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We consider a 6-dimensional spacetime which is periodic in one of the extra dimensions and compact in the
other. The periodic direction is defined by two 4-brane boundaries. Both static and nonstatic exact solutions, in
which the internal spacetime has a constant radius of curvature, are derived. In the case of static solutions, the
brane tensions must be tuned as in the 5-dimensional Randall-Sundrum model; however, no additional fine-
tuning is necessary between the brane tensions and the bulk cosmological constant. By further relaxing the sole
fine-tuning of the model, we derive nonstatic solutions, describing de Sitter or anti–de Sitter 4-dimensional
spacetimes, that allow for the fixing of the interbrane distance and the accommodation of pairs of positive–
negative and positive–positive tension branes. Finally, we consider the stability of the radion field in these
configurations by employing small, time-dependent perturbations around the background solutions. In analogy
with results drawn in five dimensions, the solutions describing a de Sitter 4-dimensional spacetime turn out to
be unstable while those describing an anti–de Sitter geometry are shown to be stable.
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I. INTRODUCTION

It would be an understatement to say that the possib
of resolving the hierarchy problem in models with a warp
extra dimension@1# has received considerable attention ov
the last two years. Indeed, brane world models have do
nated the literature in high energy theory. The reason lie
its simplicity. By postulating the existence of two 3-bran
with nonzero tensions, separated along the extra dimen
by a distanceL, in the background of a nonzero~negative!
cosmological constant, one finds a simple solution for
scale factor along the extra dimension,a(y), which is expo-
nential. Thus length scales~and hence mass scales! on one
brane are exponentially enhanced~or suppressed! relative to
the other. A mass hierarchy naturally arises between the
branes which can be labeled the Planck and weak bra
respectively.

Of course, there is a price to pay for this simplicity. Fir
as is well known, the tensions of the two 3-branes must
fine-tuned so thatL152L2. Second, these tensions must
tuned to the bulk cosmological constantLB in order to pro-
duce a static solution. The origins of these fine-tunings co
about when one considers static solutions to
5-dimensional~5D! equations of motion. The scale factor
the extra direction takes the forma(y)5e2ky and the equa-
tions of motion requirek252k5

2LB/6, wherek5
2 is the 5D

Newton constant. We are, therefore, led to an anti–de S
5D spacetime withLB,0. By putting branes in the theory
and requiring that the warp factor exhibits periodic behav
along the extra dimension, we obtain the so-called jump c
ditions which give@a8(y)# i /ai52k5

2L i /3, where@a8# rep-
resents the difference ina8 on the two sides of the brane. Fo
one brane, say with positive tension placed at the originy
0556-2821/2001/64~4!/044021~11!/$20.00 64 0440
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50), we see thatk5k5
2L1/6, and for the second brane, lo

cated at an undetermined distanceL, one finds k5
2k5

2L2/6. Thus we arrive at the conditionsL152L2

5A6LB /k5
2. Finally, the distanceL is chosen so as to re

solve the hierarchy problem by noting that masses scal
a(y). For other recent attempts at solving the hierarchy pr
lem with extra dimensions see@2,3#.

Several extra-dimensional attempts at resolving the h
archy, or the cosmological constant, problem have con
ered six- or higher-dimensional models@4,5#. Spacetimes
with more than one extra dimension can allow for solutio
with the most appealing features, particularly in spacetim
where the curvature of the internal space is nonzero. Th
solutions, exhibiting either spherical or cylindrical symmet
with respect to the extra coordinates, can accommodate
exponential dependence on one of the extra coordina
thus, resembling the 5D Randall-Sundrum~RS! mechanism
for the resolution of the hierarchy problem. In addition,
turns out that such spacetimes can play an important rol
relaxing the degree of fine-tuning in the RS models@5#. Fi-
nally, these models can provide a framework in the cont
of which the stabilization of the radion field naturally tak
place: for example, in Ref.@6# it was shown that in space
times with a constant spatial curvature of the internal dim
sions, one can find solutions with a global minimum in t
effective theory for the radion field.

In this paper we look for solutions to the 6-dimension
~6D! equations of motion based on an internal space of c
stant curvature. We first present an exact static solu
where the warp factor depends on both extra coordinates
hence, does not exhibit any spherical or cylindrical symm
try. The dependence on one of the two extra coordinates
purely exponential one thus resembling the profile of
©2001 The American Physical Society21-1
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warp factor in the case of the 5D RS model. In analogy w
RS1, the spacetime contains two 4-brane boundaries
equal and opposite brane tensions. This configuration
quires the same fine-tuning that exists in the RS1 model
to the jump conditions imposed at the boundaries. Howe
the solution does not contain the additional fine-tuning
tween the brane tensions and the bulk cosmological cons
which is replaced by the fixing of the size of the extra
mension along which the 4-branes extend. The interbr
distance along the remaining extra dimension remains a
trary and it may be fixed only through the introduction of
additional mechanism for the stabilization of the radion fie
@7,8#.

We then proceed to derive nonstatic solutions in the c
text of the same model. In this case, the exponential beha
along one of the two extra coordinates changes to cos
sinh-like allowing for the accommodation of pairs of bran
with positive tensions or positive–negative, respectively. T
jump conditions lead to the fixing of the locations of the tw
branes along the same dimension and the fine-tuning
tween the brane tensions disappears rendering this solu
totally free of any fine-tuning.

Both of the above solutions, static or nonstatic, have b
derived under the assumption that the extra spacetime
mains static. We formulate an ‘‘extremization’’ constrai
that may serve as a consistency check for any 6D solu
with a constant or nonconstant radion field. We finally p
form a stability analysis around the solutions with a const
‘‘extra’’ scale factor in order to check their stability unde
small time-dependent perturbations. We find, in agreem
with similar results derived for 5D spacetimes@9–14#, that
the system of two Minkowski 4-dimensional~4D! subspaces
has a vanishing radion mass, a pair of two de Sitter ones
a negative mass squared, while the system of two anti
Sitter 4D subspaces has a positive mass squared.

