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The Davies-FullingDF) model describes the scattering of a massless field by a noninertial mirror in two
dimensions. In this paper, we generalize this model in two different ways. First, we consider partially reflecting
mirrors. We show that the Bogoliubov coefficients relating inertial modes can be expressed in terms of the
reflection factor and the transformation from inertial modes to modes at rest with respect to the mirror. In this
perspective, the DF model is simply the limiting case when the reflection factor is unity for all frequencies. In
the second part, we introduce an alternative model which is based on self-interactions described by an action
principle. When the coupling is constant, this model can be solved exactly and gives rise to a partially
reflecting mirror. The usefulness of this dynamical model lies in the possibility of switching off the coupling
between the mirror and field. This allows us to obtain regularized expressions for the fluxes in situations where
they are singular when using the DF model. Two examples are considered. The first concerns the flux induced
by the disappearance of the reflection condition, a situation which bears some analogies with the end of the
evaporation of a black hole. The second case concerns the flux emitted by a uniformly accelerated mirror.
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I. INTRODUCTION from the outset instead of following from interactions with
the boundary. Therefore only questions concerning
The Davies-Fulling DF) model[1] describes the scatter- asymptotic properties of asymptotically inertial mirrors can
ing of a massless field by a noninertial mirror in two dimen-be properly answered. To emphasize this point, we shall
sions. It has received and continues to receive attentioshow in the first part of this article that the scattering in the
[2—11] principally because of its simplicity and its relation- DF model can be expressed in purely kinematic terms. It
ship to Hawking radiatioi12]. (One can indeed mimic the results from the Bogoliubov transformation relating the usual
varying Doppler effect induced by the collapse of a star byMinkowski modes to noninertial modes which are eigen-
the total reflection on a receding mirroBecause of its sim- modes with respect to the proper time of the mirror. The
plicity, this model has been also used to investigate the relascattering of the latter is then trivial, as trivial as the scatter-
tionships between the particle description of fluxes emittednd of Minkowski modes by an inertial mirror. This rephras-
by the mirror and its field description based on the two-pointng of the DF model is very useful in that it allows us to
Green’s function. The motivation behind this analysis is theconsider partially ~transmitting mirrors with arbitrary
following. When quantizing a field in a curved space-time,frequency-dependent transmission coefficients. In this per-
one loses the uniqueness of choice for the particle notiog§Pective, the DF model is simply the limiting case in which
which is then used to define the vacuum and its excitationghe reflection is total for all frequencies. _
Based on this fact, some authors have proposed discarding !N the second part of the paper, we analyze an alternative
the particle point of view13]. The DF model, being defined model for scattering along a given trajectory which is based
in flat space time and giving rise to particle creation as in @n self-interactions described by an action principle. The
curved space-time, provides a good playground for confrontmain motivation for considering this model is that we can
ing the two points of view. Finally, the DF model also pro- NOW switch on and off the coupling between the mirror and
vides a good starting point for studying the role of ultrahighfield. Therefore, we can work with well-defined asymptotic
frequencies which arise in the presence of event horizonffe€e states. The relationship between the partially transmit-
[14-18. This is particularly true when considering uni- ting mirrors previously considered and this model will be
formly accelerated mirror3,19,20. Indeed, in this case one €xplicitly made.
has to confront the fact that the instantaneous value of the TO this end, we first work with a coupling which is con-
energy flux identically vanishes, whereas the Bogoliubov costant. In this case, the Born series can be exactly summed
efficients, mixing positive and negative frequencies, do nofnd lead to a partially transmitting mirror. Moreover, in the
vanish and lead to a total energy, which furthermore dilarge coupling constant limit, one recovers the DF mod-
verges. el: i.e., total reflection. The only difference with respect to
Quite independently of these specific difficulties, there isthe kinematic approach is that causality is now built in. Sec-
a fundamental reason which complicates the analysis o?Pnd, we consider the case when the coupling is time depen-
these problems: the DF model does not follow from andent. In this case, we compute the fluxes perturbatively to

action principle. In fact, the reflection condition is imposedquadratic order in the coupling. The novelty arises from tran-
sient effects associated with the switching on and off. The

possibility of controlling these transients is crucial for regu-
*Email address: obadia@celfi.phys.univ-tours.fr larizing the fluxes in situations where they are singular when
TEmail address: parenta@celfi.phys.univ-tours.fr using the DF model.
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To make this explicit, we consider two examples. The firstand/or ends on null infinities, the calculation of the energy
one consists in computing the flux associated with the apradiated by the mirror is ill definedThe specific problems
pearancgor disappearangef the reflecting boundary con- associated with null asymptotic trajectories will be consid-
dition. This problem was considered by Anderson and DeWered in a next articl¢23].)
itt [21]. Moreover, as discussed ifv], it presents some In this paper, we shall consider the scattering obmplex
analogies with the residual flux associated with the disapmassless scaler field. The reason for this choice is that it
pearance of a black hole at the end of the evaporation prallows us to consider more general scattering matrices when
cess. When using the DF model, the flux is singular and itshe reflection condition is not perfect. This possibility will be
spectral properties are ill defined. On the contrary, with theexploited in the next subsections. Since the dynamics of the
self-interacting model, it can be described by a well-definednirror is trivial, the evolution of the field is entirely gov-
process in which the coupling to the mirror is switched off erned by the d’Alembert equation
more and more rapidly. The second application concerns the 5
flux emitted by a uniformly accelerated mirror. In the DF (97— 3d7)P(t,2)=0 1)
model, the energy flux vanishes everywhere, but on the ho-
rizons where it is not defined. With the other model, insteadand the reflection condition
a well-defined and regular expression will be obtained. In the
intermediate regime, when the coupling is constant, we re- d(t,zy(1))=0 (2
cover the vanishing of the local flux. But we also find tran-
sient effects which become singular when the switching oralong the classical trajectory of the mirrpe= z,(t).
and off is performed for asymptotic early and late proper Since the field is massless and since we work in two di-
times, thereby explaining the paradoxical situation encounmensions, it is particularly useful to work in the lightlike
tered in the DF model where quanta are produced while theoordinates defined by, V=t=z. For instance, the general
energy flux vanishes. solution of Eq.(1) is the sum of a function df) alone plus a

We conclude the paper by presenting the main results in function of V. In addition, since the mirror is perfectly re-
synthetic manner. We also wish to stress that in this papeffecting, the trajectory of the mirror completely decouples the
recoil effects shall be totally ignored since the trajectory ofleft-hand-side configurations from the right-hand-side ones.
the mirror is given once for all. Nevertheless, since the selfTherefore, in this subsection, we can and shall restrict our
interacting model is based on Feynman diagrams, it preparesgtention to the configurations residing on the left of the mir-
for the analysis of taking into account the dynamics of theror.
mirror [10,11]. Indeed, theS matrices computed with or  Finally, since the mirror trajectory emerges fram, V
without backreaction effects possess a very similar structure= — « is a complete Cauchy surface. Hence the usual modes

of the d’Alembertian given by
Il. KINEMATIC MODELS

In the first part of this section, we review the basic prop- op(U) =
erties of the Davies-Fulling model. In particular, we compare 41|K|
the particle description of the fluxes based on Bogoliubov

coefficients with that based on tWO-point functions. In tthorm a Comp]ete and orthonormal basikistead, when the
second part, we show how the scattering process can be gefajectory starts from the null past infinity ~, the choice of
eralized so as to describe partially transmitting mirrors. Thisa complete and orthonormal basis should be reconsidered
generalization will be performed in a matrix formalism. We [23].) We recall that the norm of the modes is determined by

have chosen this formalism for two reasons: first to emphathe Klein-Gordon scalar product which reads, when evalu-
size the kinematic nature of the DF model and second t@ted on7

introduce in natural terms the generalization to partial reflec-

tion. In the third part, we relate the Bogoliubov coefficients +oo -

to the S matrix acting in Fock space, thereby preparing for <<pk|<pkr>=f dU of i dyew =sgnk)s(k—=k"). (4)
the analysis of transition amplitudes performed in the next ’w

()

section. ) ) )
The scattered mode corresponding to E).is determined
A. Davies-Fulling model by Eq.(2) to be
In the Davies-Fulling model, the mirror is perfectly re- e-ikUq(V)
flecting for all frequencies and its trajectory is chosen from (picatV)Z _— (5)
the outset. Moreover, no width is attributed to the reflecting vam|K|

condition: i.e., it acts like a delta in space. Beside the fact

that the trajectory is always timelike, we shall also imposewhereU =U (V) is the trajectory of the mirror in the light-
that it be asymptotically inertial. In conformal terms this like coordinates.

