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Gauge symmetry enhancement and radiatively induced mass in the largeN nonlinear sigma model
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We consider a hybrid of nonlinear sigma models in which two complex projective spaces are coupled with
each other under a duality. We study the largeN effective action in 111 dimensions. We find that some of the
dynamically generated gauge bosons acquire radiatively induced masses which, however, vanish along the
self-dual points where the two couplings characterizing each complex projective space coincide. These points
correspond to the target space of the Grassmann manifold along which the gauge symmetry is enhanced, and
the theory favors the non-Abelian ultraviolet fixed point.
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The nonlinear sigma models~NLSM’s! in which the dy-
namical fields take values in some target manifolds h
been a subject of extensive research in theoretical phy
due to their wide range of physical applications and th
relevance with geometrical aspects of quantum theory@1,2#.
Especially, the large-N analysis@3# of this model has proved
to exhibit many remarkable physical properties, such as
namical generation of gauge bosons, nonperturbative re
malizability, dimensional transmutation, and phase tran
tions in the lower dimensional space-time@4–6#.

One of the well studied NLSM is the complex projectiv
CP(N) model @7# where the target space is given by t
complex projective space CP(N)[SU(N)/SU(N21)
3U(1). Thepurpose of this paper is to investigate the larg
N limit of the NLSM for some other target space and
re-examine the issue of the dynamical generation of n
Abelian gauge bosons in 111 dimensions. Especially, w
first study the specific target space given by the Grassm
coset space Gr(N,2)[SU(N)/SU(N22)3U(2) @8#. It
turns out that this NLSM can be written as a hybrid of tw
CP(N) models coupled to each other with the same coup
constant for each complex projective space and the inte
tion terms respect the dual exchange symmetry between
two sectors@see Eq.~1!#. We observe that there exists
manifest dual symmetry between the two sectors, and
Grassmann manifold corresponds to a self-dual case
equal coupling constants. If we start from different coupli
constants for each complex space for the generality,
leads to the target space belonging to the so-called flag m
fold @9# M5SU(N)/SU(N22)3U(1)3U(1). The dy-
namically generated gauge bosons would haveU(1)
3U(1) gauge symmetry. These observations lead to
main motivation for this work, that is, a study of self-duali
in the coupling constant space and subsequent enhance
of gauge symmetry. In order to investigate this issue,
analyze the large-N mass gap equations, and renormalizat
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group ~RG! properties in the coupling constant spaces.
also explicitly compute the large-N effective action. We find
that some of the dynamically generated gauge bosons
quire radiatively induced finite mass terms and gauge no
variant interaction away from the self-dual points, leading
a localU(1)3U(1) symmetry. However, they vanish at th
self-dual points enhancing the gauge symmetry to a n
Abelian U(2) symmetry. The ultraviolet~UV! fixed point
corresponds to a special self-dual point and the theory
fers the non-Abelian phase in the UV limit. Even though t
dynamical generation of non-Abelian gauge bosons for
Grassmann target space has been discussed before@1,10#, the
way in which the enhancement of gauge symmetry at
fixed point occurs through the RG evolution has not be
addressed so far.

Let us consider a Lagrangian which is given by

L05
1

g1
2

u~]m1 iAm!c1u21
1

g2
2

u~]m1 iBm!c2u2

1
1

4 S g1

g2
1

g2

g1
DCm* Cm2 i

1

Ag1g2

Cm* c1
†]mc2

2 i
1

Ag1g2

Cmc2
†]mc1 , ~1!

where c1 and c2 are two orthonormal complexN vectors
such thatc i

†c j5d i j ( i , j 51,2). The above Lagrangian de
scribes two CP(N) models each described byc1 andc2 with
coupling constantsg1 andg2, respectively, coupled throug
derivative coupling. There is a manifest dual symmetry b
tween sectors 1 and 2,Am andBm , andCm andCm* . When
g15g2, the above model corresponds to the nonlinear sig
model with the target space of Grassmann manif
Gr(N,2)5SU(N)/SU(N22)3U(2). Let uswrite the above
Lagrangian in the more conventional form in terms of t
N32 matrix Z:

