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High spin gauge fields and two-time physics

Itzhak Bars*
CIT-USC Center for Theoretical Physics & Department of Physics, University of Southern California, Los Angeles,

California 90089-2535

Cemsinan Deliduman†

Feza Gu¨rsey Institute, C¸ engelko¨y 81220, I˙stanbul, Turkey
~Received 19 March 2001; published 19 July 2001!

All possible interactions of a point particle with background electromagnetic, gravitational and higher-spin
fields are considered in the two-time physics worldline formalism in (d,2) dimensions. This system has a
counterpart in a recent formulation of two-time physics in noncommutative field theory with local Sp~2!
symmetry. In either the worldline or field theory formulation, a general Sp~2! algebraic constraint governs the
interactions, and determines the equations that the background fields of any spin must obey. The constraints are
solved in the classical worldline formalism (\→0 limit! as well as in the field theory formalism~all powers of
\). The solution in both cases coincide for a certain 2T to 1T holographic image which describes a relativistic
particle interacting with background fields of any spin in (d-1,1) dimensions. Two disconnected branches of
solutions exist, which seem to have a correspondence as massless states in string theory, one containing low
spins in the zero Regge slope limit, and the other containing high spins in the infinite Regge slope limit.
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I. INTRODUCTION

Local Sp~2! symmetry, and its supersymmetric genera
zation, is the principle behind two-time~2T! physics@1–9#.
For a spinless particle, in the worldline formalism with loc
Sp~2! symmetry, the action is

S5E dt@]tX
MPM2Ai j Qi j ~X,P!#, ~1!

whereAi j (t)5Aji (t) with i , j 51,2, is the Sp~2! gauge po-
tential. This action is local Sp~2! invariant ~see Ref.@4# and
below! provided the threeQi j (X,P) are any general phas
space functions that satisfy the Sp~2! algebra under the Pois
son brackets

$Qi j ,Qkl%5« jkQil 1« ikQjl 1« j l Qik1« i l Qjk . ~2!

The antisymmetric« i j 52« j i is the invariant metric of Sp~2!
that is used to raise or lower indices.

The goal of this paper is to determine all possibleQi j as
functions of phase spaceXM, PM that satisfy this algebra
The solution will be given in the form of a power series
momenta which identify the background fieldsAM(X) and
Zi j

M1M2•••Ms(X):

Qi j ~X,P!5(
s50

`

Zi j
M1M2•••Ms~X!@PM1

1AM1
~X!#

3@PM2
1AM2

~X!#•••@PMs
1AMs

~X!#. ~3!
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These (d12)-dimensional fields will describe the partic
interactions with the Maxwell field, gravitational field, an
higher-spin fields, when interpreted ind dimensions as a par
ticular 2T to 1T holographicd-dimensional picture of the
higher (d12)-dimensional theory. Furthermore, as is t
usual case in 2T physics, there are a large number of 2
1T holographic d-dimensional pictures of the sam
(d12)-dimensional system. For any fixed background
resultingd-dimensional dynamical systems are interpreted
a unified family of 1T dynamical systems that are related
each other by duality type Sp~2! transformations. This latte
property is one of the novel unification features offered
2T physics.

In previous investigations the general solution up to ma
mum spins52 was determined@4#. The most general solu
tion with higher-spin fields for arbitrary spins is given here.
SuchQi j (X,P) are then the generators of local Sp~2!, with
transformations of the coordinates (XM,PM) given by

dvXM52v i j ~t!
]Qi j

]PM
, dvPM5v i j ~t!

]Qi j

]XM
, ~4!

where thev i j (t)5v j i (t) are the local Sp~2! gauge param-
eters@4#. When the Sp~2! gauge fieldAi j (t) transforms as
usual in the adjoint representation

dvAi j 5]tv
i j 1@v,A# i j , ~5!

the action~1! is gauge invariantdvS50, provided the back-
ground fields Zi j

M1M2•••Ms(X) and AM(X) are such that
Qi j (X,P) satisfy the Sp~2! algebra above. Thus, through th
requirement of local Sp~2!, the background fields are re
stricted by certain differential equations that will be deriv
and solved in this paper. As we will see, the solution perm
certain unrestricted functions that are interpreted as ba
ground fields of any spin intwo lower dimensions.
©2001 The American Physical Society04-1
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An important aspect for the physical interpretation is th
the equations of motion for the gauge fieldAi j (t) restricts
the system to phase space configurations that obey the
sical on-shell condition

Qi j ~X,P!50. ~6!

The meaning of this equation is that physical configuratio
are gauge invariant and correspond to singlets of Sp~2!.
These equations have an enormous amount of informa
and provide a unification of a large number of one-tim
physics systems in the form of a single higher-dimensio
theory. One-time dynamical systems appear then as h
graphic images of the unifying bulk system that exists in o
extra timelike and one extra spacelike dimensions. We
refer to this property as 2T to 1T holography.

This holography comes about because there are nontr
solutions to Eq.~6! only if the spacetime includes two time
like dimensions with signature (d,2). By Sp~2! gauge fixing,
two dimensions are eliminated, andd dimensions are embed
ded insided12 dimensions in ways that are distinguishab
from the point of view of the remaining timelike dimensio
This provides the holographic images that are interprete
distinguishable one-time dynamics. Thus one obtains a m
titude of nontrivial solutions with different physical interpre
tations from the point of view of one time physics. Henc
for each set of fixed background fields that obey the lo
Sp~2! conditions, the 2T physics action above unifies vario
one-time physical systems~i.e., their actions, equations o
motion, etc.! into a single 2T physics system.

To find all possible actions, one must first find all possib
solutions ofQi j (X,P) that satisfy the off-shell Sp~2! algebra
before imposing the singlet condition.

The simplest example is given by@2#

Q115X•X, Q125X•P, Q225P•P. ~7!

This form satisfies the Sp~2! algebra for any number of di
mensionsXM,PM, M51,2, . . . ,D, and any signature for the
flat metric hMN used in the dot productsX•P
5XMPNhMN , etc. However, the on-shell condition~6! has
nontrivial solutions only and only if the metrichMN has
signature (d,2) with two timelike dimensions: if the signa
ture were Euclidean the solutions would be trivialXM5PM

50; if there would be only one timelike dimension, the
there would be no angular momentumLMN50 sinceXM,PM

would both be lightlike and parallel to each other; and
there were more than two timelike dimensions the soluti
would have ghosts that could not be removed by the av
able Sp~2! gauge symmetry. Hence two timelike dimensio
is the only nontrivial physical case allowed by the Sp~2!
singlet condition~i.e., gauge invariance!.

