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We use the manifestly Lorentz covariant canonical formalism to evaluate eigenvalues of the area operator
acting on Wilson lines. To this end we modify the standard definition of the loop states to make it applicable
to the present case of noncommutative connections. The area operator is diagonalized by using the usual shift
ambiguity in the definition of the connection. The eigenvalues are then expressed through quadratic Casimir
operators. No dependence on the Immirzi parameter appears.
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[. INTRODUCTION tioned canonical transformation belongs to this type and,
consequently, the Immirzi parameter is a new fundamental
Quantization of gravity is an extremely hard and interest-constant.
ing problem that remains unsolved so far. During recent One cannot, however, exclude the second possibility. An
years, a number of approaches have achieved definitnomaly could appear if a symmetry is involuntarily broken
progress in treating various aspects of quantum gravity. Thby the choice of a particular quantization scheme. If this is
most elaborated and popular line of research is string theoryhe case, the remedy can be in applying another quantization
which includes perturbative gravity in its spectrum and uni-scheme that explicitly preserves as many important symme-
fies it with other interactions. An alternativ@r, perhaps, tries as possible. This is the route we take in the present
complementary approach is loop quantum gravifyt] (for ~ paper by applying the manifestly Lorentz covariant quanti-
review, see Ref[2]). This program relies on the Dirac ca- zation of Ref[10] to the calculation of the area spectrum.
nonical quantization. It is explicitly nonperturbative and There is already some evidence that the Immirzi param-
background independent and thus it realizes the basic priréter dependence may disappear in a more symmetric quanti-
ciples of general relativity. During the previous decade thiszation scheme. In Ref10], the path-integral quantization
approach has got rigorous mathematical foundatighend ~ scheme of Ref11] has been extended to arbitrary values of
has led to interesting qualitative predictions about quantunthe Immirzi parameter. It has been demonstrated that the Im-
spacetime. mirzi parameter dependence does not appear in the path in-
These predictions originate from remarkable results obtegral. We should stress that in principle, the path-integral
tained in the framework of loop quantum gravity, which areformalism is capable of seeing nonperturbative effeets
calculations of the volume and area sped#a-6]. It ap- €., the virtual black-hole formatiofi2]). Another impor-
peared, however, that the area spectrum depends on the $80t result was obtained recently by Samli3] who dem-
called Immirzi parametef7]. It parametrizes a canonical onst_rated that the Barbero connection is not a Lorentz con-
transformatior{8], which introduces a new connection field. nection.
The reason for this dependence is that this transformation Recently, it was recognized that it was important for the
cannot be realized unitarily in the Hilbert space of quantuntheory to be Lorentz covariant in spin foam modglst],
theory[9]. In the language of quantum-field theory this indi- Which represent the modern development of loop quantum
cates the presence of a quantum anomaly. There exist tw@avity [15]. However, the Lorentz covariance has been in-
different types of the quantum anomalies. The first type ofroduced there without any reference to the canonical quan-
anomalies appear when a symmetry of the classical actiofization. It is an important task to develop a Lorentz covari-
cannot be preserved by quantization due to divergencies @0t formulation “from the first principles.”
other quantum effects. Chiral and conformal anomalies be- In this paper we apply the Lorentz covariant canonical
long to this type. Their presence indicates emergence of guantization developed in R¢fLO] to loop quantum gravity.
new physics. The most celebrated example is the chirafVe rederive the spectrum of the area operator in the new
anomaly in QCD, which has been used for description of thdramework. To this end we construct the Wilson line operator
low-energy hadron physics since late 1960s. Rather natyvith true Lorentz connection. Since the Dirac brackets of the

rally, it has been suggestédl] that the anomaly in the men- Connections are nonzero, there is no connection representa-
tion. However, by choosing an appropriate vacuum state, we