Z5@c1 ,c2#, ↔ Z†5Fc1
†

c2
†G . ~2!
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We first introduce new sets of coupling constants defined
g[Ag1g2 and r[g2 /g1. Then, we consider

L5
1

g2
tr@~DmZ!†~DmZ!2l~Z†Z2R!#, ~3!

where we collected the orthonormal constraints into a 232
Hermitian matrixl which transforms as an adjoint represe
tation under the localU(2) transformation, and theR matrix
given by

l5F l1 l3

l3* l2
G , R5F r 0

0 r 21G , ~4!

with a real positiver @11#. The covariant derivative is define
as DmZ[]mZ2ZÃm with a 232 anti-Hermitian matrix
gauge potentialÃm[2 iÃm

a Ta associated with the localU(2)

symmetry. Each component ofÃm is assigned as

Ãm52 iF Am
1
2 Cm

1
2 Cm* Bm

G . ~5!

The on-shell equivalence between Lagrangians Eqs.~1! and
~3! will be discussed shortly. The Lagrangian Eq.~3! is in-
variant under the localU(2) transformation for r 51,
whereas theR with rÞ1 explicitly breaks theU(2) gauge
symmetry down to U(1)A3U(1)B , where U(1)A and
U(1)B are generated by (T06T3), respectively. Thus the
symmetry of our model is@SU(N)#global3@U(2)# local for r
51, while @SU(N)#global3@U(1)A3U(1)B# local for rÞ1.
Invoking the hidden local symmetry@12#, we infer that the
theory withrÞ1 corresponds to NLSM on the flag manifo
M5SU(N)/SU(N22)3U(1)3U(1).

In order to carry out the path integration in the largeN
limit, we arrange the Lagrangian~3! in terms of the 2N
32N matrix form

L5
1

g2
@c1

† ,c2
†#~MT

^ I !Fc1

c2
G1

r

g2
l11

1

rg2
l2 , ~6!

where I is an N3N unit matrix andM is a 232 matrix
operator given by

M[G212G~Ã!, ~7!

G21[2h2l5F2h2l1 2l3

2l3* 2h2l2
G , ~8!

G~Ã![2Ãm]̂m1ÃmÃm, ~9!

where the differential operator]̂m[]m2]Qm must be regarded
as not operating on the gauge potentialÃm . One can show
that imposing the on-shell constraintsc1

†c15r , c2
†c2

5r 21, c1
†c25c2

†c150, and in terms of rescaling given b
04500
y

-

c1

g
→ c1

g1
,

c2

g
→ c2

g2
,

Cm

g
→Cm ,

Cm*

g
→Cm* , ~10!

the Lagrangian Eq.~6! reduces Eq.~1!. We note that in Eq.
~6!, we never used the on-shell constraints so that the q
dratic term ofCm* Cm has been absorbed into the matrixM.

Let us focus on the two dimensions from here on. D
tailed analysis in other dimensions will be reported el
where @13#. The large-N effective action is given by path
integratingZ and Z†, or equivalentlyc1 , c1

† , c2, andc2
† .

We obtain

Seff5E
x
L1 iN ln DetM . ~11!

According to the Coleman-Mermin-Wagner theorem, whi
states that there is no spontaneous breaking of any con
ous global symmetry in dimensions two or less, we can
the vacuum expectation values ofc1 and c2 equal to zero
from the beginning in the effective potential such that

Veff52
1

NV
Seff@c1,250,l1,2,35m1,2,3

2 ,Ãm50#, ~12!

whereV denotes the space-time volume. Then we obtain
large-N effective potential as

Veff52
m1

2

Ng2
r 2

m2
2

Ng2
r 212 iV21 ln DetG21, ~13!

from which the gap equations are schematically given
follows:

]Veff

]m3
2

52E d2k

~2p!2

2m3
2

~k21m1
2 !~k21m2

2 !
50, ~14!

]Veff

]m1
2

52
1

Ng2
r 1E d2k

~2p!2

k21m2
2

~k21m1
2 !~k21m2

2 !
50,

~15!

]Veff

]m2
2

52
1

Ng2
r 211E d2k

~2p!2

k21m1
2

~k21m1
2 !~k21m2

2 !
50.