The general classical worldline problem that we will sol
in this paper has a counterpart in noncommutative fi
theory~NCFT! with local Sp~2! symmetry as formulated re
cently in Ref.@9#. The solution that we give here provide
also a solution to the noncommutative~NC! field equations
of motions that arise in that context. We note that in NC
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the same fieldQi j (X,P) emerges as the local Sp~2! covariant
left-derivative including the gauge field. The field strength
given by

Gi j ,kl5@Qi j ,Qkl#!2 i\~« jkQil 1« ikQjl 1« j l Qik1« i l Qjk!,
~8!

where the star commutator@Qi j ,Qkl#!5Qi j !Qkl2Qkl!Qi j
is constructed using the Moyal star product

Qi j !Qkl5expF i\

2
hMNS ]

]XM

]

] P̃N
2

]

]PM

]

]X̃ND G
3Qi j ~X,P!Qkl~X̃,P̃!uX5X̃,P5 P̃ . ~9!

Although there are general field configurations in NCFT th
include nonlinear field interactions@9#, we will concentrate
on a special solution of the NCFT equations of motion. T
special solution is obtained whenGi j ,kl50 @i.e., Qi j satisfies
the Sp~2! algebra under star commutators#, andQi j annihi-
lates a wave functionF(X,P) that is interpreted as a single
of Sp~2!

1

i\
@Qi j ,Qkl#!5« jkQil 1« ikQjl 1« j l Qik1« i l Qjk , ~10!

Qi j !F50. ~11!

These field equations are equivalent to the first quantiza
of the worldline theory in a quantum phase space formal
~as opposed to the more traditional pure position space
pure momentum space formalism!.

Compared to the Poisson brackets that appear in Eq~2!
the star commutator is an infinite series in powers of\. It
reduces to the Poisson brackets in the classical limit\→0:

1

i\
@Qi j ,Qkl#!→$Qi j ,Qkl%. ~12!

Therefore, any solution forQi j (X,P) of the form ~3! that
satisfies the Poisson bracket Sp~2! algebra~2! is normally
expected to be only an approximate semiclassical solutio
the NCFT equations~10!,~11! that involve the star produc
~9!. However, we find a much better than expected soluti
by choosing certain gauges of the Sp~2! gauge symmetry in
the NCFT approach, we learn that the classical solution
the Poisson bracket algebra in Eq.~2! is also an exact solu
tion of the star commutator algebra~10! to all orders of\.

We will see that the solution has two disconnect
branches of background fields. The first branch has only
spins s<2 including the gravitational field. The secon
branch has only high spinss>2 starting with the gravita-
tional field. These appear to have a correspondence to
massless states in string theory at extreme limits of the st
tension T;1/a8→0,̀ . Indeed when the Regge slopea8
goes to zero by fixing the graviton state only the low sp
s<2 massless states survive, and when the Regge slopa8
goes to infinity there are an infinite number of high sp
4-2
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HIGH SPIN GAUGE FIELDS AND TWO-TIME PHYSICS PHYSICAL REVIEW D64 045004
massless states. The high spin fields that we find here co
spond to those massless states obtained from the gra
trajectorys>2.

The paper is organized as follows. In Sec. II we discuss
infinite dimensional canonical transformation symmetry
the equations. In Sec. III, we use the symmetry to simp
the content of the background fields that appear in the
pansion~3!, and we impose the Poisson bracket algebra~2!
to determine the field equations that must be satisfied by
remaining background fields. In Sec. IV, we discuss two s
cial coordinate systems to solve the field equations. Then
impose the gauge invariance conditionQi j 50, and interpret
the holographic image as a relativistic particle ind dimen-
sions xm, moving in the background of fields of variou
spins, including a scalar fieldu(x), gauge fieldAm(x), gravi-
tational fieldgmn(x), and higher-spin fieldsgm1m2•••ms(x) for
any spins. We also derive the gauge transformation rules
the higher-spin fields ind dimensions, and learn that the
are two disconnected branches. In Sec. V we show that
classical solution is also an exact quantum solution of
star product system that emerges in NCFT with local Sp~2!
symmetry. In Sec. VI, we conclude with some remarks.

Our 2T approach to higher-spin fields makes connecti
to other methods in the literature. One connection occurs
special Sp~2! gauge~Sec. IV! which links to Dirac’s formu-
lation of SO(d,2) conformal symmetry by using
(d12)-dimensional fields to representd-dimensional fields
@10#. In our paper this method is extended to all high sp
fields as a particular 2T to 1T holographic picture. T
d-dimensional system of this holographic picture has
overlap with a description of higher-spin fields given in R
@11#, which is probably related to the approach of Vasili
et al. ~see Ref.@12#, and references therein!. It was shown in
Ref. @11# that our special 1T holographic picture, when tran
lated to the second order formalism~as opposed to the phas
space formalism!, is a completion of the de Wit–Freedma
action@13# for a spinless relativistic particle interacting wit
higher-spin background fields.

II. INFINITE DIMENSIONAL SYMMETRY

Although our initial problem is basically at the classic
level, we will adopt the idea of the associative star produ
in the\→0 limit, as a convenient formalism. In this way ou
discussion will be naturally extended in Sec. V to the case
NCFT which will be valid for any\. The Poisson bracket i
written in terms of the star product~9! as a limit of the form

$A,B%5 lim
\→0

1

i\
~A!B2B!A!5

]A

]XM

]B

]PM
2

]B

]XM

]A

]PM
.

~13!

Consider the following transformation of any function
phase spaceA(X,P):

A~X,P!→Ã~X,P!5 lim
\→0

e2 i«/\!A!ei«/\ ~14!
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5A1$«,A%1
1

2!
$«,$«,A%%

1
1

3!
$«,$«,$«,A%%%1••• ~15!

for any «(X,P). If the \→0 is not applied, every Poisso
brackets on the right-hand side is replaced by the star c
mutator. It is straightforward to see that the Poisson brack
of two such functions transform as

$A,B%→$Ã,B̃%

5$~ lim
\→0

e2 i«/\!A!ei«/\!,~ lim
\→0

e2 i«/\!B!ei«/\!%

~16!

5 lim
\→0

e2 i«/\!$A,B%!ei«/\. ~17!

In particular, the phase space variablesXM,PM transform
into

X̃M5 lim
\→0

e2 i«/\!XM!ei«/\, P̃M5 lim
\→0

e2 i«/\!PM!ei«/\,

~18!

and one can easily verify that the canonical Poisson brac
remain invariant

$XM,PN%5$X̃M,P̃N%5dN
M . ~19!

So, the transformation we have defined is the most gen
canonical transformation. In particular, for infinitesimal«,
one has

d«XM52]«/]PM , d«PM5]«/]XM, ~20!

which is again recognized as a general canonical transfor
tion with generator«(X,P). The generator«(X,P) contains
an infinite number of parameters, so this set of transform
tions form an infinite-dimensional group. There is a rese
blance between Eq.~20! and the expressions in Eq.~4! but
note that those include generalt dependence inv i j (t) and
therefore are quite different.

