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Gauge symmetry enhancement and radiatively induced mass in the large nonlinear sigma model
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We consider a hybrid of nonlinear sigma models in which two complex projective spaces are coupled with
each other under a duality. We study the lakyeffective action in &1 dimensions. We find that some of the
dynamically generated gauge bosons acquire radiatively induced masses which, however, vanish along the
self-dual points where the two couplings characterizing each complex projective space coincide. These points
correspond to the target space of the Grassmann manifold along which the gauge symmetry is enhanced, and
the theory favors the non-Abelian ultraviolet fixed point.
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The nonlinear sigma mode(®LSM’s) in which the dy- group (RG) properties in the coupling constant spaces. We
namical fields take values in some target manifolds havelso explicitly compute the large-effective action. We find
been a subject of extensive research in theoretical physidbat some of the dynamically generated gauge bosons ac-
due to their wide range of physical applications and theirquire radiatively induced finite mass terms and gauge nonin-
relevance with geometrical aspects of quantum th¢byg].  variant interaction away from the self-dual points, leading to
Especially, the largéd analysig 3] of this model has proved a localU(1)xU(1) symmetry. However, they vanish at the
to exhibit many remarkable physical properties, such as dyself-dual points enhancing the gauge symmetry to a non-
namical generation of gauge bosons, nonperturbative renoAbelian U(2) symmetry. The ultraviolefUV) fixed point
malizability, dimensional transmutation, and phase transicorresponds to a special self-dual point and the theory pre-
tions in the lower dimensional space-tirive—6). fers the non-Abelian phase in the UV limit. Even though the

One of the well studied NLSM is the complex projective dynamical generation of non-Abelian gauge bosons for the
CP(N) model [7] where the target space is given by the Grassmann target space has been discussed lpgfdf} the
complex projective space CR{=SU(N)/SU(N—-1) way in which the enhancement of gauge symmetry at the
X U(1). Thepurpose of this paper is to investigate the large-fixed point occurs through the RG evolution has not been
N limit of the NLSM for some other target space and to addressed so far.
re-examine the issue of the dynamical generation of non- Let us consider a Lagrangian which is given by
Abelian gauge bosons in+ll dimensions. Especially, we
first study the specific target space given by the Grassmann
coset space GN,2)=SU(N)/SUN—-2)xU(2) [8]. It

1 H 2 1 H 2
£OZ?|((9M+|AM)¢1| +;|((9,U,+IB,U,)¢2|
turns out that this NLSM can be written as a hybrid of two

1 2

CP(N) models coupled to each other with the same coupling 1(9: 92| ., 1 .t

constant for each complex projective space and the interac- talg T g Culr CL10

i 92 O VvO192

tion terms respect the dual exchange symmetry between the

two sectors[see Eq.(1)]. We observe that there exists a 1

manifest dual symmetry between the two sectors, and the —i —C,ﬁlf;&“'ﬂl, (1)
Grassmann manifold corresponds to a self-dual case with Vvg102

equal coupling constants. If we start from different COUp"nggvhere ¥, and g, are two orthonormal complel vectors

constants for each complex space for the generality, thi s L .
leads to the target space belonging to the so-called flag man?’-uc,h thatys ¢y =4;; (i,j=1,2). The e}bove Lagrangian de-
fold [9] M=SU(N)/SUN—2)XU(1)xU(1). The dy- scribes two CP{l) models each described I andy, with

namically generated gauge bosons would havél) coupling constantg; andg,, respectively, coupled through

xU(1) gauge symmetry. These observations lead to ouflerivative coupling. There is a manifest dual S}k/mmetry be-
main motivation for this work, that is, a study of self-duality ‘Ween sectors 1 and 2, andB,,, andC,, andC}, . When

in the coupling constant space and subsequent enhanceméht= 92, the above model corresponds to the nonlinear sigma
of gauge symmetry. In order to investigate this issue, wdnodel with the target space of Grassmann manifold

analyze the largé¥ mass gap equations, and renormalizationGr(N,2)=SU(N)/SU(N—2)xU(2). Let uswrite the above
Lagrangian in the more conventional form in terms of the