In the next section we present the model and derive
exact static solution in Sec. III. We show explicitly how th
correlation between the brane tensions and the bulk cos
logical constant is replaced by the fixing of the size of one
the two extra dimensions. In Sec. IV we show how the
laxation of the fine-tuning between the brane tensions le
to de Sitter or anti–de Sitter expansions in the 4D spacet
in analogy with 5D models. The ‘‘extremization’’ constrain
and the stability analysis of our solutions are discussed
Sec. V. Finally, we present our conclusions in Sec. VI.

II. THE GENERAL FRAMEWORK

Let us start by presenting the theoretical framework a
geometrical setup of our model. We first write down the a
tion that describes the gravitational theory of
6-dimensional spacetime filled with a bulk cosmologic
constant as1

1Throughout this paper we follow Wald’s conventions@15#: The
metric signature ishMN5(2,1, . . . ,1) and the Riemann tenso
is defined asRrmn

s 5]mGrn
s 2]nGrm

s 1••• .
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S52E d6xA2G6H 2
R(6)

2k6
2

1LBJ , ~2.1!

wherek6
258p/M6

4. The line-element of the six-dimensiona
spacetime is assumed to be of the form

ds25a2~ t,u,w!hmndxmdxn1b2~ t !@du21 f 2~u!dw2#.
~2.2!

In the above,xm and (u,f) denote the coordinates along th
usual four and two extra, all~initially ! noncompact, dimen-
sions, respectively. The functiona(t,u,w) represents the
warp factor multiplying the 4-dimensional line element,b(t)
denotes the scale factor that determines the dynamics o
2-dimensional extra spacetime, whilef (u) parametrizes its
internal curvature. For reasons that will become clear sho
we will often refer to theu dimension as the ‘‘longitudinal’’
one and to thew dimension as the ‘‘transverse’’ one.

In this paper we will focus on the determination of sta
and nonstatic solutions under the assumption that the s
factor along the extra dimensions remains always const
As noted in the Introduction, we are not assuming any s
cific mechanism for radion stabilization which would gene
ate additional stress-energy terms@7,8#. We will instead as-
sume that the internal curvature of the 2-dimensional ex
spacetime will naturally lead the system to solutions with
constant radion field that correspond to a minimum of
radion effective potential as in Ref.@6#. The outcome of this
attempt is not, however, straightforward: in@6#, it was as-
sumed thata andb are functions of the coordinatesxm only.
None of the scale factors depend on the internal coordin
u andf and, thus, their results are not directly applicable
any warped brane model.

Upon variation with respect to the 6D metric tensor, t
above action and metric ansatz leads to the following E
stein’s equations in the bulk:

G005
ḃ2

b2
1

6ḃȧ

ba
1

3ȧ2

a2
2

a2

b2

f 9

f
2

3

b2f 2 S ]a

]w D 2

2
3a

b2f 2

]2a

]w2

2
3a f8

b2f

]a

]u
2

3

b2 S ]a

]u D 2

2
3a

b2

]2a

]u2
5k6

2a2LB , ~2.3!

Gii 52
ḃ2

b2
2

2b̈

b
2

2ḃȧ

ba
1

ȧ2

a2
2

2ä

a
1

a2

b2

f 9

f
1

3

b2f 2 S ]a

]w D 2

1
3a

b2f 2

]2a

]w2
1

3a f8

b2f

]a

]u
1

3

b2 S ]a

]u D 2

1
3a

b2

]2a

]u2

52k6
2a2LB , ~2.4!

G5552
bb̈

a2
2

2bḃȧ

a3
2

3b2ä

a3
1

6

a2f 2 S ]a

]w D 2

1
4

a f2

]2a

]w2

1
4 f 8

a f

]a

]u
1

6

a2 S ]a

]u D 2

52k6
2b2LB , ~2.5!
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G6652
b f2b̈

a2
2

2b f2ḃȧ

a3
2

3b2f 2ä

a3
1

6

a2 S ]a

]w D 2

1
6 f 2

a2 S ]a

]u D 2

1
4 f 2

a

]2a

]u2
52k6

2b2f 2LB , ~2.6!

G055
4ḃ

ab

]a

]u
1

3ȧ

a2

]a

]u
2

3

a

]2a

]t ]u
50, ~2.7!

G065
4ḃ

ab

]a

]w
1

3ȧ

a2

]a

]w
2

3

a

]2a

]t ]w
50, ~2.8!

G565
4 f 8

a f

]a

]w
2

4

a

]2a

]u ]w
50. ~2.9!

As we mentioned above, both extra dimensions are
tially noncompact. Here, we choose to compactify along
w coordinate by introducing two 4-branes at the pointsw
5w1 andw5w2 ~and impose periodic boundary conditions!.
The brane energy-momentum tensors can be written as

TN
M ( i )5

d~w2w i !

b f2
diag~2L i ,2L i ,2L i ,2L i ,2L̃ i ,0!,

~2.10!

wherei 51,2 denotes the two branes. Note that the requ
ment of satisfying 6D energy-momentum conservati
TN;M

M ( i )50, together with the jump conditions~discussed
shortly! forces one to introduce~1! an ‘‘inhomogeneity’’ re-
flected in the prefactor of Eq.~2.10! and~2! an ‘‘anisotropy’’
such thatT5

5(i )ÞTk
k( i ) for k50, . . . ,3. On theother hand, as

expected, the energy-momentum tensor in the bulk is do
nated by the presence of a smoothly distributed bulk cos
logical constant: i.e.,

TN
M (B)5diag~2LB ,2LB ,2LB ,2LB ,2LB ,2LB!,

~2.11!

whose sign remains arbitrary at this point. Note that, in
absence of a radion potential, we do not include an additio
contribution to the~55! or ~66! component here.