Under general canonical transformations~18! the particle
action ~1! transforms as

SQi j
~X,P!→SQi j

~X̃,P̃!5E dt@]tX̃
MP̃M2Ai j Qi j ~X̃,P̃!#.

~21!

The first term is invariant*dt(]tX̃
MP̃M)5*dt(]tX

MPM).
This is easily verified for infinitesimal«(X,P) since
d«(]tX

MPM) is a total derivative

d«~]tX
MPM !5]tS «2P•

]«

]PD .
4-3
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However, the full action~1! is not invariant. Instead, it is
mapped to a new action with a new set of background fie
Q̃i j (X,P) given by

Qi j ~X̃,P̃!5Q̃i j ~X,P!5 lim
\→0

e2 i«/\!Qi j ~X,P!!ei«/\,

~22!

SQi j
~X,P!→SQi j

~X̃,P̃!5SQ̃i j
~X,P!

5E dt@]tX
MPM2Ai j Q̃i j ~X,P!#. ~23!

After taking into account Eq.~17! we learn that the new
Q̃i j (X,P) also satisfies the Sp~2! algebra~2! if the old one
Qi j (X,P) did. Thus, the new actionSQ̃i j

(X,P) is again in-
variant under the local Sp~2! symmetry~4!,~5! using the new
generatorsQ̃i j , and is therefore in the class of actions we a
seeking.

Thus, if we find a given solution for the background fiel
Zi j

M1M2•••Ms(X) and AM(X) in Eq. ~3! such thatQi j (X,P)
satisfy the Sp~2! algebra~2!, we can find an infinite numbe
of new solutionsZ̃i j

M1M2•••Ms(X) and ÃM(X) by applying to
Qi j (X,P) the infinite-dimensional canonical transformatio
~22! for any function of phase space«(X,P). We may write
this function in a series form similar to Eq.~3! to display its
infinite number of local parameters«s

M1M2•••Ms(X)

«~X,P!5(
s50

`

«s
M1M2•••Ms~X!~PM1

1AM1
!

3~PM2
1AM2

!•••~PMs
1AMs

!. ~24!

Although this set of transformations is not a symmetry of
worldline action for a fixed set of background fields, it
evidently a symmetry in the space of actions for all possi
background fields, by allowing those fields to transform. I
also an automorphism symmetry of the Sp~2! algebra~2!,
and of the on-shell singlet condition~6! which identifies the
physical sector. Furthermore, in the NCFT setting of Ref.@9#
this is, in fact, the local Sp~2! symmetry with«(X,P) play-
ing the role of the local gauge parameter in NC gauge fi
theory. We will use this information to simplify our task o
finding the general solution.

III. IMPOSING THE POISSON BRACKET ALGEBRA

By taking into account the infinite dimensional symme
of the previous section, we can always map a gen
Q11(X,P) to a function of onlyXM

Q̃115 lim
\→0

e2 i«/\!Qi j ~X,P!!ei«/\5W~X!. ~25!

Conversely, givenQ̃115W(X) we may reconstruct the gen
eral Qi j (X,P) by using the inverse transformation

Q11~X,P!5 lim
\→0

ei«/\!W~X!!e2 i«/\. ~26!
04500
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There is enough symmetry to mapW(X) to any desired non-
zero function ofXM that would permit the reconstructio
~26! of the generalQ11(X,P), but we postpone this freedom
until a later stage~see next section! in order to first exhibit a
more general setting.

After fixing Q̃115W(X), there is a remaining subgroup o
transformations«(X,P) for which the Poisson bracke
$«,W% vanishes, and henceW(X) is invariant under it. Using
the form of Eq.~24! we see that the subgroup corresponds
those transformations that satisfy the condition

]W

]XM1
«s>1

M1M2•••Ms~X!50, any«0~X!. ~27!

This subgroup can be used to further simplify the proble
To see how, let us consider the expansions

Q̃11~X,P!5W~X!, ~28!

Q̃12~X,P!5(
s50

`

Vs
M1M2•••Ms~PM1

1AM1
!

3~PM2
1AM2

!•••~PMs
1AMs

!, ~29!

Q̃22~X,P!5(
s50

`

Gs
M1M2•••Ms~PM1

1AM1
!

3~PM2
1AM2

!•••~PMs
1AMs

!, ~30!

whereGs
M1M2•••Ms(X) andVs

M1M2•••Ms(X) are fully symmet-
ric local tensors of ranks.

We can completely determine the coefficientsVs
M1M2•••Ms

in terms ofW andGs
M1M2•••Ms by imposing one of the Sp~2!

conditions$Q̃11,Q̃22%54Q̃12

Vs21
M2M3•••Ms5

s

4

]W

]XM1
Gs

M1M2•••Ms . ~31!

Furthermore, by imposing another Sp~2! condition

$Q̃11,Q̃12%52Q̃11 we find

]W

]XM1
V1

M152W,
]W

]XM1
Vs>2

M1M2•••Ms50. ~32!

Now, for suchVs
M1M2•••Ms , by using the remaining subgrou

symmetry ~27! we can transform to a frame in which a
Vs

M1M2•••Ms for s>2 vanish. By comparing the expression
~27!,~32! and counting parameters we see that this must
possible. To see it in more detail, we derive the infinitesim
transformation law forGs

M1M2•••Ms andAM from

dQ225~]Q22/]A!dA1(
s

~]Q22/]Gs!dGs5$«,Q22%

~33!
4-4



p

m

os

r
ve

e

f-

g
r
nsor
t

e
ee

ry

r

ions

lds

HIGH SPIN GAUGE FIELDS AND TWO-TIME PHYSICS PHYSICAL REVIEW D64 045004
by expanding both sides in powers of (P1A) and comparing
coefficients. We write the result in symbolic notation by su
pressing the indices

dAM5]M «̃02L«1
AM , ~34!

dG052«1•]G0 , ~35!

dG152L«1
G12~«2•]G01«2FG1!, ~36!

dGs>252L«1
Gs2~«2•]Gs212Gs21•]«21«2FGs!

2•••2~«s•]G12G1•]«s1«sFG2!

2~«s11•]G01«s11FG1!. ~37!

In dGs>2 the ellipses represent terms of the for
(«k•]Gs2k112Gs2k11•]«k1«kFGs2k12) for all 2,k,s.
HereFMN is the gauge field strength

FMN~X!5]MAN~X!2]NAM~X!, ~38!

L«1
Gs is the Lie derivative of the tensorGs

M1M2•••Ms with

respect to the vector«1
M

~L«1
Gs!