means that the trajectory starts fram and ends i *, the The in modegy'(U,V) is by definition the solution of
past and future timelike infinities, respectivéB2]. The rea- Egs. (1) and (2) which has Eq.(3) as initial data. It is
son is that in the other cases, i.e., when the mirror originategiven by
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_ e kU g-ikUg(V) tered wavdsee, e.g., Eq1l) in [10] for their influence on
in i
e (U, V)= . (6)  the energy of the reflected walvét should be also pointed
Vamlk|  vamlk| out that one can recover an approximate space-time descrip-

ion of the scattering when considering localized wave pack-
ts rather than plane waves: for sufficiently high frequen-
ies[i.e., short wavelengths compared to theceleration of
the mirrop 1], the coefficients3,,, vanish and the mean fre-

quency of the reflected packet is related tok, that of the

To analyze the frequency content of its scattered part, i
should be Fourier decomposed on the final Cauchy surfac
U=+ (the left part of 7). In total analogy with what we
have on7~, on J" the normalized modes are

g ioV incident one, by the Doppler effe@_i=?a\,uc,|u:5 evalu-
eu(V)= \/W () ated atU, the retarded time of the center of the incident
packet. These two properties are easily obtained by forming
Then the scattered modB) can be decomposed as wave packets and evaluating the integrals in €&.by the

saddle point method.
* When «,, and B, are known, the quantum scattering
scat_ * _p* % wk wk
Pe = jo do(ai@o=Buk®o), ®)  problem is also solved. This follows from the linearity of
Egs. (1) and (2): when working in a second-quantized
where the coefficienta,,, B,« are given by the overlaps framework, being linear, these equations provide the Heisen-
berg equations for the field operator. Thus the field operator

. wen +oo eV e kUalV) can be written both in the in and out bases by
ap=(eulei®=-2] dv T ,
—= Nawlo| Tt Vamlk o
<I>=f dk(agei+ b+ ei*
Bix=(ekl k™). 9 0
Since bo_th_ the initial and fi_nal sets of modes are complete, :j dw(a(z)ut(P(Z)ut+ bg}uthD(Z)ut*). (12)
the coefficientwx ., B,k satisfy the relations 0

wdk N B 5N S When imposing that it satisfy the equal-time commutation
0 (@i BokB i) = dw—o’), relation [®(2),0,91(z')]=i8(z—2'), Eq. (4 guarantees
that the in operatorg,, b, satisfy the usual commutation
% . . relations leading to the particle interpretation. Then the in
fo do(a k= BukB )= o(k—k'), vacuum|0;,) is defined as the product of the ground states of
the in oscillators and its excitations are generated by the
o creation operatoral’", b"". Moreover, by construction of
J dk( @y Bk’ — Bok®wk’) =0, the in modes or7 ~, the in particles correspond to the usual
0 Minkowski particles on7 ™. Similarly, by construction of
. the out modes, all these properties apply to the out operators
fo do( @B — Br@ur) =0. (10) SE“}PE“” and to the out vacuun,,) when replacing7 -
y .
Given the orthonormal and complete character of the in

Note that these relations are not trivially satisfied when the, |y 0/t mode basis EqE) and (12) determine the Bogo-
trajectory of the mirror reaches one of the null infinities liubov relations '

rather than the timelike ones. Notice also that the overlaps
(9) can be computed on any spacelike surface which runs _ w
from z= — to some point on the mirroft,zy(t)). In this aL“=j do(a,@°"+ B, b,
case, one should use the full expression of the in modes 0
given in Eq.(6) as well as that of the out modes given by .
int _ * L0ut * outt
P2(UV) = 0, (V) + @252 U). (1) "= |, dutpriat ot

w

The second ternp”>**results from the backward scattering

of ¢,, given in Eq.(7). a‘j,”t=f dk(a® @l — Bubih,
When the overlaps, and 3, are known, the classical 0

scattering problem is solved. That is, it suffices to decom-

pose the initial data in terms of the modéd to obtain, outt_ [ qps_ ax ain int

through Eq.(9), the Fourier content of its image qQfi*. It b, "= fo dk(= Buidic t @urbic”)-

should be pointed out that the coefficiem8g, which mix

positive and negative frequencies have a well-defined role iThen Egs.(10) guarantee the compatibility of the particle

this classical wave theory: they determine tfmonadia- interpretation in each basis, i.e., both in and out operators

batic [24]) increase of the Fourier components of the scat-obey the canonical commutations relations. With the rela-

(13
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tions (13), all questions concerning quantum scattering prothe left of the mirror U>U(V)], using Eq.(13) and the
cesses can be answered. For instance, the probability amptirst line of Eq.(10), the expectation value of the energy flux
tude to obtain a given final stafe,) specified on7* in s

terms of out operators starting from some in stag,) con-

structed on7~ is given by the product¥,|Z;.) [which (Tyv)={(0in| Ty|0in) = (Ooud Tyl Ooup
should not be confused with the Klein-Gordon product, Eq. ;
(4), which concerns the modes of the fiplt¥lore intrinsic is —2R f fwd“’ Ao’ Y2
the overlapZ~1=(0,,J0;,) between the initial and final 2m

vacuum states. Indeed, it determines the probability ampli-
tude for the(spontaneoysdecay of the vacuum specified on
J~. The computation o is easy when the transformation
is diagonal in energy: see, e.2,8]. In the general case,
however, as a result of the frequency mixing between in and _eile' )V fwdka* B
out modes, the calculation & is less trivial. This generali- wkPo'k
zation is presented in the Appendix.

It should also be noted that the Bogoliubov coefficientslt should be noted that the subtraction of the out vacuum flux
themselves are given by the following matrix elements:  follows from the prescription of subtracting the contribution

of the Minkowski vacuum. Indeed, by construction of the out

X e_i(w’_w)v( fo dkﬁikﬁw'k)

] . (16)

=(0,,]a®a"[0,,) ?gdes, they coincide with the usual Minkowski modes on
outt_int The total energy emitted tg " is obtained from integrat-
= Bok=(0inl b5 3" |Oin)- (14 ing (Tyy) over V. The integration eliminates the second

term, which is due to interferences between states with dif-
However, it is not clear how to attribute a physical meaningferent particle numbers. It gives
to these equations. In particular, the relationship with the
second one and pair creation amplitude is quite obscure. In- (Hy)= JMdV(T )
deed, theprobability amplitude to obtain o7 * one pair of v WV
guanta of frequencies andw’ in the in vacuum is given by

[see Eq(A7) in the Appendi} =2dew ijdk|ﬂwk|2=2fwdw o(n,).
0 0 0

(00ud 2202510,y = — lf dK Burpr- (15  One gets the usual relationship between the mean energy and
ZJo mean number of particleén,,)= [ dk| 8,2, found on7™*
(it equals the number of antiparticledn this writing one
We shall return to these questions of interpretation in Secsees that the nonvanishing charactettd{)) is due to theg
IIC. coefficients which govern the vacuum decay; see(E§) in
Instead of considering in-out matrix elements in Fockthe Appendix.
space, more attention has been put on the expectation valuesWe now reconsider the flukT) without making use of
of (local) operators in a given initial state. The most studiedthe Bogoliubov coefficients and with less emphasis on the
object is probably the energy flux emitted by the mirror whennotion of particle. This alternative method is based on the
the state of the field is the in vacuum. The motivations forwightman function evaluated in the in vacuum:
this analysis are, first, its relevance for black hole radiation

[2—-11]; second, that its nonvanishing value is due to sponta- (0| @7 (U, V)P (U’ V')|0;)

neous pair creation, a specific feature of quantum field "

the_ory; and third, that this value can be computed either _from - f dk @"(U,V)l™ (U",V"). (18)
using Egs(13) or from the properties of the Green’s function 0

of ®.

