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High spin gauge fields and two-time physics
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All possible interactions of a point particle with background electromagnetic, gravitational and higher-spin
fields are considered in the two-time physics worldline formalismdi2) dimensions. This system has a
counterpart in a recent formulation of two-time physics in noncommutative field theory with lo€al Sp
symmetry. In either the worldline or field theory formulation, a generd2Balgebraic constraint governs the
interactions, and determines the equations that the background fields of any spin must obey. The constraints are
solved in the classical worldline formalisni {0 limit) as well as in the field theory formalistall powers of
#). The solution in both cases coincide for a certain 2T to 1T holographic image which describes a relativistic
particle interacting with background fields of any spin d1,1) dimensions. Two disconnected branches of
solutions exist, which seem to have a correspondence as massless states in string theory, one containing low
spins in the zero Regge slope limit, and the other containing high spins in the infinite Regge slope limit.
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[. INTRODUCTION These (l+2)-dimensional fields will describe the particle
interactions with the Maxwell field, gravitational field, and

Local Sg2) symmetry, and its supersymmetric generali- higher-spin fields, when interpreteddrdimensions as a par-
zation, is the principle behind two-tim@T) physics[1-9].  ticular 2T to 1T holographial-dimensional picture of the
For a spinless particle, in the worldline formalism with local higher d+2)-dimensional theory. Furthermore, as is the
Sp(2) symmetry, the action is usual case in 2T physics, there are a large number of 2T to

1T holographic d-dimensional pictures of the same
. (d+2)-dimensional system. For any fixed background the
S= f da.XMPy—ATQ;(X,P)], (1) resultingd-dimensional dynamical systems are interpreted as
a unified family of 1T dynamical systems that are related to
each other by duality type & transformations. This latter
property is one of the novel unification features offered by
2T physics.

In previous investigations the general solution up to maxi-
mum spins=2 was determine@4]. The most general solu-
tion with higher-spin fields for arbitrary spwis given here.
SuchQj;(X,P) are then the generators of local(3)p with
{Qij . Qui =2k Qi +&iQj T & Qi t€iQk- (2 transformations of the coordinatex{,P,,) given by

Qi 90
M_ _ il () 200 M_ il ()i
o, XM=—al(n) 25t o, PN =St @)

where Al (7)=Al(7) with i,j=1,2, is the Sf2) gauge po-
tential. This action is local @) invariant(see Ref[4] and
below) provided the thre®;;(X,P) are any general phase
space functions that satisfy the (@palgebra under the Pois-
son brackets

The antisymmetrie;; = —&j; is the invariant metric of S@)
that is used to raise or lower indices.

The goal of this paper is to determine all possiQlg as
functions of phase spac¥™, PM that satisfy this algebra. where thew'!(7)=w!'(7) are the local S{2) gauge param-
The solution will be given in the form of a power series in eters[4]. When the S(2) gauge fieldA" (7) transforms as
m’\gl)rp/lentaéI which identify the background fielég,(X) and  usual in the adjoint representation
Z:12 (X))

. %) 5 ,AT=0_0' +[w,A]Y, (5)

the action(1) is gauge invarian$,S=0, provided the back-
ground fields Zi'\J."lMZ"'MS(X) and Ay (X) are such that
Qjj(X,P) satisfy the SfP) algebra above. Thus, through the
requirement of local SR), the background fields are re-
stricted by certain differential equations that will be derived
and solved in this paper. As we will see, the solution permits
*Email address: bars@physics.usc.edu certain unrestricted functions that are interpreted as back-
"Email address: cemsinan@gursey.gov.tr ground fields of any spin itwo lower dimensions

Qi(X.P)= 2 Zi# OO [Py, + Aw, (X))

X[Pm, A, (X)]- - [Py tAu(X)]. (3
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An important aspect for the physical interpretation is thatthe same fiel@;; (X,P) emerges as the local & covariant
the equations of motion for the gauge fiedd (7) restricts left-derivative including the gauge field. The field strength is
the system to phase space configurations that obey the clagiven by
sical on-shell condition

Gij k=[Qij ,Qul« — % (& Qi1 + & Qji + &ji Qi + €11 Qj),
Qij(X,P)=0. (6) )

. . . . . . Where the star commutatdQ;; ,Qy]. = Qj; * Qi — Qi * Q;;
The meaning of this equation is that physical configurationss constructed using the Moyal star product
are gauge invariant and correspond to singlets of25p

These equations have an enormous amount of information i
and provide a unification of a large number of one-time Qij*lezeXF{_nMN
physics systems in the form of a single higher-dimensional 2
theory. One-time dynamical systems appear then as holo-

g g 9
aXM gPN  9pM gXN

graphic images of the unifying bulk system that exists in one X Qij(X,P)Qu(X,P)x=% p=5- ©)
extra timelike and one extra spacelike dimensions. We will _ . o
refer to this property as 2T to 1T holography. Although there are general field configurations in NCFT that

This ho|ography comes about because there are nontrivialldude nonlinear field interactior[§], we will concentrate
solutions to Eq(6) only if the spacetime includes two time- 0N & special solution of the NCFT equations of motion. The
like dimensions with signatured(2). By Si2) gauge fixing, SPecial solution is obtained whe; =0 [i.e., Q;; satisfies
two dimensions are eliminated, addlimensions are embed- the Sg2) algebra under star commutathrand Q;; annihi-
ded insided+ 2 dimensions in ways that are distinguishablelates a wave functio®(X,P) that is interpreted as a singlet
from the point of view of the remaining timelike dimension. of Sp(2)

This provides the holographic images that are interpreted as

distinguishable one-time dynamics. Thus one obtains a mul- i _

titude of nontrivial solutions with different physical interpre- i7 L Qi Quale =2 Qi+ &aQji + 21 it &i Qi (10
tations from the point of view of one time physics. Hence,

for each set of fixed background fields that obey the local Q;*®=0. (12)

