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We consider a 6-dimensional spacetime which is periodic in one of the extra dimensions and compact in the
other. The periodic direction is defined by two 4-brane boundaries. Both static and nonstatic exact solutions, in
which the internal spacetime has a constant radius of curvature, are derived. In the case of static solutions, the
brane tensions must be tuned as in the 5-dimensional Randall-Sundrum model; however, no additional fine-
tuning is necessary between the brane tensions and the bulk cosmological constant. By further relaxing the sole
fine-tuning of the model, we derive nonstatic solutions, describing de Sitter or anti—de Sitter 4-dimensional
spacetimes, that allow for the fixing of the interbrane distance and the accommodation of pairs of positive—
negative and positive—positive tension branes. Finally, we consider the stability of the radion field in these
configurations by employing small, time-dependent perturbations around the background solutions. In analogy
with results drawn in five dimensions, the solutions describing a de Sitter 4-dimensional spacetime turn out to
be unstable while those describing an anti—de Sitter geometry are shown to be stable.
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I. INTRODUCTION =0), we see thak=«ZA /6, and for the second brane, lo-
cated at an undetermined distande one finds k=
It would be an understatement to say that the possibility— KEAZ/G_ Thus we arrive at the conditiond,;=—A,
of resolving the hierarchy problem in models with a warped— V6Ag/«Z. Finally, the distance. is chosen so as to re-
extra dimensiori1] has received considerable attention overgojye the hierarchy problem by noting that masses scale as

the last two years. Indeed, brane world models have domig(yy For other recent attempts at solving the hierarchy prob-
nated the literature in high energy theory. The reason lies ifu/y with extra dimensions sde 3.

its simplicity. By postulating the existence of two 3-branes  geyera| extra-dimensional attempts at resolving the hier-
with nonzero tensions, separated along the extra dimensiqﬂchy, or the cosmological constant, problem have consid-
by a distancel, in the background of a nonzefaegativé  greq six- or higher-dimensional moddlé,5]. Spacetimes
cosmological constant, one finds a simple solution for th&ith more than one extra dimension can allow for solutions
scale factor along the extra dimensiaty), which is expo-  \yith the most appealing features, particularly in spacetimes
nential. Thus length scalgand hence mass scalesn one  \yhere the curvature of the internal space is nonzero. These
brane are exponentially enhanod suppressgdelative to  go|ytions, exhibiting either spherical or cylindrical symmetry
the other. A mass hierarchy naturally arises between the twgsii, respect to the extra coordinates, can accommodate an
branes which can be labeled the Planck and weak branegyponential dependence on one of the extra coordinates,
respectively. . _ . thus, resembling the 5D Randall-Sundr@RS) mechanism

Of course, there is a price to pay for this simplicity. First, tor the resolution of the hierarchy problem. In addition, it
as is well known, the tensions of the two 3-branes must bgys out that such spacetimes can play an important role in
fine-tuned so thad ;= — A». Second, these_ tensions must berelaxing the degree of fine-tuning in the RS modéls Fi-
tuned to the bulk cosmological constak in order to pro-  pajly, these models can provide a framework in the context
duce a static solution. The origins of these fine-tunings comgs \hich the stabilization of the radion field naturally takes
about when one considers static solutions to theyace: for example, in Ref6] it was shown that in space-
5-dimensional5D) equations of motion. The scale factor in {imes with a constant spatial curvature of the internal dimen-

the extra direction takes the fOZrH(Y):efky and the equa- - sjons, one can find solutions with a global minimum in the
tions of motion requirek’=— xZA /6, wherex: is the 5D effective theory for the radion field.

Newton constant. We are, therefore, led to an anti—de Sitter |n this paper we look for solutions to the 6-dimensional
5D spacetime with\g<<0. By putting branes in the theory, (6D) equations of motion based on an internal space of con-
and requiring that the warp factor exhibits periodic behaviorstant curvature. We first present an exact static solution
along the extra dimension, we obtain the so-called jump conwhere the warp factor depends on both extra coordinates and,
ditions which give[a’(y)]i/aj=— xZA;/3, where[a'] rep-  hence, does not exhibit any spherical or cylindrical symme-
resents the difference &' on the two sides of the brane. For try. The dependence on one of the two extra coordinates is a
one brane, say with positive tension placed at the origin ( purely exponential one thus resembling the profile of the
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warp factor in the case of the 5D RS model. In analogy with
RS1, the spacetime contains two 4-brane boundaries with
equal and opposite brane tensions. This configuration re-
quires the same fine-tuning that exists in the RS1 model due
to the jump conditions imposed at the boundaries. Howevel
the solution does not contain the additional fine-tuning be-
tween the brane tensions and the bulk cosmological constant d<2=a
which is replaced by the fixing of the size of the extra di-

mension along which the 4-branes extend. The interbrane
distance along the remaining extra dimension remains arb
trary and it may be fixed only through the introduction of an
additional mechanism for the stabilization of the radion field
[7,8].

We then proceed to derive nonstatic solutions in the con-
text of the same model. In this case, the exponential behavi
along one of the two extra coordinates changes to cosh q
sinh-like allowing for the accommodation of pairs of branes
with positive tensions or positive—negative, respectively. The
jump conditions lead to the fixing of the locations of the two
branes along the same dimension and the fine-tuning be-
tween the brane tensions disappears rendering this solutign
totally free of any fine-tuning.