Having at our disposal the Bogoliubov coefficients, !N terms of this function, using E¢5), the mean flux oy’
and 8,,., we start with the particle point of view. We con- "eads
sider the density energy of the emitted flux. The correspond- T
ing Hermitian operator isTy= d,® "oy ® + oy P oy P'. On (Tw) = 2V|'mv[<0'“|‘?Vcb oy ®|Oyn)

- <00u1J avq)TaV’q)mout)]
The symmetrization is due to the fact that we deal with a com-

1
plex field. Of course, in the DF model, particles and antiparticles == lim aydy/[INfUg(V')=Ug(V)|—In|V' =V|]

equally contribute tdTy,). This explains the overall factors of 2 in NZRY;

the next equations. We warn the reader that this equal contribution 2 iy
; ; A ; ; 1 du du

will not be necessarily found when considering partially transmit- _ = cl 2 cl

ting mirrors. dv Vil dv
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1 [(d?Ug)[dUy\ 12 shall see that these modes are well adapted for introducing
= E[(W) (d_v) } partially reflecting coefficients with arbitrary frequency-
dependent phase and amplitude. Indeed, since this matrix is
1 d?Uy\ [dUq| 2 diagonal in the proper-time frequency, unitarity constrains its
- Eﬁv (W) (d_v) } (19 elements in a simple manner, frequency by frequency. Third,

for both partial and total reflection, we shall see that the

Again, the subtraction of the out vacuum flux follows from usual Bogoliubov coefficients, EP), relating the in and out
the prescription of subtracting the contribution of the Minkowski modes are simply obtained from this diagonal
Minkowski vacuum. In this point spliting method, it is Matrx. , ,
through that prescription that the notion of vacuum decay is 1© Satisfy this program, we first need to construct the
reintroduced. Indeed, on7*, the above subtraction is prope_r-tlme modes_. To this end it is very ugefull to mtrodgce
equivalent to normal ordering with respect to out operatorsNeW lightlike coordinates,, v such that the timelike coordi-
[This is straightforwardly proved by using EG0).] More- Nate U+v)/2=r is the proper time of the mirror and the
over, the fact thatTyy) and(Hy) vanish only for inertial ~ SPacelike one defined by—u/2=p is such that the trajec-
trajectorie i.e., whenaU =0, confirms that their nonva- (OFY réadsp=po=const. These new coordinates are defined
nishing character is due to the nonadiabatig@y] of the  PY two analytic functionsi(U) andv (V) whereU,V are the
scattering, a notion deeply rooted in the spontaneous creati(M!nkOWSk' I|ght_||ke coc_)rdlnates. These functions arg_deter-
of pairs of particles. In conclusion, a close examination ofNined by the mirror trajectory (V) and the two conditions
the point splitting method and that based on Bogoliubov cod€fining 7 and p. Indeed, along the mirror’s trajectory, the
efficients reveals their complete agreement in flat space-timd€ngth element obeys
In [25] this correspondence was extended to curved space- d?= U 4(V)dV2= g, V(U)dU2=dv?=du=d 72
time by introducing Bogoliubov coefficients which are de- Ve v Tl ('20)
fined locally.

From Eq.(19) we learn that the energy flux is local in that This gives
it depends only on three derivatives of the trajectory(V)
evaluated at the retarded tinve (remember that we are on dv du
the left of the mirroy. We shall see below that this locality is av = VovUa, g5 = VauVer (21)
a consequence of dealing with a perfectly reflecting mirror

for all frequencies. One verifies that the Jacobiads/dV anddu/dU define a

Notice finally that in Eq.(16), the first term is positive tim . .

- ; - ; e-dependent boost since they satistu{dV)(du/dU)
definite anq gives a positive total enerlyy). Indeed, b_emg =1 for all 7. The proper-time modes are then simply given
a total derivative, the second term does not contribute t%y

(Hy) when the trajectory is asymptotically inertial since
U(V)~V for asymptotically late and early’s. This might
not be the case for trajectories which enter or leave the space e (u)= ,
through null infinities because of the infinite Doppler effect Va|\|
encountered asymptotically.

e—i)\u

e—i)\v
B. Partially transmitting mirrors e\(v)= m (22

In this subsection we study partially transmittitimut still
recoil-les$ noninertial mirrors. We shall proceed in three They form a complete basis Qfi~ and 7" since our con-
steps. We first show that the scattering by a noninertial mirdition that the trajectory emerge from and finish oni*
ror is most simply described in terms of the wave functionsimplies that they andu axes cover those &f andU, respec-
which are eigenmodes of the proper time of the mirdfe tively.
shall call them the proper-time modes.When using these In the case of total reflection, the scattering along the
modes, the matrix relating the scattered modes to the initighirror atp= p, is trivial. When using the conventions of the

ones is diagonal in the frequency, exactly as for the scatteformer subsectiofEqgs.(6) and(11)], one has, on the left of
ing of Minkowski modes by a mirror at rest. Second, wethe mirror,

X ""(U,v) = @y (U) —€2M0g, (v) = — ¥ Mo u,v).
2For uniform acceleration, the two terms in E@9) cancel each (23

other, leading to a null flux. However, the Bogoliubov coefficients . o . . 3
B, do not vanish, thereby indicating that particles are produced] N€ new SUbSC”pty_ and V indicate which S'd_e of7
Moreover, when used in E¢L7) they lead to a divergent integrated (7 ) is the asymptotic support of the {out) functions. We
energy. To establish the compatibility of the null flux with this have introduced it in order to describe partial reflection
divergent result requires a regularization scheme. To obtain such &hich requires us to consider simultaneously both sides of
scheme is the main reason for considering the dynamical model dhe mirror. Using this notation, on the right of the mirror,
Sec. Ill. one has
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go\{"”(u,v)z oy (v)—e~8Mog, (u)= —e‘mf’O(pg'O“‘(u,v). To cqmplgte our second step, we should describe particlgs
(24) and antiparticles simultaneously. To this end, we group the in
U,in i

operators &Y™ a)"™ by bV in a four-vectora/™"
It will be useful to express these relations by &2 matrix —and the out operators af ®,a)"°", by pY:outh in
S, as al~°!". Similarly, we group their corresponding modes in the
out ail iiin— i i o out fpur-vectors<p§\"i” andgoﬁf_"’”t. Since we work with a charged
e =Sey (=ayT=Sa ). (25 field, the modes associated Wlth\T might not be complex
conjugates of those associated vmf,h (as is the case when

At fixed A, the indices of rows and columnsj are the New  yeiing with a charged field in an electromagnetic field: see,
subscriptU or V. As usual, repeated indices are summede_g_’ Sec. 1.3 ifig]). Explicitly, in our case, the four modes

over. For total reflection, one has are ((p;J ,QD;/’E;J*’E;/*) WhereE'A designate the two modes

0 _ e+ 2iNpg associated with the antiparticles operatrandb) .
S, = o ' (26) We then introduce the ¥4 matrix given by
—e Po 0
0
We now consider partial reflection. When considering S =0(A—\") 0 51* ) , (30

elastic reflection, the matris, relating in and out modes
which generalizes Ed25) is unitary.[That is, we generalize _
total reflection in a restricted way since we keep both thevhereS, is the scattering matrix for the antiparticles. Since
linearity and the unitarity of Eq(25).] Unitarity constrains S,,: is block diagonal, unitarity constrair and S, sepa-
the elements 0§, , rately. S, acts on the in four-vector as follows:

S\= (27)

Suei“’“ _ iReiw) (Pi/d,out: Sf;:r (P)I\/,,In 1 (31)
—iR'el¢ s,e% . . .

v where continuous repeated indices are integrated fronrQ to
and discrete ones summed over the four components defined
at fixed frequency. With these choices, the components of
S, are the Bogoliubov coefficients conventionally defined.
v By conventionally defined we mean the equations which

generalize Eq(13), i.e.,

to obey

55+R2=1, o' =p,t e, ¢. (28

jin_ ij i,out, Hlj i,outt
a’, =ay,,a,  + B, by
(For simplicity of the expressions, we have not written the > MR MR
argument\, but all variables should be understoodiade- bl it gil* giouty ilx pi.outt (32)
pendent. Physically,R ands correspond to the reflection A ANTEA ANTEN
and transmission coefficients; i.e., when working in the rest

frame of the mirror, the probability for an incident quantum Where the Bogoliubov coefficientsa,a,3,8 are now

of frequency\ to be reflected ifR2. 2X2 matrices. By direct identification, one obtains
In what follows we imposep,=¢,=— ¢, a condition i Lint o i
which expresses that the transmitted part of the scattering is ay =(@) ey [>=5W ;
independent of the sign of the momentum. In anticipation of
Sec. lll, we point out that this equality is automatically sat- o /:<aiylin|5i)\,out>: i+/2j+2* '
isfied when considering parity-invariant Hamiltonia(eee M A A
[26], Chap. 3.4. In this case the matrix reads ,3” =<5j’in| "Di)\’ou&>: i+ 2%
)\}\! )\l )\l )
” JV1-R? —iRé€’
. . i o
S=e irev iR (29 Bl =(elMgiomy =512, (33

In principle, the common phase ¢ could be reabsorbed in When S, is b!jOCk d_il?gonal in the sense of E0), one

a redefinition of the modes. However, when using in and oubviously hasgy,, = gy,,=0. In full generality,S,,, satis-
modes conventionally defined, i.eq)"(v)=¢)*(v) fies unitarity in the following sense:

=, (v) of Eq. (22), the phasep is unequivocally fixed. As )

we shall see in the next section, this convention is automati- (ST)f:,,S;ffA,z SIN—N") S+ (39
cally used when considering interactions perturbatively. This

is also the case in the DF model. Indeed, the limiting case ofhis equation generalizes Eq4.0) to partially transmitting
total reflection given in Eq(26) is reached folR—1 and  mirrors.

