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Area spectrum in Lorentz covariant loop gravity
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Laboratoire de Physique The´orique de l’École Normale Supe´rieure, 24 rue Lhomond, 75231 Paris Cedex 05, France,
and V. A. Fock Department of Theoretical Physics, St. Petersburg University, St. Petersburg, Russia

D. Vassilevich†

Institute for Theoretical Physics, Leipzig University, Augustusplatz 10/11, 04109 Leipzig, Germany
and V. A. Fock Department of Theoretical Physics, St. Petersburg University, St. Petersburg, Russia

~Received 30 March 2001; published 30 July 2001!

We use the manifestly Lorentz covariant canonical formalism to evaluate eigenvalues of the area operator
acting on Wilson lines. To this end we modify the standard definition of the loop states to make it applicable
to the present case of noncommutative connections. The area operator is diagonalized by using the usual shift
ambiguity in the definition of the connection. The eigenvalues are then expressed through quadratic Casimir
operators. No dependence on the Immirzi parameter appears.
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I. INTRODUCTION

Quantization of gravity is an extremely hard and intere
ing problem that remains unsolved so far. During rec
years, a number of approaches have achieved defi
progress in treating various aspects of quantum gravity.
most elaborated and popular line of research is string the
which includes perturbative gravity in its spectrum and u
fies it with other interactions. An alternative~or, perhaps,
complementary! approach is loop quantum gravity@1# ~for
review, see Ref.@2#!. This program relies on the Dirac ca
nonical quantization. It is explicitly nonperturbative an
background independent and thus it realizes the basic p
ciples of general relativity. During the previous decade t
approach has got rigorous mathematical foundations@3# and
has led to interesting qualitative predictions about quan
spacetime.

These predictions originate from remarkable results
tained in the framework of loop quantum gravity, which a
calculations of the volume and area spectra@4–6#. It ap-
peared, however, that the area spectrum depends on th
called Immirzi parameter@7#. It parametrizes a canonica
transformation@8#, which introduces a new connection fiel
The reason for this dependence is that this transforma
cannot be realized unitarily in the Hilbert space of quant
theory@9#. In the language of quantum-field theory this ind
cates the presence of a quantum anomaly. There exist
different types of the quantum anomalies. The first type
anomalies appear when a symmetry of the classical ac
cannot be preserved by quantization due to divergencie
other quantum effects. Chiral and conformal anomalies
long to this type. Their presence indicates emergence
new physics. The most celebrated example is the ch
anomaly in QCD, which has been used for description of
low-energy hadron physics since late 1960s. Rather n
rally, it has been suggested@9# that the anomaly in the men

*Email address: alexand@spht.saclay.cea.fr
†Email address: vassil@itp.uni-leipzig.de
0556-2821/2001/64~4!/044023~7!/$20.00 64 0440
-
t
ite
e

ry,
-

n-
s

m

-

so-

n

o
f
n
or
e-
a

al
e
u-

tioned canonical transformation belongs to this type a
consequently, the Immirzi parameter is a new fundame
constant.

One cannot, however, exclude the second possibility.
anomaly could appear if a symmetry is involuntarily brok
by the choice of a particular quantization scheme. If this
the case, the remedy can be in applying another quantiza
scheme that explicitly preserves as many important sym
tries as possible. This is the route we take in the pres
paper by applying the manifestly Lorentz covariant quan
zation of Ref.@10# to the calculation of the area spectrum

There is already some evidence that the Immirzi para
eter dependence may disappear in a more symmetric qu
zation scheme. In Ref.@10#, the path-integral quantization
scheme of Ref.@11# has been extended to arbitrary values
the Immirzi parameter. It has been demonstrated that the
mirzi parameter dependence does not appear in the pat
tegral. We should stress that in principle, the path-integ
formalism is capable of seeing nonperturbative effects~as,
e.g., the virtual black-hole formation@12#!. Another impor-
tant result was obtained recently by Samuel@13# who dem-
onstrated that the Barbero connection is not a Lorentz c
nection.

