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Notes on moving mirrors
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The Davies-Fulling~DF! model describes the scattering of a massless field by a noninertial mirror in two
dimensions. In this paper, we generalize this model in two different ways. First, we consider partially reflecting
mirrors. We show that the Bogoliubov coefficients relating inertial modes can be expressed in terms of the
reflection factor and the transformation from inertial modes to modes at rest with respect to the mirror. In this
perspective, the DF model is simply the limiting case when the reflection factor is unity for all frequencies. In
the second part, we introduce an alternative model which is based on self-interactions described by an action
principle. When the coupling is constant, this model can be solved exactly and gives rise to a partially
reflecting mirror. The usefulness of this dynamical model lies in the possibility of switching off the coupling
between the mirror and field. This allows us to obtain regularized expressions for the fluxes in situations where
they are singular when using the DF model. Two examples are considered. The first concerns the flux induced
by the disappearance of the reflection condition, a situation which bears some analogies with the end of the
evaporation of a black hole. The second case concerns the flux emitted by a uniformly accelerated mirror.

DOI: 10.1103/PhysRevD.64.044019 PACS number~s!: 04.62.1v, 03.70.1k, 04.70.Dy
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I. INTRODUCTION

The Davies-Fulling~DF! model @1# describes the scatter
ing of a massless field by a noninertial mirror in two dime
sions. It has received and continues to receive atten
@2–11# principally because of its simplicity and its relation
ship to Hawking radiation@12#. ~One can indeed mimic the
varying Doppler effect induced by the collapse of a star
the total reflection on a receding mirror.! Because of its sim-
plicity, this model has been also used to investigate the r
tionships between the particle description of fluxes emit
by the mirror and its field description based on the two-po
Green’s function. The motivation behind this analysis is
following. When quantizing a field in a curved space-tim
one loses the uniqueness of choice for the particle no
which is then used to define the vacuum and its excitatio
Based on this fact, some authors have proposed discar
the particle point of view@13#. The DF model, being define
in flat space time and giving rise to particle creation as i
curved space-time, provides a good playground for confro
ing the two points of view. Finally, the DF model also pr
vides a good starting point for studying the role of ultrahi
frequencies which arise in the presence of event horiz
@14–18#. This is particularly true when considering un
formly accelerated mirrors@3,19,20#. Indeed, in this case on
has to confront the fact that the instantaneous value of
energy flux identically vanishes, whereas the Bogoliubov
efficients, mixing positive and negative frequencies, do
vanish and lead to a total energy, which furthermore
verges.

Quite independently of these specific difficulties, there
a fundamental reason which complicates the analysis
these problems: the DF model does not follow from
action principle. In fact, the reflection condition is impos
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from the outset instead of following from interactions wi
the boundary. Therefore only questions concern
asymptotic properties of asymptotically inertial mirrors c
be properly answered. To emphasize this point, we s
show in the first part of this article that the scattering in t
DF model can be expressed in purely kinematic terms
results from the Bogoliubov transformation relating the us
Minkowski modes to noninertial modes which are eige
modes with respect to the proper time of the mirror. T
scattering of the latter is then trivial, as trivial as the scatt
ing of Minkowski modes by an inertial mirror. This rephra
ing of the DF model is very useful in that it allows us
consider partially transmitting mirrors with arbitrar
frequency-dependent transmission coefficients. In this p
spective, the DF model is simply the limiting case in whi
the reflection is total for all frequencies.

In the second part of the paper, we analyze an alterna
model for scattering along a given trajectory which is bas
on self-interactions described by an action principle. T
main motivation for considering this model is that we c
now switch on and off the coupling between the mirror a
field. Therefore, we can work with well-defined asympto
free states. The relationship between the partially transm
ting mirrors previously considered and this model will b
explicitly made.