Under the assumption that the two 4-branes are infini
thin, the discontinuity in the first derivative of the metr
tensor along thew coordinate creates ad-function contribu-
tion to its second derivative. The jump conditions@16# that
follow by matching the coefficients of thed functions on
both sides of Einstein’s equations provide constraints on
first derivatives of the warp factor at the location of t
branes. One may easily conclude, from the absence of
d-function source on the right-hand side of the~66! compo-
nent of Einstein’s equations, Eq.~2.6!, that there is no dis-
continuity in the first derivative of the warp factor along th
u coordinate due to the smooth distribution of energy alo
the longitudinal extra dimension. Then, from Eqs.~2.3! and
~2.5!, which contain second derivatives with respect tow, we
obtain, respectively, the constraints
04402
i-
e

-
,

i-
o-

e
al

ly

e

ny

g
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ba U
w5w i

52
k6

2

3
L i ,

@]wa#

ba U
w5w i

52
k6

2

4
L̃ i .

~2.12!

From the above conditions, it is obvious that the~ii ! and~55!
components of the energy-momentum tensor of each b
must satisfy the relation:L̃ i54L i /3. Thus the brane tensio
along the ‘‘extra’’u coordinate is clearly distinguished from
the remaining four, as pointed out below Eq.~2.10!. Similar
‘‘anisotropic’’ brane tensions can be found elsewhere@5# in
higher dimensional models.

As noted above, the inhomogeneous prefactor in
~2.10! comes from the energy-momentum conservation c
straint onTN

M ( i ) . Let us assume for the moment thatTN
M ( i ) is

of the form @g(u)d(w2w i)/b# diag(2L i ,2L i ,2L i ,
2L i ,2L̃ i ,0). We have allowedg to be arbitrary and we
have retained the common normalization (1/b). The N50
conservation equation is identically zero for all solutio
with ḃ50, which includes all of the solutions we conside
Note that this constraint onb stems from the anisotropyL i

ÞL̃ i . The N51,2,3 equations are trivial. TheN55 equa-
tion reduces to

2S g814
a8

a
1

f 8

f D L̃ i14
a8

a
L i50, ~2.13!

with all derivatives taken with respect tou. With the anisot-
ropy relation derived from the jump conditions this becom

S g81
a8

a
1

f 8

f D L̃ i50. ~2.14!

As we will show in the next section, our solution furthe
requiresa8/a5 f 8/ f , from which it can be easily seen tha
g51/f 2. We also note that without this tension prefactor t
jump conditions would contain an explicit factor off (u)
necessitating a constantf and hence a flat internal space.

III. STATIC 6D SOLUTIONS

In this section we focus on the derivation of an exa
6-dimensional static solution with an exponential warp fac
and a constant scale factor,b(t)5b0. In this case, the non
vanishing components of Einstein’s equations~after drop-
ping all terms with time derivatives! take the form

f 9

f
1

3

a2f 2 S ]a

]w D 2

1
3

a f2

]2a

]w2
1

3 f 8

a f

]a

]u
1

3

a2 S ]a

]u D 2

1
3

a

]2a

]u2

52k6
2b0

2LB , ~3.1!

6

a2f 2 S ]a

]w D 2

1
4

a f2

]2a

]w2
1

4 f 8

a f

]a

]u
1

6

a2 S ]a

]u D 2

52k6
2b0

2LB ,

~3.2!
1-3
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6

a2f 2 S ]a

]w D 2

1
6

a2 S ]a

]u D 2

1
4

a

]2a

]u2
52k6

2b0
2LB ,

~3.3!

4 f 8

a f

]a

]w
2

4

a

]2a

]u ]w
50.

~3.4!

We assume that the dependence of the warp factor on
two extra coordinates can be written in a factorized for
a(u,w)5Q(u)F(w). Equation~3.4!, then, provides a very
strong constraint on the functionsQ(u) and f (u) leading to
the relationQ(u)5Au f (u), whereAu is a constant. The dif-
ference of Eqs.~3.2! and ~3.3!, in turn, leads to the result

F9

F
5 f f 92 f 825v2, ~3.5!

wherev is again an arbitrary constant. The above equat
allows us to write the general solution forF(w) as a linear
combination of increasing and decreasing exponenti
However, Eq.~3.3!, which may be written as

6S F8

F D 2

16 f 8214 f f 952k2
2b0

2f 2LB , ~3.6!

restricts the form of the solution by demandingF8/F to be a
constant as well. As a result, we may write the solution forF
in the form

F~w!5Awe6vw, ~3.7!

whereAw is an integration constant. Equation~3.7!, together
with Eqs.~3.5! and~3.6!, brings the equation for the remain
ing unknown metric function,f (u), to the form

f 822l2f 21v250, ~3.8!

whose general solution can be written as

f ~u!5
1

4l
@e6l(u2u0)14v2e7l(u2u0)#, ~3.9!

where

l252
k6

2b0
2

10
LB . ~3.10!

Note that the parameterl can take real or imaginary value
for a negative or positive, respectively, bulk cosmologi
constant. We will comment on these two different optio
shortly.

We can furthermore easily check that the combination
Eqs.~3.5! and~3.6! trivially satisfies the remaining equatio
~3.1!. We may, therefore, write the full solution for the wa
factor, that multiplies the line-element of the 4-dimension
spacetime, as
04402
he
:

n

s.

l
s

f

l

a~u,w!5
a0

4l
e6vw@e6l(u2u0)14v2e7l(u2u0)#,

~3.11!

wherea0 stands for the productAwAu . For simplicity, we
may choose to place one 4-brane at the pointw50 and the
second one atw5L. Then, by imposing the conditiona(u
5u0 ,w50)51, the integration constanta0 may be fixed in
terms ofl andv.