¢=/2 for all \. One also finds that the other phages With Egs.(26), (30), and(31), we have shown that scat-
related to the mirror location b§=2pgA\. tering in the DF model is trivial when using proper-time
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modes. We have done more since E§4) and(33) apply to
all partially transmitting mirrors governed b§, given by

PHYSICAL REVIEW [64 044019

modes of frequenclk= —i ¢, to the(unscatteredproper-time
modes of frequencyk=—id,:

Eq. (29).
The last step consists in finding the relationship between

) . . =B o) . (35
S.» and the Bogoliubov coefficients between in and out
Minkowski modes. This is simply achieved by introducing
the 4x 4 matrix which relates théunscatteredMinkowski ~ The elements of this matrix are given by
|
<‘P)\|¢k> 0 _<€D)\*|¢k> 0 atjxu 0 Exu* 0
o_| 0 telled 0 eVl | | 0 e o pp -
SRl 0 (e lel) 0 By 0 a0
0 {exle™) 0 —(e* 1) 0 B 0 ay*

SinceBy, relates unscattered modes, it is independent of the
charge of the particle; hencﬁ&i:a%“—_ﬁxu—[ﬁ 3 The
same equality applies ta)kA , kx , and,B

The important point for us is thas,, also relates the in
Minkowski modes to the in proper-time modes and the out
Minkowski modes to the out proper-time modes. Therefore

the linear relation between in and out Minkowski modes is

UU*_ j d)\(aUUTUU U* +IBUU*TUU* tJ)\U ,

UV* _If d)\(aUUT)\ \k/):/* +BUU*T§\JV* VV)

given by

!

o=t g, (37

where

SLE = BXST (B (38)
Repeated indices are summed over, and the inverdg isf

defined by

ox=(Bo) " . (39
It is given by
aE}\U* 0 BUU* 0
Bo'= 0u U % 8 u A (40
~ P 0 T 0
S ag
Explicitly, using the dictionary (33) now applied to

Minkowski modes, the four coefficien®&.) are
apk =80 k)—lf d\(ap) T Ve ™ (4D
,BUU*_UU*B )

__IJ AN (aVUTYY oV

,BUU*_UV* ﬁk )

Similar equations give expressions for the other components
of Sf. We have writtenS, as S,=1-iT, (and S,=1
—iT,) in order to extract the trivial part of the diagonal
elements. This trivial part leads to the delta function in the
first equation. The usefulness of this expression is that it will
be easily related to the perturbative expressions we shall en-
counter in the next section.

Equations(41) are the central result of this section. They
give the in-out overlaps of Minkowski modes in terms of the

matricesT, , T, computed in the rest frame of the mirror and
the overlaps between the fréenscatteredMinkowski and
proper-time modes.

It is then easy to obtain the mean flux emitted by this
partially transmitting noninertial mirror when the initial state
of the field is the Minkowski vacuum. The same algebra
which gave Eq(16) now gives

<TVV> — <TVV> particle <TVV> antiparticlei (42)
where
(Tvv>pam°'e=Re{ E J’J’ dode’ N@®
ji=0,v 0 2m
x| g i@ o) (J dk,BV'*,BZi,k>
_e—i(w/+w)V Jodkazl){(* ’k)} (43)

(Tvv)antiparticieiS given by the same expression wiihg re-
placed bya, 8. Here(T,,) possesses the same structure as
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Eq (16) However, four kinds of coefficients, B should be where R,0,¢ have been defined in qug) and ﬁlag are

considered since we are dealing wiplartial reflection of defined in the same way fror§A We note that in the DF

chargedpatrticles. o I ) T
When the scattering is independent of the energy ancrj“nodel, i.e., in the limit of perfect reflectios, - is given by

charge of the particles, i.e., wh&and ¢ defined in Eq(29) a\[ 1 €’
— DF _ ’ __—PbF
are independent of and whenS' =S_, , integration ovei S = 0N —A )(E) ( it 1 ) S0 (48)
can be trivially performed as it expresses the completeness of
the ¢, modes. In this case, as in the DF model, one ha#\lthough the configurations on the left and right of the mir-
B =BY!=0. One also finds that the emitted flux is simply ror completely decouple, th& matrix S treats both sides
5 simultaneously.

(Tw) =RYTwv)or, (44 To anticipate the expression &fin terms of Minkowski
operators which will mix creation and destruction operators,
it is a convenient to rewrite E(46) in term of the four-
vectoraf",

where(Tyy)pr is the flux found in the DF model; see Eq.
(16).
Instead, wherR and ¢ depend on the energy and/or the

charge, 80} and BY) will be, in generaf different from _ _ Sl 0
zero. In this case, one also loses the possibility of reexpress-g— g—i(ay""s}} ,a{‘,'”T)' with (S/fff):( M . ) ,
ing the flux in terms of the derivatives of the trajectory as we 0 —SA'w
did in Eqg. (19. This can be understood from Egs. (49
(41): when expressing, as a series in powers of, one ) o ) _
would obtain for Ty a nonlocal expression i unless the To obtain the expression & in terms of the Minkowski
series in\ stops after a finite number of terms. operatorsay ", b, it suffices to use the matris,,, to re-
place proper-time operators by Minkowski ones. Explicitly,
C. Additional remarks one obtains
In this subsection, we relate the matricgs, and S, S=exg —i(a*"s*” "],

which act linearly on in and out operators, to the conven-
tional S matrix acting on multiparticle states in Fock space.With
With this identification we shall be able to relate the Bogo- v e ,
liubov coefficients, Eqs(41), to transition amplitudesand Swwr =Bk S (Byin)™ (50)
not only to expectation values as in E¢3). - ) .
By definition[26], the action of this operator on states andFormally, S provides the answer to all questions concern-

operators is the following: ing asymptotic states and expectation values. For instance,
the probability amplitude governing thé€Minkowski)
|0in) = 5| 0ou), vacuum decay, EqA6), is simply
S P Z 1=(00,{0in) =(0ir| §/0}n). 51
al)\,OUI:S—laI)\,IrIS, b'}\’outT=S_lbl)\’mTS. (45) < outJ |n> < |n| | |n> (51)

_ _ _ _ _ _ Similarly, the probability amplitude for an initial quantum of
Since we are dealing with elastic scattering, this operatomomentumk to be scattered and for no pair to be created is
contains exactly the same information as the matrices L
S\ SA In_deed, the block-diagonal _character of Ezp) and (0pud@®al™[0,,) = (O @ "Sal ™| 0,,) = Z(a—l)lj(iw_
the linearity of Eq.(31) tell us thatS is the exponential of a

guadratic form of the proper-time operatas,b, : (52
ol it i The last equality is easily obtained by using E8Q) to ex-
S=e @S ~byTs\ b, (46)  pressa.°"in terms ofal™ andb’;*""". In the same way, the
Bogoliubov coefficientB is related to the probability ampli-
Then straightforward algebra gives tude to find a pair of out quanta in the in vacuum by
¢ arcsi(R)e'’ ) . (0 tlaia,)outbi”,outlo‘ )
S =0 M) arcsinR)e ™'’ : Bl Hl = == ol T
d’ <00ulj Oin>
g)\)\’ :SA)\’(EIEE)v (47) <0in|aia',inbia:;in,\s|oin> (53)