To this end, we first work with a coupling which is con
stant. In this case, the Born series can be exactly sum
and lead to a partially transmitting mirror. Moreover, in th
large coupling constant limit, one recovers the DF mo
el: i.e., total reflection. The only difference with respect
the kinematic approach is that causality is now built in. S
ond, we consider the case when the coupling is time dep
dent. In this case, we compute the fluxes perturbatively
quadratic order in the coupling. The novelty arises from tra
sient effects associated with the switching on and off. T
possibility of controlling these transients is crucial for reg
larizing the fluxes in situations where they are singular wh
using the DF model.
©2001 The American Physical Society19-1
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To make this explicit, we consider two examples. The fi
one consists in computing the flux associated with the
pearance~or disappearance! of the reflecting boundary con
dition. This problem was considered by Anderson and De
itt @21#. Moreover, as discussed in@7#, it presents some
analogies with the residual flux associated with the dis
pearance of a black hole at the end of the evaporation
cess. When using the DF model, the flux is singular and
spectral properties are ill defined. On the contrary, with
self-interacting model, it can be described by a well-defin
process in which the coupling to the mirror is switched
more and more rapidly. The second application concerns
flux emitted by a uniformly accelerated mirror. In the D
model, the energy flux vanishes everywhere, but on the
rizons where it is not defined. With the other model, inste
a well-defined and regular expression will be obtained. In
intermediate regime, when the coupling is constant, we
cover the vanishing of the local flux. But we also find tra
sient effects which become singular when the switching
and off is performed for asymptotic early and late prop
times, thereby explaining the paradoxical situation enco
tered in the DF model where quanta are produced while
energy flux vanishes.

We conclude the paper by presenting the main results
synthetic manner. We also wish to stress that in this pa
recoil effects shall be totally ignored since the trajectory
the mirror is given once for all. Nevertheless, since the s
interacting model is based on Feynman diagrams, it prep
for the analysis of taking into account the dynamics of
mirror @10,11#. Indeed, theS matrices computed with o
without backreaction effects possess a very similar struct

II. KINEMATIC MODELS

In the first part of this section, we review the basic pro
erties of the Davies-Fulling model. In particular, we compa
the particle description of the fluxes based on Bogoliub
coefficients with that based on two-point functions. In t
second part, we show how the scattering process can be
eralized so as to describe partially transmitting mirrors. T
generalization will be performed in a matrix formalism. W
have chosen this formalism for two reasons: first to emp
size the kinematic nature of the DF model and second
introduce in natural terms the generalization to partial refl
tion. In the third part, we relate the Bogoliubov coefficien
to the S matrix acting in Fock space, thereby preparing
the analysis of transition amplitudes performed in the n
section.

A. Davies-Fulling model

In the Davies-Fulling model, the mirror is perfectly re
flecting for all frequencies and its trajectory is chosen fro
the outset. Moreover, no width is attributed to the reflect
condition: i.e., it acts like a delta in space. Beside the f
that the trajectory is always timelike, we shall also impo
that it be asymptotically inertial. In conformal terms th
means that the trajectory starts fromi 2 and ends ini 1, the
past and future timelike infinities, respectively@22#. The rea-
son is that in the other cases, i.e., when the mirror origina
04401
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and/or ends on null infinities, the calculation of the ener
radiated by the mirror is ill defined.~The specific problems
associated with null asymptotic trajectories will be cons
ered in a next article@23#.!

In this paper, we shall consider the scattering of acomplex
massless scaler field. The reason for this choice is tha
allows us to consider more general scattering matrices w
the reflection condition is not perfect. This possibility will b
exploited in the next subsections. Since the dynamics of
mirror is trivial, the evolution of the field is entirely gov
erned by the d’Alembert equation

~] t
22]z

2!F~ t,z!50 ~1!

and the reflection condition

F„t,zcl~ t !…50 ~2!

along the classical trajectory of the mirrorz5zcl(t).
Since the field is massless and since we work in two

mensions, it is particularly useful to work in the lightlik
coordinates defined byU, V5t7z. For instance, the genera
solution of Eq.~1! is the sum of a function ofU alone plus a
function of V. In addition, since the mirror is perfectly re
flecting, the trajectory of the mirror completely decouples t
left-hand-side configurations from the right-hand-side on
Therefore, in this subsection, we can and shall restrict
attention to the configurations residing on the left of the m
ror.

Finally, since the mirror trajectory emerges fromi 2, V
52` is a complete Cauchy surface. Hence the usual mo
of the d’Alembertian given by

wk~U !5
e2 ikU

A4puku
~3!

form a complete and orthonormal basis.~Instead, when the
trajectory starts from the null past infinityJ 2, the choice of
a complete and orthonormal basis should be reconsid
@23#.! We recall that the norm of the modes is determined
the Klein-Gordon scalar product which reads, when eva
ated onJ 2,

^wkuwk8&5E
2`

1`

dU wk* i ]JUwk85sgn~k!d~k2k8!. ~4!