Sp(2) conditions, the 2T physics action above unifies various

one-time physical system§.e., their actions, equations of These field equations are equivalent to the first quantization
motion, etc) into a single 2T physics system. _ of the worldline theory in a quantum phase space formalism
Tq find all possible actions, one must first find all possmle(as opposed to the more traditional pure position space or
solutions ofQ;; (X,P) that satisfy the off-shell Sg) algebra pure momentum space formalism
before imposing the singlet condition. Compared to the Poisson brackets that appear in(Hg.
The simplest example is given 9] the star commutator is an infinite series in powergiofit
reduces to the Poisson brackets in the classical kmitO:
Q11=X-X, Qp=X-P, Qxp=P-P. (7
1
This form satisfies the $p) algebra for any number of di- 77 [ Qi Quale—1Qij . Quat- (12)
mensionsXM,PM, M=1,2, ... D, and any signature for the
flat metric #nyN used in the dot productsX-P Therefore, any solution foQ;;(X,P) of the form (3) that
=XMPNyun, etc. However, the on-shell conditid) has  satisfies the Poisson bracket(Spalgebra(2) is normally
nontrivial solutions only and only if the metrigyy has expected to be only an approximate semiclassical solution of
signature ¢,2) with two timelike dimensions: if the signa- the NCFT equation$10),(11) that involve the star product
ture were Euclidean the solutions would be trividf = PM (9). However, we find a much better than expected solution:
=0; if there would be only one timelike dimension, then by choosing certain gauges of the(3pgauge symmetry in
there would be no angular momentu{N=0 sincex™,pPM the NCFT approach, we learn that the classical solution of
would both be lightlike and parallel to each other; and ifthe Poisson bracket algebra in Eg) is also an exact solu-
there were more than two timelike dimensions the solutionsgion of the star commutator algeb(0) to all orders off.
would have ghosts that could not be removed by the avail- We will see that the solution has two disconnected
able Sp2) gauge symmetry. Hence two timelike dimensionsbranches of background fields. The first branch has only low
is the only nontrivial physical case allowed by the(3p spins s<2 including the gravitational field. The second
singlet condition(i.e., gauge invariange branch has only high spins=2 starting with the gravita-
The general classical worldline problem that we will solvetional field. These appear to have a correspondence to the
in this paper has a counterpart in noncommutative fieldnassless states in string theory at extreme limits of the string
theory (NCFT) with local Sg2) symmetry as formulated re- tension T~1/a’'—0.0. Indeed when the Regge slop€
cently in Ref.[9]. The solution that we give here provides goes to zero by fixing the graviton state only the low spin
also a solution to the noncommutatidC) field equations s<2 massless states survive, and when the Regge albpe
of motions that arise in that context. We note that in NCFTgoes to infinity there are an infinite number of high spin
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massless states. The high spin fields that we find here corre- 1
spond to those massless states obtained from the graviton =Atie At opie e Al
trajectorys=2. '
The paper is organized as follows. In Sec. Il we discuss an 1
infinite dimensional canonical transformation symmetry of +§{8v{8v{8:A}}}+ T (15

the equations. In Sec. lll, we use the symmetry to simplify
the content of the b_ackground fieIds that appear in the exg, any s(X,P). If the i—0 is not applied, every Poisson
pansion(3), and we impose the Poisson bracket algella 1 rackets on the right-hand side is replaced by the star com-

to determine the field equations that must be satisfied by thg,ator. It is straightforward to see that the Poisson brackets
remaining background fields. In Sec. IV, we discuss two speys two such functions transform as

cial coordinate systems to solve the field equations. Then we
impose the gauge invariance conditiQg =0, and interpret %=
the holographic image as a relativistic particledrdimen- {A.B}—{AB}

sions x*, moving in the background of fields of various ={(lime "*"xAxe'*") (lime '*/"xBxe'®/")}
spins, including a scalar field(x), gauge fieldA ,(x), gravi- h—0 £—0
tational fieldg#”(x), and higher-spin fieldg#1#2 " #s(x) for (16)

any spins. We also derive the gauge transformation rules of
the higher-spin fields i dimensions, and learn that there
are two disconnected branches. In Sec. V we show that the
classical solution is also an exact quantum solution of the
star product system that emerges in NCFT with local2Bp |, particular, the phase space variabk¥,P,, transform
symmetry. In Sec. VI, we conclude with some remarks.

Our 2T approach to higher-spin fields makes connections
to other methods in the literature. One connection OCCUrS iINagom _ « ic/ti . WM . ieli = 1 —islh islh
special Sf2) gauge(Sec. I\) which links to Dirac’s formu- X _f!IToe FXTwe ™ PM_JL'TOG *Puxe™,
lation of S0O@d,2) conformal symmetry by using (18)
(d+2)-dimensional fields to represedtdimensional fields
[10]. In our paper this method is extended to all high spinang one can easily verify that the canonical Poisson brackets
fields as a particular 2T to 1T holographic picture. Theremain invariant
d-dimensional system of this holographic picture has an
overlap with a description of higher-spin fields given in Ref. M M B 1 M
[11], which is probably related to the approach of Vasiliev (X Prd =X, P = 0 (19
et al. (see Ref[12], and references thergirlt was shown in
Ref.[11] that our special 1T holographic picture, when trans-
lated to the second order formalig@as opposed to the phase
space formalismy is a completion of the de Wit—Freedman
action[13] for a spinless relativistic particle interacting with
higher-spin background fields.

=lime "*"x{A,Blxe'*", (17)
h—0

So, the transformation we have defined is the most general
canonical transformation. In particular, for infinitesimal
one has

S XM=—9eloPy, 6.Py=deldXM, (20)

which is again recognized as a general canonical transforma-
Il INFINITE DIMENSIONAL SYMMETRY tion with generatoge (X,P). The generatoe(X,P) contains
an infinite number of parameters, so this set of transforma-
Although our initial problem is basically at the classical tions form an infinite-dimensional group. There is a resem-

level, we will adopt the idea of the associative star productplance between Eq20) and the expressions in EG} but
in thezz— 0 limit, as a convenient formalism. In this way our note that those include generaldependence im' (7) and
discussion will be naturally extended in Sec. V to the case ofherefore are quite different.
NCFT which will be valid for anyi. The Poisson bracket is Under general canonical transformatidd$) the particle
written in terms of the star produ€®) as a limit of the form  action(1) transforms as

{A,B}=Iim.i(A*B—B*A)= oA B B A . SQij(X’P)_)SQii(X’P):J’dT[aTXMPM_A”Q”(X’P)]'
iolft XM Py oxXM 9Py (22)
13
The first term is invarianf d (3, XMPy) = fd7(3,XMPy,).
Consider the following transformation of any function of This is easily verified for infinitesimale(X,P) since
phase spacé&(X,P): 5.(9,XMPy,) is a total derivative