~16!

Here the loop momenta are Euclidean andm6
2 are given in

terms ofm1,2,3
2 by

m1
2 1m2

2 5m1
21m2

2 , m1
2 m2

2 5m1
2m2

22m3
4 . ~17!

Since Eq.~14! simply statesm350, we can choose for ex
amplem1

2 5m1
2 , m2

2 5m2
2 after settingm350 in Eq. ~17!.

Then the gap equations are given by two decoupled set
equations expressed by

05
1

Ng1
2

2
1

4p
ln

L2

m1
2

, ~18!
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05
1

Ng2
2

2
1

4p
ln

L2

m2
2

, ~19!

where L is the cutoff of the theory. The above equatio
yield two mass scales given by

mi
25L2 expF2

4p

Ngi
2G ~ i 51,2!. ~20!

Imposing the cutoff independence of the mass sca
Ldmi /dL50 leads to the Callan-Symanzikb functions

b i~gi !5
dgi

d ln L
52

Ngi
3

4p
, ~21!

which show the asymptotic free behaviors of both couplin
and a UV fixed point at the origin of the coupling consta
space (g1 ,g2). Note that whenm15m2, we haveg15g2 and
the corresponding nonlinear sigma model is defined on
Grassmann manifold.

Let us discuss the dynamical generation of gauge bos
in our model. It has been discussed before that if we s
from the same coupling constantsr 51 in the Lagrangian Eq
~6!, the effective action generates non-Abelian gauge bos
with a local U(2) symmetry@10#, rendering all four gauge
bosonsA,B,C, andC* massless. Our main objective here
to compute the radiatively induced mass terms for the ga
bosons in the generic case whereg1Þg2, hencem1Þm2.
The large-N effective action Eq.~11! is schematically ex-
panded such that

Seff5E
x
L1 iN ln DetG212 iN (

n51

`
1

n
Tr@GG~Ã!#n.

~22!

The boson propagatorG becomes a diagonal 232 matrix
due to the gap equation solutionm350. We neglect the fluc-
tuation fields coming froml1,2,3 aroundm1,2,3

2 . The diagrams
which arise fromn51,2,3,4 can contribute to the Yang-Mill
action. The mass term comes fromn51 and n52. For n
52, we have three diagrams with two, three, and four po
functions. The two point vacuum polarization function pr
vides the gauge bosons with the kinetic terms and the m
term for C, C* fields in the casem1Þm2. The contributions
from bothn51 andn52 are explicitly given by the integra

2 iN
1

2
Tr@GÃm]̂mGÃn]̂n#2 iN Tr@GÃmÃm#

5
N

2 (
i j

E
x
Ãi j

m~x!Pmn
i j ~ i ]x!Ãj i

n ~x!, ~23!

where
04500
s,

s
t

e

ns
rt

ns

e

t

ss

Pmn
i j ~p!52E d2k

i ~2p!2

~2k1p!m~2k1p!n

~k22mi
2!@~k1p!22mj

2#

1E d2k

i ~2p!2

2gmn

k22mi
2

. ~24!

This vacuum polarization can be explicitly computed to yie

Pmn
i j ~p!5S gmn2

pmpn

p2 D PT
i j ~p!1S pmpn

p2 D PL
i j ~p!,

~25!

where the transverse functionPT and the longitudinal one
PL are obtained as

PT
i j ~p![

1

2p F ln
mj

mi
2E

0

1

dx ln
Ki j

mi
2G , ~26!

PL
i j ~p![

~mj
22mi

2!2

4pp2 F 2

mj
22mi

2
ln

mj

mi
2E

0

1

dx
1

Ki j G ,

~27!

with Ki j [xmj
21(12x)mi

22x(12x)p2. Moreover we see
that

PT
i j ~p!5ci j 1p2f T

i j ~p!, PL
i j ~p!5ci j 1p2f L

i j ~p!,
~28!

where the same constantci j arises in the leading terms o
both PT andPL , and is given by

ci j 5
1

2p F12
mj

21mi
2

mj
22mi

2
ln

mj

mi
G . ~29!