are able to construct the quantum states corresponding to the
*Email address: alexand@spht.saclay.cea.fr Wilson lines, which behave in a very similar way to the
"Email address: vassil@itp.uni-leipzig.de ordinary loop states. However, the area operator is not nec-
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essarily diagonal on these states. To diagonalize this oper& [Eqgs.(A2) and (A3)] appearing in the formulas below. In
tor, we use the usual ambiguity in the connection: any conterms of these fields, the decomposed action can be repre-
nection can be shifted by a vector and will still remain asented in the form
proper connection. It appears, that the shift is uniquely de-
fined by the requirement that it vanishes on the constraint
surface and that the area operator is diagonal on the Wilson
line states. This new connection obeys a remarkably simple
bracket algebra. Eigenvalues of the area operator are then gx:f?iﬁi(g)x+f>z<YAﬁ5i(g)zv
calculated. Theylo notdepend on the Immirzi parameter.
The paper is organized as follows. In Sec. Il we summa-
rize the covariant canonical formulation of REE0]. In Sec.
[l we discuss the choice of the connection variables to be
used in the Wilson line states. The area spectrum is calcu- 1 =i =i eXYnZeW
lated in Sec. IV. Section V is devoted to discussion of the H=- mp(ﬁ)xp(ﬁwfz RwFij »
results, problems, and future perspectives. The appendices
are intended to list various definitions and useful properties.
We use the following notations for indices. The indices
i,j,... from the middle of the alphabet label the space co- 7 X A X
ordinates. The latin indicea,b, ... from the beginning of where fy are 80(3'1). structure constant§/,\/g=A0. The
the alphabet are the @) indices, whereas the capital letters SO (3’1) indices are raised and lowered with the help of the
X,Y, ... from the end of the alphabet are th€34) indices. Killing form

s(ﬁ)=f dt d®X(P5x @ Al + NGx+ NpHi+ AH),

Pl EX
Hi==Pig)xFij »

Fii=aiA = A+ 15 ATAT, (4)

) 0
Il. s0(3,1)-COVARIANT CANONICAL FORMULATION gXY:%ff(ZZ f$122 g<Y=(g~HX", ng=( gb )
! ~ %ap
In this section we review the covariant formalism devel- : (5)
oped in Ref.[10]. It is a canonical formulation of general

relativity based on the generalized Hilbert-Palatini actionThe limit 8—i gives Ashtekar gravity. Even though the

suggested by Ho : amiltonian constrainH in Eq. as apparently a pole a
ted by HolgtL6] Hamiltoni traind in Eq. (4) h tl le at
B=i, one can demonstraf&0] that this limit is nonsingular.
S(B)ZEJ' saﬁyﬁea/\eﬁ/\<ﬂy5+£*9’/‘9). (1) The canonical variables of the model &g andf"(mx.
2 B Gy, H;, andH are first class constraints obeying the algebra

presented in Appendix C. We call them the Gauss law, dif-
feomorphism, and Hamiltonian constraints, respectively.
There are also two sets of the second class constraints. They
are represented by>33 symmetric fields

Here the star operator is defined #8“#= 34, ;07°, and
Q<# is the curvature of the spin connectiesf”’. A 3+1
decomposition of the fields reads

0_ a i a_-aqyi EINL
e’ =Ndt+x Eidx, e*=E’dx+EN'dt, ' =T1*"Q}Q}=0, ©®)
El=h"El, N=h"YN, h=detE?, . 12T 2 R0} o R 2

. | I =RLQVa Q3 -2(QQ QAT =0, (7)
N'=Np+ExN, N=N+Elxalp. @

. (QQ)"=g""QxQ} . ®
Here E} is the inverse ofE?. The field y, describes the
deviation of the normal to the spacelike hypersurfdte Symmetrization is taken with the weight 1/2. Antisymmetri-
=0} from the time direction. zation includes no weight.