Both of the above solutions, static or nonstatic, have been
derived under the assumption that the extra spacetime r
mains static. We formulate an “extremization” constraint
that may serve as a consistency check for any 6D solution
with a constant or nonconstant radion field. We finally per-
form a stability analysis around the solutions with a constan
“extra” scale factor in order to check their stability under
small time-dependent perturbations. We find, in agreeme
with similar results derived for 5D spacetimg®-14], that
the system of two Minkowski 4-dimension@D) subspaces 0
has a vanishing radion mass, a pair of two de Sitter ones has
a negative mass squared, while the system of two anti—de
Sitter 4D subspaces has a positive mass squared.

In the next section we present the model and derive th
exact static solution in Sec. Ill. We show explicitly how the
correlation between the brane tensions and the bulk cosmo-
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; (2.1

herex3=_8m/Mg. The line-element of the six-dimensional
spacetime is assumed to be of the form

2(t,6,0) 70X dX”+ b2(t)[d6>+ f2(6)de?].

(2.2

fh the abovex* and (0, ¢) denote the coordinates along the
usual four and two extra, alinitially) noncompact, dimen-
sions, respectively. The functioa(t,f,¢) represents the
warp factor multiplying the 4-dimensional line elemeln(t)

. denotes the scale factor that determines the dynamics of the
%_dimensional extra spacetime, whilé#) parametrizes its
hternal curvature. For reasons that will become clear shortly,
we will often refer to theg dimension as the “longitudinal”
one and to thep dimension as the “transverse” one.

In this paper we will focus on the determination of static
and nonstatic solutions under the assumption that the scale
actor along the extra dimensions remains always constant.
As noted in the Introduction, we are not assuming any spe-
é:_ific mechanism for radion stabilization which would gener-
ate additional stress-energy terifi's8]. We will instead as-
sume that the internal curvature of the 2-dimensional extra
spacetime will naturally lead the system to solutions with a
Fonstant radion field that correspond to a minimum of the
radion effective potential as in Rg6]. The outcome of this
natlttempt is not, however, straightforward: [i], it was as-
sumed that andb are functions of the coordinate$ only.
None of the scale factors depend on the internal coordinates
and ¢ and, thus, their results are not directly applicable to
any warped brane model.
Upon variation with respect to the 6D metric tensor, the
gbove action and metric ansatz leads to the following Ein-
Stein’s equations in the bulk:

N2 - -2 2 ¢n 2 2
logical constant is replaced by the fixing of the size of one of 5 _ b_ + Gba + 3i_a_ f__ 3_ &_a — _3a a_a
the two extra dimensions. In Sec. IV we show how the re- b2 ba = a2 p2f p22lde] p2f2 9¢2
laxation of the fine-tuning between the brane tensions leads
to de Sitter or anti—de Sitter expansions in the 4D spacetime 3af’ ga 3 (0a\? 3ad’a 2,20 5
in analogy with 5D models. The “extremization” constraint b2 960 p2lae b2 (9_02_’<6a B, (2.3
and the stability analysis of our solutions are discussed in
Sec. V. Finally, we present our conclusions in Sec. VI. . T .
Y P b2 2b 2ba a®> 2a a?f” 3 [ga\?
== ——— — = —F ——+——
" p2 b ba a2 a p2f p22loe
Il. THE GENERAL FRAMEWORK 5 ) )
+3a §a+3af’(9a+3 Ja 3a da
Let us start by presenting the theoretical framework and S -2t 2 a2\ 58 T2 T
- . . a0 21960 2 962
geometrical setup of our model. We first write down the ac- b= de b*f b b® 96
tion that describes the gravitational theory of a — —kZa2Ag, (2.4
6-dimensional spacetime filled with a bulk cosmological
constant as . . ,
- bb 2bba 3b%a 6 [da\? 4 %
P TR a®  a’f?lde]  af? g2
Throughout this paper we follow Wald's conventiofis]: The , 2
. ; ) 4f' ga da
metric signature isyyn=(—,+, ...,+) and the Riemann tensor _— | —| = —KébzAB, (2.5
is defined aR?,,= 3,17, d,['7 + - . af 96 a21d0
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bf2h 2bf?ha 3b%2% 6 [da)|? [9,a] Y Ko
66— — - - =l “ba =—= A =— A
a2 a3 a3 a2\ de ba oo 3 ba oo 4
(2.12
6f2(9a\? 4f? s%a 2 2en
— | —=| + — —=—«k§b?f?Ag, (2.6) " - . :
a2 \do a 96? From the above conditions, it is obvious that the and(55)
components of the energy-momentum tensor of each brane
4b sa 3ada 3 Ja must satisfy the relationA;=4A;/3. Thus the brane tension
5~ 3p 96 +§ 90 aotog (2.7 along the_ ‘extra” g coordi_nate is clearly distinguish.ed. from
the remaining four, as pointed out below Eg.10. Similar
. . ) “anisotropic” brane tensions can be found elsewhigggin
_4boa 3ada 3 da _ (2.9  higher dimensional models.
% abdp g2 do adtde ' As noted above, the inhomogeneous prefactor in Eq.
(2.10 comes from the energy-momentum conservation con-
4f" ga 4 d%a straint onTN @ . Let us assume for the moment thelf " is
Cs6=af dp addip O (2.9 of the form [g(6)8(¢—¢)/b]diag(—A;,—A;,—A;,

—A;,—A;,0). We have allowedg to be arbitrary and we
As we mentioned above, both extra dimensions are inihave retained the common normalizationk)1/The N=0
tially noncompact. Here, we choose to compactify along theconservation equation is identically zero for all solutions