Clearly, thew coordinate corresponds to a noncompa
extra dimension as the conformal factor increases, or
creases, exponentially. The similarity with the extra fifth d
mension of the Randall-Sundrum model is striking: the s
of this dimension can become finite only by introducing tw
branes~3-branes in the case of the RS1 model, 4-brane
this case! at two different points along the transversew di-
mension. Then, the interbrane distance defines the size o
extra dimension. The monotonic behavior of the scale fac
in the w direction calls for the introduction of a pair o
branes with positive and negative tension, as discussed
lier. We will show that this is indeed the case at the end
this section. Single-brane configurations could be also
commodated in our analysis by sending the second bran
an infinite distance from the first one.

At this point we can easily derive the relation between
internal 2D curvature and the bulk cosmological consta
The 2-dimensional curvature scalar is

R(2)5R5
51R6

652
2

b0
2

f 9

f
. ~3.12!

From the solution~3.9! we further see thatf 9/ f 5l2, so that

R(2)5
k6

2

5
LB . ~3.13!

The behavior of the warp factor along theu dimension, and
subsequently the topology of this dimension, is strictly d
fined by the sign of thel2 parameter which determines th
sign of the two-space curvature through Eq.~3.12!, or
equivalently through Eq.~3.10!, by the sign of the bulk cos-
mological constant. We now distinguish the two cases:

A. l2Ì0

This case corresponds, through Eq.~3.10!, to a negative
bulk cosmological constant and to a negatively curved tw
dimensional extra space time

LB,0, R(2),0. ~3.14!

From the expression~3.9! we see that the functionf (u) is
characterized by the existence of a minimum at

umin5u06
1

l
ln 2v, ~3.15!

under the assumption thatf (u) is symmetric under the trans
formationu↔2u. Identifying the two minima~for simplic-
ity, we may setu050), we can compactify this extra dimen
1-4
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sion. Then, the quantity 2lumin is the physical size of the
extra dimension, 2(b0umin), in units of M6

21.
If we allow the two symmetric branches of the functio

f (u) to meet atu50, a cusp is inevitably created. One mig
be tempted to introduce an infinitely thin 3-brane at t
point creating a setup that resembles the 5D single-br
configurations presented in Ref.@7#. However, the absence o
any discontinuity in the first and second derivative of t
warp factor with respect to theu coordinate does not allow
for the introduction of any infinitely thin 3-brane in th
model. The only allowed configuration is the one where e
one of the 4-branes defining the size of thew dimension is a
thick 3-brane extending along theu dimension similar to the
one described in Refs.@7,17#. In that case, the warp facto
and its derivatives with respect to theu coordinate are ev-
erywhere well defined as demanded. Introducing a th
3-brane along theu dimension will not spoil the solution
~3.11! found above: it would merely render it as the soluti
outside the ‘‘wall’’ of the 3-brane where the minimum mu
take place.

B. l2Ë0

This case arises under the assumption that the bulk
mological constant takes a positive value. The internal c
vature of the (w,u)-submanifold, in this case, is also positiv
according to the definition~3.12!. Since l2,0, we may
write l5 i l̃, wherel̃ is a real number. It turns out that fo
special values of the parameterv, the u-dependent part o
the solution for the warp factor~3.11! becomes periodic, and
thus spontaneously compactified without the need for
introduction of any thin or thick 3-branes. However, in ea
case the resulting form of the line element of the 6
spacetime contradicts basic assumptions of this analysis

Thus, if we choosev251/4, the solution forf (u) is given
in terms of a cos-type function. However, the presence of
coefficient 1/(4l) in Eq. ~3.9! renders this metric function
imaginary leading to

ds25a2~u,w!~2dt21dx21dy21dz2!

1b0
2@du22 f̃ ~u!2dw2#, ~3.16!

where we have setf (u)5 i f̃ (u). As a result, the character o
the w dimension changes from space-like to time-like whi
is in disagreement with our argument that thew dimension
plays the role of the extra transverse dimension of the
model. If, alternatively, we choosev2521/4, the function
f (u) comes out to be proportional to a sin-type functio
however, in this case,v itself comes out to be imaginary. I
we perform the following coordinate transformation

w→4H t̃ , t→ i w̃

4H
, ~3.17!

the 6D line element takes the form
04402
ne

h

k

s-
r-

e

e

S

,

ds25sin2@l~u2u0!#H 2d t̃21e2H t̃S dx21dy21dz2

1
dw̃2

16H2D J 1b0
2du2, ~3.18!

where H5l̃/(2b0) and where, for simplicity, we have se
a052l̃ in Eq. ~3.11!. The above line element describes
6-dimensional spacetime whose four spatial dimensions
inflating. This is clearly in contradiction with our main goa
to derive solutions with static extra dimensions.

We finally turn to the jump conditions that will help u
determine thev parameter of the solution as well as th
number of fine-tunings that the model demands. Substitu
the solution forF(w) @Eq. ~3.7!# into the jump conditions
~2.12!, we obtain the result

6
3v

k6
2b0

52L15L2 . ~3.19!

The same fine-tuning between the two brane tensions,
was necessary for the RS solution to be consistent with
boundary conditions, appears also in our model. Note, h
ever, that the second RS fine-tuning, between each b
tension and the bulk cosmological constant, is absent.
value of LB defines the parameterl while v is defined in
terms of the brane tensions. No relation betweenl and v
exists in our model, and thus,LB and L i remain uncorre-
lated. Nevertheless, since only one of the two brane tens
has been fixed so far, another fundamental parameter of
model, if not the second brane tension or the bulk cosm
logical constant, should be fixed instead, in this ca
Through Eq.~3.15! the physical size of theu dimension is
given in terms of thel and v parameters. By using Eqs
~3.15! and ~3.19! we obtain the result

3elumin

2k6
2b0

5uL i u, ~3.20!

where uL i u stands for the absolute value of the brane te
sions. The above relation fixes the physical size of the l
gitudinal extra dimension, which constitutes a fundamen
parameter of the model, in terms of the brane tensions.
logarithmic dependence on the value ofuL i u ensures the
smallness of the size of the longitudinal dimension even
large values of the brane tension. It is therefore the existe
of this extra dimension that introduces an additional para
eter in the model whose fixing replaces the fine-tuning
tween bulk and brane parameters. Note, however, that
locations of the two 4-branes along the transversew dimen-
sion and, thus, the size of this dimension remain a free
rameter. We address this point in the next section.