N X2 matrix Z:
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We first introduce new sets of coupling constants defined by W Y Y Y, C c*
g=+0.0, andr=g,/g;. Then, we consider 9 0 9 0 EMHCM, F”HCZ. (10

the Lagrangian Eq(6) reduces Eq(1). We note that in Eq.
(6), we never used the on-shell constraints so that the qua-
dratic term ofCZC“ has been absorbed into the mathkilx

where we collected the orthonormal constraints intoxa22 Let us focus on the two dimensions from here on. De-

Hermitian matrix\ which transforms as an adjoint represen-t@iled analysis in other dimensions will be reported else-
tation under the locdl(2) transformation, and the matrix ~ Where[13]. The largeN effective action > given by Eath
given by integratingZ and Z', or equivalentlyy, W1, Yo, and iy, .

We obtain

L= iztr[(DMZ)T(D"Z)—MZTZ—R)]- ®
g

A A3

A’:
N3 Ao

r O
’ R:[O r‘l}’ “) Sef= f L+iN In DetM. (11)
X

with a real positive [11]. The covariant derivative is defined According to the Coleman-Mermin-Wagner theorem, which
as D,Z=9,Z—ZA, with a 2X2 anti-Hermitian matrix states that there is no spontaneous breaking of any continu-
gauge potentiaAME—iAfLTa associated with the loc&l (2) ous global symmetry in dimensions two or less, we can set

symmetry. Each component gf# is assigned as the vacuum gxpect{:\tion values. ¢t and ¢r_2 equal to zero
from the beginning in the effective potential such that

A, gc# 1
_ ,
n= %C; B, ' ) Vef= — NO Serl #1,,=0N123=M7,3,A,=0], (12

The on-shell equivalence between Lagrangians Egsand ~ Where() denotes the space-time volume. Then we obtain the

(3) will be discussed shortly. The Lagrangian Eg) is in-  largeN effective potential as
variant under the localU(2) transformation forr=1, ) )
i ici m m
whereas theR with r#1 explicitly breaks thdJ(2) gauge V= — S T ™ DetG~!, (13

symmetry down toU(1)axXU(1)g, where U(1), and

U(1)g are generated byTC+T3), respectively. Thus the

symmetry of our model i$SU(N) Jgiopar< [U(2)]iocal fOr r from which the gap equations are schematically given as

=1, while [SU(N)]giopa<[U(1)aXU(1)gliocar for r+1. follows:

Invoking the hidden local symmetijyi2], we infer that the

theory withr # 1 corresponds to NLSM on the flag manifold gV d?k 2m§

M=SU(N)/SU(N—2)XU(1)xU(1). =—J I I RN E
In order to carry out the path integration in the laide- (2m)" (k*+m)(k"+mZ)

limit, we arrange the Lagrangia(B) in terms of the A s

X 2N matrix form Neg 1 f d’k k+mj

(

Ng> Ng?

. 0, (14)
om3

=0,
om? Ng? 2m)? (k2+m?)(k*+m?)
1 b r 1 15
L=l wliMTen| St =N, (6 (19
9 Yol g rg "

Neg 1 f d%k k2+m? 0
wherel is an NXN unit matrix andM is a 2x2 matrix Jm32 Ng? (2m)2 (K2+m?)(k2+m?)
operator given by (16)

M=G '-T(A), (7) Here the loop momenta are Euclidean anfl are given in
terms ofm? , 5 by
—O-A;  —)\g
G l=—O-\= . , (8) m2+m?=mi+m3, mim’>=mim3—mj. (17
-\5 —O-X

