d2p'dp1u(p1)/(2p1). The external gluon line
carries the polarization vectorEm(')(q)5E(')

m 52D'
m(q).

Its properties and the sum over the two polarization states
given Sec. III. The notation for the quark field is given
Appendix B. Some of the momentum space vertices, use
Sec. V, are collected below, and others can be derived ea

The gluon propagatoris

idab
Dmn~q!

q21 i e
, with
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Dmn~q!5S 2gmn1
nmqn1qmnn

n•q
2

q2

~n•q!2
nmnnD ,

where qm is the gluon 4 momentum, andnm is the gauge
direction. We choosenm[dm

1 andnm* [dm
2 , the dual ofnm .

The useful properties of the projectorDmn are given in Eqs.
~16!–~19!.

The quark propagatoris

id i j S~p! with

S~p![
p”1m

p22m21 i e
2

g1

2p1
5

N~p!

p22m21 i e
, e.0,

wherepm is the quark 4 momentum,i andj are color indices
and N(p)5(p”1m)2(p22m2)g1/2p1. The noncovariant
second term on the right-hand side is present only in
propagator of the nondynamical dependent fieldc2 . Its con-
tribution, for example, to the gluon self-energy@Eq. ~63!# is,
however, compensated by that arising from the fourth term
Eq. ~24!.

The quark-quark-gluon vertex factoris

iggmta.

Three-gluon vertex factoris

2g fabcFlmn~p1 ,p2 ,p3!.

Here (p1 ,l,a), (p2 ,m,b), and (p3 ,n,c) label the three glu-
ons at the vertex with outgoing momentap1

l , p2
m , and p3

n

with the associated gauge indicesa, b, and c, respectively.
Also Flmn(p1 ,p2 ,p3)5(p12p2)nglm1(p22p3)lgmn1(p3
2p1)mgnl52Flnm(p1 ,p3 ,p2), andp11p21p350.

The four-gluon vertex factorsare of two types in this
framework. V1amnb

abcd is the usual momentum-independe
four-gluon vertex of the covariant gauge theory, wh
V2amnb

abcd (p1 ,p2 ,p3 ,p4) is a new vertex generated by LC
gauge LF-quantized QCD, with the momentum depende
as well, coming from the last term in the interaction Ham
tonian @Eq. ~36!#:

V1amnb
abcd 52 ig2@ f eabf ecd~gangbm2gabgmn!

1 f eacf ebd~gamgbn2gabgmn!1 f eadf ecb~gangbm

2gamgbn!# ~A1!

and
V2amnb
abcd ~p1 ,p2 ,p3 ,p4!51 ig2F f eabf ecdgamgbn

~p12p2!1~p32p4!1

~p11p2!12
1 f eacf ebdgangbm

~p12p3!1~p22p4!1

~p11p3!12

1 f eadf ecbgabgmn
~p12p4!1~p32p2!1

~p11p4!12 G . ~A2!
6-12
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Here (p1 ,a,a), (p2 ,m,b), (p3 ,n,c), and (p4 ,b,d) indicate
the four outgoing gluons at the vertex withp11p21p3
1p450.

APPENDIX B: SPINOR FIELD ON THE LF

The notation forg matrices is as given in Bjorken an
Drell, andg65(g06g3)/A2, which satisfy (g1)25(g2)2

50. TheL65 1
2 g7g65(1/A2)g0g6 are Hermitian projec-

tion operators. The spinor field on the LF is decompos
naturally into 6 projections: c65L6c, c̄65c̄L7, c

5c11c2 , and c̄5c†g0 5c̄11c̄2 , g6c750, c̄6g7

50, etc.
The Fourier transform of the free spinor field@28# is

c~x!5
1

A~2p!3
(

r 56
E d2p'dp1u~p1!

3Am

p1
@b(r )~p!u(r )~p!e2 ip•x

1d†(r )~p!v (r )~p!eip•x#,

where

u(r )~p!5
1

~A2p1m!1/2
@A2p1L11~m1g'p'!L2#ũ(r ),

and the constant spinorsũ(r ) satisfy g0ũ(r )5ũ(r ) and
S3ũ(r )5rũ (r ) with S35 ig1g2 andr 56. The normalization
and the completeness relations are

ū(r )~p!u(s)~p!5d rs52 v̄ (r )~p!v (s)~p!,

(
r 56

u(r )~p!ū(r )~p!5
~p”1m!

2m
,

(
r 56

v (r )~p!v̄ (r )~p!5
~p”2m!

2m
,

and C is the charge conjugation matrix@24#, while v (r )(p)
[u(r )(p)c5Cg0Tu(r )(p)* .