A final comment on the number of fine-tunings is in ord
at this point: had the solutions forl2,0 led to a consisten
spontaneous compactification of theu dimension, an addi-
tional problem would appear: the special values of thev
parameter, for which these solutions arise, would result in
1-5
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fixing of the values of both brane tensions through E
~3.19!. The fine-tuning between brane tensions and bulk c
mological constant would still be absent, however, the nu
ber of necessary fine-tunings in the model would be ag
two. We might therefore conclude that periodic solutio
which respect the assumptions of our model and, at the s
time, demand less fine-tuning than the usual 5D brane m
els, cannot arise in the framework of our analysis.

IV. NONSTATIC 4D SOLUTIONS

Next, we proceed to construct 6-dimensional solutio
with a 4-dimensional time-dependent submanifold but wit
constant radion field once again. The source of this ti
dependence will be a nonvanishing 4D effective cosmolo
cal constant. Solutions similar to these but in the presenc
only one extra dimension have been derived before@18#.
Here, we will investigate the possibility of whether such s
lutions arise in the case of one additional, extra, longitudi
dimension. As in the previous section, we are going to
sume that, initially, both extra dimensions are noncomp
with the size of thew dimension becoming finite due to th
presence of the two 4-branes while theu dimension will be
appropriately warped and thus spontaneously compactifi

Going back to the full time-dependent Einstein’s equ
tions ~2.3!–~2.9!, we try once again the factorized ansa
a(t,u,w)5T(t)Q(u)F(w). The off-diagonal componen
~2.9! gives, as in the static case, a proportionality relati
Q(u)5Au f (u), between the twou-dependent functions o
the metric tensor. The remaining off-diagonal equations, E
~2.7! and~2.8!, in conjunction with the above factorized an
satz, both lead to the resultb5const, that guarantees th
staticity of the extra 2-dimensional space time.

Subtracting Eq.~2.6! from Eq.~2.5! we recover one of the
two equations that determine the solutions for the me
functionsF(w) and f (u), namely

F9

F
5 f f 92 f 825v2. ~4.1!

Before trying to derive the second equation, we need to
termine the solution for the time-dependent functionT(t).
Taking the sum of Eqs.~2.3! and ~2.4! we find the result

Ṫ

T S 2Ṫ

T
2

T̈

Ṫ
D 50. ~4.2!

Obviously, one solution of the above equation is the triv
one, Ṫ50, which leads to the static case of the previo
section with the Minkowski-like 4D submanifold. Clearl
the model accepts another solution that may be determ
by demanding the expression inside the brackets to be z
Then, we obtain the alternative solution

T~ t !5
1

c0~ t2t0!
, ~4.3!
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wherec0 andt0 are integration constants. If we pass from t
conformal timet to the physical timet̃ , through the transfor-
mation d t̃5T(t)dt, we might easily see that the solutio
takes the form

T~ t̃ !5eH( t̃ 2 t̃ 0). ~4.4!

In the above expression,H52c0 is again an integration
constant, which may be either real or imaginary describin
de Sitter

ds4
252d t̃21e2H t̃~dx21dy21dz2! ~4.5!

or anti–de Sitter

ds4
25dx21e2Hx~2d t̃21dy21dz2! ~4.6!

4D submanifold, respectively. Since the Einstein’s equati
are all expressed in terms of the conformal time, we w
continue usingt, instead oft̃ , and the form of the solution
~4.3!, instead of Eq.~4.4!, for convenience. In terms of th
conformal time, a real or imaginaryc0 will distinguish be-
tween a de Sitter or anti–de Sitter 4D submanifold.

Having determined the solution forT(t), we now turn to
Eq. ~2.6!, which can be brought to the form

6S F8

F D 2

26
b2c0

2

Au
2F2

16 f 8214 f f 952k2
2b2f 2LB . ~4.7!

Comparing the above with Eq.~3.6! we may easily see tha
we can recover the equation~3.8! for f (u), if F(w) satisfies
the following equation

S F8

F D 2

2
b2c0

2

Au
2F2

2v250. ~4.8!

The solution for thew-dependent part of the warp facto
now, takes the form

F~w!5
b c0

Auv
sinh@vuw2w0u# ~4.9!

for de Sitter spacetime, and

F~w!5
b Im~c0!

Auv
cosh@v~w2w0!# ~4.10!

for anti–de Sitter spacetime.
Since the basic equation for the metric functionf (u) has

remained unchanged, the general solution given by Eqs.~3.9!
and~3.10! still remains the same. The subsequent discuss
on the possible ways of compactifying theu dimension, in
the case of a negative or positive bulk cosmological const
and the main conclusions drawn at the end of Sec. III s
hold. On the other hand, the time-dependence of the w
factor has radically changed the solution for itsw-dependent
part. Instead of the monotonic exponential dependence
prevailed in the static case, the time-dependent case
accommodate both sinh- and cosh-type solutions. Solut
1-6
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similar to the above usually arise in the case where class
@19# or quantum@20# effects from bulk scalar fields are take
into account or when the effect of a bulk stabilizing potent
is included in the model@19,3#. Note, however, that no suc
effects have been assumed to be present in our analysis
conclusions drawn in the previous section from the ju
conditions are also likely to change. Substituting the ab
solution forF(w) into the jump conditions~2.12!, we obtain
the constraints

v coth@v~w i2w0!#5~21! i
k6

2

3
b0L i ~4.11!