A(X,P)—A(X,P)=lime™'*/x Axe'e/" (14 8.0 XMPy) =a.] e~ P20
50 e\Ur M T P/
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However, the full action(1) is not invariant. Instead, it is There is enough symmetry to m&y(X) to any desired non-
mapped to a new action with a new set of background fieldgero function ofXM that would permit the reconstruction

Qij(x,p) given by (26) of the genera,,(X,P), but we postpone this freedom
o _ _ until a later stagésee next sectigrin order to first exhibit a
Qij(X,P)=Q;j(X,P)=lime '*"xQ;;(X,P)xe'*/", more general setting.
h—0 22 After fixing Q1,=W(X), there is a remaining subgroup of

transformationse(X,P) for which the Poisson bracket
~ ~ g {e,W} vanishes, and hen&¥(X) is invariant under it. Using
SQ”-(X'P)_’SQ”(X’ P):SQ”(X'P) the form of Eq.(24) we see that the subgroup corresponds to
those transformations that satisfy the condition
=J dr o XMPy—AIQ;(X,P)]. (23
MW M.
e 1vi2
After taking into account Eq(17) we learn that the new gXM1 7 s=1
Qij(X,P) also satisfies the $p) algebra(2) if the old one . o
Qij(X,P) did. Thus, the new actioS@ij(X,P) is again in-  This subgroup can be u;ed to further s!mpllfy the problem.
variant under the local $p) symmetry(4),(5) using the new 10 S€€ how, let us consider the expansions
generator@ij , and is therefore in the class of actions we are

Ms(X)=0, anyeq(X). 27

seeking. Qui(X,P)=W(X), (29)
Thus, if we find a given solution for the background fields "
zi M2 Ms(X) and Ay (X) in Eq. (3) such thatQ;;(X,P) DX P)=S YMiMaMyp A
satisfy the Sf®) algebra(2), we can find an infinite number =0 ° 1 1
of new squtionsNZi“j"lMZ”'MS(X) andAy,(X) by applying to Py +An)- - (Pyy + A ). (29
2 2 s s

Q;j(X,P) the infinite-dimensional canonical transformation

(22) for any function of phase spae€X,P). We may write w0

this function in a series form similar to E¢B) to display its DX, P) = GMiM2Msp LA
infinite number of local parametez@Mle”'Ms(X) S SZO s My " My

o X(PM2+AM2)"'(PMS+AMS), (30)
s(X,P)= 2 &g ™M M) (Py +Ay,)
=0 ° 1 1 M{My: Mg MiMy: Mg
whereG, (X) andV (X) are fully symmet
X (Py,+ Ay, (Py_+Ay). (24)  ric local tensors of rank. "
We can completely determine the coefficiex{st 2"
n terms ofW anng"le‘ Ms by imposing one of the @)

'MS

Although this set of transformations is not a symmetry of the;
worldline action for a fixed set of background fields, it is . ~ o~ ~
evidently a symmetry in the space of actions for all possibleeONditions{Q1y, Q22 =4Q1,

background fields, by allowing those fields to transform. It is

also an automorphism symmetry of the(Spalgebra(2), YMoMa: Mg _ fﬂGMlest
and of the on-shell singlet conditigB) which identifies the s—1 4 gxMy s
physical sector. Furthermore, in the NCFT setting of IR&f.

this is, in fact, the local 3@) symmetry withs(X,P) play- ~ Fyrthermore, by imposing another (8p condition
ing the role of the local gauge parameter in NC gauge fielc%?2 o) 2}=2(~2 we find

theory. We will use this information to simplify our task of '<11'~! 1
finding the general solution.

(31)

MWty W Mg
I1l. IMPOSING THE POISSON BRACKET ALGEBRA IXM1 !

Ve =0. (32

By taking into account the infinite dimensional symmetry Now, for suchV_f'le' M by using the remaining subgroup

of the previous section, we can always map a general 5 ‘ ¢ : hich all
Q44(X,P) to a function of onlyx™ symmetry (27) we can transform to a frame in which al

Vz"lMZ"'MS for s=2 vanish. By comparing the expressions
Qui= lime "* % Q; (X, P)xe"*/" = W(X). (25 (27),(32) and counting parameters we see that this must be
h—0 possible. To see it in more detail, we derive the infinitesimal

L transformation law f0|G':'1'\"2"""'S andA,, from
Conversely, giverQ,,=W(X) we may reconstruct the gen-

eral Q;;(X,P) by using the inverse transformation s
. _ 8Q2,=(0Q2/ IA) SA+ 2, (9Q/0Gs) 5G=1{e,Q
Quu(X,P) = lim e/ " xW(X)x e~ /", (26) 2T > (Qz2/0G5)0Gs={e Qzd

h—0 (33
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by expanding both sides in powers & A) and comparing
coefficients. We write the result in symbolic notation by sup-

pressing the indices

SAM= dmeo— Lo Au (34
5GO=_81'(7Go, (35)
8G1=—L, G~ (g2 9Go+£,FGy), (36)

0Gg= o= _Esles_(‘gZ' 0Gs 1= Gs 1 deyt+&,FGy)
e _(85' 861—(31- &85"' SSFGz)

—(s+1-9Go+£541FGy). (37

In 6Gs-, the ellipses
(Sk'&Gs—k-%—l_GS—k-%—l‘a8k+8kFGS—k+2) for all 2<k<s.
Here F\,\ is the gauge field strength

Fun(X) = dmAN(X) — dnAW(X), (39

L, Gs is the Lie derivative of the tensc(Ei"l'\"Z""\"S with
respect to the vectar)’

M Mo-- -Ma__ MiMy---Mg M) ~KMjy:--Mg
(ﬁsle) %2 5—81-&Gs 07K81 Gs

_..._ﬁngﬂsGQAle"'K_ (39

In the other termsg- dG, (similarly G- de)) is the tensor

11
g IG|= ki Ml(MZ"'Mk)(;M Gl(Mk+l""Mk+|),
1

(K+1—1)1 ok
(40)

where all unsummed upper indicekH|—1 of them are
symmetrized, and@ FG, is the tensor

ke,

ek G = o) %

1M+ My~ My g )My
G, Py

(41)

where all unsummed upper indicek+1—2 of them) are
symmetrized. Finallye, which appears inSA is defined by
EO= goteq-A.