Let us introduce matrix fields carrying one Lorentz index The existence of the second class constraints gives rise to
the Dirac brackef17]
AX=(}0"2 13, .0"°)—connection multiplet,
{K.Lp={K,L}—{K,e }(A D {or L}, (9

whereg, = (¢',')). The matrix of commutators of the sec-

'Qix:(_gabC” ich ,E;)—second triad multiplet, ond class constraints"" can be found in Appendix B. Both
A andA 1! are triangular. Due to this, when one of the func-
- ~ 1 _ _ _ tions in Eq_.(9_), K or Lisa firs_t class constraint, the Dirac
(B)x=Px— EQx—canonlcal triad multiplet, (3 bracket coincides with the ordinary ofexcept for the case
whenK=H andL depends on the connectiorhn particular,
which form multiplets in the adjoint representation of this gives
s03,1). In Appendix A we present the relations between the 5
triad multiplets and introduce the numerical matri¢ésand {9x.Gvtpo=T%v0z, (10

Pl =(E.,&,"°E} x.)—first triad multiplet,
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{Gx A.Y} =5Y5. —fY_AZ tor. Namely, we define the operator of the triad smeared over
A D XY XZM\ s . . . .
a two-dimensional surface embedded in the three manifold:
{Gx PYlo=1%yP%. N .
_ , . . Px(2)=f d%o ni(o)Py(0), (14)
Finally, the Dirac brackets of the canonical variables have 2
the form .
where the embedding is described by the coordingftas)
{Pl o Playlp=0 and the normal to the surface is given by,
(B)X T (B)YID ™ ¥ j 1 kj g2 ;
=egjj(x'1da")(dx1do). Then the regularized area opera-
{Aixvﬁ{,B)Y}D: 5{' 55_%sz@jz@/v+ 5”\(/\(5)2)9\/\/% tor is defined as follows:
{AX A o= —{AX, 6D ey mn{ 4™ AT} S=lim ; 9(Sn), (19
pHOO
X{P! o7 A p—{AS P AF ymn
Pz Alto AT PgziotAT 47 where the sum is taken over a partitipnof S into small
X(DI Y mnynyl <A (1))  surfacesS,, U,S,=S, and
Here Q" is the inverse triad multiplet and g(3) =g " Px(2)Pyv(3). (16)
IE(P)X:’I‘:‘,iXE)iY, '{Q)x:éiinY (12) We define a state vector corresponding to the Wilson line

operatorJ,, as

are projectors orQ and P multiplets (see Appendix B for
details.

Quantization may go along the usual way. We may réyyhere|0) is a vacuum state. To be as close as possible to the
place the canonical variables by operators and define a congynection representation formalism, we require
mutator on them as$.,.]:=if{.,.}p. Of course, when we
replace the canonical variables by operators, the right-hand PL|0y=0. (18)
side of Eq.(11) becomes ambiguous. In actual calculations
of the area spectrum we will use a shifted connectibris
we will see in Sec. Ill B, for this connection no ordering
ambiguity appears.

u,=0,l0), (17)

Sincef"X are commutative, conditiof18) is consistent. Con-
dition (18) may lead to troubles if one acts by the inverse
triad on the vacuum state. To avoid problems, one may con-

sider a more general vacuum state with a nontrivial internal
I1l. AREA OPERATOR AND THE WILSON LINE geometry

A. Wilson line with canonical connection ~i ~i
- . Py0)=(P})|0). (19
In Ref.[10] it was suggested to use the Lorentz covariant

formulation described above as a basis for a modified 00 onsistency with the second class constraints requires that

approach. The key point is thAgX is a true Lorentz connec- <|3ix> is expressed througﬁE) and(y) as in Eq.(3). After
tion [Eqg. (10)] and so one can construct the Wilson line . ~;
the calculations, one can tak®y)—0. The vacuum state

operator X AN . . )
P (19) may also be interesting in its own rigtgee discussion
R b in Sec. \). We shall primarily use the simplest vacuy8),
Ua(a,b)=79exp<f dx'A; Tx), (13 but shall also comment, at some points, about which modi-
@ fications would appear if the vacuu(h9) was used instead.
wherea is a path between two pointsandb. and T is a We have constructed a natural generalization of the the
P P P X Wilson line states for the case of a noncommutative Lorentz
gauge generator. However, we encounter a serious obstacle . : .
; . : ; : connection. Let us recall that the unitary representations of
since instead of simple standard canonical commutation ré; o . . S
. . . _1the Lorentz group are infinite dimensional. Therefore, it is
lations, we now have a complicated algebra of the Dirac

i . much harder to address orthogonality, completeness, and
bracket«(11). In particular, the operato_rs such as EIp) fa_ul other functional properties of the loop states than in the stan-
to form the loop algebra. Moreover, since the connec&{in