¢ coordinate by introducing two 4-branes at the poigts with b=0, which includes all of the solutions we consider.
= ¢; and¢= ¢, (and impose periodic boundary conditions  Note that this constraint oh stems from the anisotropy;
The brane energy-momentum tensors can be written as #RX,. TheN=1,2,3 equations are trivial. TH8=5 equa-
tion reduces to
M(i) E(QD_(Pi) . ~
TN :Tchag_/\i,_Ai,_Ai,_Ai,_Ai,O),

(2.10 -

wherei=1,2 denotes the two branes. Note that the require-

ment of satisfying 6D energy-momentum conservationwith all derivatives taken with respect t With the anisot-
Tk,”fg}:o, together with the jump conditiongdiscussed ropy relation derived from the jump conditions this becomes
shortly) forces one to introducél) an “inhomogeneity” re-
flected in the prefactor of E42.10 and(2) an “anisotropy”
such thafTz " =Tk for k=0, . . .,3. On theother hand, as
expected, the energy-momentum tensor in the bulk is domi-

nated by the presence of a smoothly distributed bulk cosmos : : . .
logical constant: i.e., As we will show in the next section, our solution further

requiresa’/a=f'/f, from which it can be easily seen that

Tk,"(B)=diag—AB,—AB,—AB —Ag,—Ag,—Ag), g= 1/£2. Wg .also note that without this te_n_sion prefactor the
jump conditions would contain an explicit factor &f6)

(2.1)  necessitating a constahaind hence a flat internal space.

! ’

g +4E+T

!

~ a

! !
g'+g+—

: A;=0. (2.14

whose sign remains arbitrary at this point. Note that, in the
absence of a radion potential, we do not include an additional 1. STATIC 6D SOLUTIONS

contribution to the&(55) or (66) component here. In this section we focus on the derivation of an exact

_Under the assumption that the two 4-branes are infinitely; i ensional static solution with an exponential warp factor
thin, the discontinuity in the first derivative of the metric 4 o ~nstant scale factdr(t) =by. In this case, the non-

tensor along the coordinate creates &function contribu- vanishing components of Einstein’s equatiofaster drop-

tion to its seconq derivative. _The jump Conditio[rjsﬁ] that ping all terms with time derivativégake the form
follow by matching the coefficients of thé functions on

both sides of Einstein’s equations provide constraints on the
first derivatives of the warp factor at the location of the f" 3
branes. One may easily conclude, from the absence of anyf = 52¢2
S-function source on the right-hand side of &%) compo-

nent of Einstein's equations, E(.6), that there is no dis- =— k3bZAg, (3.
continuity in the first derivative of the warp factor along the
0 coordinate due to the smooth distribution of energy along

2 3%
+__
a 94?

2+ 3 aza+3f' aa+ 3
af? P7<P2 af 96 a?

Ja
de

Ja
a0

2 2 ' 2
the longitudinal extra dimension. Then, from E¢®.3) and 6 9 + i a_a+ ﬂ &_aJrE 72 = — k2b2Ag
(2.5), which contain second derivatives with respeciptove a%f2\de af? 9gp2 af 36 321496 6roB:
obtain, respectively, the constraints (3.2
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2 4 4%
+ - —=
a 962

2 6

aZ

6

a’f?

da
de

Ja

ay _
2,2 _ +wer oA (6- 6p) 2,FN(6-6p)
EY) — kghgAg, aco, ) TN “le o+4me o7,

(3.3 (3.11)

) 5 where a, stands for the producA,A,. For simplicity, we
ﬂ &_a_ f J7a _ may choose to place one 4-brane at the peint0 and the
af 9o adbip second one ap=L. Then, by imposing the conditioa(8

(34  =46,,¢=0)=1, the integration constaai, may be fixed in
terms of\ and w.

We assume that the dependence of the warp factor on the Clearly, the ¢ coordinate corresponds to a noncompact
two extra coordinates can be written in a factorized form:extra dimension as the conformal factor increases, or de-
a(0,9)=0(0)®(¢). Equation(3.4), then, provides a very creases, exponentially. The similarity with the extra fifth di-
strong constraint on the functio®(#) andf(¢) leading to  mension of the Randall-Sundrum model is striking: the size
the relation® (6) = A,f(0), whereA, is a constant. The dif-  of this dimension can become finite only by introducing two
ference of Eqs(3.2) and(3.3), in turn, leads to the result  pranes(3-branes in the case of the RS1 model, 4-branes in
this casg at two different points along the transvergedi-
mension. Then, the interbrane distance defines the size of the
extra dimension. The monotonic behavior of the scale factor
in the ¢ direction calls for the introduction of a pair of
wherew is again an arbitrary constant. The above equatiorbranes with positive and negative tension, as discussed ear-
allows us to write the general solution fdr(¢) as a linear lier. We will show that this is indeed the case at the end of
combination of increasing and decreasing exponentialghis section. Single-brane configurations could be also ac-

4

5 =i —f2=0? (35

However, Eq.(3.3), which may be written as commodated in our analysis by sending the second brane to
an infinite distance from the first one.
d\2 ' , 2202 At this point we can easily derive the relation between the
6| g | T6f" T +aff"=—r3bof"Ag, (3.6 internal 2D curvature and the bulk cosmological constant.
The 2-dimensional curvature scalar is
restricts the form of the solution by demandidbg/® to be a Y
constant as well. As a result, we may write the solutiondfor Rzy= R§+ Rg: _c (3.12
in the form b3 f
D(p)=Ae "%, (3.7 From the solutior(3.9) we further see that”/f=X\2, so that
2
whereA,, is an integration constant. Equatit®7), together R :EA (3.13
with Egs.(3.5) and(3.6), brings the equation for the remain- 2578 '

ing unknown metric functionf(6), to the form . . .
The behavior of the warp factor along ti@edimension, and