Recently, it was recognized that it was important for t
theory to be Lorentz covariant in spin foam models@14#,
which represent the modern development of loop quan
gravity @15#. However, the Lorentz covariance has been
troduced there without any reference to the canonical qu
tization. It is an important task to develop a Lorentz cova
ant formulation ‘‘from the first principles.’’

In this paper we apply the Lorentz covariant canoni
quantization developed in Ref.@10# to loop quantum gravity.
We rederive the spectrum of the area operator in the n
framework. To this end we construct the Wilson line opera
with true Lorentz connection. Since the Dirac brackets of
connections are nonzero, there is no connection represe
tion. However, by choosing an appropriate vacuum state,
are able to construct the quantum states corresponding to
Wilson lines, which behave in a very similar way to th
ordinary loop states. However, the area operator is not n
©2001 The American Physical Society23-1
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essarily diagonal on these states. To diagonalize this op
tor, we use the usual ambiguity in the connection: any c
nection can be shifted by a vector and will still remain
proper connection. It appears, that the shift is uniquely
fined by the requirement that it vanishes on the constr
surface and that the area operator is diagonal on the Wi
line states. This new connection obeys a remarkably sim
bracket algebra. Eigenvalues of the area operator are
calculated. Theydo notdepend on the Immirzi parameter.

The paper is organized as follows. In Sec. II we summ
rize the covariant canonical formulation of Ref.@10#. In Sec.
III we discuss the choice of the connection variables to
used in the Wilson line states. The area spectrum is ca
lated in Sec. IV. Section V is devoted to discussion of
results, problems, and future perspectives. The append
are intended to list various definitions and useful propert

We use the following notations for indices. The indic
i , j , . . . from the middle of the alphabet label the space
ordinates. The latin indicesa,b, . . . from the beginning of
the alphabet are the so~3! indices, whereas the capital lette
X,Y, . . . from the end of the alphabet are the so~3,1! indices.

II. so„3,1…-COVARIANT CANONICAL FORMULATION

In this section we review the covariant formalism dev
oped in Ref.@10#. It is a canonical formulation of genera
relativity based on the generalized Hilbert-Palatini act
suggested by Holst@16#:

S(b)5
1

2E «abgdea`eb`S Vgd1
1

b
!VgdD . ~1!

Here the star operator is defined as!vab5 1
2 «ab

gdvgd, and
Vab is the curvature of the spin connectionvab. A 311
decomposition of the fields reads

e05N dt1xaEi
a dxi , ea5Ei

a dxi1Ei
aNi dt,

Ẽa
i 5h1/2Ea

i , N> 5h21/2N, Ah5detEi
a ,

Ni5N D
i 1Ẽa

i xaN> , N> 5N> 1E> i
axaN D

i . ~2!

Here Ea
i is the inverse ofEi

a . The field xa describes the
deviation of the normal to the spacelike hypersurface$t
50% from the time direction.

Let us introduce matrix fields carrying one Lorentz ind

AX5~ 1
2 v0a, 1

2 «a
bcv

bc!—connection multiplet,

P̃X
i 5~Ẽa

i ,«a
bcẼb

i xc!—first triad multiplet,

Q̃X
i 5~2«a

bcẼb
i xc ,Ẽa

i !—second triad multiplet,

P̃(b)X
i 5 P̃X

i 2
1

b
Q̃X

i —canonical triad multiplet, ~3!

which form multiplets in the adjoint representation
so~3,1!. In Appendix A we present the relations between t
triad multiplets and introduce the numerical matricesP and
04402
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R @Eqs.~A2! and ~A3!# appearing in the formulas below. I
terms of these fields, the decomposed action can be re
sented in the form