for the sinh-type solutions, and

v tanh@v~w i2w0!#5~21! i
k6

2

3
b0L i ~4.12!

for the cosh-type solutions. In the above two equationsi
51,2 denotes again the two 4-branes. The sinh-type solu
with its monotonic behavior can clearly accommodate o
pairs of positive–negative tension branes in analogy with
static case. Moreover, the specific solution is plagued by
existence of a singularity at the pointw5w0. In order to
exclude the singularity from the 6D spacetime, both bra
must be located on the same size of the singularity,
w1 ,w2,w0. On the other hand, the cosh-type solution is e
erywhere well defined. The same point,w5w0, corresponds,
in this case, to a minimum which allows for pairs of positi
tension branes to fit in the model. In both cases, either
sinh- or cosh-type solutions, the above jump conditions w
fix the location of the two branes relative to the singularity
the minimum, respectively, in terms of the two brane te
sions. Note, however, that the brane tensions, considere
input parameters of the model, remain totally uncorrelat
Moreover, the lack of fine-tuning between any of the bra
tensions and the bulk cosmological constant still holds r
dering the model free of any fine-tuning.

V. RADION DYNAMICS

The main goal of the previous sections was to find
solutions, static and nonstatic, with a constant radion fi
which demanded less or no fine-tuning of their parame
compared to other models in the literature. Nevertheless
important aspect of these solutions needs to be studied n
do these solutions actually extremize the radion effective
tential? And, if yes, is this extremum a minimum or a ma
mum of the effective potential?

In Ref. @10#, a 5-dimensional ‘‘extremization’’ constrain
that could serve as a consistency check for any solut
with a constant radion field was derived. It might be wo
deriving the corresponding constraint in six dimensions a
commenting on the possible differences that arise as
changes the number of extra dimensions. In order to do
we need to go back to the time-dependent Einstein’s eq
tions, and start by constructing the 4D trace of the ener
momentum tensor@by taking the sum of Eq.~2.3! with three
times Eq.~2.4!#, which comes out to have the form
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k6
2Tm

m52
4ḃ2

a2b2
2

6b̈

a2b
2

12ȧḃ

a3b
2

6ä

a3
1

4 f 9

b2f
1

12

b2f 2a2 S ]a

]w D 2

1
12

b2f 2a

]2a

]w2
1

12f 8

b2f a

]a

]u
1

12

b2a2 S ]a

]u D 2

1
12

b2a

]2a

]u2
.

~5.1!

Next, we construct the following linear combination of a
the components of the 6D energy-momentum tensor

k6
2@~42n!Tm

m13~n22!T5
513~n22!T6

6#

52F ~42n!
4ḃ2

a2b2
1

12b̈

a2b
1

24ȧḃ

a3b
G212~n21!

ä

a3

1~42n!
4 f 9

b2f
1

24

b2 F ~n21!

f 2a2 S ]a

]w D 2

1
1

f 2a

]2a

]w2

1
f 8

f a

]a

]u
1

~n21!

a2 S ]a

]u D 2

1
1

a

]2a

]u2G , ~5.2!

wheren is an integer. In the case where the warp factor c
be written as the product of two functions, one depending
the 4D coordinates and one on the extra coordinates,
above expression can be greatly simplified. If we write t
warp factor in the factorized form

a~ t,u,w!5T~ t !W~u,w!, ~5.3!

the expression in the last line of Eq.~5.2! may be written as

24

b2 F ~n21!

f 2a2 S ]a

]w D 2

1
1

f 2a

]2a

]w2
1

f 8

f a

]a

]u

1
~n21!

a2 S ]a

]u D 2

1
1

a

]2a

]u2G
5

24

nWn

1

Agex
]m@Agex]mWn~xm!#5

24

nWn
~DmDmWn!,

~5.4!

wherexm denotes the extra coordinates (u,w) andgmn
ex is the

metric tensor of the 2-dimensional extra spacetime. T
above 2D double covariant derivative of the functionWn

divided byWn is the analog of the double derivative of th
same function appearing in the 5D constraint of Ref.@10#. In
the more general case where more than one, possibly non
extra dimensions are present in the theory, the double der
tive needs to be replaced with the covariant derivative
order for the internal geometry of the extra spacetime to
taken into account.

In addition, we may rewrite some of the other terms a
pearing in Eq.~5.2! in the following way

12
ä

a3
5

2

W2
R(4) ,

4 f 9

b2f
522R(2) , ~5.5!
1-7
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whereR(4) and R(2) stand for the 4D and 2D, respectivel
scalar curvature. Then, the constraint~5.2! takes the simpli-
fied form

24

nWn
~DmDmWn!

5k6
2@~42n!Tm

m13~n22!T5
513~n22!T6

6#

1~n21!
2

W2
R(4)12~42n!R(2)

1F ~42n!
4ḃ2

a2b2
1

12b̈

a2b
1

24ȧḃ

a3b
G . ~5.6!

Compared to the 5-dimensional one@10#, the 6-dimensional
version of the above constraint has a similar but more g
eralized structure. It involves all the extra components of
energy-momentum tensor, namelyT5

5 andT6
6, as anticipated,

and both on an equal footing. Moreover, the 2-dimensio
scalar curvature of the extra spacetime explicitly makes
appearance together with the 4-dimensional one. Finally,
coefficients appearing in front of the 4D trace and extra co
ponents of the energy-momentum tensor seem to be ‘‘dim
sion’’ dependent. By mere comparison of the 5D and
versions of the constraint, we may easily conclude that
coefficient in front of the extra components behaves as
1d)(n22), whered is the number of extra dimension
However, the dependence of the coefficient of the 4D trac
more subtle and a higher dimensional calculation could o
reveal its exact form in terms ofd.