<0in|é|0in>

38YY=0 requires thaf"* = —TYY for all A>0 and similarly  In this, we recover Eg(15). It should be stressed that these
for the VV coefficients. In the next section, we shall see that therelationsdeterminehe physical interpretation of the overlaps
condition is satisfied for time-independent couplings with , 8 given in Egs.(41). In fact, the second-quantized frame-
U(1) symmetry. work was never used to obtain Ed@.1): only the linearity of
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the relations and the orthonormal character of the proper- , +o0
time and Minkowski-mode bases were exploited. ‘D(T,P)Z‘D'n(T,PHQJ J dr' dp’
The physical interpretation at, 8 is the following: to o
first order ir_1_the tran_sfer matrix, , a (B) divided byZ gives XG"®(r,p:7 ,p )V (p")2id, P(7,p")
the probability amphtudle to scatter a quantgim produce a N
pair of quantg sincea™ *=1+iT (B=—iT). Upon consid- _ goU T
ering higher-order terms ii, , one loses the simplicity of =¢ I(T’p)+gf f,w dr’dp
the relationship so as to get the above equations. The simple
relation in the linear regime will be nicely confirmed in the X G 7,p;7,p")f(p')2id, D(7',p'),
next section when using perturbation theory. We shall see in (56)
particular that division by corresponds to the usual restric- _
tion of keeping only the connected graphs engendered by tH8 terms of the homogeneous solutidr’ (®°*) which de-
development of=Te ig/dtH jn powers ofg. We shall fur- termines the initial(final) data. The retarded and advanced

ther comment on these aspects at the end of Sec. III. Green's functions are defined, as usual, by
P 1 e Mr=7)+il(p—p")
re Ty —
lll. SELF-INTERACTING MODEL G*®(7,pi7",p") f f_w Nl T2 (T e

In this section, following[28,29,10, we introduce a
model based on self-interactions which derives from an ac- (=0 for 7'>7),
tion principle. In the first part, we consider time-independent . 1 e
couplings. In this case, resumming the Born series leads, 8Sagy o *
in Eq. (30), to diagonal matrices in the proper-time enekgy T Mrpi'p )_J J_w dvdiz 2
with parameter®k and ¢, which depend or\ according to
the number of derivatives in the interaction Hamiltonian. The
important difference is that causality is now built in, as fol- (=0 for 7'<7). (57
lows from interactions governed by an action. This model _ . _
will also be generalized by considering a thick mirror with a T0 exploit the time independence of the couplggve work
nonzero width. Using a perturbative approach, we shall seét fixed energy with
that the thickness acts as a UV cutoff. toe 1

In the second part, we work with time-dependent cou- (p)\(p)ZJ dr=—®(7,p)e". (58)
plings. We shall work perturbatively up to second order in —e 2m
the interactions. The novelty concerns the transients induc
by the switching on and off of the coupling.

—iN(r—7)+il(p—p")

Z—(N—ie)2

el% a Fourier transform, Eq$56) give

: +oo )
— ,in +i f do’ f ’ ’ el)\\pfp'\
A. Scattering with g constant exlp)=exlp)tig —% UL

To exploit the fact that the coupling isindependent, it is

+oo ) ,
convenient to work with the coordinatés, p) in which the =<p§”‘(p)—igf dp’ f(p’)@h(p’)e*'””*” .
mirror is at rest. In these coordinates, the interaction La- m
grangian reads (59

tee + These equations have been obtained by using
Lamg [ [ ardpt (3@ 0 (rp). (54

ii)\lp*p’l, (60)

+oo ell (=" +2im
I —— = -
, _ , , Lod IZ—(\zie? 2(rtie)*
Here g is the coupling parameter, arfdis a real function
which specifies the thickness of the mirror and which is nor-and by having taken the limi¢g— 0. _
malized asf *Zdp f(p)=1. Also, J is a Hermitian operator We now decompose the quantized moggsin terms of
which is quadratic in the complex field. We shall considercreation and destruction operators:

three different cases:®'d+dd!,  ®fig P, and

8,079, d+9,.d9,®". In the following equations, we shall i 1 U,inginp o AVaing—ix
T T T T ! = ’ + ' b f )\>O
present the details only with the second expression. At th n(p) NSy (axenrraye ) (for )
end of the derivation, we shall give the final results for the
two other cases. B pUiint g iAo 4 Vst gilnlp ;
Given Eq.(54), Eq. (1) is now replaced by = 477|)\|( € +bpetr) - (for A<0).
(=) ®(7,0)=0f(p)2i 9, P. (55 61
We do the same for the out modes. Then, f¢p)=5(p
Being linear, the solution can be expressed as —po), Egs.(59) give
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agyout 1 1 ige~2i*ro agvi“ one gets the mean .value_ of the energy fluk, as in Eq.
avou = T-ig | ige?vo 1 avin - (62)  (43), but with causality built in.

We now study the case of a thick mirror wishgiven by

We recover the linear structure & in Eq. (25). Since the ®'id,®. To display the effects of (p) in Eq. (54), it is
unitarity of S, providesal.®'=si*al™ ‘'when using the convenient to work with thespatia) Fourier components.

definitions of Eq.(29), we obtain Equation(59) becomes
< S T
R= \/mz’ ¢:arCtamg); 0:2)\p0 (63) (P)\,I_QD)\J ()\+|6)2_|2 . [—17 P\, 17
29\ +o0
In the strong-coupling limifi.e., for g— + ), one obtains — pRu ()\—ig)z—lz f_m 't ey (67)

the total reflection(26) in a A-independent manner. This is a

special feature of the coupling=®"i ,®, which is assoCi-  rq: an arbitrary window functior, these equations do not

ated ‘.N'th adlr_nensuonlesg; . lead to analytic relations between asymptotic in and out
This analysis can be repeated with the two other operator,

previously defined. The presence or absence of derivatives ffelds. Therefore, to estimate the effects idp), we use
J modifies the IR or UV behavior oR For J=d®'d lf)]erturbatlon theory. To first order i we get
+®dT, one obtaing28] 1 2mf

68
IUonf, 1 (68

a/\
= ———, ¢\=arctarig/\), 6=2\p,.
V1+g%\* For a normalized Gaussian functidrcentered orpg, the
(64) nondiagonal terms which determine the reflection probability

+2iNpga—2\202 ;
In this case, the mirror is totally reflecting in the IR. This arege =*ce - Therefore o, the sp_rea.ld of the mirror,
leads to strong IR divergences when considering timef€duces the reflection of high frequencies: Xor 1/o, the
dependent coupling. On the contrary, whed=d,®'9,® mirror is completely transparefthis is also true for the two

+9.99.PT, we get otherJs).

g\ B. Scattering with g time dependent
R\= Ji+gA?’ $r=arctangh),  0=2hpo. (69 In this subsection, the coupling parameter is a function of
the proper timeg(7)=gf(7) wheref(7) is normalized by
In this case, the mirror is transparent in the IR limit. This f**dr f(7)=2T, with 2T the proper-time lapse during
useful property will be exploited in Sec. IV. which the interactions are turned on. Unlike what we had in
We notice that the transfer matrix, can be expressed in the former subsection, resumming the Born series is no
a general way according to the numineof derivativesd in  longer possible since the time dependence of the coupling
the interaction term: destroys the decoupling of the equations into sectors at fixed
- 2 frequency\. Thus we shall work perturbatively: all quan-
—0A 1 esro tities will be evaluated up to second ordergnin fact, we
1—ig\"IA, | e 2o 1 /) meet a situation analogous of that of a thick mirror which
mixes different momenta.
In this expression, we have not taken the ligyit-0 in using We first remind the reader that in the interacting picture,
Eq. (60). The functionA.=N/(A+ie) determines the ana- the operator® evolves freely, i.e., witg=0: it obeys Eq.
lytical properties ofT, in the complex\ plane. The specifi- (1) and not Eq(55). Therefore the in operatoss, ,b,, speci-
cation of the pole oA, follows from that ofG™'in Eq.(57).  fied att=— coincide with the out operators and are equal
It guarantees thatausalitywill be respected28]. This cru-  to the usual Minkowski operators. Hence they define the
cial ingredient was missing in Sec. I B wherein the matrix (Minkowski) vacuum|0). Instead, the states evolve through
T, can be chosen from the outset. In that kinematic framethe action of the time-ordered operator:
work, the analytical properties should be imposed by hand if

T\= (66)

one wishes to implement causality. On the contrary, in the W (t=+0))=Te"|W(t=—0)), (69
present case causality follows from the Heisenberg equations ) ) ]
(56). whereL=g/dr f(7)J engenders self-interactions. Since the

Equations(59) and (61) also determine the relation be- trajectory is time like T, the time ordering with respect to the

tween the antiparticle in and out operatch‘;é. By direct Minkowski timet, is equivalent to that of f[he proper_time_
. N o - To make contact with Sec. Il, we work in this section with
computation one findd;=-T_,. This is precisely the

- N the statdWy(t)) which is equal td0) for t= 7= —c. When
condition which givesB,, =B, =0; see footnote 3. When expressing its final value in the basis of the unperturbed
usingT, ,T, in Egs.(41), we obtain the Bogoliubov coeffi- states, i.e., the states which would have been stationary in the
cients relating inertial modes. And from these coefficientsabsence of interactiong&0), we get
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[Wo(7=+2))
-10+3 [ [ dwdor B, +ch, w0,
(70
where
ng,zig<0|aL,bL,< f+:drf(7)3(r))|o>,
|ww’>ianinfr|0>, (71
cl, =—gX0lalb),

X

— o0

| Tar[ o f(r)f(r')J(v)J(r'>)|0>c-
(72)

We have limited the expansion gito these three terms since
we shall compute the energy-momentum tensor ummo
terms only. As beforei,j denote thdJ, V sectors andv,w’
Minkowski energies. The symbdl). means that only the
connectedpart of the expectation value is kept. This restric-
tion follows from the fact that the contribution of the discon-
nected graphs cancels out since they also appear in the
nominator of the matrix elements; see, €[g§].