12 \2f24 2=, (3.9 subsequently the topology of this dimension, is strictly de-
fined by the sign of the.? parameter which determines the
whose general solution can be written as sign of the two-space curvature through E®.12), or

equivalently through Eq3.10, by the sign of the bulk cos-
mological constant. We now distinguish the two cases:

1 _
f(0)= [0+ 40 70, (3.9
A.A2>0
where This case corresponds, through E8.10), to a negative
bulk cosmological constant and to a negatively curved two-
Kkeb3 dimensional extra space time
)\ZZ—WAB. (31@
Ag<0, R(z<0. (3.19

Note that the parameter can take real or imaginary values From the expressiofB.9) we see that the functiof(6) is
for a negative or positive, respectively, bulk cosmologicalcharacterized by the existence of a minimum at
constant. We will comment on these two different options
shortly.

We can furthermore easily check that the combination of
Egs.(3.5 and(3.6) trivially satisfies the remaining equation
(3.1). We may, therefore, write the full solution for the warp under the assumption thé{#) is symmetric under the trans-
factor, that multiplies the line-element of the 4-dimensionalformation < — 6. Identifying the two minimafor simplic-
spacetime, as ity, we may setd,=0), we can compactify this extra dimen-

1
Omin= o= 20, (3.1
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sion. Then, the quantity X6,,;, is the physical size of the B -
extra dimension, 24,6, in units of Mg . ds?=sir’[\ (08— 00)]| —dt?+e?M| dx®+dy?+dZ
If we allow the two symmetric branches of the function
f(0) to meet ath=0, a cusp is inevitably created. One might d%2
be tempted to introduce an infinitely thin 3-brane at this a4 ]+bgd02' (3.19
point creating a setup that resembles the 5D single-brane 6H?2

configurations presented in RET]. However, the absence of

any discontinuity in the first and second derivative of thewhere H=X/(2b,) and where, for simplicity, we have set
warp factor with respect to thé coordinate does not allow aozzx in Eq. (3.11). The above line element describes a
for the introduction of any infinitely thin 3-brane in the 6_dimensional spacetime whose four spatial dimensions are
model. The only allowed configuration is the one where eaclnfiating. This is clearly in contradiction with our main goal
one of the 4-branes defining the size of thelimension is a  to derive solutions with static extra dimensions.

thick 3-brane extending along tiedimension similar to the We finally turn to the jump conditions that will help us
one described in Ref$7,17]. In that case, the warp factor determine thew parameter of the solution as well as the
and its derivatives with respect to tiecoordinate are ev-  number of fine-tunings that the model demands. Substituting

eryWhere well dEfInEd as -dema-nded. |ntr.0dUCing a- th|CKhe solution for(I)(cp) [Eq (37)] into the Jump conditions
3-brane along the dimension will not spoil the solution (2,12, we obtain the result

(3.1)) found above: it would merely render it as the solution

outside the “wall” of the 3-brane where the minimum must 3w
take place. T——=—A1=A,. (3.19
K6b0
B. A\2<0 The same fine-tuning between the two brane tensions, that

was necessary for the RS solution to be consistent with the

Th'? case arises under the assumption that t-he bulk CO?)'oundary conditions, appears also in our model. Note, how-
mological constant takes a positive value. The internal cur-

vature of the {, )-submanifold, in this case, is also positive ever, that the second RS fine-tuning, between each brane
dina t (Dth) definitior(3 1’2) Si )\2'<0 P tension and the bulk cosmological constant, is absent. The
ac.cor '”?L o the Ne_m' lons.14). since » WE May  yalue of Az defines the parameter while  is defined in
write =i\, where\ is a real number. It turns out that for tarms of the brane tensions. No relation betwaeand o
special values of the parametet the §-dependent part of exists in our model, and thus\g and A; remain uncorre-
the solution for the warp factdB.11) becomes periodic, and |ated. Nevertheless, since only one of the two brane tensions
thus spontaneously compactified without the need for thgas peen fixed so far, another fundamental parameter of our
introduction of any thin or thick 3-branes. However, in eaChmodeI, if not the second brane tension or the bulk cosmo-
case the resuling form of the line element of the 6D|ggical constant, should be fixed instead, in this case.
spacetime contradicts basic assumptions of this analysis. Through Eq.(3.15 the physical size of th@ dimension is

Thus, if we choose“= 1/4, the solution forf (8) is given given in terms of the\ and w parameters. By using Egs.
in terms of a cos-type function. However, the presence of the3 15 and(3.19 we obtain the result

coefficient 1/(4) in Eq. (3.9 renders this metric function

imaginary leading to 3eMmin
=IA, 3.2
ds?’=a?(6,¢)(—dt?+dx?>+dy?+dz) 2k2bg A .29
+b3[d6?—TF(0)%de?], (3.16  where|A;| stands for the absolute value of the brane ten-

sions. The above relation fixes the physical size of the lon-

5 gitudinal extra dimension, which constitutes a fundamental
where we have sdt(0) =if(6). As a result, the character of parameter of the model, in terms of the brane tensions. The
the ¢ dimension changes from space-like to time-like whichlogarithmic dependence on the value |déf;| ensures the
is in disagreement with our argument that thedimension  smallness of the size of the longitudinal dimension even for
plays the role of the extra transverse dimension of the R%arge values of the brane tension. It is therefore the existence
model. If, alternatively, we choose?= —1/4, the function  of this extra dimension that introduces an additional param-
f(#) comes out to be proportional to a sin-type function,eter in the model whose fixing replaces the fine-tuning be-
however, in this caseay itself comes out to be imaginary. If tween bulk and brane parameters. Note, however, that the
we perform the following coordinate transformation locations of the two 4-branes along the transvessgimen-
sion and, thus, the size of this dimension remain a free pa-
rameter. We address this point in the next section.