We would also like to stress here an additional point
the form of the constraint~5.6!. It holds for every solution of
the 6D Einstein’s equations, even for the ones with a n
static extra spacetime. For the particular case ofn51 the
above constraint can be interpreted as the equation of mo
of the time-dependent scalar fieldb(t). This can become
clear if we rewrite Eq.~5.6! as

2

b2
DmDmb25k6

2~Tm
m2T5

52T6
6!12R(2)2

8

W
~DmDmW!.

~5.7!

For solutions with a nonstatic extra spacetime, the right-h
side of the above equation vanishes when an extremum
ther minimum or maximum, is reached. For solutions with
constant radion field, which by definition corresponds to
extremum of the radion effective potential, the same com
nation should also vanish. Therefore the solutions found
the two previous sections, either static or nonstatic, but w
constantb, should satisfy the above constraint. By using t
following expressions for the components of the ener
momentum tensor

Tm
m524LB2

4L i

b0f 2
d~w2w i !,
04402
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T5
552LB2

L̃ i

b0f 2
d~w2w i !, T6

652LB , ~5.8!

settingW[Q(u)F(w), and employing the form of the so
lutions found in Secs. III and IV, we obtain

22S k6
2LB110

l2

b0
2D 2

8d~w2w i !

b0f 2 F @]wa# i

b0a
1

k6
2

3
L i G .

~5.9!

By using the jump conditions~2.12! and the definition of the
l parameter from Eq.~3.10!, we may easily conclude tha
both the static and nonstatic solutions derived in the previ
sections satisfy the ‘‘extremization’’ constraint, as antic
pated.

In order to answer the question whether the above ex
mum is a minimum or a maximum, a perturbation analy
around the above solutions needs to be performed, in wh
the time-dependent, small perturbation will be associa
with the radion field. Therefore we consider the followin
ansatz for the line element of the six-dimensional spacet

ds25@a0
2f ~u!2F~w!21e A~u,w!b~ t̃ !#~2d t̃21e2H t̃dxW2!

1@11e B~u,w!b~ t̃ !#~du21 f ~u!2dw2#. ~5.10!

Note that we have switched to the system of nonconform
coordinates and we have setb051 for simplicity. We have
also chosen to perturb the de Sitter solutions found in
previous section; however, our analysis can be easily
tended to the cases of Minkowski or anti–de Sitter branes
settingH2→0 or H2→2H2 ~with the t̃ -dependent perturba
tions replaced byx-dependent!, respectively.

The above ansatz when substituted into the 6D Einste
equations will lead to a system of differential equations a
constraints that govern the behavior of the new line elem
We will work in the linear order approximation and, thus, w
are keeping only terms proportional to the small parame
e!1. In this approximation, the generalized~00!, (i i ), ~05!,
and ~06! components of Einstein’s equations take the form

S B1
A

a0
2f 2F2D 3Hḃ2~k6

2a0
2f 2F2LB23H2!Bb2

Ab f9

f

2
3b

2 f 2

]2A

]w2
2

3b f8

2 f

]A

]u
2

3b

2

]2A

]u2
2

a0
2bF2

2

3S ]2B

]w2
1 f f 8

]B

]u
1 f 2

]2B

]u2 D 5k6
2Ab LB , ~5.11!
1-8
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S B1
A

a0
2f 2F2D ~22Hḃ2b̈!1~k6

2a0
2f 2F2LB23H2!Bb

1
Ab f9

f
1

3b

2 f 2

]2A

]w2
1

3b f8

2 f

]A

]u
1

3b

2

]2A

]u2

1
a0

2bF2

2 S ]2B

]w2
1 f f 8

]B

]u
1 f 2

]2B

]u2 D 52k6
2Ab LB ,

~5.12!

S 2B1
3A

a0
2f 2F2D f 8

f
2

3

2a0
2f 2F2

]A

]u
2

1

2

]B

]u
50,

~5.13!

S 2B1
3A

a0
2f 2F2D F8

F
2

3

2a0
2f 2F2

]A

]w
2

1

2

]B

]w
50,

~5.14!

respectively.
By taking the sum of the~00! and (i i ) components, we

end up with the constraint

S B1
A

a0
2f 2F2D ~Hḃ2b̈!50, ~5.15!

which demands that one of the two expressions inside
brackets vanishes. If we assume that the expression in
the first bracket is zero, then we can determine the ex
form of the unknown functionsA(u,w) andB(u,w) by plug-
ging this constraint into the off-diagonal components~5.13!
and ~5.14!. Then, we find that

A~u,w!51, B~u,w!52
1

a0
2f ~u!2F~w!2

, ~5.16!

modulo a multiplicative constant. Both of the equatio
~5.11! and ~5.12!, in that case, reduce to the backgrou
equation~4.8! ~with c0

2 being replaced byH2 due to the use
of nonconformal coordinates! which is obviously satisfied by
the background solution. However, the solution~5.16! fails
to satisfy any of the remaining components of Einstei
equations. For example, the off-diagonal~56! component,
which has the form

2 f 8

f S ]A

]w
2A

F8

F D1a0
2f 2F2S f 8

f

]B

]w
1

F8

F

]B

]u D1
F8

F

]A

]u

2
]2A

]u]w
50, ~5.17!

leads to the constraintf 8F850 which is obviously in con-
tradiction with the form of the background solution. Final
the ~55! and ~66! components, which after using Eq.~5.16!
take the simplified forms
04402
e
ide
ct

s

~DmDmb!

a0
2f 2F2

2
12b

f 2 S F82

F2
2

H2

a0
2F2D 2

12b f82

f 2
2

4bF9

f 2F

5k6
2bLB , ~5.18!