The scattered mode corresponding to Eq.~3! is determined
by Eq. ~2! to be

wk
scat~V!52

e2 ikUcl~V!

A4puku
, ~5!

whereU5Ucl(V) is the trajectory of the mirror in the light
like coordinates.

The in modewk
in(U,V) is by definition the solution of

Eqs. ~1! and ~2! which has Eq.~3! as initial data. It is
given by
9-2
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wk
in~U,V!5

e2 ikU

A4puku
2

e2 ikUcl~V!

A4puku
. ~6!

To analyze the frequency content of its scattered par
should be Fourier decomposed on the final Cauchy sur
U51` ~the left part ofJ1!. In total analogy with what we
have onJ 2, on J 1 the normalized modes are

wv~V!5
e2 ivV

A4puvu
. ~7!

Then the scattered mode~5! can be decomposed as

wk
scat5E

0

`

dv~avk* wv2bvk* wv* !, ~8!

where the coefficientsavk , bvk are given by the overlaps

avk* 5^wvuwk
scat&522E

2`

1`

dV
eivV

A4puvu21

e2 ikUcl~V!

A4puku
,

bvk* 5^wv* uwk
scat&. ~9!

Since both the initial and final sets of modes are compl
the coefficientsavk , bvk satisfy the relations

E
0

`

dk~avk* av8k2bvkbv8k
* !5d~v2v8!,

E
0

`

dv~avkavk8
* 2bvkbvk8

* !5d~k2k8!,

E
0

`

dk~avkbvk82bvkavk8!50,

E
0

`

dv~avkbv8k
* 2bvk* av8k!50. ~10!

Note that these relations are not trivially satisfied when
trajectory of the mirror reaches one of the null infiniti
rather than the timelike ones. Notice also that the overl
~9! can be computed on any spacelike surface which r
from z52` to some point on the mirror„t,zcl(t)…. In this
case, one should use the full expression of the in mo
given in Eq.~6! as well as that of the out modes given by

wv
out~U,V!5wv~V!1wv

bscat~U !. ~11!

The second termwv
bscat results from the backward scatterin

of wv given in Eq.~7!.
When the overlapsavk andbvk are known, the classica

scattering problem is solved. That is, it suffices to deco
pose the initial data in terms of the modes~7! to obtain,
through Eq.~9!, the Fourier content of its image onJ 1. It
should be pointed out that the coefficientsbvk which mix
positive and negative frequencies have a well-defined rol
this classical wave theory: they determine the~nonadia-
batic @24#! increase of the Fourier components of the sc
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tered wave@see, e.g., Eq.~11! in @10# for their influence on
the energy of the reflected wave#. It should be also pointed
out that one can recover an approximate space-time des
tion of the scattering when considering localized wave pa
ets rather than plane waves: for sufficiently high freque
cies@i.e., short wavelengths compared to the~acceleration of
the mirror!21#, the coefficientsbvk vanish and the mean fre
quency of the reflected packetv̄ is related tok̄, that of the
incident one, by the Doppler effectv̄5 k̄]VUcluU5Ū evalu-
ated atŪ, the retarded time of the center of the incide
packet. These two properties are easily obtained by form
wave packets and evaluating the integrals in Eq.~9! by the
saddle point method.

When avk and bvk are known, the quantum scatterin
problem is also solved. This follows from the linearity o
Eqs. ~1! and ~2!: when working in a second-quantize
framework, being linear, these equations provide the Heis
berg equations for the field operator. Thus the field opera
can be written both in the in and out bases by

F5E
0

`

dk~ak
inwk

in1bk
in†1wk

in* !

5E
0

`

dv~av
outwv

out1bv
out†wv

out* !. ~12!

When imposing that it satisfy the equal-time commutati
relation @F(z),] tF

†(z8)#5 id(z2z8), Eq. ~4! guarantees
that the in operatorsak , bk satisfy the usual commutatio
relations leading to the particle interpretation. Then the
vacuumu0in& is defined as the product of the ground states
the in oscillators and its excitations are generated by
creation operatorsak

in† , bk
in† . Moreover, by construction o

the in modes onJ 2, the in particles correspond to the usu
Minkowski particles onJ 2. Similarly, by construction of
the out modes, all these properties apply to the out opera
ak

out†, bk
out† and to the out vacuumu0out& when replacingJ 2

by J 1.
Given the orthonormal and complete character of the

and out mode basis, Eqs.~9! and ~12! determine the Bogo-
liubov relations

ak
in5E

0

`

dv~avkav
out1bvkbv

out†!,

bk
in†5E

0

`

dv~bvk* av
out1avk* bv

out†!,

av
out5E

0

`

dk~avk* ak
in2bvkbk

in†!,

bv
out†5E

0

`

dk~2bvk* ak
in1avkbk

in†!. ~13!