We note that, despite its appearance,ci j vanishes formi
5mj . Then the vacuum polarization can be written as

Pmn
i j ~p!5ci j gmn1~p2gmn2pmpn! f T

i j ~p!1pmpn f L
i j ~p!,

~30!

where bothci j and f L
i j vanish wheni 5 j so as to provide the

A ~B! boson with theU(1)A (U(1)B) gauge invariant kinetic
term. On the other hand, they remain nonzero wheniÞ j and
provide theC boson with the mass given by

MC5A2c12

f T
12~0!

5um1
22m2

2uA ~m1
21m2

2!ln~m1 /m2!1m2
22m1

2

~m1
42m2

4!/222m1
2m2

2 ln~m1 /m2!
.

~31!

This is one of the main results of our paper. We note that
above mass does not vanish whenm1Þm2, which in turn
impliesg1Þg2 from the mass gap equations~18! and~19!. It
is also symmetric under the exchange ofm1 andm2. When
5-3
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r 51 (m15m2), both c12 and f L
12 become zero. The thre

point function with one seagull does not contribute to t
Yang-Mills action. The four-point vertex with two seagul
also contributes to the kinetic term of Yang-Mills action wi
other contributions fromn53,4.

Combining the relevant diagrams up ton54, we obtain
the Yang-Mills effective action form15m25m given by
@10#

Leff5
N

48pm2
tr FmnFmn~Ã!, ~32!

whereFmn(Ã)[] [mÃn]1@Ãm ,Ãn# is the gauge field strengt
of Ãm . Whenm1Þm2, the effective action contains interac
tions that are notU(2) gauge invariant. These terms and t
nature of their interactions will be reported elsewhere@13#.
In passing, we observe that the large-N effective action is
renormalizable because the only UV divergence is the
that arises in the gap equation and the other possible
divergences in the vacuum polarization function are forb
den by the gauge symmetry. The renormalization conditi
Eqs.~18! and~19! are enough to realize the UV finite large
N theory. The higher order corrections in 1/N expansion can
be systematically renormalized by using the counter ter
which are provided by the large-N effective action.

We have performed the large-N path integral of a coupled
CP(N) model with dual symmetry and have analyzed t
vacuum structure and renormalization in 111 dimensions.
The large-N gap equation analysis yields two decoupled g
equations whose solution ensures the renormalizability.
also have computed the effective action, and have found
some of the dynamically generated gauge bosons acq
radiatively induced finite mass terms away from the self-d
points, and the gauge symmetry is reduced to its subgr
t-

04500
e
V
-
s
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p
e
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l

up

@14#. We note that the theory favors the conformal fixed po
and the non-Abelian phase in the ultraviolet limit. Also th
classical dual symmetry is not broken by the nonperturba
radiative corrections.

We would like to emphasize that the mass generation oC
gauge bosons is a genuine quantum effect away from
self-dual points. The finite mass term is determined una
biguously and is independent of the gauge invariant regu
ization scheme employed. In our scheme, theC boson mass
arises from a purely finite term ofPT of Eq. ~28!. This
unambiguity is in contrast with some other radiative corre
tions in quantum field theory which are finite but undete
mined @15#.

We could extend our model to describe other types
symmetry reduction patterns and to include supersymme
For example, if we envisage the Grassmann space Gr(N,n1
1n2)5SU(N)/SU(N2n12n2)3U(n11n2) and the flag
manifold M85SU(N)/SU(N2n12n2)3U(n1)3U(n2),
the NLSM describes the reduction ofU(n11n2) gauge sym-
metry intoU(n1)3U(n2). This type of reduction and radia
tive mass generations may provide an alternative approac
the Higgs mechanism in the theories beyond the stand
model or in the effective field theory of QCD in the conte
of the hidden local symmetry@1#.

Finally, we mention possible relevance of our work wi
string theory. We recall that the gauge symmetry enhan
ment@16# and target space duality@17# in string theory have
attracted an extensive study recently. Target space in
large-N limit could be unrealistic as space-time. Neverth
less, our results could provide us with some insight to stu
these subjects for strings moving on curved backgrounds
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