~DmDmb!

a0
2f 2F2

2
b

f 2 S 8F82

F2
2

12H2

a0
2F2D 2

12b f82

f 2
2

4b f9

f

5k6
2bLB , ~5.19!

respectively, also turn out to lead to an inconsistent result
a result, the option that the first expression inside the bra
ets in Eq.~5.15! is zero needs to be excluded. We are the
fore left with the alternative option (Hḃ2b̈)50 which leads
to an exponential solution of the time-dependent pertur
tion. By employing the equation of motion of the ‘‘radion
field

gmnDmDnb5m2b ~5.20!

and the exponential form of its solution, we get the res
m2524H2. Obviously, the mass squared of the radion fie
turns out to be negative for de Sitter 4D subspace, zero
Minkowski, and positive for anti–de Sitter 4D subspace.

The above result is in perfect agreement with simi
works conducted in five dimensions: in Refs.@9–11# ~see
also @12#!, it has been shown that the system of tw
Minkowski branes with a zero total brane tension cannot
stabilized since it leads to a radion field with a zero mass
that case, the extremization of the radion potential follo
from the fine-tuning of the parameters of the model whic
however, cannot create a unique minimum for the rad
field in the absence of a physical stabilization mechanism
a result, the static solution derived in Sec. II describing a p
of flat branes cannot be stabilized and the radion field
mains always massless. The same conclusion was draw
Refs. @13,14# where the stability of curved branes was al
studied. According to their results, a pair of de Sitter bran
leads to an effective theory for the radion field with a neg
tive mass squared while a pair of anti–de Sitter branes tu
out to be stable since it leads to a positive radion m
squared. Therefore our solution~4.9! corresponding to two
branes with a positive effective cosmological constant is
stable under small time-dependent perturbations while
alternative solution described by~4.10! and corresponding to
two branes with negative effective cosmological constan
stable. We bear in mind that this conclusion ignores any
ditional contribution to the 4D radion potential as might
expected from a more complete model which includes sup
symmetry and supersymmetry breaking. Let us finally n
that the above results are also in agreement with thos
Ref. @6# where the extremum of the radion effective potent
was a global minimum only in the case of a 4D negat
cosmological constant.
1-9
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VI. CONCLUSIONS

In this paper we have presented a 6D brane world mo
in the framework of which we addressed a number of imp
tant issues that arise in the context of higher-dimensio
brane models. The relaxation of the fine-tuning of the fun
mental parameters of the model was one of them: solut
with less or no fine-tuning at all, compared to their 5D an
logs, were constructed where the severe correlation betw
brane and bulk parameters was replaced by the fixing of
sizes of the two extra dimensions. In this way, another pr
lem, that of the determination of the interbrane distance,
automatically resolved. The solutions derived allow for t
introduction of pairs with positive–negative brane tensio
in analogy with the RS model, however, more physica
interesting configurations with pairs of only positive tensi
branes were also found. Finally, the issue of the behavio
the aforementioned solutions, under time-dependent pe
bations around configurations with a constant radion fie
was examined and conclusions regarding their stability w
derived.

In more detail, considering a 2D internal space of const
curvature, an exact static solution was first presented.
warp factor exhibits neither spherical nor cylindrical symm
try but depends on both extra coordinates. Two 4-branes
introduced at two different points along the so-called ‘‘tran
verse’’ extra dimension, along which the warp factor is
pure exponential resembling the profile of the warp factor
the case of the 5D RS model. The remaining extra dim
sion, the ‘‘longitudinal’’ one, along which the 4-branes e
tend, was shown to be ‘‘spontaneously’’ compactified in t
case of a negative bulk cosmological constant, or equ
lently of a negatively curved internal space. Although t
consistency of the bulk solution with the brane bound
conditions demand the two branes to have exactly equal
opposite tensions, no correlation exists between the b
tensions and the bulk cosmological constant. Instead, it is
size of the longitudinal extra dimension that is fixed throu
the jump conditions in terms of the value of the brane t
sions.

The above solution, although it is characterized by
duced fine-tuning of its fundamental parameters, has the
terbrane distance along the transverse extra dimension
free parameter. In an attempt to resolve this problem, too
then derived a nonstatic solution whose 4D subspace co
sponds to a de Sitter or anti–de Sitter spacetime. These
lutions have a number of positive features: first, being n
D
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static due to the presence of an effective 4D cosmolog
constant, the only fine-tuning of the model, the one betw
the two brane tensions, is also relaxed rendering the mo
free of any fine-tuning; second, although they have the sa
profile along the compactified, longitudinal dimension, t
exponential behavior along the transverse one changes
cosh- or sinh-type one, a fact which has two important c
sequences: the fixing of the locations of the two branes a
thus, of the interbrane distance, and the accommodatio
pairs of positive tensions branes instead of only pairs
positive–negative tensions.

The fixing of the physical interbrane distance and thus
the size of the extra dimension relies on the assumption
the scale factor along the internal spacetime remains c
stant. Both of the above solutions, static or nonstatic, w
derived under this assumption, or, alternatively, that the c
responding ‘‘radion’’ field was already at the extremum of
effective potential. An ‘‘extremization’’ constraint, valid fo
solutions with a static or nonstatic radion field whose effe
tive potential possess an extremum, was formulated and u
as a consistency check for our solutions. The final issue
whether this extremum was a unique minimum or merel
local maximum of the radion effective potential needed to
addressed. The background solutions with a constant s
factor along the extra dimensions were perturbed and a lin
stability analysis was performed. Our analysis revealed
stability of the nonstatic solutions describing an anti–de S
ter 4D spacetime and accommodating pairs of only posi
tension branes. The remaining solutions describing 4D
Sitter and Minkowski spacetimes were found to correspo
to local maxima and saddle points, respectively, in clo
analogy to similar analyses performed in five dimensions
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