S(b)5E dt d3x~ P̃(b)X
i ] t Ai

X1NG
XGX1N D

i Hi1N> H !,

GX5] i P̃(b)X
i 1 f XY

Z Ai
YP̃(b)Z

i ,

Hi52 P̃(b)X
j Fi j

X ,

H52
1

2@11~1/b2!#
P̃(b)X

i P̃(b)Y
j f Z

XYRW
Z Fi j

W ,

Fi j
X5] iAj

X2] jAi
X1 f YZ

X Ai
YAj

Z , ~4!

where f XY
Z are so~3,1! structure constants,NG

X5A0
X . The

so ~3,1! indices are raised and lowered with the help of t
Killing form

gXY5
1

4
f XZ1

Z2 f YZ2

Z1 , gXY5~g21!XY, gXY5S dab 0

0 2dab
D .

~5!

The limit b→ i gives Ashtekar gravity. Even though th
Hamiltonian constraintH in Eq. ~4! has apparently a pole a
b5 i , one can demonstrate@10# that this limit is nonsingular.

The canonical variables of the model areAi
X and P̃(b)X

i .
GX , Hi , andH are first class constraints obeying the algeb
presented in Appendix C. We call them the Gauss law,
feomorphism, and Hamiltonian constraints, respective
There are also two sets of the second class constraints. T
are represented by 333 symmetric fields

f i j 5PXYQ̃X
i Q̃Y

j 50, ~6!

c i j 5 f XYZQ̃X
[ l Q̃Y

$ j ]] l Q̃Z
i %22~Q̃Q̃!$ i [ j %Q̃Z

l ]Al
Z50, ~7!

~Q̃Q̃! i j 5gXYQ̃X
i Q̃Y

j . ~8!

Symmetrization is taken with the weight 1/2. Antisymmet
zation includes no weight.

The existence of the second class constraints gives ris
the Dirac bracket@17#

$K,L%D5$K,L%2$K,w r%~D21!rr 8$w r 8 ,L%, ~9!

wherew r5(f i j ,c i j ). The matrix of commutators of the sec
ond class constraintsD rr 8 can be found in Appendix B. Both
D andD21 are triangular. Due to this, when one of the fun
tions in Eq.~9!, K or L is a first class constraint, the Dira
bracket coincides with the ordinary one~except for the case
whenK5H andL depends on the connection!. In particular,
this gives

$GX ,GY%D5 f XY
Z GZ , ~10!
3-2
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$GX ,Ai
Y%D5dX

Y] i2 f XZ
Y Ai

Z ,

$GX ,P̃Y
i %D5 f XY

Z P̃Z
i .

Finally, the Dirac brackets of the canonical variables ha
the form

$P̃(b)X
i ,P̃(b)Y

j %D50,

$Ai
X ,P̃(b)Y

j %D5d i
jdY

X2 1
2 RXZ~Q̃Z

j Q̃i
W1d i

j I (Q)Z
W !gWY,

$Ai
X ,Aj

Y%D52$Ai
X ,fkl%~D1

21!(kl)(mn)$c
mn,Ar

Z%

3$P̃(b)Z
r ,Aj

Y%D2$Ai
X ,P̃(b)Z

r %D$Ar
Z ,cmn%

3~D1
21!(mn)(kl)$f

kl,Aj
Y%. ~11!

HereQ
> i

X is the inverse triad multiplet and

I (P)X
Y

ª P̃X
i P> i

Y , I (Q)X
Y

ªQ̃X
i Q
> i

Y ~12!

are projectors onQ̃ and P̃ multiplets ~see Appendix B for
details!.

Quantization may go along the usual way. We may
place the canonical variables by operators and define a c
mutator on them as@ .,.#ª i\$.,.%D . Of course, when we
replace the canonical variables by operators, the right-h
side of Eq.~11! becomes ambiguous. In actual calculatio
of the area spectrum we will use a shifted connectionA. As
we will see in Sec. III B, for this connection no orderin
ambiguity appears.