Since Eq.(14) simply statesn;=0, we can choose for ex-
T'(A)=—A, o +A A, (99 amplem;=mi, m?> =m3 after settingms=0 in Eq. (17).
Then the gap equations are given by two decoupled sets of
where the differential operatér*=3*— 3* must be regarded €duations expressed by
as not operating on the gauge potenﬁ:;;l. One can show

2
that imposing the on-shell constraintély;=r, i, oziz_ imA_z, (18)
=r~%, yly,= =0, and in terms of rescaling given by Ng; 47 m
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1 1 n A2 19 i (p) f dk (2k+p) . (2k+p),
N —, P)=—1:
NG AT mg i(2m)? (K =m))[(k+p)?—m/]
. . d’k  2g,,
where A is the cutoff of the theory. The above equations +j e (24)
yield two mass scales given by i(2m)% k?—
4 This vacuum polarization can be explicitly computed to yield
2_ 22 77 C_
m-=A“exg — — i=1,2). 20
' F{ N fl ( ) 20 IOHPV IO,LIOV

3 (p) +

sz(p)z(g,uv ILJ(p)1
Imposing the cutoff independence of the mass scales,

Adm /dA =0 leads to the Callan-Symanzk functions where the transverse functidi; and the longitudinal one

[T, are obtained as

dg Ngi3
Bi(g)= == —, (1) m <]
dinA— 4 i (p)= n——f dxin— 26)
m; 0 m,
which show the asymptotic free behaviors of both couplings
and a UV fixed point at the origin of the coupling constant i (m]-z—miz)2 2 m; 11
space §;,9,). Note that whem, =m,, we haveg; =g, and I (p)= 4702 | mi—m Ina— o dxﬁ '
the corresponding nonlinear sigma model is defined on the P ) 27)

Grassmann manifold.
Let us discuss the dynamical generation of gauge bosongiip, KIJ—Xm +(1—x)m?—x(1—-x)p% Moreover we see

in our model. It has been discussed before that if we stag,t

from the same coupling constamts 1 in the Lagrangian Eq.

(6), the effective action generates non-Abelian gauge bosons  I1}(p)=cll+p2fi(p), I} (p)=c+p?f](p),

with a localU(2) symmetry[10], rendering all four gauge (28)

bosonsA,B,C, andC* massless. Our main objective here is

to compute the radiatively induced mass terms for the gaugwhere the same constao? arises in the leading terms of

bosons in the generic case whagg+g,, hencem;#m,.  bothIl; andIl_, and is given by

The largeN effective action Eq(11) is schematically ex-

panded such that 1 me+m?  m;
cl=—|1-— - 29
2m m’—m? M
o1 ~ )
Sei= f L+iN InDetG *—iN 21 ETF[GF(A)]”. We note that, despite its appearancg, vanishes form;
X n=

22) m; . Then the vacuum polarization can be written as

I ,(p)=¢"9,,+ (P9, PP, fH(P)+p.p.f (p),

The boson propagatds becomes a diagonal>22 matrix (30
due to the gap equation solutiom= 0. We neglect the fluc- - , _ o _
tuation fields coming fron ; , s aroundm? , ;. The diagrams ~ Where bothc! andf}! vanish wheri =] so as to provide the
which arise fromn=1,2,3,4 can contribute to the Yang-Mills A (B) boson with thdJ(l)A (U(1)g) gauge invariant kinetic
action. The mass term comes fram=1 andn=2. Forn  term. On the other hand, they remain nonzero wihépn and
=2, we have three diagrams with two, three, and four poinfrovide theC boson with the mass given by

functions. The two point vacuum polarization function pro-

vides the gauge bosons with the kinetic terms and the mass _ —C
term for C, C* fields in the casen; #m,. The contributions c £12(0)
from bothn=1 andn=2 are explicitly given by the integral T

12

2 2 2 2
(m3+m3)In(my/my)+m5;—mj

1 - A — =|mi—m2| .
—INZTGA,3*GA,5"]—iIN T GA,A#] (mi—mjz)/2—2mim3 In(my /my)