M1M2•••Ms5«1•]Gs
M1M2•••Ms2]K«1

M1Gs
KM2•••Ms

2•••2]K«1
MsGs

M1M2•••K . ~39!

In the other terms,«k•]Gl ~similarly Gk•]« l) is the tensor

«k•]Gl5
k! l !

~k1 l 21!!
«k

M1(M2•••Mk)
]M1

Gl
~Mk11 ,•••Mk1 l !,

~40!

where all unsummed upper indices (k1 l 21 of them! are
symmetrized, and«kFGl is the tensor

«kFGl5
k! l !

~k1 l 22!!
«k

M1(M2•••MkGl
Mk11•••)Mk1 lFM1Mk1 l

,

~41!

where all unsummed upper indices (k1 l 22 of them! are
symmetrized. Finally«̃0 which appears indA is defined by
«̃05«01«1•A.

From dAM it is evident that«̃0(X) is a Yang-Mills type
gauge parameter, and fromL«1

Gs it is clear that«1
M(X) is

the parameter of general coordinate transformations in p
tion space. The remaining parameters«s>2(X) are gauge pa-
rameters for high spin fields~note that the derivative of the
«s appear in the transformation rules!. From the transforma-
tion laws for dA,dGs we find the transformation law fo
dVs

M1M2•••Ms by contracting both sides of the equation abo
with ]MW(X). After using the subgroup condition~27! and
the definition~31! we find

dV052L«1
V0 , ~42!

dV152L«1
V12~«2•]V01«2FV1! ~43!
04500
-

i-

dVs>252L«1
Vs2~«2•]Vs212Vs21•]«21«2FVs!

2•••2~«s•]V12V1•]«s1«sFV2!

2~«s11•]V01«s11FV1!. ~44!

The form ofdVk is similar to the form ofdGk as might be
expected, since it can also be obtained fromdQ12
5$«,Q12%, but we have derived it by taking into account th
restriction~31! and the subgroup condition~27!.

For Vs of the form~32! the subgroup parameters are su
ficient to transform to a frame whereVs>250. Therefore, we
may always start from a frame of the form

Q̃11~X,P!5W~X!; V1•]W52W, ~45!

Q̃12~X,P!5V01V1
M~PM1AM !; V05

1

4
]NWG1

N ,

V1
M5

1

2
]NWG2

MN , ~46!

Q̃22~X,P!5(
s50

`

Gs
M1M2•••Ms~PM1

1AM1
!

3~PM2
1AM2

!•••~PMs
1AMs

! ~47!

and transform to the most general solution via

Qi j ~X,P!5 lim
\→0

ei«/\!Q̃i j ~X,P!!e2 i«/\. ~48!

In Q̃22 the termG1
M may be set equal to zero by shiftin

AM→AM2 1
2 (G2)MNG1

N1•••, and then redefining all othe
background fields. Here we have assumed that the te
G2

MN has an inverse (G2)MN ; in fact, as we will see soon, i
will have the meaning of a metric. Therefore, we will assum
G1

M50 without any loss of generality. In that case we s
from Eq. ~46! that we must also haveV050.

It suffices to impose the remaining relations of the Sp~2!
algebra in this frame. By comparing the coefficients of eve
power of (P1A) in the condition$Q̃12,Q̃22%52Q̃22 we de-
rive the following equations:

V1
MFMN50, LV1

Gs522Gs , ~49!

whereLV1
Gs is the Lie derivative with respect to the vecto

V1 @see Eq.~39!#. These, together with

V1
M5

1

2
]NWG2

MN , V1•]W52W, V050,

G150, ]W•Gs>350, ~50!

that we used before, provide the complete set of equat
that must be satisfied to have a closure of the Sp~2! algebra.
These background fields, together with the background fie
4-5
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ITZHAK BARS AND CEMSINAN DELIDUMAN PHYSICAL REVIEW D 64 045004
provided by the general«(X,P) through Eq.~48!, generalize
the results of Ref.@4#, where onlyAM , G0, andG2

MN had
been included.

There still is remaining canonical symmetry that keeps
form of the aboveQ̃i j unchanged. This is given by the su
group of symmetries associated with«̃0(X),«1

M(X) which
have the meaning of local parameters for Yang-Mills a
general coordinate transformations, and also the higher-
symmetries that satisfy

]W•«s>150, LV1
«s>150, ]G0•«250. ~51!

The conditions in Eq.~51! are obtained after settingG1
5Vs>250 anddG15dVs>250, as well as using Eq.~27!.

It is possible to go further in using the remaining«s(X)
transformations, but this will not be necessary since
physical content of the worldline system will be more tran
parent by using the background fieldsGs andAM identified
up to this stage. However, we will return to the remaini
symmetry at a later stage to clarify its action on the fiel
and thus discover that there are two disconnected branc

IV. CHOOSING COORDINATES AND W„X…

As mentioned in the beginning of the previous section
original «(X,P) transformations permits a choice for th
function W(X), while the surviving«1

M(X) which is equiva-
lent to general coordinate transformations further permit
choice for the vectorV1

M(X), as long as it is consistent wit
the differential conditions given above. Given this freedo
we will explore two choices forW(X) and V1

M(X) in this
section.

A. SO„d,2… covariant W„X…ÄX2

We chooseW(X) andV1
M(X) as follows:

W~X!5X25XMXNhMN , V1
M~X!5XM, ~52!

wherehMN is the metric for SO(d,2). These coincide with
part of the simplest Sp~2! system~7!. We cannot choose an
other signaturehMN since we already know that the con
straintsQi j (X,P)50 have solutions only when the signatu
includes two timelike dimensions.

Using Eqs.~49! and ~50!, the metricG2
MN(X) takes the

form

G2
MN5hMN1h2

MN~X!, X•]h2
MN50, h2

MNXN50.
~53!

G2
MN is an invertible metric. The fluctuationh2

MN(X) is any
homogeneous function of degree zero and it is orthogona
XN .

Using the«0(X) gauge degree of freedom we work in th
axial gaugeX•A50, then the conditionXMFMN50 reduces
to

~X•]11!AM50, X•A50. ~54!
04500
e

d
in

e
-

,
s.

e

a

to

Therefore AM(X) is any homogeneous vector of degr
(21) and it is orthogonal toXM . There still is remaining
gauge symmetrydAM5]M«0 provided«0(X) is a homoge-
neous function of degree zero

X•]«050. ~55!

Similarly, the higher-spin fields in Eqs.~49!,~50! satisfy

~X•]2s12!Gs>3
M1M2•••Ms50, XM1

Gs>3
M1M2•••Ms50.

~56!

These equations are easily solved by homogeneous ten
of degrees22 that are orthogonal toXN .

The Q̃i j now take the SO(d,2) covariant form

Q̃115X2, Q̃125X•P, ~57!