From 8Ay, it is evident thate(X) is a Yang-Mills type
gauge parameter, and fromelGS it is clear thats'f'(X) is

represent terms of the form

PHYSICAL REVIEW 34 045004

NVs=p=— L, Vs—(&2: V51— Vs 1-de+&,FVy)
— e _(83' <9V1—V1~ 583“1‘ SSFVZ)

—(es+1-dVotesi1FVy). (44)
The form of 8V is similar to the form of6G, as might be
expected, since it can also be obtained fro6Q,
={&,Qq2}, but we have derived it by taking into account the
restriction(31) and the subgroup conditiai27).

For V, of the form(32) the subgroup parameters are suf-
ficient to transform to a frame whe¥é.-.,=0. Therefore, we
may always start from a frame of the form

Qui(X,P)=W(X); Vi dW=2W, (45)

~ 1

QuaAX,P)=Vo+ VY (Py+Aw); Vo=7 WG,
M 1 MN

Vl :EaNWGZ f (46)

ézz(x,P):SEO GQAIMZ'”MS(PMl_'—AMl)
X(Pw,tAw,) - (Pu+Aw) (47)

and transform to the most general solution via

Qij(X,P)=lime'*"xQ;;(X,P)xe ¢/ (48)

h—0

In Q,, the termG'f' may be set equal to zero by shifting
Au—Ayu—3(G)unGl+ - - -, and then redefining all other
background fields. Here we have assumed that the tensor
GYN has an inverseG,) yy; in fact, as we will see soon, it
will have the meaning of a metric. Therefore, we will assume
Gi"=0 without any loss of generality. In that case we see
from Eq. (46) that we must also havé,=0.

It suffices to impose the remaining relations of thé23p
algebra in this frame. By comparing the coefficients of every
power of (P+A) in the condition{Q;,,Q,,} =20Q,, we de-
rive the following equations:

VY'Fun=0, Ly Gs=—2Gs, (49

the parameter of general coordinate transformations in posi-
tion space. The remaining parametegs,(X) are gauge pa- whereﬁ\,lGS is the Lie derivative with respect to the vector
rameters for high spin fieldgote that the derivative of the i

&5 appear in thg traﬁsformaét‘i]on ruje§rom the transforma- Vi [see Eq(39]. These, together with
tion laws for 6A, 5G4 we find the transformation law for
5V'SV'1M2' ~Ms by contracting both sides of the equation above

with 9 W(X). After using the subgroup conditiof27) and
the definition(31) we find

1
vg"zzaNWGg"N, Vi-dW=2W, V=0,

G]_:O, &W'GS>3:O, (50)

Vo= _'Calvo’ (“42) that we used before, provide the complete set of equations
B that must be satisfied to have a closure of th&5algebra.
oV = _Eslvl_ (e2-0Vo+esFVa) (43 These background fields, together with the background fields
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provided by the general(X,P) through Eq(48), generalize Therefore Ay (X) is any homogeneous vector of degree

the results of Ref[4], where onlyA,,, G, and GQ"N had (—1) and it is orthogonal tX,,. There still is remaining

been included. gauge symmetrnpAy = dueq providedey(X) is a homoge-
There still is remaining canonical symmetry that keeps theneous function of degree zero

form of the abovefgij unchanged. This is given by the sub-

group of symmetries associated with(X),eM(X) which X-deq=0. (55)

have the meaning of local parameters for Yang-Mills and

general coordinate transformations, and also the higher-spin Similarly, the higher-spin fields in Eq$49),(50) satisfy

symmetries that satisfy

(X-9—s+2)G 12 Ms=0, X, GIH"> Me=0,

s=3

(9W'85>1:O, Evlss>1=0, (960'8220. (51) (56)

The conglltlons in Eq(51) are obtained afte_r setting, These equations are easily solved by homogeneous tensors
Vg=» and6G,= 6V.-,=0, as well as using Eq27).
I of degrees— 2 that are orthogonal tX.
t is possible to go further in using the remainiag(X)

transformations, but this will not be necessary since the TheQj now take the SQf,2) covariant form

physical content of the worldline system will be more trans-

parent b_y using the background f_ielG@ and Ay identifie_d_ 0,,=X?, Op,=X-P, (57)

up to this stage. However, we will return to the remaining

symmetry at a later stage to clarify its action on the fields,

and thus discover that there are two disconnected branche@ Gt E GMl

22= 6o

s(P+A)Ml-~-(P+A)MS. (58
IV. CHOOSING COORDINATES AND W(X)
Thus,Qq; andQ,, are reduced to the form of the simplest 2T

phyS|cs systent7), while Q,, contains the nontrivial back-
ground fields. The remaining symmetry of E§1) is given

As mentioned in the beginning of the previous section the
original £(X,P) transformations permits a choice for the
function W(X), while the survivingsg"(X) which is equiva-
lent to general coordinate transformations further permits a

choice for the vecto)c/'\’I X), as long as it is consistent with
‘Mg

M M
the differential condmons given above. Given this freedomdGo-€2=0; (X-d—s)e S>10 207=0, Xy,et 1 2 Te=00,
we will explore two choices foW(X) and V}'(X) in this (59
section.

where all dot products involve the metrig,y of SOd,2).
A. SO(d,2) covariant W(X)=X? Hence the frame is S@(2) covariant, and this will be re-
flected in any of the gauge fixed versions of the theory. As
We chooseN(X) andVQ"(X) as follows: before,e4(X) is the (homogeneoysYang-Mills-type gauge
— w2 _ yMyN My — yM parameter and the,- ; play the role of gauge parameters for
WOO=XE=XEXTwn, - V10 =X, (52 higher-spin fields as in Eq37).

To solve the constraint®;;=0 we can choose various
Sp(2) gauges that produce the 2T to 1T holographic reduc-
tion. This identifies some combination of th& (7) with the
7 parameter, thus reducing the 2T physics description to the
1T physics description. Depending on the choice made, the
1T dynamics of the resulting holographic picturedidimen-
sions appears different from the point of view of one-time.
This produces various holographic pictures in an analogous
way to the free case discussed previously in R&f. We
Gy"=7"N+hyN(X), X-ohz™=0, hy"Xy=0. pla)r: to discuss several examplespof holog};aphic pictures in

53 the presence of background fields in a future publication.

where nyn is the metric for SO4,2). These coincide with
part of the simplest S@) system(7). We cannot choose any
other signaturenyy since we already know that the con-
straintsQ;;(X,P) =0 have solutions only when the signature
includes two timelike dimensions.