III. AREA OPERATOR AND THE WILSON LINE

A. Wilson line with canonical connection

In Ref. @10# it was suggested to use the Lorentz covari
formulation described above as a basis for a modified l
approach. The key point is thatAi

X is a true Lorentz connec
tion @Eq. ~10!# and so one can construct the Wilson lin
operator

Ûa~a,b!5P expS E
a

b

dxiAi
XTXD , ~13!

wherea is a path between two pointsa andb, andTX is a
gauge generator. However, we encounter a serious obst
since instead of simple standard canonical commutation
lations, we now have a complicated algebra of the Di
brackets~11!. In particular, the operators such as Eq.~13! fail
to form the loop algebra. Moreover, since the connectionAi

X

is noncommutative, the connection representation does
exist.

Nevertheless, one might hope to obtain some results r
ing on the bracket algebra~11! only. Let us try to obtain the
spectrum of the area operator extensively investigated in
framework of the standard loop approach@4,5#. Here we fol-
low the line of reasonings suggested in Ref.@2#. In particular,
we use the same regularization technique for the area op
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tor. Namely, we define the operator of the triad smeared o
a two-dimensional surface embedded in the three manifo

P̃X~S!5E
S
d2s ni~s!P̃X

i ~s!, ~14!

where the embedding is described by the coordinatesxi(sW )
and the normal to the surface is given byni
5« i jk(]xj /]s1)(]xk/]s2). Then the regularized area oper
tor is defined as follows:

S5 lim
r→`

(
n

Ag~Sn!, ~15!

where the sum is taken over a partitionr of S into small
surfacesSn , ønSn5S, and1

g~S!5gXYP̃X~S!P̃Y~S!. ~16!

We define a state vector corresponding to the Wilson l
operatorÛa as

Ua5Ûau0&, ~17!

whereu0& is a vacuum state. To be as close as possible to
connection representation formalism, we require

P̃X
i u0&50. ~18!

SinceP̃X
i are commutative, condition~18! is consistent. Con-

dition ~18! may lead to troubles if one acts by the inver
triad on the vacuum state. To avoid problems, one may c
sider a more general vacuum state with a nontrivial inter
geometry

P̃X
i u0&5^P̃X

i &u0&. ~19!

Consistency with the second class constraints requires

^P̃X
i & is expressed througĥẼ& and ^x& as in Eq.~3!. After

the calculations, one can take^P̃X
i &→0. The vacuum state

~19! may also be interesting in its own right~see discussion
in Sec. V!. We shall primarily use the simplest vacuum~18!,
but shall also comment, at some points, about which mo
fications would appear if the vacuum~19! was used instead

We have constructed a natural generalization of the
Wilson line states for the case of a noncommutative Lore
connection. Let us recall that the unitary representations
the Lorentz group are infinite dimensional. Therefore, it
much harder to address orthogonality, completeness,
other functional properties of the loop states than in the s
dard su~2! case. We will not discuss these properties he
Instead, we will concentrate on the algebraic aspect of
problem.

1Being expressed throughP̃(b) the operator g(S) reads

b2gXYP̃(b)X(S) P̃(b)Y(S)/(b221). The printed version of Ref.@10#
contains a mistake in this formula.
3-3
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To find the area spectrum, we study the action of
smeared triad on a state created by the Wilson line. Cons
the simplest situation when the patha has with the surface
S, one intersecting pointc, which breaksa in two parts,a1
anda2. Then the action is given by

P̃X~S!Ûa~a,b!u0&52E
S
d2sE

a
ds« i j l

]xi

]s1

]xj

]s2

]xk

]s

3d3@xW~s!,xW~s!#Ûa1
~a,c!

3@Ak
YTY ,P̃X

l #Ûa2
~c,b!u0&. ~20!

Here the vacuum state~18! has been used. For the vacuu
~19!, an additional term̂ P̃(b)X(S)&Ua(a,b) appears on the
right-hand side of Eq.~20!.