~ i A final comment on the number of fine-tunings is in order
p—aHt,  t— o (317 at this point: had the solutions far’<0 led to a consistent
spontaneous compactification of tiedimension, an addi-
tional problem would appear: the special values of the
the 6D line element takes the form parameter, for which these solutions arise, would result in the
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fixing of the values of both brane tensions through Eg.wherec, andt, are integration constants. If we pass from the

(3.19. The fine-tuning between brane tensions and bulk cosconformal timet to the physical timd, through the transfor-
mological constant would still be absent, however, the UM tion di=T(t)dt, we might easily see that the solution
ber of necessary fine-tunings in the model would be agairgakes the form '

two. We might therefore conclude that periodic solutions,

which respect the assumptions of our model and, at the same T(T)zeH(LYO) (4.4)
time, demand less fine-tuning than the usual 5D brane mod- ' '
els, cannot arise in the framework of our analysis. In the above expressiori=—c, is again an integration
constant, which may be either real or imaginary describing a
IV. NONSTATIC 4D SOLUTIONS de Sitter
Next, we proceed to construct 6-dimensional solutions dss=—dt?+ e (dx®+dy?+dZ) (4.5

with a 4-dimensional time-dependent submanifold but with a . )
constant radion field once again. The source of this tim@r anti—de Sitter
dependence will be a nonvanishing 4D effective cosmologi- o onx, o2 )
cal constant. Solutions similar to these but in the presence of dsj=dx*+e”™(—dt*+dy*+d7) (4.9
only one extra dimension have been derived befd@.
Here, we will investigate the possibility of whether such so-
lutions arise in the case of one additional, extra, longitudina . ) i ~ .
dimension. As in the previous Section’ we are going to ascontln.ue usingd, instead oft, and the form of the solution
sume that, initially, both extra dimensions are noncompact4-3). instead of Eq(4.4), for convenience. In terms of the
with the size of thep dimension becoming finite due to the conformal time, a real or imaginany, will distinguish be-
presence of the two 4-branes while thalimension will be ~ tween a de Sitter or anti—de Sitter 4D submanifold.
appropriately warped and thus spontaneously compactified. Having determined the solution fd(t), we now turn to

Going back to the full time-dependent Einstein’'s equa-Ed- (2.6), which can be brought to the form
tions (2.3—(2.9), we try once again the factorized ansatz: o 0 2
a(t,0,0)=T()O(0)P(¢). The off-diagonal component ‘1) _6 b®cy
(2.9 gives, as in the static case, a proportionality relation, V) quﬂ
O(0)=A,f(6), between the twa-dependent functions of
the metric tensor. The remaining off-diagonal equations, EqsComparing the above with E43.6) we may easily see that
(2.7 and(2.8), in conjunction with the above factorized an- we can recover the equati@8.8) for f(6), if ® () satisfies
satz, both lead to the result=const, that guarantees the the following equation
staticity of the extra 2-dimensional space time.

Subtracting Eq(2.6) from Eq. (2.5 we recover one of the d'\2 bzc(z,
two equations that determine the solutions for the metric D A2p?
functions® () andf(6), namely 0

4D submanifold, respectively. Since the Einstein’s equations
pre all expressed in terms of the conformal time, we will

+6f2+4ff"=— k3b%f2Ag. (4.7)

0?=0. (4.8

The solution for thep-dependent part of the warp factor,
now, takes the form

5 =i -f2=0? (4.9

bcy .
D ()= 71— sinf w[¢— o] (4.9
Before trying to derive the second equation, we need to de- 0

termine the solution for the time-dependent functibft).

for de Sitter spacetime, and
Taking the sum of Eq92.3) and(2.4) we find the result P

(0)= 2 oo -gp)] @410
. = ——=C0sS - .
T(oT T YT A le~¢o)l
? ?—.— =0. (42)

T for anti—de Sitter spacetime.

Since the basic equation for the metric functi@) has

Obviously, one solution of the above equation is the trivialrfemained unchanged, the general solution given by EG@.
one. T=0. which leads to the static case of the previousand(&lo) still remains the same. The subsequent discussion
’ ; on the possible ways of compactifying tifedimension, in

section with the Minkowski-like 4D submanifold. Clearly, ; r .
the model accepts another solution that may be determind§€ case of a negative or positive bulk cosmological constant,