Using Eq.(70), the expectation value dfyy is given by

(Tyw) =(¥o(7=+2)|Tyy|Vo(7=+2)),
» Vo'

—Re{; ffodwdw 5
e*iV<w’*w>f0 dk(BY}* B}, +BY* B,

|

(73

X

e 4B Y+ )

where@tik andqx, are related to the unbarred quantities by
inverting particle and antiparticle operators: thlB'diw,
_pli ~VV _ ~VV
= Bayw and wa,—Cw,w. . .

Since the integral of the second term in E£R) vanishes,

and since barred and unbarred quantities differ at most by
phase, the total energy received on theart of 77 is

+ o0 © @® .
=] a2 [ Tdo [ “ansY®
— T Jo 0
(74)

Hence only theB terms contribute to the energy as tfe
terms did in Eq(17).

In order to compute the local properties of the flux, we
need to compute the second term of E£B). To this end we
decomposé:\ﬁ/)t’u, into two parts:

PHYSICAL REVIEW [64 044019

cYY,=R'Y,—(0layb!,D|0), (75)
where
VvV 1 ViV
R =" E(OIawbw,LL|O>C, (76)

2 too + o0
D= %( f drf_x dr' f(n)f(r)e(r—7)I(7)I(7')

(77

and e(r—71')=0(7—7")—60(7'—7). Then (Tyy)p, the
contribution of D to (Tyy), enjoys the following properties
(see Appendix A in17] for a similar analysis applied to a
two-level atom coupled to radiatipnFirst, it carries no en-
ergy. This is obvious since it is built with terms which all

containeV(“**") Second, it vanishes fdif(7)=cst This
can be understood from the fact that the time ordering prop-
erties can be encoded in the analytical properties of the ma-
trix T, which is diagonal in\; see Eq{(66). This means that
this term modifies the shape of the transients related to the
switching on and off of the interaction, but without affecting
their energy content. In the rest of the paper, we shall there-
fore ignore this term.

We now computeRZX,. Since only the connected part

G%Oum be kept, we can insert the following operator between
t

e two operator& in Eq. (76):
Z, . dkfo dk’ al'bl|0)(0|albl, . (78)
Grouping together, as in E73), the first- and second-order
contributions ing, we get
BVV +§VV +RVV +§VV
=Ei fo dk(AY[*BY) +AY) *BY)), (79
with
Ali=(0lai,(1+iL)all|0).,
Al =(0|bl,(L+iL)b}T|0)c. (80)
Hence we find thatTy,,) is given by Eq.(42) with

Vo'

a ee] oo
particle_ ’
<TVV> Re; fo de'O dw >

X e*iV(w'fw) mdk BVj*BVj
0 wk w'k
—e Vo) fodkTAZ{;*B)’}k) . (8D

(TwV)aniparicieiS given by the same expression whlf},BYk
replaced byAYl BV}
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Thus, to second order iy we recover the structure of Eq. B ) i(@,k)
(43), which gives the flux emitted by a partially transmitting Alf=8(w—k)8"+igf,  ——, (84)
mirror. The Bogoliubov coefficienta) and 8} have been Vok
replaced by the transition amplitudég) andBY. In this, :
we recover the correspondence of E@s2) and (53) when Bl =igf +kj(“"_k) , (85)
considered to first order in the transfer maffix. This is not ¢ o Jwk
surprising since the evolution operafoe'-, which defines
A*, andB,, given in Eqs(80) and(71), is, by definitionthe ~ Where
operatorS of Eq. (45). 1 for DTO+DPT,

This correspondence is nicely illustrated in the case where i _ oo

jlwk)=1 otk for ®'ig,d, (86)

g(7)=g andJ=aTi 3;1). In this case, to ordeg, but what- : ;
ever is the mirror’s trajectory) =U(V), one has the fol- wk for 6;®'9P+ 5P d".

lowing identities: .
g Thus, to ordeg?, the mean number of particles of energy

AlR=9au Bul=09Bu 82  @is given by

IV. APPLICATIONS

(89

wherea,, andp,,, are the overlaps, E¢9), computed in the (NYy=2> f dk|B, % (87)
DF model. These relations establish thgj and3,,, should IJo
be viewed as transition amplitudes. This is important for therpe tacior of 2 arises from the fact that it is equally probable
foIIowmg reason. It implies that the momentum tran_sfers 05 emit aUV or aVV pair of quanta of energy andk.
the mirror (which have been neglected so )fassociated To further analyze the transients associated with the
with the transitions described by and B are, respectively, gyjitching on and off of the coupling to the mirror, we shall
i(k+ w) a_nd ﬁ(—k+ ) . Th|s fact imposes I|m|tat!ons work with the function
when considering the emission of ultrahighans-Planckian
frequencies since neglecting the momentum transfers re- 1 t+T t—=T
quires Aiw<M, where M is the mass of the mirrof10]. f(t):z tanV(T —tanl‘(T”. (88
Thus, when high-frequency quanta are emitted, the validity
of the predictions obtained with a recoil-less modristbe It is almost constant during a lapse of timer2{A) centered
questioned 11]. aboutt=0, and the time intervals of the switching on and off
are =4A. In the limit A—0, f tends to the square window
[6(t+T)—6(t—T)]/2. The Fourier components bfare

The aim of this section is to illustrate the usefulness of the _A sin(eT)
dynamical model in which one can switch on and off the ¢ 2 sinwmAl2)’
coupling between the mirror and radiation field. First, we L )
analyze the properties of the energy flux associated with th@n€ Sees that the UV behavior is exponentially damped by
switching on and off when the mirror is at regt{0) and in & On the contrary, in the IRf,—T/m, as expected since
Minkowski vacuum. As expected, we shall see that the flun€ coupling lasts 2. _ _
is localized in the transitory periods where the coupling is When considering the first two cases idfw,k) of Eq.
turned on or off. Moreover, the mean frequency emitted i86); this last observation implies that the mean number
given by the switching rate of the coupling. (N,) is .|II defined since the integral 'ovémn Eq. (87) di-

Second, we generalize this analysis by replacing th&/€79€s in the IR. Therefore, to_ obtain WeII-Qeflned expres-
Minkowski vacuum by a thermal bath. Then we use the well-SiOns, we shall work with the third case. In this case, one has
known _parallel between inertial systems in a therma! bath g?A2 (= S (0+o')T]
and uniformly accelerated systems in vacuum to obgn (NYy= wf do' o'= = ; . (90
the first time a regularized expression of the flux emitted by 2 sintt{(w+ o) mA/2]
a uniformly accelerated mirror.