Using Egs.(49) and (50), the metricGYN(X) takes the
form

GYN is an invertible metric. The fluctuatiomy N(X) is any _
homogeneous function of degree zero and it is orthogonal to B. Lightcone type W(X)=—2xkw
XN - There are coordinate choices that provide a shortcut to
Using theeo(X) gauge degree of freedom we work in the some of the holographic pictures, although they do not illus-
axial gaugexX-A=0, then the conditioiXMF =0 reduces trate the magical unification of various 1T dynamics into a
to single 2T dynamics as clearly as the SI(X) formalism of
the previous section. Nevertheless, since such coordinate
(X-9+1)Ay=0, X-A=0. (54) systems can be useful, we analyze one that is closely related
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to the relativistic particle dynamics id dimensions. Fol-
lowing Ref. [4] we consider a coordinate systeix™
=(x,w,x*) and use the symmetries to choos)é';"
=(x,w,0) andW= —2wk. Then, as in Refl4] the solution
for the gauge field, the spin-2 gravity fiel@'" and the
scalar fieldG, are

A W B| — W A ! B(W A, =A W )
K ; ] W_Z ;lx ] /J,_ i ;1)( y
(60)
“ 1 - 1W”
(=D Y -
W 14
GYN= -r  —=(y-1 _FW , (62)
1 w g’
Zwe —\WH z
K K2 K2
Go= ! W 62
0 FU X, (62

where the functionsA,(W/k,x), B(W/k,X), y(X,w/k),
WH(x,w/ k), g*"(x,w/ k), u(x,w/k) are arbitrary functions
of only x* and the ration/ k.

PHYSICAL REVIEW [®4 045004

Mp_1&Mpiq---Mg

S
M M M Mq---
(KdTWd,)Gg 75— n§:1 5, "Gt

n—1WMpiq-

s
M ~My--- M
_nzl 5wnGsl ZG 1

(66)

Specializing the indices for independent components and
also using the relatior(64) between the components of
MMz Ms e get the solution for all components of

Vit M
GlZ s as

s=3

Ms—n—m

GK KWW P 2( W)ngs(s ™

(67)

where g #k(x,wl/ k), wherek=1, ... s, are arbitrary
functions and independent of each other.

For this solution, the generators of SER2,in Eqgs.(45)—
(47) become

K12

Q1= —2kW, (68)
Q12= KP+ WPy, (69
~ 1 wB) 2 wB\2] H+H’
Qo= = | kP 5| T WPt o) |+ 2
(70)

We now extend this analysis to the higher-spin fields. TheyhereH,H’, which contain the background fields, are de-

equation
Goty 2 Mo oy W=0 (63
becomes
wGL Mem1ko — gL M, (64)
This shows that not all the components(’éof1 2Ms are
independent. The condition
Ly,Gs=—2G; (65)

becomes

We call the coordinate system in this section “lightcone type”
because, in the $p) gaugex=1, it can be related to a lightcone

type Sp@2) gauge Q(*’—l) in the SO@,2) covariant formalism of

the previous section. Once the gauge is fixed from either point of
view, the 1T holographic picture describes the massless relativistiSP(2R) ConSt"athu
particle (see, e.g., Ref[1]) including its interactions with back-

ground fields.

fined by

H :u+gMV(pM+A#)(pV+AV)+§3 g/s.tj;/.ts

x(pM1+AM1)---(p#S+A#S), (71
© s-1 _
wB\ S k
H’:s§=:2 k=0 9. Mk( P WP T)
XDyt Au) (P +AL). (72)

H contains only the hlghest spin componegjj #21 Hs that
emerge fromstg’|2 Ms Here we have defined the metric
g“’=g45 as in Eq.(61). All the remaining lower spin com-
ponentsg, /" with k<s—1 are included irH'. In the
s=2 term of H" we have definedy, =y«/w and g5,
=W* in comparison to Eq61). It can be easily verified that
hese@ij obey the Sp(R) algebra for any background fields
U, 9, A,, Bandgl}"? " (k=0, ... s) that arearbi-
trary functions of(x*, W/K)

We next can choose some SRR,gauges to solve the

0 and reduce to a one-time theory
containing the higher-spin fields. As in the low spin-1 and
spin-2 cases of Ref4], we choose<(7)=1 andp,(7)=0,
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and solveQ,;,=Q,,=0 in the formw(7)=p,(7)=0. We low) have some overlap with those discussed in REf]. It

also use the canonical freedasg to work in a gauge that Was shown in Ref[11] that the first order actioi74) im-
insureswB/ k— 0, asw/ k—0. Then thed,, simplify to proves and completes the second order action discussed in
1 . ij

Ref.[13]. Also, the incomplete local invariance discussed in
Ref. [13] is now completed by the inclusion of the higher
powers of velocity which were unknown in R¢1.3]. In the
second order formalism one verifies once more that the ac-
tion describes a particle moving in the background of arbi-
trary electromagnetic, gravitational and higher-spin fields in
the remainingd dimensional spacetime.