Q̃225G01(
s52

`

Gs
M1•••Ms~P1A!M1

•••~P1A!Ms
. ~58!

Thus,Q11 andQ12 are reduced to the form of the simplest 2
physics system~7!, while Q22 contains the nontrivial back
ground fields. The remaining symmetry of Eq.~51! is given
by

]G0•«250; ~X•]2s!«s>0
M1M2•••Ms50, XM1

«s>1
M1M2•••Ms50,

~59!

where all dot products involve the metrichMN of SO(d,2).
Hence the frame is SO(d,2) covariant, and this will be re
flected in any of the gauge fixed versions of the theory.
before,«0(X) is the ~homogeneous! Yang-Mills-type gauge
parameter and the«s>1 play the role of gauge parameters f
higher-spin fields as in Eq.~37!.

To solve the constraintsQi j 50 we can choose variou
Sp(2) gauges that produce the 2T to 1T holographic red
tion. This identifies some combination of theXM(t) with the
t parameter, thus reducing the 2T physics description to
1T physics description. Depending on the choice made,
1T dynamics of the resulting holographic picture ind dimen-
sions appears different from the point of view of one-tim
This produces various holographic pictures in an analog
way to the free case discussed previously in Ref.@1#. We
plan to discuss several examples of holographic picture
the presence of background fields in a future publication

B. Lightcone type W„X…ÄÀ2kw

There are coordinate choices that provide a shortcu
some of the holographic pictures, although they do not ill
trate the magical unification of various 1T dynamics into
single 2T dynamics as clearly as the SO(d,2) formalism of
the previous section. Nevertheless, since such coordi
systems can be useful, we analyze one that is closely rel
4-6
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to the relativistic particle dynamics ind dimensions.1 Fol-
lowing Ref. @4# we consider a coordinate systemXM

5(k,w,xm) and use the symmetries to chooseV1
M

5(k,w,0) andW522wk. Then, as in Ref.@4# the solution
for the gauge field, the spin-2 gravity fieldG2

MN and the
scalar fieldG0 are

Ak52
w

2k2
BS w

k
,xD , Aw5

1

2k
BS w

k
,xD , Am5AmS w

k
,xD ,

~60!

2
MN5S k

w
~g21! 2g

1

k
Wn

2g
w

k
~g21! 2

w

k2
Wn

1

k
Wm 2

w

k2
Wm

gmn

k2

D , ~61!

G05
1

k2
uS x,

w

k D , ~62!

where the functionsAm(w/k,x), B(w/k,x), g(x,w/k),
Wm(x,w/k), gmn(x,w/k), u(x,w/k) are arbitrary functions
of only xm and the ratiow/k.

We now extend this analysis to the higher-spin fields. T
equation

Gs>3
M1M2•••Ms

•]Ms
W50 ~63!

becomes

wGs>3
M1•••Ms21k

52kGs>3
M1•••Ms21w . ~64!

This shows that not all the components ofGs>3
M1M2•••Ms are

independent. The condition

LV1
Gs522Gs ~65!

becomes

1We call the coordinate system in this section ‘‘lightcone typ
because, in the Sp~2! gaugek51, it can be related to a lightcon

type Sp~2! gauge (X1851) in the SO(d,2) covariant formalism of
the previous section. Once the gauge is fixed from either poin
view, the 1T holographic picture describes the massless relativ
particle ~see, e.g., Ref.@1#! including its interactions with back
ground fields.
04500
e

~k]k1w]w!Gs
M1•••Ms2 (

n51

s

dk
MnGs

M1•••Mn21kMn11•••Ms

2 (
n51

s

dw
MnGs

M1•••Mn21wMn11•••Ms522Gs
M1•••Ms .

~66!

Specializing the indices for independent components
also using the relation~64! between the components o
Gs>3

M1M2•••Ms we get the solution for all components o

Gs>3
M1M2•••Ms as

~67!

where gs,k
m1m2•••mk(x,w/k), wherek51, . . . ,s, are arbitrary

functions and independent of each other.
For this solution, the generators of Sp(2,R) in Eqs.~45!–

~47! become

Q̃11522kw, ~68!

Q̃125kpk1wpw , ~69!

Q̃2252
1

kw F S kpk2
wB

2k D 2

1S wpw1
wB

2k D 2G1
H1H8

k2
,

~70!

whereH,H8, which contain the background fields, are d
fined by

H5u1gmn~pm1Am!~pn1An!1(
s53

`

gs,s
m1•••ms

3~pm1
1Am1

!•••~pms
1Ams

!, ~71!

H85(
s52

`

(
k50

s21

gs,k
m1•••mkS kpk2wpw2

wB

k D s2k

3~pm1
1Am1

!•••~pmk
1Amk

!. ~72!

H contains only the highest spin componentsgs,s
m1m2•••ms that

emerge fromGs>2
M1M2•••Ms. Here we have defined the metr

gmn5g2,2
mn as in Eq.~61!. All the remaining lower spin com-

ponentsgs,k
m1m2•••mk with k<s21 are included inH8. In the

s52 term of H8 we have definedg2,0[gk/w and g2,1
m

[Wm in comparison to Eq.~61!. It can be easily verified tha
theseQ̃i j obey the Sp(2,R) algebra for any background field
u, gmn , Am , B andgs,k

m1m2•••mk (k50, . . . ,s) that arearbi-
trary functions of(xm,w/k).

We next can choose some Sp(2,R) gauges to solve the
Sp(2,R) constraintsQ̃i j 50 and reduce to a one-time theo
containing the higher-spin fields. As in the low spin-1 a
spin-2 cases of Ref.@4#, we choosek(t)51 andpw(t)50,

f
tic
4-7
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ITZHAK BARS AND CEMSINAN DELIDUMAN PHYSICAL REVIEW D 64 045004
and solveQ̃115Q̃1250 in the form w(t)5pk(t)50. We
also use the canonical freedom«0 to work in a gauge tha
insureswB/k→0, asw/k→0. Then theQ̃i j simplify to

Q̃115Q̃1250, Q̃225H. ~73!

At this point, the two-time (d12)-dimensional theory de
scribed by the original action~1! reduces to a one-time
theory ind dimensions

S5E dtS ]tx
mpm2

1

2
A22H D . ~74!

This is a particular 2T to 1T holographic picture of th
higher-dimensional theory obtained in a specific gau
There remains unfixed one gauge subgroup of Sp(2R)
which corresponds tot reparametrization, and the corre
sponding Hamiltonian constraint isH;0. There is also re-
maining canonical freedom which we will discuss belo
Here, in addition to the usual background fieldsgmn(x),
Am(x), u(x), the Hamiltonian includes the higher-spin field
gs,s

m1m2•••ms that now are functions of only thed dimensional
coordinatesxm, sincew/k50. Similar to g and Wm in the
gravity case, the nonleadinggs,k

m1m2•••mk for k,s decuple
from the dynamics that govern the time development
xm(t) in this Sp~2! gauge.