. . h . ion d dard su2) case. We will not discuss these properties here.
EXirSl?ncommutatlve, the connection representation does n(i’llistead, we will concentrate on the algebraic aspect of the

Nevertheless, one might hope to obtain some results rel;}?mblem'
ing on the bracket algebi@d1) only. Let us try to obtain the
spectrum of the area operator extensively investigated in the
framework of the standard loop approddhs]. Here we fol- 'Being expressed throughP 4, the operator g(3) reads
low the line of reasonings suggested in R&l. In particular,  g2g*P 4% (3)P4v(2)/(82—1). The printed version of Ref10]
we use the same regularization technique for the area operasntains a mistake in this formula.
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To find the area spectrum, we study the action of the {gX,AiY}ngigi_f;ZAiZ, (22)
smeared triad on a state created by the Wilson line. Consider
the simplest situation when the pathhas with the surface {D(N) A-X}DZA-X(?-NH NigAX. (23)
., one intersecting point, which breaksy in two parts,a; o I o
and a,. Then the action is given by D(N) is defined in Eq(C1). Thus 4 is the true sd3,1)

ox oxl axk connection. There is still a six-parameter family of the con-
Py(2)0,.(a,b)|0)= _J' dzaf dssy _Xl iz > nections that satisfies Eq&22) and (23). This ambiguity is
s @ dot ga? IS fixed uniquely by the second conditigin). We arrive at the

. R . following Lorentz connection:
X 8°[x(a),x(s)]U, (a,c)

1
Y1 B0 A=A+ ——————RSIG R 2w PGy . (24
X[AKTy,Py]U,,(c,b)[0).  (20) AT T ] S @R BTy (24
Here the vacuum stat@d8) has been used. For the vacuum
(19), an additional tem{ﬁ(ﬁ)x(z)wa(a,b) appears on the
right-hand side of Eq(20). X Biv_ = siIX 2
In the standard loop approag#,5] one has to consider AT PYo= ey @9

the action of the smeared tridgl on the Wilson line with At this point we already observe independence of the right-
su2) connectionA?. Therefore, Eq(20) should be replaced hand side of Eq(25) from 8. It should be stressed that this
by an analogous one with the commutator of the canonicaB independence isot a prerequirement in our construction.
variables| A%,E}] on the right-hand side. This commutator This is rather a consequence of conditiénsiii) above. We

is proportional tod . Because of this fact, the explicit ~ &lS0 observe

The connectiond* has a very simple bracket withl,:

dependenqe can be canceled, and the right-hand siglel of . {-Aiva)JY 5= — E)J?(E)iY! (26)
becomes, in the standard loop approach, a purely algebraic
expression. As a result the area operétioat is essentiallf {AX E(PZ)}D: 0. (27)

applied twice can be easily diagonalized. In the present case

{AY ,PY}p is not proportional tod, . Consequently, the area Due to this relation, the projectotgs) andl o) behave very
operator acting on the Wilson lingl, with the canonical ~Similar toc numbers. _ .
connectionA, is not just a matrix in the Lorentz indices and ~ The Dirac bracket of two connections has a very compli-

cannot be made diagonal that easily. A way to bypass thi§ated form and will not be presented here. However, an im--
difficulty is suggested in Sec. Il B. portant observation can be made by considering the Jacobi