(31
=7 2 j EOOTTY (19,0 A (%), (23)  This is one of the main results of our paper. We note that the
above mass does not vanish when+#m,, which in turn

impliesg, # g, from the mass gap equatiofid) and(19). It
where is also symmetric under the exchangenof andm,. When
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r=1 (my=my,), both c'? and f}? become zero. The three [14]. We note that the theory favors the conformal fixed point
point function with one seagull does not contribute to theand the non-Abelian phase in the ultraviolet limit. Also the
Yang-Mills action. The four-point vertex with two seagulls classical dual symmetry is not broken by the nonperturbative
also contributes to the kinetic term of Yang-Mills action with radiative corrections. _ _
other contributions fronm=3.4. We would like to emphasize that the mass generatiad of
Combining the relevant diagrams up e=4, we obtain 92Uge bosons is a genuine quantum effect away from the
the Yang-Mills effective action fom,=m,=m given by self-dual points. The finite mass term is determined unam-
[10] _blggously and is independent of the gauge invariant regular-
ization scheme employed. In our scheme, @hboson mass
arises from a purely finite term ofl; of Eq. (28). This
unambiguity is in contrast with some other radiative correc-
tions in quantum field theory which are finite but undeter-
5 B o mined[15].
whereF , ,(A)=4d;,A,;+[A,,A,] is the gauge field strength We could extend our model to describe other types of
of A, . Whenm, #m,, the effective action contains interac- SYMMmetry reduction patterns and to include supersymmetry.
tions that are not)(2) gauge invariant. These terms and the 0 €xample, if we envisage the Grassmann spacél @i(
nature of their interactions will be reported elsewhgt8]. +n2)=SU(N),/SU(N—n1—n2)><U(n1+n2) and the flag
In passing, we observe that the lafgeeffective action is manifold M’ =SU(N)/SU(N—n;—n,)xU(n;) xU(n,),

renormalizable because the only UV divergence is the onéhe NLSM describes the reduction on, +n,) gauge sym-

that arises in the gap equation and the other possible UV etry intoU(n,) X.U(HZ)' This type of fed“C“OT‘ and radia-
divergences in the vacuum polarization function are forbid- Ivé mass generations may provide an alternative approach o

o .~ the Higgs mechanism in the theories beyond the standard
den by the gauge symmetry. The renormalization conditiond . S .
Eqs.(i/8) ang(lg) arg enougjyh to realize the UV finite large- model or in the effective field theory of QCD in the context
N theory. The higher order corrections if\léxpansion can of the hidden local symmetrji].

be systematically renormalized by using the counter termsgtr;ma;uﬁovrve \Tvgn:;%;??r?;b:ﬁerelZ\ljagcg ?Tin(z:: W(()arrln(h\;vg(r:]e-
which are provided by the largd-effective action. 9 Y- gauge sy ry

We have performed the largé-path integral of a coupled ment[16] and target space dualif{t7] in string theory have

CP(N) model with dual symmetry and have analyzed theattracted_ an extensive study fece”“y- Targ_et space in the
A . . largeN limit could be unrealistic as space-time. Neverthe-
vacuum structure and renormalization ir1 dimensions.

. Lo less, our results could provide us with some insight to study

The largeN gap equation analysis yields two decoupled gap . X .
i X S these subjects for strings moving on curved backgrounds.

equations whose solution ensures the renormalizability.

N ~
ﬁeﬁ:mtr FMVF’U“ (A), (32)

We

also have computed the effective action, and have found that T.I. was supported by the Kyungpook National Univer-
some of the dynamically generated gauge bosons acquisdty. P.O. was supported by the KOSEF through Project No.
radiatively induced finite mass terms away from the self-duak000-1-11200-001-3 and in part by the BK21 Physics Re-

points, and the gauge symmetry is reduced to its subgrougearch Program.
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