A similar conclusion is obtained if we use the SO(d,2)
covariant formalism of the previous section when we cho
the Sp(2) gaugesX1851, andP1852P2850. The algebra
for arriving at the final conclusion~74! is simpler in the
coordinate frame of the present section,2 and this was the
reason for introducing the ‘‘lightcone type’’W522kw.
However, from the SO(d,2) covariant formalism we learn
that there is a hidden SO(d,2) in the d-dimensional action
Eq. ~74!. This can be explored by examining the SO(d,2)
transformations produced by«1

M5vMNXN , obeying Eq.
~59!, on all the fields through the Lie derivativedAM
5L«1

AM , dGs52L«1
Gs , but this will not be further pur-

sued here.
In the present Sp~2! gauge we find a link to Ref.@11#

where the action~74! was discussed. The symmetries inh
ited from our (d12)-dimensional approach~discussed be-

2The (k,w,xm) coordinate system can be related to the one in
previous section by a change of variables as follows. Starting f

the previous section define a light cone type basisX685(X08

6X18)/A2, and then make the change of variablesX185k, Xm

5kxm, X285w1kx2/2. Then W5X•X522X18X281XmXm5
22kw. The momenta~with lower indices! are transformed as fol
lows: P185pk1pwx2/22x•p/k, P285pw , and Pm5pm /k

2pwxm . One can varify thatẊ•P5Ẋ18P181Ẋ28P281ẊmPm

5k̇pk1ẇpw1 ẋ•p. In this coordinate basisX•P5kpk1wpw and
the dimension operatorX•] takes the formX•]5k]k1w]w . This
shows that all the results obtained with the lightcone typeW5
22kw can also be recovered from the covariantW(X)5X2, and
vice versa.
04500
.

.

f

e
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low! have some overlap with those discussed in Ref.@11#. It
was shown in Ref.@11# that the first order action~74! im-
proves and completes the second order action discusse
Ref. @13#. Also, the incomplete local invariance discussed
Ref. @13# is now completed by the inclusion of the high
powers of velocity which were unknown in Ref.@13#. In the
second order formalism one verifies once more that the
tion describes a particle moving in the background of ar
trary electromagnetic, gravitational and higher-spin fields
the remainingd dimensional spacetime.

C. Surviving canonical symmetry in d dimensions

Let us now analyze the form of thed dimensional canoni-
cal symmetry inherited from our (d12) dimensional ap-
proach. Recall that the infinite dimensional canonical sy
metry «(X,P) is not a symmetry of the action, it is only
symmetry if the fields are permitted to transform in the spa
of all possible worldline actions. What we wish to determi
here is: what is the subset ofd-dimensional actions that ar
related to each other by the surviving canonical symmetry
the remainingd dimensions. As we will see, there are di
connected branches, one for low spin backgrounds and
for high spin backgrounds. These branches may corresp
to independent theories, or to different phases or limits of
same theory. Interestingly, string theory seems to offer a p
sibility of making a connection to these branches in the z
and infinite tension limits. Furthermore, we will show th
the noncommutative field theory constructed in Ref.@9#,
which includes interactions, contains precisely the sa
branches in the free limit.

As shown at the end of Sec. III, a subgroup of the high
spin symmetries that keeps the form ofQi j unchanged satisfy

]W•«s>150, LV1
«s>150, ]G0•«250. ~75!

We will solve these equations explicitly and identify the u
constrained remaining symmetry parameters. We will disc
the case forW522kw and V1

M5(k,w,0) of the previous
subsection. The first equation becomes

w«s>1
M1•••Ms21k

52k«s>1
M1•••Ms21w

~76!

and the second equation becomes

~k]k1w]w!«s>1
M1•••Ms2 (

n51

s

dk
Mn«s>1

M1•••Mn21kMn11•••Ms

2 (
n51

s

dw
Mn«s>1

M1•••Mn21wMn11•••Ms50. ~77!

Specializing the indices for independent components
also using Eq.~76! we get the solution for all components o
the higher-spin symmetry parameters, that obey the subg
conditions, as

~78!

e
m
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where«s,k
m1•••mk(x,w/k), with k50,1, . . . ,s, are arbitrary pa-

rameters and independent of each other. Therefore the
of «(X,P) that satisfies all the conditions for the remaini
symmetry takes the form

« remain~X,P!5(
s50

`

(
k50

s

«s,k
m1•••mkS kpk2wpw2

w

k
BD s2k

3~pm1
1Am1

!•••~pmk
1Amk

!. ~79!

This identifies«s,k
m1•••mk(x,w/k), with k50,1, . . . ,s, as the

unconstrained remaining canonical transformation par
eters.

For notational purposes we are going to use the symbo«s
k

for «s,k
m1•••mk from now on. We will also indicate the highes

spin fields gs,s
m1m2•••ms in d dimensions as simplygs . The

third condition in Eq.~51! gives some extra constraint o
«2

MN which will not be needed here, so we are going
ignore that condition in the rest of this discussion.

Let us now consider the gaugek(t)51 and pk(t)50,
B50, and the physical sector that satisfiesQ̃115Q̃1250 @or
w(t)5pw(t)50# as described by thed-dimensional holo-
graphic picture whose action is Eq.~74!. We discuss the role
of the remaining canonical symmetry in this gauge. T
transformation laws for the relevant high-spin fieldsgs ,
computed from Eq.~33! through $« remain,Q̃22%, come only
from the termsk5(s21),s in Eq. ~79! since we setw
5pw5pk50 andk51 after performing the differentiation
in the Poisson bracket$« remain,Q̃22%. Equivalently, one may
obtain the transformation laws in this gauge by specializ
the indices in Eq.~37!. The result is

dgs5~2«1
0gs2L«

1
1gs!1 (

n52

s21

~2«n
n21gs2n112«n

n
•]gs2n11

1gs2n11•]«n
n2«n

nFgs2n12!2«s
sFg2

12~s11!«s11
s u2«s11

s11
•]u. ~80!

Each higher-spin fieldgs is transformed by lower-rank trans
formation parameters,«n

n21 and «n
n (n51, . . . ,s21), and

also by«s
s , «s11

s and «s11
s11 . In passing we note that thes

transformations inherited fromd12 dimensions are some
what different than those considered in Ref.@11# although
there is some overlap.

If we specialize tos52, we get

dg2
mn52«1

0g2
mn2L«

1
1g2

mn22«2
r(mFrsg2

n)s16«3
mnu

23«3
mnr]ru. ~81!