by demanding the expression inside the brackets to be zer§nd the main conclusions drawn at the end of Sec. III still
Then, we obtain the alternative solution hold. On the other hand, the time-dependence of the warp
factor has radically changed the solution forgtslependent
part. Instead of the monotonic exponential dependence that
T(t)= , 4.3 prevailed in the static case, the time-dependent case may
Co(t—to) accommodate both sinh- and cosh-type solutions. Solutions
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similar to the above usually arise in the case where classical 4b2  6b  12ab 6a 4f" 12 | ga\2
[19] or quantuni 20] effects from bulk scalar fields are taken KETZ: ST T a3 T Bt ot Saal s
into account or when the effect of a bulk stabilizing potential a’b* a’b a’h a® b*f b*ffa’lde
is included in the modg]l19,3]. Note, however, that no such ) , 5 )
effects have been assumed to be present in our analysis. The 12 ‘9_""+ 12f a_a+ 12 a_a +1_2(9_a
conclusions drawn in the previous section from the jump b%f?a 9p®> b?fadld b2a?\dld b2a 962
conditions are also likely to change. Substituting the above 51
solution for®(¢) into the jump condition$2.12), we obtain (5.
the constraints Next, we construct the following linear combination of all
2 the components of the 6D energy-momentum tensor
Kg
w COtr[w(ﬁoi_(Po)]:(_l)'?boAi (4.11 K2[(4—n)T4+3(n—2)Te+3(n—2)Tg]
inh- i 4b® 12b  24ab a
for the sinh-type solutions, and — e o 2 12
5 ab a‘b a’b a
'KG
— = ( — = .
otanfo(ei—¢@o)]=(—1) 3 boA; (4.12 +(4_n)ﬂ+2_4 (n—1) a_a 2 i&z_a
. g b  b?| f2a? \d¢/  f2a 9¢?
for the cosh-type solutions. In the above two equatians,
=1,2 denotes again the two 4-branes. The sinh-type solution f' 9a (n—1)(da\? 1 %a
with its monotonic behavior can clearly accommodate only ter ot =3 ~ (5.2
. ™ . . . L fa 960 az d0 a &02
pairs of positive—negative tension branes in analogy with the

static case. Moreover, the specific solution is plagued by the . .
. : . Lo Wheren is an integer. In the case where the warp factor can
existence of a singularity at the poigt=¢,. In order to

. . ; be written as the product of two functions, one depending on
exclude the singularity from the 6_D spacetime, both_bra_ne e 4D coordinates and one on the extra coordinates, the
must be located on the same size of the singularity, i.e.

©1.0,< 0. On the other hand, the cosh-type solution i eV_above expression can be greatly simplified. If we write the

: . warp factor in the factorized form
erywhere well defined. The same poiats ¢, corresponds,
in this case, to a minimum which allows for pairs of positive a(t,0,0)=T(HOW(8,¢), (5.3
tension branes to fit in the model. In both cases, either for
sinh- or cosh-type solutions, the above jump conditions willthe expression in the last line of EG.2) may be written as
fix the location of the two branes relative to the singularity or
the minimum, respectively, in terms of the two brane ten-24| (n—1)

da\? 1 é%a f’ oa

sions. Note, however, that the brane Fensmns, considered gg 222 | g f2a 9p?  fa b
input parameters of the model, remain totally uncorrelated.
Moreover, the lack of fine-tuning between any of the brane (n—1)[da\? 1%
tensions and the bulk cosmological constant still holds ren- +t——| =3 - —
dering the model free of any fine-tuning. a d6 agg
V. RADION DYNAMICS - ﬁia [\/gexamwn(xm)]zﬁ(D D™W")
: m m ’
nW" /g nwW"

The main goal of the previous sections was to find 6D
solutions, static and nonstatic, with a constant radion field (5.4
which demanded less or no flne-t_unmg of their parameter%herexm denotes the extra coordinates ¢) andge, is the
compared to other models in the literature. Nevertheless, an etric tensor of the 2-dimensional extra spacetime. The
important aspect of these solutions needs to be studied next. P :

do these solutions actually extremize the radion effective pogbove 2D double covariant derivative of the functiaf

tential? And, if yes, is this extremum a minimum or a maxi-diVided byW” Is the qnalqg of the double Qerivative of the
mum of the effective potential? same function appearing in the 5D constraint of Rm]. In

In Ref.[10], a 5-dimensional “extremization” constraint the more gen_eral case where more than one, possibly non_flat,
that could serve as a consistency check for any solution xira dimensions are present n the theory, .the douple Qen\_/a—
with a constant radion field was derived. It might be worth ve needs o be replaced with the covariant der!vat|ve n
deriving the corresponding constraint in six dimensions an rSer for the internal geometry of the extra spacetime to be
commenting on the possible differences that arise as on Ien '3;9 account, . f the oth
changes the number of extra dimensions. In order to do that na _|t|on, We may rewrite some o the other terms ap-
we need to go back to the time-dependent Einstein’s equaP—earlng in Eq(5.2) in the following way
tions, and start by constructing the 4D trace of the energy- 5 2 45"
momentum tensdiy taking the sum of Eq2.3) with three 12— =—Ry,, —=-2R;, (5.5
times Eq.(2.4)], which comes out to have the form a® w2 M p2 @
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whereR4) and R, stand for the 4D and 2D, respectively, A
scalar curvature. Then, the constraist2) takes the simpli- Tg= —Ag— —'25(<p— i), Tg= —Ag, (5.9
fied form bof
24 . .
—(D,,D™W") settingW=0 (0)®(¢), and employing the form of the so-
nwW" lutions found in Secs. Il and IV, we obtain

= kg (4—n)TE+3(n—2)Te+3(n—2)T¢]
2

2 2 )\2 85(€D_(PI) [(9(pa]i Ke
—1)— — —2| kgAg+10— | — +—=A;l.
+(n 1) W2 R(4)+ 2(4 n)R(z) 6‘\B bg) b0f2 boa 3 i