It is perhaps appropriate to discuss the condition on the
_ _ (dimensionful coupling constang which guarantees the va-
A. Transients in vacuum lidity of Eq. (87), which follows from a perturbative treat-
We first focus on the frequency content of the transientsment limited to orderg®. The condition is that the mean
For an inertial mirror at rest a=0 in Minkowski vacuum, number of quanta per quantum celivhich is equal to
the transition amplitudeA andB of Eqgs.(80) and (71) can  (N,)dw=(N,)7/T in the limit T>1) be well approxi-

be expressed in terms of the Fourier transforms(oj: mated by Eq(87). This requires that the probability to obtain
two quanta in a cell is negligible with respect to that of

f :iJ dt f(t)elt 83) obtaining one. This translates mathematicallyg8y< TA in
@ 2 ’ the limit of interestT/A>1, i.e., when the flat plateau is

much longer that the slopes. The conditigh<TA means
To orderg, we obtain that the limit T—c can be safely taken. Instead, the limit
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A—0 is more delicate. A sufficient condition consists in  To evaluate the second term of E®1), which is qua-

working at fixed§?<1, where§=g(TA) Y2 A stronger dratic ing, we proceed along the same lines. We first evalu-

condition is to impose that the total number of particle emit-ate the commutator so as to obtain a quadratic fordr end

ted, [5(NY)dw, be finite in the limitA—O0. In this caseg Py, where®, means only that th& part of the field op-

=g/A should be held fixed. erator® should be kept. We then notice that the derivatives
When studying Eq(90), one first notices that in the limit J; in J might be expressed a%, since they are evaluated at

T—o with g andA fixed the total number of particles emit- z=0, but they act both on thé andU parts of®. Using this

ted is independent of, thereby not giving rise to a golden notation, one gets

rule behavior characterized by a linear growthTinSecond,

(NY) is maximum fore=1/A. Finally, for wA>1, one has [Tuy,L1=igf (V)[(dyDV2D + oy DD ) +H.c]

(NYy=e "2 We thus find all the expected attributes of e t +
transients: their particle content is independent of the dura- HIGH (VLo Pydy® + ay®y® T+ H.c.].
tion T when T/A>1, and their Fourier content is peaked (94)
around the adiabatic switching rate *.

We now study the space-time repartition of the energyThen theg? contribution of Ty is
fluxes associated with these transient effects. We first notice

that once theD term defined in Eq(75) has been dropped, 5 ) e ) ’
the mean flux can be expressed as (Tw) quag= 169°F (V)R If dV' (V) [y dyW(V' = V)]

Tyy)=—21m({0|T\yL|0))+Re(O|L[ Tyy,L]|0)).
(Tw) m((0[TyyL|0)) +Re((O[L[Tyy,L]] >)(91) x[aV,aVW(V’—V)])+1692(9vf

Of course, by decomposinlg and Ty, in terms of creation _ )
and annihilation operators, one would recover, respectively, XRS(IJ dV'f(V")[dy dyW(V' = V)]
the linear and quadratic contributions of E§1). However,
being interested in the space-time properties, we shall not do _ g? 4 3
so and shall work instead in the time “representation.” In - E(fa\,ﬂza\,f&vf )- (99
this approach{Tyy,) is governed by th& part of the(posi-
tive frequency Wightman function. This latter obeys Having obtained explicit expressions for both terms of
JW(V—V")=a(0|dT(V.UYD(V' U0 Eqg. (91), we can now analyze the properties(d,y). First,
W )= {01 )P )10) neitherf appears in Eq(93) nor f2 in Eq. (95). Thus one
1 1 recovers the fact that an inertial mirror does not radiate while
T AnV—_Vi —ie (92 its coupling is constant. This is illustrated in Fig. 1. Second,
being given by derivatives dfwith respect to time, the mag-
Using this function, the first term of E491) reads nitude of(Tyy) scales with positive powers of the switching
on and off rateA "1,
Finally, to obtain the integrated value of the energy emit-
I _ 2
(Tww)in=—89 Im“ dtf(O{d WV =)} ted, as in Eq(19), one decompos€q ) into two parts:  a
total derivative which does not contribute to the total energy
_ 9 B (t=V). (99  and the restwhich tums out to be positive definite. Explicitly,
127t we get
To obtain this result, we have integrated by parts 3 times. ToN=(To N +(T
The boundary contributions all vanish sintgiven in Eq. (Ton) = {Tvwdin + (Tvw) quacr
(88) decreases faster that any powet.ofhe last integration _ g° 2e0 1 5
is trivially performed by using Ifi(x—i€)"}]=7&X). These _@(Wf) N EaV —govf
properties explain the local character of the expectation
value? 1
+9? 5 AU =L (uf)?] } (96)

41t should be pointed out that we could have writ@h,\);, as a  1hus the total energy is
commutator. This, however, is not appropriate since one loses the
analytical properties dfV which are encoded hie (they arise from gZ +
frequency content of the vacuum and play a crucial role in defining (Hy)= 127

. . . a o) —

the above expressionsBy performing first the commutatdror,
equivalently, by first taking the imaginary part in E@3)], one
would obtain an ill-defined expression. The same remark applies tbiere (Hy) is finite when the mean numb¢N,,) decreases
the quadratic term irg. To obtain well-defined expressions, only faster thanw™2. This is the case when working with E@®8)
one commutatiorfand not two should be done. at fixedA#0. In this case, one finds

dV(a\Z,f)2=f:dw o(NY). (@)

)
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FIG. 1. The thin solid line if(t) given by Eq.(88) for T=10
andA=1. The dashed line iTyy)quaa» and the thick line is the
part of (Ty,) which contributes to the energy; see E§7). These
two curves have been plotted in the same arbitrary units. The be-
havior of (Tyy)n is similar to(Tyy) quagr

FIG. 2. The plot isF(x) defined by Eqs(98) and(97) in such a
way thatF—1 for x—oo,

B. Flux emitted by a uniformly accelerated mirror

The case of uniform acceleration in a Minkowski vacuum
is a priori rather perplexing. On the one hand, Ef9) im-

)_ (98) mediately gives that the mean flux vanishes for uniform ac-
celeration, i.e., fot)V=—a~2. This is a consequence of the
fact thatd, is a Killing vector in Minkowski space-timg30—

32]. On the other hand, however, the Bogoliubov coefficients

The main featurdH,,) is that it is independent of in the g, of Eq.(9) do not vanisi3,10]. Moreover, when used in

limit T/A>1 (see Fig. 2, thereby confirming that the emit- Eq. (17), they lead to a divergent energyl,). To conciliate

ted energy is indeed associated with the two transitory perithese results, one must infer that there is a singular flux on

ods, irrespectively of the lapse of time=@T) which sepa- the past horizorwV =0, as is the case for a uniformly accel-

rates them. erated “atom” coupled to the radiation fie[®3,8]. In fact,

To conclude this subsection, we consider the limit as shown in Appendix C of17], this singular flux will be
—0. This corresponds to the situation studied2a] and[7] ~ found for all uniformly accelerated quantum systems coupled
in view of its analogies with the residual flux emitted at thet0 the radiation field. o _
end of the evaporation of a black hole. In this limift) Our aim is now to show that. there is mdeet_j asmgullar. flux
becomes a step function, the energy flux is concentrated in%\'c energy ann.g the past horizon when taking thg limit of
narrow lapse\, and its frequency content diverges. In fact, Cons_tant Coupllng;_(r)=g at the_z end of _the calculation. To
(Tyy) becomes alistribution since it is built on the deriva- g?;ﬁ'znet?ﬁeregﬁé?;szigdoixﬁ:gsfsc')?;é(:rStzgigﬂx’tgveasgggzgeerg'
tives of i(t). More precisely, the smgularlty is worse than atemperature heat bath and then use the isomorphism between
delta, as clearly seen from E@5). This means that not only

he i f di but also that th | the flux emitted by this mirror at rest in a heat bath at tem-
the instantaneous fludTyy) diverges, but also that the total heratirea/2 and the flux emitted by a uniformly acceler-
energy emitted is singular, as indicated in E2g).