Other than the usual general coordinate transformations
sociated with«1

1 and the Weyl dilatations associated with«1
0,

it contains second rank«2
rm ,«3

mn and third rank«3
mnr trans-

formation parameters. The latter unusual transformati
mix the gravitational field with the gauge fieldFrs and with
the scalar fieldu. Under such transformations, if a fiel
04500
rm

-

e

g

s-

s

theory with such local symmetry could exist, one could
move the gravitational field completely. In fact the same
mark applies to allgs . If these could be true gauge symm
tries, all worldline theories would be canonical
transformed to trivial backgrounds. However, there are
known field theories that realize this local symmetry, a
therefore it does not make sense to interpret them as sym
tries in the larger space ofd-dimensional worldline theories
This was of concern in Ref.@11#. Fortunately there is a le
gitimate resolution by realizing that there are two branch
of worldline theories, one for low spin (s<2) and one for
high spin (s>2), that form consistent sets under the tran
formations as follows.

The first branch is associated with familiar field theori
for the low spin sector includingu,Am ,gmn . The corre-
sponding set of worldline actionsS(u,A,g2), in which all
background fieldsgs>3 vanish, are transformed into eac
other under gauge transformations«0(x), dilatations«1

0 and
general coordinate transformations«1

1. Since gs>350, all
«s>2 must be set to zero, and then the low spin parame
«0 ,«1

0 ,«1
1 form a closed group of local transformations rea

ized on only u,Am ,gmn , as seen from the transformatio
laws given above. This defines a branch of worldline theor
for low spins that are connected to each other by the low s
canonical transformations. This is the usual set of fami
symmetries and actions.

A second branch of worldline theories exists when t
background fieldsu,Am vanish. In this high spin branch onl
gs>2 occurs and therefore, according to the transformati
given above they form a basis for a representation includ
only the lower rank gauge parameters«k

k21 and «k
k (k

51, . . . ,s21). Then the transformation rule for the highe
spin fields ind dimensions becomes

dgs>25 (
n51

s21

~2«n
n21gs2n112«n

n
•]gs2n111gs2n11•]«n

n!

~82!

5~2«1
0gs2L«

1
1gs!1~2«2

1gs212«2
2
•]gs21

1gs21•]«2
2!1•••1~2«s21

s22g22«s21
s21

•]g2

1g2•]«s21
s21!. ~83!

We note that the very last term containsg2
mn , which is thed

dimensional metric that can be used to raise indices

dgs
m1m2•••ms5•••1~2g2

(m1m2«s21,s22
m3•••ms)2«s21,s21

m(m3•••ms)]mg2
(m1m2)

1] (m1«s21,s21
m2•••ms)!. ~84!

The very last term contains the usual derivative term
pected in the gauge transformation laws of a high spin ga
field in d dimensions.

Not all components of the remaininggs can be removed
with these gauge transformations; therefore physical com
nents survive in this high spin branch. In particular, there
enough remaining freedom to make further gauge cho
such that gs

m1m2•••ms is double traceless @i.e.,
4-9
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ITZHAK BARS AND CEMSINAN DELIDUMAN PHYSICAL REVIEW D 64 045004
gs>4
m1m2•••ms(g2)m1m2

(g2)m3m4
50#, as needed for a correct de

scription of high spin fields@14#. The high-spin background
fields defined in this way belong to a unitary theory. It
known that with the double traceless condition ongs , and
the gauge symmetry generated by traceless«s21,s21 ~which
is a subgroup of our case!, the correct kinetic terms for high
spin fields are written uniquely in a field theory approac
Thus, the worldline theory constructed with the double tra
lessgs makes sense physically. We would not be allowed
make canonical transformations to further simplify t
worldline theory if we assume that it corresponds to a m
complete theory in which the extra transformations could
be implemented.

Having clarified this point, we may still analyze the fa
of the canonical symmetry left over after the double tracel
condition. The remaining gauge parameters must satisfy
conditions that follow from the double tracelessness ofdgs :

~•••12g2
(m1m2«s21,s22

m3•••ms)2«s21,s21
m(m3•••ms]mg2

m1m2)

1] (m1«s21,s21
m2•••ms)!~g2!m1m2

~g2!m3m4
50. ~85!

If not prevented by some mechanism in a complete the
this remaining symmetry is sufficiently strong to make t
gs

m1m2•••ms not just double traceless, but also traceless. In
case, the resulting gravity theory would be conformal gr
ity, which is naively nonunitary. However, there are ways
curing the problem in a conformal gravitational field theo
setting. One approach is to include ‘‘compensator’’ fields t
absorb the extra gauge symmetry, thus leaving behind o
the correct amount of symmetry as described in the prev
paragraph. The possibility for such a mechanism appear
be present in the local Sp(2,R) noncommutative field theory
formalism of Ref.@9# that includes interactions, and in whic
«(X,P) plays the role of gauge symmetry parameters.
deed, the background field configurations described so fa
the worldline formalism also emerge in the solution of t
noncommutative field equations of this theory, in the fr
limit, as described in the following section.

It is also interesting to note that string theory seems to
compatible with our results. String theory contains tw
branches of massless states in two extreme limits, tha
when the string tension vanishes or goes to infinity, as o
lined in the introduction. To better understand this possi
relation to string theory we would have to construct transf
mation rules for the extremes of string theory, which are
presently known in the literature. Hence, the proposed c
nection to string theory is a conjecture at this stage. If t
connection is verified, it is interesting to speculate that
high energy, fixed angle, string scattering amplitudes, co
puted by Gross and Mende@15#, may describe the scatterin
of a particle in the type of background fields we find in th
paper. Note that an appropriate infinite slope limita8→`
can be imitated by the limits,t,u→` ~at fixed angle! used
by Gross and Mende, sincea8 multiplies these quantities in
string amplitudes.
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We also find a connection between our transformat
rules inherited fromd12 dimensions, and the transforma
tion rules inW geometry analyzed by Hull@17# in the special
cases ofd51,2. TheW geometry or generalized Riemannia
geometry, which is the background geometry inW gravity
theories@16#, is defined by a generalized metric function, o
the tangent bundleTM of the target manifoldM, which de-
fines the square of the length of a tangent vectorymPTxM at
xPM . The inverse metric is also generalized by introduci
a co-metric functionF(x,y) on the cotangent bundle, whic
is expanded iny as in @17#

F~x,y!5(
s

1

s
gs

m1•••ms~x!ym1
•••yms

, ~86!

where the coefficientsgs
m1•••ms(x) are contravariant tensor

on M. It is observed in Ref.@17# that the coefficients
gs

m1•••ms(x) in cometric function can be associated to high
spin gauge fields onM only if the cometric function is in-
variant under symplectic diffeomorphism group of the cota
gent bundle ofM in d51 and under a subgroup of it ind
52. This leads to a natural set of transformation rules for
gauge fieldsgs

m1•••ms(x) in dimensionsd51 and 2. The
transformation rules that are given in Ref.@17# for
gs

m1•••ms(x) in d51 andd52 exactly matches the transfo
mation rules~82! that we found in any dimension by usin
the 2T physics techniques. In the language of Ref.@17# the
first term in Eq.~82! is theW-Weyl transformation, and the
second and the third terms combined are the action of s
subgroup of the symplectic diffeomorhisms of the cotang
bundle of space-time. We emphasize that our results are v
in any dimension.