Q11=Q12=0, Qp=H. (73

At this point, the two-time @+ 2)-dimensional theory de-
scribed by the original actiorfl) reduces to a one-time
theory ind dimensions

1
S= f dT( I Xtp,— EAZZH ) (74 C. Surviving canonical symmetry ind dimensions

Let us now analyze the form of trledimensional canoni-
This is a particular 2T to 1T holographic picture of the cal symmetry inherited from ourdt+2) dimensional ap-
higher-dimensional theory obtained in a specific gaugeproach. Recall that the infinite dimensional canonical sym-
There remains unfixed one gauge subgroup of $)(2, metry £(X,P) is not a symmetry of the action, it is only a
which corresponds tar reparametrization, and the corre- symmetry if the fields are permitted to transform in the space
sponding Hamiltonian constraint 18~0. There is also re- of all possible worldline actions. What we wish to determine
maining canonical freedom which we will discuss below. here is: what is the subset dfdimensional actions that are
Here, in addition to the usual background fielgs,(x),  related to each other by the surviving canonical symmetry in
A, (x), u(x), the Hamiltonian includes the higher-spin fields the remainingd dimensions. As we will see, there are dis-
g;‘é"z'”"s that now are functions of only the dimensional connected branches, one for low spin backgrounds and one
coordinates<”, sincew/x=0. Similar toy and W* in the  for high spin backgrounds. These branches may correspond
gravity case, the nonleading/sf-’lkﬂz"#k for k<s decuple to independent theories, or to different phases or limits of the

from the dynamics that govern the time development ofame theory. I_nterestlngly, §tr|ng theory seems to Qﬁerapos-
x#(7) in this SH2) gauge. S|b|I|§y c.)f_maklng. a cqnnecuon to these branch_es in the zero
A’similar conclusion is obtained if we use the SCH) and infinite tension limits. Furthermore, we will show that

covariant formalism of the previous section when we chooséhe. nor_lcommuta_ltwe f'e.ld theory c_onstructe_,-d in R,
which includes interactions, contains precisely the same

the Sp(2) gaugexX*'=1,andP*'=—P_,=0. The algebra pranches in the free limit,
for arriving at the final conclusiori74) is simpler in the As shown at the end of Sec. IIl, a subgroup of the higher-

coordinate frame of the present sectfoand this was the spin symmetries that keeps the form@f unchanged satisfy
reason for introducing the “lightcone typeW= —2xw.

However, from the SQf,2) covariant formalism we learn IW-e521=0, Ly es=1=0, 9Gy-&,=0. (75
that there is a hidden S@(2) in the d-dimensional action
Eq. (74). This can be explored by examining the $&) e will solve these equations explicitly and identify the un-
transformations produced by}'=wMNXy, obeying Eq. constrained remaining symmetry parameters. We will discuss
(59), on all the fields through the Lie derivativéAy, the case folW= —2xkw andVQ"=(;<,w,0) of the previous
=L Aw, 6Gs=—L, Gs, but this will not be further pur-  subsection. The first equation becomes
sued here. Mo Mo M ow

In the present S@) gauge we find a link to Ref.11] we l S = ke LT (76)
where the actior{74) was discussed. The symmetries inher-
ited from our @-2)-dimensional approacfdiscussed be- and the second equation becomes

s
Mjp---Mg Mp Mg -Mp_1&Mpig---Mg
(Kkd tWdy)e —El 6. "e
n:

The (x,w,x*) coordinate system can be related to the one in the
previous section by a change of variables as follows. Starting from s
the previous section define a light cone type ba)s*rs’=(xo' . My MMy qWMpyq--Mg_

, e o DI =0. (77
+=X1)/y2, and then make the change of variab¥s =, X* n=1 -
=Kkx#, X~ =w+ kx2/2. Then W=X-X=—2X""X""+X#X = o o _
—2kw. The momentdwith lower indice$ are transformed as fol- Specializing the indices for independent components and
lows: P.,=p,+pyx32—x-p/x, P_.=p,, and P,=p,/« also using Eq(76) we get the solution for all components of
—PuX,. One can varify thatX-P=X"'P, +X " 'P_,+X P, the higher-spin symmetry parameters, that obey the subgroup

= Kkp,+Wpy,+X-p. In this coordinate basiX-P= xp,+wp, and conditions, as

the dimension operatof- ¢ takes the fornX- 9= kd,+wd,, . This m u

shows that all the results obtained with the lightcone tyge e W e = (— 1)"me"8§‘é;:f;i—mn)—rtl,
—2xw can also be recovered from the covaria(X)=X2, and ’

vice versa. (78
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Wheress”lk"'”k(x,w/x), with k=0,1, . .. s, are arbitrary pa- theory with such local symmetry could exist, one could re-

rameters and independent of each other. Therefore the forfOVe the gravitational field completely. In fact the same re-
of £(X,P) that satisfies all the conditions for the remaining Mark applies to algs. If these could be true gauge symme-

symmetry takes the form tries, all World_lir_le theories would be canonically
transformed to trivial backgrounds. However, there are no
© S w o \Sk known field theories that realize this local symmetry, and
€remaid X, P) = Z E sglk' ' '”k( KP.—WpPy— ;B therefore it does not make sense t_o interpret t.hem as symme-
s=0 k=0 tries in the larger space ekdimensional worldline theories.
X (Pt Au) (P + AL (79 This was of concern in Refl11]. Fortunately there is a le-

gitimate resolution by realizing that there are two branches
o e . of worldline theories, one for low spins&?2) and one for

M Mg — X i ’ X

This identifiese ) "(x,w/x), with k=0,1, ... s, as the high spin 6=2), that form consistent sets under the trans-
unconstrained remaining canonical transformation paramymations as follows.

eters. _ ) The first branch is associated with familiar field theories
For notational purposes we are going to use the symbol for the low spin sector including1,A,,g,,. The corre-

for e}, """ from now on. We will also indicate the highest- sponding set of worldline actionS(u,A,gs), in which all

spin fieldsg%“?"""#s in d dimensions as simplgs. The  background fieldsys-; vanish, are transformed into each

third condition in Eq.(51) gives some extra constraint on Other under gauge transformationg(x), dilatationsz? and

YN which will not be needed here, so we are going togeneral coordinate transformatioes. Since ge-3=0, all

ignore that condition in the rest of this discussion. £s=2 Must be set to zero, and then the low spin parameters
Let us now consider the gaugg7)=1 andp,(7)=0, g0,8%,e1 form a closed group of local transformations real-

B=0, and the physical sector that satisfi@s=Q,=0 [or ized on onIyu,AM,gM, as seen from the transformation
w(7)=p,(7)=0] as described by the-dimensional holo- aws given above. This defines a branch of worldline theories

graphic picture whose action is Ef4). We discuss the role for Iovv_ spins that are qonnecte_d to each other by the low ;_pin
of the remaining canonical symmetry in this gauge. Thetanonical transformations. This is the usual set of familiar
transformation laws for the relevant high-spin fields, ~ Symmetries and actions.