. . .. (5.9
+aen) 4p? +12)+24ab
_n R —

a’h? a’b a’b

. (5.6

By using the jump condition&.12 and the definition of the
c d to the 5-di ional the 6-di ional N\ parameter from Eq(3.10, we may easily conclude that
ompared 1o thé S-dimensiona OftED], ne 0-dIMensIonal 1,414 the static and nonstatic solutions derived in the previous
version of the above constraint has a similar but more gen- _ .. . P e . gy
, . sections satisfy the “extremization” constraint, as antici-
eralized structure. It involves all the extra components of the ated
energy-momentum tensor, namé@ andTg, as anticipated, P ' .
. : : In order to answer the question whether the above extre-
and both on an equal footing. Moreover, the 2-dimensional

scalar curvature of the extra spacetime explicitly makes it um :jstﬁ m|B|mum cl)rtg maxmgmt, abpertu;bat|oré a.nalyslsh
appearance together with the 4-dimensional one. Finally, th round the above solutions needs 1o be pertormed, in whic

coefficients appearing in front of the 4D trace and extra com{n€ time-dependent, small perturbation will be associated

ponents of the energy-momentum tensor seem to be «dimenith the radion field. Therefore we consider the following

sion” dependent. By mere comparison of the 5D and gDansatz for the line element of the six-dimensional spacetime
versions of the constraint, we may easily conclude that the
coefficient in front of the extra components behaves as (1 -
+d)(n—2), whered is the number of extra dimensions. ds?=[a3f(6)?®(¢)2+eA(6,¢)b(t)](—dt2+e*"'dx?)
However, the dependence of the coefficient of the 4D trace is _
more subtle and a higher dimensional calculation could only +[1+€B(6,¢)b(1)](d6?+f(6)%de?]. (5.10
reveal its exact form in terms af.

We would also like to stress here an additional point on
the form of the constrain.6). It holds for every solution of Note that we have switched to the system of nonconformal
the 6D Einstein’s equations, even for the ones with a noneoordinates and we have dgj=1 for simplicity. We have
static extra spacetime. For the particular casenefl the  also chosen to perturb the de Sitter solutions found in the
above constraint can be interpreted as the equation of motigsrevious section; however, our analysis can be easily ex-
of the time-dependent scalar fiela{t). This can become tended to the cases of Minkowski or anti—de Sitter branes by

clear if we rewrite EQ(5.6) as settingH2—0 or H2— — H2 (with theT-dependent perturba-
tions replaced by-dependent respectively.
w2 2 u 15 16 8 . The above ansatz when substituted into the 6D Einstein’s
?DMD b*=k5(T,,—T5—Te) +2R2)— V_V(DmD W). equations will lead to a system of differential equations and
(5.7) constraints that govern the behavior of the new line element.
We will work in the linear order approximation and, thus, we

: . : . . re keeping only terms proportional to the small parameter
For solutions with a nonstatic extra spacetime, the rlght—han§<1. In this approximation, the generalizéaD), (ii), (05),

side Of the above quatlon yamshes when an e>'<tremu'm, ®nd (06) components of Einstein’s equations take the form
ther minimum or maximum, is reached. For solutions with a
constant radion field, which by definition corresponds to an

extremum of the radion effective potential, the same combi-

nation should also vanish. Therefore the solutions found in , 2,224 2 2 Abf”

: : . . . . + - - -
the two previous sections, either static or nonstatic, but with B agf2d? 3HD— (r5ah" @ Ag = 3H7BD f
constantb, should satisfy the above constraint. By using the
following expressions for the components of the energy- 3b #°A 3bf’ 9A 3b F?A a(z)bdn2
momentum tensor _FT&_7%_7E_T

Toe —gng- 2N S( ) X B By f2(728 2Ah A (5.10)
=— - - @i, — -— — | =K , .
s B bof2 C— @i aqu EY) (902 6 B
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B+ — | (~2Hb—b)+ (x2a31?02A 5~ 3H?)Bb (D,D") 120 ®% H° | 12 4bd!
a2f2d?2 670 ® af2p? 2| @2 aZd? 2 2
Abf" 3b a2A+ 3bf’ (?A+3b A =k3bAg, (5.18
f 2f2 92 2f 90 2 542
+agbq)? aZBHf,aB fzaZB B AbA (D,D*b) b [8®'2 12H?| 120f'2 4bf”
2 \ger a0 pe2| T a2f202 2| @2 aZe?| 2 f
(5.12 = k2bAg, (5.19
A f’ 3 JA 1B
2B+ a2f2p?| T 2a2f2p2 960 2 90 respectively, also turn out to lead to an inconsistent result. As
0 0 (5.13 a result, the option that the first expression inside the brack-
' ets in Eq.(5.15 is zero needs to be excluded. We are there-
3A \ @ 3 JA 1B fore left with the_ alternat'lve optloﬂ{b—b)zo which leads
2B — ), to an exponential solution of the time-dependent perturba-
agf?®2) ©  2a2f2@2de 2 d¢ tion. By employing the equation of motion of the “radion”
(5.14  field
respectively.

By taking the sum of th€00) and (i) components, we
end up with the constraint

A
B+
( apf

2£25)2
O@

)(Hb—b) 0, (5.15

which demands that one of the two expressions inside th

g“'D,D b=m?b (5.20

and the exponential form of its solution, we get the result
m?= — 4H?2. Obviously, the mass squared of the radion field

turns out to be negative for de Sitter 4D subspace, zero for

Minkowski, and positive for anti—de Sitter 4D subspace.
€ The above result is in perfect agreement with similar

brackets vanishes. If we assume that the expression insidgorks conducted in five dimensions: in Ref€—11] (see
the first bracket is zero, then we can determine the exagf|so [12]), it has been shown that the system of two

form of the unknown functioné\( 6, ¢) andB( 6, ¢) by plug-
ging this constraint into the off-diagonal compone(8sl3
and(5.14. Then, we find that

A(6,p)=1, B(0,¢)=— (5.19

asf(0)2d(p)?’