The L1 projection of is by construction very simple
u1

(r )(p)5(A2p1/m)1/2(L1ũ(r )). u1
(r )(p) are eigenstates o

S3 as well, whileũ(r ) correspond to rest frame spinors wh
A2p65m. The free propagator for the independent comp
nentc1 is

^0uT„c1
i ~x!c1

† j~0!…u0&5
id i j

~2p!4E d4q
A2q1L1

~q22m21 i e!
e2 iq•x

and we recall that 2i ]2c25( ig']'1m)g1c1 .
A detailed discussion of the properties of Dirac, Maj

rana, and Weyl spinor fields, helicity and spin operators,
the generalized chiral invariance of massive Dirac equa
on the LF may be found in Ref.@5#.
04500
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APPENDIX C

The self-consistent canonical quantization of the gau
theory requires one to fix the gauge and add ghost field
order to ensure BRS symmetry. One must also choos
regularization procedure in order to compute and manipu
the divergent integrals present in the momentum-space
resentation of the theory. In our context dimensional regu
ization is convenient since it preserves the gauge~and BRS!
symmetry, thus making the task of renormalization simp
However, the regularization procedure may break essen
properties of a physical theory, such as unitarity and int
duce ghost degrees of freedom at an intermediate stage.
hopes that at the end of computations, when the regular
tion is removed, that we recover the features associated
the physical theory represented by the original Lagrangian
is worth recalling the case of the chiral Schwinger mod
where the regularization ambiguity itself leaves behind
arbitrary parameter in the theory, which is physical and u
tary only for a certain range of the values of that parame
It was also shown a long time ago@53# that the Pauli-Villars
method of regularization corresponds to the introduction
~regularization-dependent! ghost degrees of freedom in th
original theory. The dimensional regularization procedu
along with the ML prescription, may also give rise to add
tional ~hidden regularization-dependent! ghost contributions
to the divergent integrals @54#. The noncovariant
ln(22q1q2) contribution in Eq.~42! to the gluon self-energy
has an unconventional branch cut when compared to the
mal threshold branch point in Eq.~39!. It is an indication, in
the dimensional regularization scheme with ML prescriptio
of ghost states that do not propagate in the transverse d
tion. The sign of the cut in Eq.~42! is that of asymptotic
freedom, i.e., ghostly. In the gluon self-energy the sign of
coefficient of ln(2q2) term in Eq.~39! is consistent with the
spectral representation of Ka¨llen-Lehmann, but that of
ln(22q1q2) term is the opposite. In the renormalization
the vertex functions, only ln(2q2) terms are found.

We note that the renormalization factors of Yang-Mi
theory, in a Feynman gauge employing dimensional regu
ization, are

Z3511
g2

16p2
CA

10

3

1

e
.1, Z1511

g2

16p2
CA

4

3

1

e
.1,

while

Z̃3511
g2

16p2
CA

1

e
.1, Z̃1512

g2

16p2
CA

1

e
,1,

such thatZ1 /Z35Z̃1 /Z̃3. The result is the same couplin
constant renormalization as in our LF framework:

Zg5
Z1

Z3
3/2

5
Z̃1

Z̃3AZ3

512
g2

16p2
CAS 11

6 DNe,1.

Here Z̃ refer to the Faddeev-Popov ghost fields of the co
6-13
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riant gauge theory. We find that in this frameworkZ3.1,
just as in the LF framework presented where, in additi
Zg5Z3

21/2. This corresponds to the asymptotic freedo
property of dimensionally regularized non-Abelian gau
theories due to the three-gluon’s nonlinear self-interactio

If only physical degrees of freedom are present, wa
function renormalization requiresZ3,1; i.e, the probability
that the gluon is a bare gluon must be less than 1. As poin
out by Thorn@8#, the fact thatZ3.1, in Yang-Mills theory, is
in conflict with the unitarity and positivity of the Ka¨llen-
Lehmann spectral representation of the gluon propaga
Note that in our light-front formulation of the doubly tran
on
nd

d

9,

ve

t,’’

s

04500
,

-

ed

r.

verse light-cone gauge, the renormalization of the thr
gluon vertex receives a crucial one-loop contribution fro
the instantaneousV2 interaction, as illustrated by the sword
fish diagram of@Fig. 2~c!#. ~This diagram is missing from the
renormalization of the proper three-gluon vertex in the co
ventional light-cone gauge formalism since it is classified
one particle reducible.! Similarly, the tadpole graph@Fig.
1~c!# from V2 must be included in computation of the gluo
self-energy. Such a term does not have a conventional t
particle cut or Ka¨llen-Lehmann dispersion representatio
thus allowing forZ3

g.1 @55#. We also note that our gaug
propagator is not diagonal like that in the Feynman gaug
s.
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