computed from Eq(33) through {&,emam Ozsl, COMe only A second .branch of wprldline f[hec.)ries gxists when the
from the termsk=(s—1).s in Eq reg%;’ siznc'e we setw  Packground fieldsi, A, vanish. In this high spin branch only
—p.=p =0 andx=1 aft’er erfor.min the differentiation Os=» occurs and therefore, according to the transformations
: Pw p". « b g given above they form a basis for a representation including
in the Poisson brackdi emain Q22 Equivalently, one may only the lower rank gauge parameteo:ﬁ’l and 8{2 (k
obtain the transformation laws in this gauge by specializing_ 1,... s—1). Then the transformation rule for the higher-

the indices in Eq(37). The result is spin fields ind dimensions becomes

s—1 s—1
89s= (28395~ Es;gs)+n§2 (26 “Gs—n+1—&n Is—n+1 5gs>2:n§l (26" 0 nr1— " 00s_ns1t Os pr1- deN)
+0s-n+1-98n—enF0s ni2) —eF 02 82
+2(s+1)es, u—es L qu. (80) = (26305 L£,195) + (283951~ 85 9951
Each higher-spin fieldy is transformed by lower-rank trans- +0s-1-083) - +(283- 102~ 63°1- 99,
formation p<';1r<';1meter5z;5+_1l ande; (n=1,...s—-1), and +gp-0s37Y). 83)

also byeg, €2,, andel;7. In passing we note that these

transformations inherited frord+2 dimensions are some- We note that the very last term contaigés” , which is thed

what different than those considered in REf1] although  dimensional metric that can be used to raise indices
there is some overlap.

If we specialize tos=2, we get gz He= . +(2g(2f‘1#28/s*3‘1']s'f§)_ngfi’ss'_“l#s)gﬂg(zﬂlﬂz)
895" =2e105" — L,195"— 265“F ,,05 7+ e "u +olmagh? 1), (84
—3e5"79,u. (81) The very last term contains the usual derivative term ex-

pected in the gauge transformation laws of a high spin gauge
Other than the usual general coordinate transformations asield in d dimensions.
sociated withsi and the Weyl dilatations associated vvﬁf] Not all components of the remainirgy can be removed
it contains second rank5”,e4” and third ranke4”” trans- ~ Wwith these gauge transformations; therefore physical compo-
formation parameters. The latter unusual transformation§ents survive in this high spin branch. In particular, there is
mix the gravitational field with the gauge fieRj,, and with ~ enough remaining freedom to make further gauge choices
the scalar fieldu. Under such transformations, if a field such that ggl"z"'“s is double traceless [i.e.,
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gg;lff'“#s(gz)ﬂluz(gz)ﬂawzo], as needed for a correct de- We also find a connection between our transformation
scription of high spin field$14]. The high-spin background '[iuolﬁs;ullr:ageizg/evdgfergn”z:;yzaggryezg?jlobr;/SHijrll(j?]tizetr:;ags;%riga-
fields defined in this way belong to a unitary theory. It is cases oti—1,2. The) geometry or generalized Riemannian

known that with the double traceless condition @3 and o .
the gaude svmmet ted by t (which geometry, which is the background geometry\ihgravity
gauge sy ry generated by traceless s, (whic theorieq 16], is defined by a generalized metric function, on

is a subgroup of our cagehe correct kinetic terms for high the tangent bundl@M of the target manifoldM, which de-

spin fields are written uniquely in a field theory approach.ﬁnes the square of the length of a tangent vegtoz T,M at

Thus, the worldline theory constructed with the double traces 1 The inverse metric is also generalized by introducing

lessgs makes_ sense physmall_y. We would not b? aIIc_)wed toa co-metric functior-(x,y) on the cotangent bundle, which
make canonical transformations to further simplify the

. . : is expanded iry as in[1
worldline theory if we assume that it corresponds to a more P o [17]

complete theory in which the extra transformations could not 1 ..

be implemented. FOy)=2 305 00 Y (86)
Having clarified this point, we may still analyze the fate s

of the canonical symmetry left over after the double tracelesgnere the coefficientg”t "“s(x) are contravariant tensors

condition. The remaining gauge parameters must satisfy thg, ¢ js observed  in Ref[17] that the coefficients

conditions that follow from the double tracelessnessgy: g"“*""#*(x) in cometric function can be associated to higher-

spin gauge fields oM only if the cometric function is in-
(42 (g g n) _ mlug sy ou1mo) variant under symplectic diffeomorphism group of th(_a cotan-
9 s-1s-2  Cs-15-1 “u92 gent bundle ofM in d=1 and under a subgroup of it ith
=2. This leads to a natural set of transformation rules for the
+lmaghe K =0. 85
so15-1(92) u11,(92) wgu, (85) gauge fieldsgi® "#(x) in dimensionsd=1 and 2. The
transformation rules that are given in Refl7] for

M1 Mg H — —
If not prevented by some mechanism in a complete theonfls~  (X) in d=1 andd=2 exactly matches the transfor-
this remaining symmetry is sufficiently strong to make themation rules(82) that we found in any dimension by using
gk1#2" " #s not just double traceless, but also traceless. In thi%he 2T physics techniques. In the language of RET] the

case, the resulting gravity theory would be conformal grav—'rSt term in Eq.(82) is the W-Wey! transformation, and the

ity, which is naively nonunitary. However, there are ways onEgo?guangf tt?]z tsh';? tlee rchi g%@gﬁﬁ?h%ﬁ;hoef ?ﬁg%gt(;;szr:te
curing the problem in a conformal gravitational field theory group ymp g

setting. One approach is to include “compensator” fields that't:}uggle(;)ifmsg:;g—glme. We emphasize that our results are valid
absorb the extra gauge symmetry, thus leaving behind only y '