In the standard loop approach@4,5# one has to conside
the action of the smeared triadẼ on the Wilson line with
su~2! connectionAi

a . Therefore, Eq.~20! should be replaced
by an analogous one with the commutator of the canon
variables@Ai

a ,Ẽb
j # on the right-hand side. This commutat

is proportional tod i
j . Because of this fact, the explicitx

dependence can be canceled, and the right-hand side ofẼUa
becomes, in the standard loop approach, a purely algeb
expression. As a result the area operator~that is essentiallyẼ
applied twice! can be easily diagonalized. In the present c

$Ak
Y ,P̃X

l %D is not proportional todk
l . Consequently, the are

operator acting on the Wilson lineUa with the canonical
connectionA, is not just a matrix in the Lorentz indices an
cannot be made diagonal that easily. A way to bypass
difficulty is suggested in Sec. III B.

B. Shifted connection

We have seen that to enable the diagonalization of
area operator, the commutator of the connection andP
should be a unit matrix in the spatial indices. It is known th
if one adds a vector to a connection, the resulting object
again transform as a connection. We are going to use
arbitrariness in the choice of the connection to diagona
the area operator. We are interested in a new connectionA i

X

such that~i! it is a true Lorentz connection, i.e.,A i
X2Ai

X is

tensorial in both indices,~ii ! the Dirac brackets$A k
Y ,P̃X

l %D is
proportional todk

l , and ~iii ! A i
X2Ai

X is proportional to the
first class constraints. These requirements appear to be
strong. There is just one connection that satisfies all of th
To show this, let us note that all the triad~or tetrad! compo-
nents have dimension 0, while the connection has mass
mension 1. Consequently the Gauss constraint has dimen
1, and the diffeomorphism and Hamiltonian constraints h
dimension 2. Therefore, it is clear that

A i
X5Ai

X1a i
XY~Q!GY , ~21!

wherea i
XY(Q) does not contain derivatives or connection

The coefficient functionsa i
XY(Q) have to be tensorial in

order to ensure correct diffeomorphism and Lorentz trans
mation properties ofA:
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$GX ,A i
Y%D5dX

Y] i2 f XZ
Y A i

Z , ~22!

$D~NW !,A i
X%D5A j

X] iN
j1Nj] jA i

X . ~23!

D(NW ) is defined in Eq.~C1!. Thus A i
X is the true so~3,1!

connection. There is still a six-parameter family of the co
nections that satisfies Eqs.~22! and ~23!. This ambiguity is
fixed uniquely by the second condition~ii !. We arrive at the
following Lorentz connection:

A i
X5Ai

X1
1

2@11~1/b2!#
RS

XI (Q)
ST RT

Zf ZW
Y P> i

WGY . ~24!

The connectionA i
X has a very simple bracket withP̃Y

j :

$A i
X ,P̃Y

j %D5d i
j I (P)Y

X . ~25!

At this point we already observe independence of the rig
hand side of Eq.~25! from b. It should be stressed that th
b independence isnot a prerequirement in our construction
This is rather a consequence of conditions~i!–~iii ! above. We
also observe

$A i
X ,P> j

Y%D52P> j
XP> i

Y , ~26!

$A i
X ,I (P)

YZ%D50. ~27!

Due to this relation, the projectorsI (P) and I (Q) behave very
similar to c numbers.

The Dirac bracket of two connections has a very comp
cated form and will not be presented here. However, an
portant observation can be made by considering the Ja
identity

$$A i
X ,A j

Y%D ,P̃Z
k%D5$$A i

X ,P̃Z
k%D ,A j

Y%D

2$$A j
Y ,P̃Z

k%D ,A i
X%D

50. ~28!

It follows from Eq.~28! that $A i
X ,A j

Y%D does not depend on

the connection. It is a function ofQ̃ and its derivatives, i.e.
this bracket contains only commuting objects on the rig
hand side. Therefore, there will be no ordering ambiguity
we replace the Dirac brackets withA i

X by the corresponding
operator relation. We will use this as a new quantization ru
In particular,

@A i
X ,P̃Y

j #5 i\d i
j I (P)Y

X . ~29!