identity
B. Shifted connection

X Y Dk X Bk Y

We have seen that to enable the diagonalization of the HAT Ao, Paio=HAT Pzho. Ao
area operator, the commutator of the connection &nd —{{AY,TDE}D,A?}D
should be a unit matrix in the spatial indices. It is known that
if one adds a vector to a connection, the resulting object will =0. (28
again transform as a connection. We are going to use this
arbitrariness in the choice of the connection to diagonalizét follows from Eq.(28) that{A}",. A} does not depend on
the area operator. We are interested in a new conneﬁtfbn the connection. It is a function & and its derivatives, i.e.,
such that(i) it is a true Lorentz connection, i.eAiX—AiX is this bracket contains only commuting objects on the right-
tensorial in both indicesji) the Dirac bracket$AE ’|3IX}D is  hand side. There_fore, there will _bexno ordering ambigl_Jity if
proportional toé'k, and (iii) AiX_Aix is proportional to the W€ replace the Dirac brackets with;" by the corresponding

first class constraints. These requirements appear to be ve erator relation. We will use this as a new quantization rule.
strong. There is just one connection that satisfies all of themd" P2rticular,
To show this, let us note that all the tri&or tetrad compo-

nents have dimension 0, while the connection has mass di-

mension 1. Consequently the Gauss constraint has dimensiﬁ{pOte that the commutators with the new connectid) are

1, and the diffeomorphism and Hamiltonian constraints have - ) . X .
k . _ insufficient to define all commutators involving the canonical
dimension 2. Therefore, it is clear that

connection. The reason is that tt@assical field Aix satis-
AX=A+aY(Q) Gy, (21 fies the condition

[ASPL=i46175y . (29)

where f*"(Q) does not contain derivatives or connections. Oy A 51 o~ QIR AF=1{5)x ¥R 9, Qly  (30)
The coefficient functionsz*"(Q) have to be tensorial in .

order to ensure correct diffeomorphism and Lorentz transforand has fewer independent components tAin From Eq.
mation properties of4: (24) it is clear that the missing components are contained in
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the Gauss constraint. For practical purposes it is, therefore, The spectrum of the area operator acting on Wilson lines

enough to know the commutators with* and the commu-

tators with the Gauss constraint, which are defined either by
the structure constants of the Lorentz group or by the matrix
elements in corresponding representations. These quanti

tion rules have one more important advantage. They ensur
that quantum transformation laws are identical to the classi-
cal ones. So there will be no gauge anomaly for the Lorentf

group.

IV. AREA SPECTRUM

reads

S~7i\—C,[s0(3,1)]+C,[s0(3)]. (39

his formula represents the main result of our paper.

One can think naively that the Lorentz invariance of the
rea spectrun@38) is broken due to the presence of the Ca-
simir operator of a subgroup. However, this is not the case.
Under local Lorentz transformations, the Wilson line changes
asU(x,y)—UX)U(x,y)UU (y), wherel/(x) is an element
of the Lorentz group taken in an appropriate representation.

The shifted connectiont can be used as an argument for The matrix operatok/— 13\ T, Ty changes in a similar way:
the Wilson line. Let us evaluate the action of the area opera;/_| E(PYTXTY_’U(X) [ {%TXTYM_l(X). Thus proper(co-

tor (15) on the states created by such Wilson lines. It is give

by
SU[A]|0)=AU, [AIN=1{5TxTyU,, [ A]|0), (3D)

where we used Eq$20) and(29) and the prescriptiofé,5]
for taking the square root of the operatassuming that the
latter is still valid for the Lorentz gauge grou@he vacuum
state is supposed to be the trivial diteg. (18)].

Consider the matrix operatdfp Ty Ty . It can be rewrit-
ten as

1 Tx Ty =0 Ty Ty =175, Ty, (32

r\/arianﬁ transformation properties of E¢31) are recovered.

As expected, the area spectr&8) does not depend on
the Immirzi parametep.