- ) Ha o ated mirror of acceleratioa when expressed in the Rindler
Moreover, being singular, this singular behavior is notsqqrdinate system.

universal. It depends on the number of derivatives in the |5 3 thermal bath, the/ part of the Wightman function
Hamiltonian, and it might also vary when considering highergpeys

orders ing. Hence the question as to what is the flux emitted

by the disappearance of the reflection condition is not well B P ™ .

defined. To have a well-defined question, one should first ~ VW (V=V )__Eﬁcm E(V_V —ie)]. (99
choose a regular model such as that defined by(®4).and

with g(t) given by Eq.(88), and only then consider the sin- _ .
gular limit A—0. What we learn from this is that the DF !t reduces todW of Eq. (92) in the zero-temperature limit

model should be conceived as providing a useful approximal®" A~ When replacingV by WF in Egs.(93) and (95),

tive description of some physical processes only when thave obtain the mean flux emitted in a thermal bath. It can be
predictions are well defined, i.e., independent of the characshown to be

teristics of the original dynamical mode&luch as the mass of

the mirror or the precise nature of the couplinghen the

limits of large mass and large coupling are taken. 5The details of the calculation will be presented 28].

g2
<HV>:EPF(K
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g 5 9 4 . Notice that if one requires that the total Minkowski en-
(TP = f = o [F(V)auf+2ayfayf] ergy
2m\? 2 +oo .
‘(%) {%ﬁvf—é—w[f(vwif+2a\,fa\,f] : <ch(>:f_w do e2(T2 (103

(100 and the mean number of Minkowski quanta emitted by the
mirror be finite, one gets a weaker conditiand <2. Indeed,
only one power of the boost factor should be tamed by the
switching-on functionf. (A similar condition also arises

The first two terms are equal to E(R6), and the last two
scale like (/B)?. Thus they are negligible in the low-

temperature fimit >A and dominant in the high- when considering the fluxes emitted by an accelerated two-

temperature regime. . : level atom[17].) When this condition is met, using Egs.
We are now in position to obtain a regular expression for

the flux emitted by a uniformly accelerated mirror in (100, (101, and(103), we get

Minkowski vacuum. Using the well-known isomorphism be- g2 [+=

tween systems at rest in a thermal bath and accelerated sys-  (H3% = FJ dv €[ (9% )2+ 2a%(4,f )?].
tems in vacuum, the mean flux of Rindler energy emitted by T J—e

a mirror of acceleratiom is (104

acc_ _ . \\B=2mla This energy is positive definite and diverges, as expected,
(Too@)T=(TutV=0)) ’ (103 like €T wg)e/n an> 1. ’ P
where v is the null advanced Rindler timpav=In(aV)]
when the mirror is located in the right Rindler quadrant ( V. CONCLUSIONS
>[t]). When using Eq(88), the coupling between the mirror

and field is turned on during a proper-time lapse @nhd the In this paper we generalized the DF model which de-

switching on and off rate\~ ! is now measured with the scribes the S(_:atte.ring qf a radiation_ field by_a mirror w.hich
proper timer. follows_q nomqerﬂal trajectory. We f!rst conS|dereq partially

In the limit T>8 anda™%, (T,,(v))*—0 at fixed|v| transmitting mirrors a_nd _then studled_ a dynamical _model
<T since the flux is localized in the transients of “thick- 2aS€d on an action principle. We obtained the following re-
ness”A centered around= = T. In this, we recover the fact sults.

that a uniformly accelerated mirror does not radiate. In the Equations(41) give the BOgOI'Ub.OV coefficients in terms
DF model, this immediately follows from Eq19). (As of the transfer matrixT, evaluated in the rest frame of the

noted above, this vanishing is a universal property of accelMor and the overlapsa,, B, which relate the

erated systems when they have reached equilibrium with thE(”nkOWSki plane waves of frequ_enay to the p.rop.er—time
Rindler bath[17].) modes of(prope) frequency\. This expression isiniversal

ntn that it governs all quantum systems coupled linearly and
estationarily to the radiation field. The only model-dependent
limit T—oo whatever the value o is. This simply follows quantity isT, ..This. is iIIu;trated by the dynamical model O.f

from the fact that the mean flux measured in the inertials_ec' Il A, which gives rise to the diagonal transfer matrix

system of coordinate¥, U=t*zis given in Eq.'(GG.)' . I
The main difference between the partially transmitting

However, this vanishing flux is accompanied by transie
effects whose Minkowski properties become singular in th

do\2 mirrors defined in a purely kinematic way in Sec. Il B and
(Tywy(V))3= W) (T, [lv=atin(aV)])ae the dynamical model of Sec. Il A concerns causality: see the
discussion which follows Eq66).
2 In Sec. lll B, we analyze the scattering in the interacting
=1 a2y (Teo(©))** (102 picture. In this picture, there is no Bogoliubov transforma-

tion since the basis of asymptotic states is provided by the
From this expression, using E¢88), one finds that the usual “free” states e_n_gendered by the Minkowski c'reation
Minkowski flux diverges for allT if a>A"1, ie., if the operators. The nontrivial value of the energy flux emitted by
switching on is slower than the boost factw/dV=e" 2, the mirror results from the connected parts of the matrix

which diverges fow — —«©. Whena<A ™1, the flux is well ~ elements of the evolution operatéFTe‘L; see Eqgs(71)—
defined and its maximal value, which grows likd?T, is  (73).

reached arouns=a e 2T, This establishes the fact thatin ~ Equations(52) and(53) as well as Egs(82) establish the
the limit of constant coupling—c, one has a singular flux connection between the Bogoliubov matrieeand 8, which

of energy along the past horizon. Quite surprisingly, the conmathematically relate two bases of field modes, and the tran-
dition aA <1 tells us that accelerated mirrors which lead to asSition amplitudes for physical processes to occur, i.e., the
finite Minkowski flux have their fluxes dominated by the first matrix elements o8=Te'". It should be noticed that a simi-
two terms in Eq(100. That is, the flux is dominated by the lar relationship also exists between Bogoliubov coefficients
boosted vacuum transients governedfyather than by the and the transition amplitudes of a two-level atom: see Eq.
temperature effects induced by the acceleration. (2.55 in [8].
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The usefulness of the interacting picture is that it permits .
us to switch on and off the coupling constant at some finite wa'EEK Bok@ygrs (A3)
time in a controlled manner. This possibility in turn allows us
to obtain regularized expressions for the flux in situationsynere apt is the inverse matrix ofr,y. (e, is always

w

where the flux is ill defined when using the DF model. Thisiyertible since otherwise there would exist incoming par-
is illustrated in Sec. IV B with the case of uniform accelera-tideS whose scattering would give only antiparticles.

tion. As for the Unruh modes, the operatcirsﬁ are useful to

relate in a simple way the out vacuum to the in vacuum.

APPENDIX:  THE in-out OVERLAP Straightforward algebra indeed gives
IN THE GENERAL CASE

Our aim is to obtain an expression for the overlap be- |Oout>=%exp( > EF;QBM&LBL, [0in), (A4)
tween the in and out vacua when the Bogoliubov coefficients %k
are nondiagonal. In this case, the original expression of Ka- hereZ is defined b
mefuchi and UmezawgB4] does not apply. wherez Is defined by

In order to have simple expressions for this overlap, we Z72= (0o O} |- (AS)
will use a discretized basis of wavepackets in which the in-
tegrals are replaced by sums and Dirac distributions by Kro- Even though Eq(A4) looks cumbersome, one easily veri-
necker symbols. In addition to the in and out operators, it idies that, to ordep?, it correctly gives the relationship be-
appropriate to define a third class of operataysb,, . This ~ tween the vacuum decay (1) and the pair creation prob-

wo'k

new basis generalizes the “Unruh” modf27,§] in thata,, abi_liiy of 'VA”?kOWSki quanta.  Indeed,  using

(b,) is made out of]" (b)), but is characterized by a fixed (F™ ) wwr(Oinl84r8,,|0n) =8, @Nd ﬂ:e condition o,

out frequencyw: andF,, , which arises fronfa%",b%]=0 and Eq.(A2),
one obtains

A — * Ain A — * |ain
a,d, Ek @@y awbw Zk awkbk' (Al) 22:1+2 |war|2+0(ﬁ4). (A6)

’
ww

- A at1_1. . L .
The rezal coefficientsy,, are such thafa,,a,]=1; there-  Thjs is the correct expression since the probability to have a
fore, a2 =3,| a,/?. The notion of particles and antiparticles pair of out quanta is

is obviously maintained since th& are made ofa™ only.

Notwithstanding, for arbitraryr,,, and 8,. this new basis 0 Jaoutboutlo‘ >|2_‘wa, 2
out “w My iVin -

:lew’|2+O(IB4)'

is not orthogonal and the commutation rules are given by Z
(A7)
PN Sk a, . L
[éw,éT,]EFww,:[bw,bT,]: M. (A2) For completeness, we notice that when the scattering is
¢ ¢ Ay stationary(as is the case for uniform acceleration and in
] black hole evaporationone has
By construction and from Eq13), these new operators are
related to the out operators by Bo
war:a_(sw’wr lem’:éw,m/ . (A8)
t_ A nt . .
a,'= %aw_z a,B,ub, Since they are diagonal, E¢A4) becomes
1 B -
_= Potpnt o
D= B B oud= 7o 3 oalbtlow. 49
¢ thereby recovering the usual diagonal expression governed
with by the “Unruh” operatorsa,, ,b,, .
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