Note, that the commutators with the new connection~24! are
insufficient to define all commutators involving the canonic
connection. The reason is that the~classical! field A i

X satis-
fies the condition

gYZ~d i
kI (Q)X

Y 2Q̃i
YQ̃X

k !A k
Z5I (Q)X

Y f YZ
W Q

> i
Z] j Q̃W

j ~30!

and has fewer independent components thanAi
X . From Eq.

~24! it is clear that the missing components are contained
3-4
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the Gauss constraint. For practical purposes it is, theref
enough to know the commutators withA i

X and the commu-
tators with the Gauss constraint, which are defined eithe
the structure constants of the Lorentz group or by the ma
elements in corresponding representations. These quan
tion rules have one more important advantage. They en
that quantum transformation laws are identical to the cla
cal ones. So there will be no gauge anomaly for the Lore
group.

IV. AREA SPECTRUM

The shifted connectionA can be used as an argument f
the Wilson line. Let us evaluate the action of the area ope
tor ~15! on the states created by such Wilson lines. It is giv
by

SÛa@A#u0&5\Ûa1
@A#A2I (P)

XYTXTYÛa2
@A#u0&, ~31!

where we used Eqs.~20! and ~29! and the prescription@4,5#
for taking the square root of the operator~assuming that the
latter is still valid for the Lorentz gauge group!. The vacuum
state is supposed to be the trivial one@Eq. ~18!#.

Consider the matrix operatorI (P)
XYTXTY . It can be rewrit-

ten as

I (P)
XYTXTY5gXYTXTY2I (Q)

XY TXTY , ~32!

where the first term is a quadratic Casimir of the Lore
algebra:

gXYTXTY5C2@so ~3,1!#. ~33!

In order to study the second term in Eq.~32!, let us introduce
the generators

qaª
1

A12x2 S dab2
12A12x2

x2
xaxbD E> i

bQ̃X
i TX. ~34!

One can check directly that

I (Q)
XY TXTY52qaqa , ~35!

@qa ,qb#52«ab
cqc . ~36!

Consequently,qa generates the so~3! subalgebra of so~3,1!,
and I (Q)

XY TXTY is the Casimir operator of this subalgebra:

qaqa52C2@so ~3!#. ~37!

In a suitable basis in the defining representation of so~3,1!,
the generators qa annihilate the vector vx5(1
2x2)21/2(1,xa). All vectors vx belong to the same orbit o
the Lorentz group. Therefore, the subalgebras spanned
$qa% for different x, are conjugate in so~3,1!, and the spec-
trum of so ~3! representations obtained after the restrict
so (3,1)↓so (3) from a given representation of so~3,1!, does
not depend onx. Eigenvalues of the Casimir operator~37!
are alsox independent.
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The spectrum of the area operator acting on Wilson lin
reads

S;\A2C2@so ~3,1!#1C2@so ~3!#. ~38!

This formula represents the main result of our paper.
One can think naively that the Lorentz invariance of t

area spectrum~38! is broken due to the presence of the C
simir operator of a subgroup. However, this is not the ca
Under local Lorentz transformations, the Wilson line chang
asU(x,y)→U(x)U(x,y)U 21(y), whereU(x) is an element
of the Lorentz group taken in an appropriate representat
The matrix operatorA2I (P)

XYTXTY changes in a similar way

A2I (P)
XYTXTY→U(x)A2I (P)

XYTXTYU 21(x). Thus proper~co-
variant! transformation properties of Eq.~31! are recovered.

As expected, the area spectrum~38! does not depend on
the Immirzi parameterb.