V. DISCUSSION

In this paper we analyzed the area operator spectrum in a
manifestly Lorentz covariant formalism. We have con-
structed a generalization of the Wilson line states for the case
of noncommutative connection. As usual, there is certain ar-
bitrariness in the choice of the connection. Namely, any con-
nection can be shifted by a vector and would still remain a
connection. We use this arbitrariness to define a connection

A such that{ A} ,PL}p~ &/ . Because of the rather simple

where the first term is a quadratic Casimir of the Lorentzcommutation relation629), we are able to explicitly find the

algebra:
g " TxTy=C,[s0(3,D)]. (33

In order to study the second term in E§2), let us introduce
the generators

1 1—\/1—)(? ~
= Sab— EPQLTX. (34
Ga /—21_)( ab 2 XaXb | Ei Qx

One can check directly that

110y TxTy=—0ala. (35

[Qa,0p]= _Sabcqc- (36)

Consequentlyy, generates the @) subalgebra of s¢3,1),
and| ) TxTy is the Casimir operator of this subalgebra:

(37

In a suitable basis in the defining representation @840,
the generators g, annihilate the vector v,=(1

0ada=—C5[s0(3)].

—x%) "Y4(1,x,). All vectors v, belong to the same orbit of

area spectruni38). Since the right-hand side of Eq29)
does not depend on the Immirzi paramefgrthere is no
dependence o in the spectrum(38) as well.

Note, that the connectiod is unique only if we require
that it coincides withA on the surface of the constraints. A
different idea might be to fix the connection by considering
its spacetime properties. Because of the rather complicated
form of the Dirac brackets with the Hamiltonian constraint,
this is, technically, a very involved calculation. We hope that
the results obtained in this way will agree with our results.

We must admit that there is no proof in this paper that the
area spectrum witlany connection does not depend ¢gh
We cannot perform direct calculations with a connection
other than4. We may, howeveiinterpretthe shiftA— A as
a diagonalization of the area operator. Our results suggest,
that in a Lorentz covariant quantization, the dependence of
the physical quantities on the Immirzi parameter, ultimately
disappears.

In addition to the explicit Lorentz covariance there is an-
other advantage of our approach. The Hamiltonian constraint
(4) is a polynomial in the canonical variabléas for the
Ashtekar or Euclidean case®ue to this, the corresponding
regularized quantum operator may be similar to the first term
of Thiemann'’s constraint operat(d8]. That would eliminate

the Lorentz group. Therefore, the subalgebras spanned hjjfficulties created by the second term. Note that the spin

{qa,} for different y, are conjugate in s(3,1), and the spec-

foam formulation of loop quantum gravity takes into account

trum of so(3) representations obtained after the restrictionthe first term of Thiemann’s Hamiltonian onf2,15].

so (3,1) so (3) from a given representation of 1), does
not depend ory. Eigenvalues of the Casimir operat(37)
are alsoy independent.

Let us comment on the choice of the vacuum state. The
connection representation implies that the trivial vacuum
(18) is chosen. Such representation does not exist in our case

044023-5



S. ALEXANDROV AND D. VASSILEVICH PHYSICAL REVIEW D 64 044023

due to the noncommutativity of the connection fields. ThereHere we split the six-dimensional index into a pair of
fore, we must choose a vacuum state explicitly. The possithree-dimensional indice¥X=(A,B), so thatA,B=1,2,3.¢
bility of a more general vacuum statg9) can be taken into is the Levi-Civita symbolg!?=1.

account.(A similar possibility has been already discussed in Al triad multiplets are connected by numerical matrices:
Ref. [19]). For the vacuum statél9) we have no problem

with the action of the inverse triad on the vacuum, but we B _IYD) oY= 0 1 5 A2
lose explicit background independence. The physical conse- x=xQy, X7\ _1 o] 2 (A2)
guences of different vacua have yet to be clarified.
Even without a relation to the Immirzi parameter prob- RY
lem, the quantization of gravity in manifestly Lorentz cova- ~iX=—X~ i(ﬁ)Y
riant terms is an important task. We have considered here the 1+(1/8%)
algebraic part of the problem, while the functional analysis
has been completely ignored. We do not know how to con- 1 _ E
struct a complete orthogonal basis in the space of states out B
of the Wilson lines. Consequently, we may only guess which Ry= 1 8. (A3)
representations do actually contribute to the area spectrum ,E 1
(398).