V. SOLUTION OF NCFT EQUATION TO ALL ORDERS
IN \

One may ask the question: which field theory could o
write down, such that its equations of motion, after ignori
field interactions, reproduce the first quantized version of
physics described by our worldline theory. That is, we w
to construct the analog of the Klein-Gordon equation rep
ducing the first quantization of the relativistic particle. Th
in the form of field theory interactions are included. A no
commutative field theory~NCFT! formulation of 2T physics
which addresses and solves this question is introduce
Ref. @9#. The basic ingredient is the local Sp(2) symmet
but now in a NC field theoretic setting. The NCFT equatio
have a special solution described by the NC field equati
~10!,~11!. We would like to find allQi j (X,P) that satisfies
these equations to all orders of\ which appears in the sta
products.

It is clear that the classical solution for the backgrou
fields discussed up to now is a solution in the\→0 limit,
since then the star commutator reduces to the classical P
son bracket. However, surprisingly, by using an appropri
set of coordinates, the classical solution is also an ex
quantum solution. These magical coordinates occur wh
everW(X) is at the most quadratic inXM andV1

M(X) is at
the most linear inXM Thus both of the casesW5X2 and
4-10
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W522kw discussed in the previous section provide ex
quantum solutions, and similarly others can be constructe
well.

To understand this assertion let us examine the trans
mation rules given in Sec. II, but now for general\ using the
full star product. Evidently, the classical transformations
modified by all higher orders in\. These are the local Sp~2!
gauge transformation rules of theQi j in the NCFT where
«(X,P) is the local gauge parameter@9#. With these rules we
can still mapQ115W(X) as in Eq.~25!. However, if we
proceed in the same manner as in Sec. II, since the Poi
bracket would be replaced by the star commutator eve
where, we are bound to find higher order\ corrections in all
the expressions. However, consider the star commutato
W(X) with any other quantity@W(X), . . . #!. This is a
power series containing only odd powers of\. If W(X) is at
the most quadratic function ofXM, the expression contain
only the first power of\. Hence for quadraticW(X)5X2 or
W522kw the star commutator is effectively replaced
the Poisson brackets, and all expressions involving s
W(X) produce the same results as the classical analysis

Similarly, we can argue that, despite the complications
the star product, we can use the remaining gauge freedo
fix Vs>250, V050, G150, and V1

M(X) linear in XM.
Again, with linear V1

M(X) all of its star commutators ar
replaced by Poisson brackets.

Then, the classical analysis of the background fields,
their transformation rules, apply intact in the solution of t
NCFT field equations~10!. The conclusion, again, is tha
there are two disconnected branches, one for low spins
<2 and one for high spinss>2, that seem to have an analo
in string theory at the extreme tension limits.

The NCFT of Ref.@9# allows more general field configu
rations in which the higher-spin fields interact with ea
other and with matter to all orders of\ and with higher
derivatives, consistently with the gauge symmetries. In
full theory, the type of field that appears in Eq.~11! can play
the role of the ‘‘compensators’’ alluded to in the previo
section. This would provide an example of an interact
field theory for higher-spin fields.

VI. CONCLUSIONS AND REMARKS

In this paper it was demonstrated that in a worldline f
malism, all the usuald-dimensional Yang-Mills, gravitationa
and scalar interactions experienced by a particle, plus in
actions with higher-spin fields, can be embedded
(d12)-dimensional 2T physics as a natural solution of
two-time background field equations~49!, taken in a fixed
Sp(2,R) gauge. Since 2T physics provides manyd dimen-
sional holographic images that appear as different 1T dyn
ics, a new level of higher-dimensional unification is achiev
by the realization that a family ofd-dimensional dynamica
systems~with background fields! are unified as a single (d
12)-dimensional theory.

It is also argued that the same perspective is true in fi
theory provided we use the NCFT approach to 2T phys
04500
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proposed recently in Ref.@9# which, beyond the worldline
theory, provides a coupling of all these gauge fields to e
other and to matter. In the NCFT counterpart the same
ture emerges for a special solution of the NC field equatio
Furthermore, the classical solution that determines the ph
space configuration of the background fields is also a spe
exact solution of the NCFT equations to all orders of\
when, by using gauge freedom,W(X) is chosen as any qua
dratic function ofXM ~equivalently,V1

M taken a linear func-
tion of XM). In the present paper we gave two illustratio
by takingW5X2 andW522wk. For nonquadratic forms o
W(X) there would be higher powers of\ in the solutions of
the NCFT equations.

By considering the canonical transformations in pha
space in the worldline formalism~or the gauge symmetry in
NCFT formalism! it is argued that a given solution for
fixed set of background fields can be transformed into n
solutions for other sets of background fields. The physi
interpretation of this larger set of solutions could be ve
rich, but it is not investigated in this paper.

The holographic image of the (d12)-dimensional theory,
in the massless particle gauge, makes connections with o
formalisms for higher-spin fields. In particular in one gau
our (d12)-dimensional approach yields thed-dimensional
action discussed in Ref.@11#. As it is shown there, the firs
order action~in phase space! is a completed version of an
action originally proposed by de Wit and Freedman@13# in
position-velocity space. The completion consists of includ
all powers of the velocities that couple to the higher-sp
fields, and their effect in the complete form of transformati
rules. Some problems pointed out in Ref.@11# can be re-
solved by three observations: first, there are differ
branches of solutions, one for the low spin sector, and
for the high spin sector starting with spin 2; second, a wor
line theory with the correct unitary high spin fields certain
is permitted as one of the holographic pictures of thed12
theory; and third, the stronger canonical gauge symmet
that could lead to nonunitary conformal gravity need n
exist in a complete interacting theory.

Our description of higher-spin fields appears to be con
tent in the worldline formalism, while the noncommutativ
field theory approach of Ref.@9# provides a field theoretic
action for them, with interactions. In this paper we touch
upon this aspect only superficially. This is an old proble
@12# that deserves further careful study. Furthermore, our
lution may correspond to self-consistent subsectors of st
theory at extreme limits of the tension. It would also be ve
interesting to further study the holographic aspects of the
physics theory.
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