V. DISCUSSION

In this paper we analyzed the area operator spectrum
manifestly Lorentz covariant formalism. We have co
structed a generalization of the Wilson line states for the c
of noncommutative connection. As usual, there is certain
bitrariness in the choice of the connection. Namely, any c
nection can be shifted by a vector and would still remain
connection. We use this arbitrariness to define a connec
A such that$A i

X ,P̃Y
j %D;d i

j . Because of the rather simpl
commutation relations~29!, we are able to explicitly find the
area spectrum~38!. Since the right-hand side of Eq.~29!
does not depend on the Immirzi parameterb, there is no
dependence onb in the spectrum~38! as well.

Note, that the connectionA is unique only if we require
that it coincides withA on the surface of the constraints.
different idea might be to fix the connection by consideri
its spacetime properties. Because of the rather complic
form of the Dirac brackets with the Hamiltonian constrain
this is, technically, a very involved calculation. We hope th
the results obtained in this way will agree with our result

We must admit that there is no proof in this paper that
area spectrum withany connection does not depend onb.
We cannot perform direct calculations with a connecti
other thanA. We may, however,interpret the shiftA→A as
a diagonalization of the area operator. Our results sugg
that in a Lorentz covariant quantization, the dependence
the physical quantities on the Immirzi parameter, ultimat
disappears.

In addition to the explicit Lorentz covariance there is a
other advantage of our approach. The Hamiltonian constr
~4! is a polynomial in the canonical variables~as for the
Ashtekar or Euclidean cases!. Due to this, the correspondin
regularized quantum operator may be similar to the first te
of Thiemann’s constraint operator@18#. That would eliminate
difficulties created by the second term. Note that the s
foam formulation of loop quantum gravity takes into accou
the first term of Thiemann’s Hamiltonian only@2,15#.

Let us comment on the choice of the vacuum state. T
connection representation implies that the trivial vacu
~18! is chosen. Such representation does not exist in our c
3-5
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due to the noncommutativity of the connection fields. The
fore, we must choose a vacuum state explicitly. The po
bility of a more general vacuum state~19! can be taken into
account.~A similar possibility has been already discussed
Ref. @19#!. For the vacuum state~19! we have no problem
with the action of the inverse triad on the vacuum, but
lose explicit background independence. The physical con
quences of different vacua have yet to be clarified.

Even without a relation to the Immirzi parameter pro
lem, the quantization of gravity in manifestly Lorentz cov
riant terms is an important task. We have considered here
algebraic part of the problem, while the functional analy
has been completely ignored. We do not know how to c
struct a complete orthogonal basis in the space of states
of the Wilson lines. Consequently, we may only guess wh
representations do actually contribute to the area spec
~38!.

The area spectrum~38! now contains the Casimir operato
of a noncompact Lorentz group. Since unitary represe
tions of the Lorentz group are labeled by a pair of indic
(r, j ), and the indexr is continuous, we may expect that th
area spectrum becomes continuous as well. This would
new feature for the loop quantum gravity, though a contin
ous spectrum appears in the spin foam models@14#. How-
ever, in view of the remarks in the previous paragraph,
feature should be taken with a great amount of care.

Recently, a manifestly so~3,1!-covariant formalism has
been developed in the framework of spin foam models@14#.
It has been suggested to use the so-called simple repres
tions of the Lorentz group only. The Immirzi parameter h
also been included in this approach@20,21#. The area spec
trum obtained in the spin foam models is different from o
expression~38!. The reason is that we use different quan
zation rules. We should stress that our commutation relat
are derived from the gravitational action rather than post
lated. Therefore, our quantization rules may provide a m
solid ground for the Lorentz-invariant spin foam models. D
spite complicated Dirac brackets, our final commutation
lations ~29! are rather simple. It should be possible to u
them in the spin foam approach.
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APPENDIX A: MATRIX ALGEBRA

In the basis~3! the so~3,1! structure constants are

f A1A2

A3 50, f A1B2

A3 52«A1B2A3, f B1B2

A3 50,

f B1B2

B3 52«B1B2B3, f A1B2

B3 50, f A1A2

B3 5«A1A2B3.