The area spectruif88) now contains the Casimir operator o .
P 88) P They, as well as their inverse, commute with each other and,

of a noncompact Lorentz group. Since unitary representaT i h te with the struct tants i
tions of the Lorentz group are labeled by a pair of indices |INermore, ney commute wi € structure constants in

(p,]j), and the index is continuous, we may expect that the the following sense:
area spectrum becomes continuous as well. This would be a
new feature for the loop quantum gravity, though a continu-
ous spectrum appears in the spin foam mod#&{. How-
ever, in view of the remarks in the previous paragraph, thi

feature should be taken with a great amount of care. .
Recently, a manifestly $8,1)-covariant formalism has APPENDIX B: INVERSE MULTIPLETS AND PROJECTORS

been developed in the framework of spin foam mode#. The inverse triad multiplets are introduced as the follow-
It has been suggested to use the so-called simple represenfgg fields:

tions of the Lorentz group only. The Immirzi parameter has

'y1Z ! Y
fXY2IIS, =40, (A4)

SOther useful relations can be found in REE0].

also been included in this appranQO,ZJ_]. The area spec- < [ &E=x_, % EPxC
trum obtained in the spin foam models is different from our Pi= > Ei >
expression38). The reason is that we use different quanti- 1-Xx 1-X

zation rules. We should stress that our commutation relations

are derivedfrom the gravitational action rather than postu- X_ &% cEPX°© 5ﬁ—XaXbEb
lated. Therefore, our quantization rules may provide a more Q= 1— 2 ' 1— 2 =i (B1)
solid ground for the Lorentz-invariant spin foam models. De-
spite complicated Dirac brackets, our final commutation reThey satisfy
lations (29) are rather simple. It should be possible to use _ _ _
them in the spin foam approach. {Gx,PV}=—1},PZF, E>'XE>]_X: 5} . Q'XEJX:o_ (B2)
. . . . X__ XAY
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APPENDIX A: MATRIX ALGEBRA
and | (5)x= 8%~ (p)x - Besides, one can note the relations

In the basig3) the so(3,1) structure constants are that are very helpful in calculations:
Az Ay A.B-A Ay _ |XY:_HXIZWHY, B4
fAiAZ_O’ fAiBz__8 1227, fBiB2_0' (P ZH QW ( )
fWYziz(P)W(N?iY’szzoa (B5)
fB3 :—8818283 fB3 -0 fB3 :8A1AZB3_
B,B, ! ABy T TAA, wYzX R0 XYZRi A j
(Al) VY4 wQyQz=f Q.Q%. (B6)
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The commutators of the second class constraints form the

following triangular matrix:

A:< 0 D1> L D,'D,D;' -D;*
-D; D)/’ D;* o /)
(B7)
where
D(lij)(kl)={¢i] kl}_

e (QQ){' HQQ)MY, (BY)

1 e
1+ ﬁ-)[(QQ)m(QQ)mn

B 1
(D1 kiy(mny = 3

—(QQ)km(QQ) 1 — (QQ)kn(QQ) -
(B9)

An explicit form of D, is not needed since all brackets are

expressed in terms @; * only [see Eq(11)].

APPENDIX C: CONSTRAINT ALGEBRA

Define the smeared constraints:

Q(n)=Jd3x n*Gy, H(I}I)=jd3x NH,

PHYSICAL REVIEW D64 044023

D(l\])=f d3x N'(H; +AXGy). (C1)

They obey the following algebra:

{G(n),G(m)}p=G(nxm),

{D(N),D(M)}p=—D([N,M]),
{D(N),G(n)}p=—G(N'dn),
{H(N),G()}p=0,
{D(N),H(N)}p=—H(LgN),

{HIN),H(M)}p=D(K)-G(KIA)),  (C2

where
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