modulo a multiplicative constant. Both of the equations
(5.17) and (5.12, in that case, reduce to the background
equation(4.8) (with cg being replaced byi? due to the use
of nonconformal coordinatgsvhich is obviously satisfied by
the background solution. However, the soluti@l6 fails

to satisfy any of the remaining components of Einstein’s

equations. For example, the off-diagon&6) component,
which has the form

21" (oA Aqn’)+ 2cop| [ 9B, ' B) D7 OA

floeg T @ o fap @ 98] @ 96
A =0 5.1
900 (517

leads to the constrairft ' =0 which is obviously in con-
tradiction with the form of the background solution. Finally
the (55) and (66) components, which after using E¢h.16)
take the simplified forms

04402

Minkowski branes with a zero total brane tension cannot be
stabilized since it leads to a radion field with a zero mass. In
that case, the extremization of the radion potential follows
from the fine-tuning of the parameters of the model which,
however, cannot create a unique minimum for the radion
field in the absence of a physical stabilization mechanism. As
a result, the static solution derived in Sec. Il describing a pair
of flat branes cannot be stabilized and the radion field re-
mains always massless. The same conclusion was drawn in
Refs.[13,14] where the stability of curved branes was also
studied. According to their results, a pair of de Sitter branes
leads to an effective theory for the radion field with a nega-
tive mass squared while a pair of anti—de Sitter branes turns
out to be stable since it leads to a positive radion mass
squared. Therefore our solutiqd.9) corresponding to two
branes with a positive effective cosmological constant is un-
stable under small time-dependent perturbations while the
alternative solution described I¢4.10 and corresponding to
two branes with negative effective cosmological constant is
stable. We bear in mind that this conclusion ignores any ad-
ditional contribution to the 4D radion potential as might be
expected from a more complete model which includes super-
symmetry and supersymmetry breaking. Let us finally note
that the above results are also in agreement with those of
Ref.[6] where the extremum of the radion effective potential
was a global minimum only in the case of a 4D negative
cosmological constant.
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VI. CONCLUSIONS static due to the presence of an effective 4D cosmological
onstant, the only fine-tuning of the model, the one between

in the framework of which we addressed a number of impors <. two brane tensions, is also relaxed rendering the model
. o . . POl 06 of any fine-tuning; second, although they have the same
tant issues that arise in the context of higher-dimensiona]

. NP profile along the compactified, longitudinal dimension, the
brane models. The relaxation of the fine-tuning of the fundaexponential behavior along the transverse one changes to a

mental parameters of the model was one of them: solutiong /..~ . sinh-type one, a fact which has two important con-

with less or no fine-tuning at all, compared to their 5D ana'sequences: the fixing of the locations of the two branes and,

logs, were constructed where the severe correlatipn betweqﬂus of the interbrane distance, and the accommodation of
b.rane and bulk parameters was replacgd by the fixing of th([Iaiairs of positive tensions branes instead of only pairs of
sizes of the two extra dimensions. In this way, another prob:

. : . ositive—negative tensions.
lem, tha; of the determination of the mterb_rane distance, wal The fixing of the physical interbrane distance and thus of
automatically resolved. The solutions derived allow for the

introduction of pairs with positive—negative brane tensionsthe size of the extra dimension relies on the assumption that
in analogy with the RS model, however, more physicallythe scale factor along the mtgrnal spacetime remains con-
interesting configurations with p,airs of onl,y positive tensionStam' Both of th_e above sqlutlons, static or nonstatic, were

?erlved under this assumption, or, alternatively, that the cor-

branes were a_lso found. I_:|nally, the issue of the behavior o esponding “radion” field was already at the extremum of its
the aforementioned solutions, under time-dependent pertuf-

bations around configurations with a constant radion ﬁeldeffectlve potential. An "extremization” constraint, valid for

. : ) . o Solutions with a static or nonstatic radion field whose effec-
was examined and conclusions regarding their stability were. o potential possess an extremum, was formulated and used

derllr\(erzr?(.)re detail. considerina a 2D internal space of constantS & consistency check for our solutions. The final issue of
’ -fing a < ' SP Wwhether this extremum was a unique minimum or merely a

curvature, an e_xgct stgtlc soluthn was f|rsfc prgsented. Thf%cal maximum of the radion effective potential needed to be
warp factor exhibits neither sphencall nor cylindrical Symme-_ 1 iressed. The background solutions with a constant scale
it:l)t/rggfjgeec?zrt]?vsvggigg:[;n?(tgailnig%rlgl:att?\se' ;—;\fga‘h—ebdra}?ﬁ;iﬁctor along the extra dimensions were perturbed and a linear
verse” extra dimension al% n whichgthe warp factor is astability analysis was performed. Our analysis revealed the
. , aong : P .“stability of the nonstatic solutions describing an anti—de Sit-

pure exponential resembling the profile of_the warp facfcor Ner 4D spacetime and accommodating pairs of only positive
tsri]gnce,ﬁg E)Il;;h?tusd?nz§onr:gdlebghewﬁcr:?]alt?ggdf-%)gﬁe?mei-nfenSion branes. The remaining solutions describing 4D de
tend' was shogwn 10 be “s éntangousl » compactified in theSitter and Minkowski spacetimes were found to correspond
' : P USly P . to local maxima and saddle points, respectively, in close
case of a negative bulk cosmological constant, or equiva:

lently of a negatively curved internal space. Although theanalogy to similar analyses performed in five dimensions.
consistency of the bulk solution with the brane boundary
condmpns der_nand the two bra.nes to.have exactly equal and ACKNOWLEDGMENTS
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