~A1!
04402
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Here we split the six-dimensional indexX into a pair of
three-dimensional indices,X5(A,B), so thatA,B51,2,3. «
is the Levi-Civita symbol,«12351.

All triad multiplets are connected by numerical matrice

P̃X
i 5PX

YQ̃Y
i , PX

Y5S 0 1

21 0D da
b , ~A2!

P̃X
i 5

RX
Y

11~1/b2!
P̃(b)Y

i ,

RX
Y5S 1 2

1

b

1

b
1
D da

b . ~A3!

They, as well as their inverse, commute with each other a
furthermore, they commute with the structure constants
the following sense:

f XYZ8PZ8
Z

5 f XY8ZPY8
Y . ~A4!

Other useful relations can be found in Ref.@10#.

APPENDIX B: INVERSE MULTIPLETS AND PROJECTORS

The inverse triad multiplets are introduced as the follo
ing fields:

P> i
X5S db

a2xaxb

12x2
E> i

b ,2
«a

bcE> i
bxc

12x2 D ,

Q
> i

X5S «a
bcE> i

bxc

12x2
,
db

a2xaxb

12x2
E> i

bD . ~B1!

They satisfy

$GX ,P> i
Y%52 f XZ

Y P> i
Z , P̃X

i P> j
X5d j

i , Q̃X
i P> j

X50. ~B2!

Similar properties are valid forQ
> i

X5PY
XP> i

Y .
The projectors~12! read

I (P)X
Y 5S da

b2xaxb

12x2

«a
bcxc

12x2

«a
bcxc

12x2
2

da
bx22xaxb

12x2

D ~B3!

and I (Q)X
Y 5dX

Y2I (P)X
Y . Besides, one can note the relatio

that are very helpful in calculations:

I (P)
XY52PZ

XI (Q)
ZWPW

Y , ~B4!

f WYZI (P)W
X Q̃Y

i Q̃Z
j 50, ~B5!

f WYZI (Q)W
X Q̃Y

i Q̃Z
j 5 f XYZQ̃Y

i Q̃Z
j . ~B6!
3-6
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The commutators of the second class constraints form
following triangular matrix:

D5S 0 D1

2D1 D2
D , D215S D1

21D2D1
21 2D1

21

D1
21 0

D ,

~B7!

where

D1
( i j )(kl)5$f i j ,ckl%5

4b2

11b2
~Q̃Q̃!$ i [ j %~Q̃Q̃!$k] l %, ~B8!

~D1
21!(kl)(mn)5

1

8 S 11
1

b2D @~Q̃Q̃!kl~Q̃Q̃!mn

2~Q̃Q̃!km~Q̃Q̃! ln2~Q̃Q̃!kn~Q̃Q̃! lm#.

~B9!

An explicit form of D2 is not needed since all brackets a
expressed in terms ofD1

21 only @see Eq.~11!#.

APPENDIX C: CONSTRAINT ALGEBRA

Define the smeared constraints:

G~n!5E d3x nXGX , H~N> !5E d3x N> H,
.

cz
to

,

n
C

.

04402
e
D~NW !5E d3x Ni~Hi1Ai

XGX!. ~C1!

They obey the following algebra:

$G~n!,G~m!%D5G~n3m!,

$D~NW !,D~MW !%D52D~@NW ,MW # !,

$D~NW !,G~n!%D52G~Ni] in!,

$H~N> !,G~n!%D50,

$D~NW !,H~N> !%D52H~LNW N> !,

$H~N> !,H~M> !%D5D~KW !2G~K jAj !, ~C2!

where

~n3m!X5 f YZ
X nYmZ, LNW N> 5Ni] iN> 2N> ] iN

i ,

@NW ,MW # i5Nk]kM
i2Mk]kNi ,

K j5~N> ] iM> 2M> ] iN> !Q̃X
i Q̃Y

j gXY. ~C3!
.
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