the correct amount of symmetry as described _in the previous \; o UTION OF NCET EQUATION TO ALL ORDERS
paragraph. The possibility for such a mechanism appears to IN %
be present in the local Sp@), noncommutative field theory
formalism of Ref[9] that includes interactions, and in which ~ One may ask the question: which field theory could one
e(X,P) plays the role of gauge symmetry parameters. Inwrite down, such that its equations of motion, after ignoring
deed, the background field configurations described so far ifield interactions, reproduce the first quantized version of the
the worldline formalism also emerge in the solution of thephysics described by our worldline theory. That is, we wish
noncommutative field equations of this theory, in the freeto construct the analog of the Klein-Gordon equation repro-
limit, as described in the following section. ducing the first quantization of the relativistic particle. Then
It is also interesting to note that string theory seems to bén the form of field theory interactions are included. A non-
compatible with our results. String theory contains twocommutative field theoryNCFT) formulation of 2T physics
branches of massless states in two extreme limits, that igyhich addresses and solves this question is introduced in
when the string tension vanishes or goes to infinity, as outRef.[9]. The basic ingredient is the local Sp(2) symmetry,
lined in the introduction. To better understand this possibldut now in a NC field theoretic setting. The NCFT equations
relation to string theory we would have to construct transfor-have a special solution described by the NC field equations
mation rules for the extremes of string theory, which are not10),(11). We would like to find allQ;;(X,P) that satisfies
presently known in the literature. Hence, the proposed conthese equations to all orders dfwhich appears in the star
nection to string theory is a conjecture at this stage. If thigoroducts.
connection is verified, it is interesting to speculate that the It is clear that the classical solution for the background
high energy, fixed angle, string scattering amplitudes, comfields discussed up to now is a solution in the>0 limit,
puted by Gross and Mend&5], may describe the scattering since then the star commutator reduces to the classical Pois-
of a particle in the type of background fields we find in this son bracket. However, surprisingly, by using an appropriate
paper. Note that an appropriate infinite slope limit— « set of coordinates, the classical solution is also an exact
can be imitated by the limis,t,u—c (at fixed anglg used quantum solution. These magical coordinates occur when-
by Gross and Mende, sinee’ multiplies these quantities in everW(X) is at the most quadratic iK™ and V}'(X) is at
string amplitudes. the most linear inXM Thus both of the case#/=X? and
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W= —2kw discussed in the previous section provide exactproposed recently in Ref9] which, beyond the worldline
guantum solutions, and similarly others can be constructed abeory, provides a coupling of all these gauge fields to each
well. other and to matter. In the NCFT counterpart the same pic-
To understand this assertion let us examine the transfoture emerges for a special solution of the NC field equations.
mation rules given in Sec. Il, but now for genefialising the  Furthermore, the classical solution that determines the phase
full star product. Evidently, the classical transformations getspace configuration of the background fields is also a special
modified by all higher orders ifi. These are the local &) exact solution of the NCFT equations to all orders 7of
gauge transformation rules of thg; in the NCFT where when, by using gauge freedo(X) is chosen as any qua-
£(X,P) is the local gauge parame{&]. With these rules we dratic function ofX™ (equivalently,v'}’I taken a linear func-
can still mapQq;=W(X) as in Eq.(25. However, if we tion of XM). In the present paper we gave two illustrations
proceed in the same manner as in Sec. Il, since the Poissdyy takingW= X? andW= — 2wx. For nonquadratic forms of
bracket would be replaced by the star commutator everyw(X) there would be higher powers éfin the solutions of
where, we are bound to find higher ordercorrections in all  the NCFT equations.
the expressions. However, consider the star commutator of By considering the canonical transformations in phase
W(X) with any other quantityfW(X), ...].. This is a space in the worldline formalisrfor the gauge symmetry in
power series containing only odd powershoflf W(X) isat ~ NCFT formalisn) it is argued that a given solution for a
the most quadratic function ofM, the expression contains fixed set of background fields can be transformed into new
only the first power ofi. Hence for quadratitV(X)=X? or  solutions for other sets of background fields. The physical
W= —2xw the star commutator is effectively replaced by interpretation of this larger set of solutions could be very
the Poisson brackets, and all expressions involving suckich, but it is not investigated in this paper.
W(X) produce the same results as the classical analysis. The holographic image of thelft+ 2)-dimensional theory,
Similarly, we can argue that, despite the complications ofn the massless particle gauge, makes connections with other
the star product, we can use the remaining gauge freedom formalisms for higher-spin fields. In particular in one gauge
fix Ve=p=0, V=0, G;=0, and V}(X) linear in XM.  our (d+2)-dimensional approach yields tiiedimensional
Again, with |inearV¥|(X) all of its star commutators are action discussed in Refl11]. As it is shown there, the first
replaced by Poisson brackets. order action(in phase spages a completed version of an
Then, the classical analysis of the background fields, and@ction originally proposed by de Wit and Freednjas] in
their transformation rules, apply intact in the solution of theposition-velocity space. The completion consists of including
NCFT field equationg10). The conclusion, again, is that all powers of the velocities that couple to the higher-spin
there are two disconnected branches, one for low ssins fields, and their effect in the Complete form of transformation

<2 and one for high spins=2, that seem to have an analog rules. Some problems pointed out in REL1] can be re-

in string theory at the extreme tension limits. solved by three observations: first, there are different
The NCFT of Ref[9] allows more general field configu- branches of solutions, one for the low spin sector, and one

rations in which the higher-spin fields interact with eachfor the high spin sector starting with spin 2; second, a world-

other and with matter to all orders @ and with higher line theory with the correct unitary high spin fields certainly

derivatives, consistently with the gauge symmetries. In théS permitted as one of the holographic pictures of dhe2

full theory, the type of field that appears in E@1) can play theory; and third, the stronger canonical gauge symmetries

the role of the “compensators” alluded to in the previous that could lead to nonunitary conformal gravity need not

section. This would provide an example of an interactingeXist in a complete interacting theory.

field theory for higher-spin fields. Our description of higher-spin fields appears to be consis-
tent in the worldline formalism, while the nhoncommutative
VI. CONCLUSIONS AND REMARKS field theory approach of Ref9] provides a field theoretic

action for them, with interactions. In this paper we touched
In this paper it was demonstrated that in a worldline for-upon this aspect only superficially. This is an old problem
malism, all the usuad-dimensional Yang-Mills, gravitational [12] that deserves further careful study. Furthermore, our so-
and scalar interactions experienced by a particle, plus intetution may correspond to self-consistent subsectors of string
actions with higher-spin fields, can be embedded intheory at extreme limits of the tension. It would also be very
(d+2)-dimensional 2T physics as a natural solution of theinteresting to further study the holographic aspects of the 2T
two-time background field equatior{49), taken in a fixed physics theory.
Sp(2R) gauge. Since 2T physics provides mashylimen-
;lonal holographic images Fhat appear as @ffgren.t iT dynam— ACKNOWLEDGMENTS
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