Then Eqs.~10! guarantee the compatibility of the partic
interpretation in each basis, i.e., both in and out opera
obey the canonical commutations relations. With the re
9-3
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N. OBADIA AND R. PARENTANI PHYSICAL REVIEW D 64 044019
tions ~13!, all questions concerning quantum scattering p
cesses can be answered. For instance, the probability am
tude to obtain a given final stateuCfin& specified onJ 1 in
terms of out operators starting from some in stateuJ in& con-
structed onJ 2 is given by the product̂CfinuJ in& @which
should not be confused with the Klein-Gordon product, E
~4!, which concerns the modes of the field#. More intrinsic is
the overlapZ215^0outu0in& between the initial and fina
vacuum states. Indeed, it determines the probability am
tude for the~spontaneous! decay of the vacuum specified o
J 2. The computation ofZ is easy when the transformatio
is diagonal in energy: see, e.g.,@2,8#. In the general case
however, as a result of the frequency mixing between in
out modes, the calculation ofZ is less trivial. This generali-
zation is presented in the Appendix.

It should also be noted that the Bogoliubov coefficie
themselves are given by the following matrix elements:

avk* 5^0inuav
outak

in†u0in&,

2bvk* 5^0inubv
out†ak

in†u0in&. ~14!

However, it is not clear how to attribute a physical mean
to these equations. In particular, the relationship with
second one and pair creation amplitude is quite obscure
deed, theprobability amplitude to obtain onJ 1 one pair of
quanta of frequenciesv andv8 in the in vacuum is given by
@see Eq.~A7! in the Appendix#

^0outuav
outbv8

outu0in&52
1

Z E
0

`

dk bvkakv8
21 . ~15!

We shall return to these questions of interpretation in S
II C.

Instead of considering in-out matrix elements in Fo
space, more attention has been put on the expectation va
of ~local! operators in a given initial state. The most studi
object is probably the energy flux emitted by the mirror wh
the state of the field is the in vacuum. The motivations
this analysis are, first, its relevance for black hole radiat
@2–11#; second, that its nonvanishing value is due to spon
neous pair creation, a specific feature of quantum fi
theory; and third, that this value can be computed either fr
using Eqs.~13! or from the properties of the Green’s functio
of F.

Having at our disposal the Bogoliubov coefficientsavk
and bvk , we start with the particle point of view. We con
sider the density energy of the emitted flux. The correspo
ing Hermitian operator is1 TVV5]VF†]VF1]VF]VF†. On

1The symmetrization is due to the fact that we deal with a co
plex field. Of course, in the DF model, particles and antipartic
equally contribute tôTVV&. This explains the overall factors of 2 i
the next equations. We warn the reader that this equal contribu
will not be necessarily found when considering partially transm
ting mirrors.
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the left of the mirror@U.Ucl(V)#, using Eq.~13! and the
first line of Eq.~10!, the expectation value of the energy flu
is

^TVV&[^0inuTVVu0in&2^0outuTVVu0out&

52 ReH E E
0

`

dv dv8
Avv8

2p

3Fe2 i ~v82v!VS E
0

`

dk bvk* bv8kD
2e2 i ~v81v!VS E

0

`

dk avk* bv8kD G J . ~16!

It should be noted that the subtraction of the out vacuum fl
follows from the prescription of subtracting the contributio
of the Minkowski vacuum. Indeed, by construction of the o
modes, they coincide with the usual Minkowski modes
J 1.

The total energy emitted toJ 1 is obtained from integrat-
ing ^TVV& over V. The integration eliminates the secon
term, which is due to interferences between states with
ferent particle numbers. It gives

^HV&5E
2`

1`

dV^TVV&

52E
0

`

dv vE
0

`

dkubvku252E
0

`

dv v^nv&. ~17!

One gets the usual relationship between the mean energy
mean number of particles,^nv&5*0

`dkubvku2, found onJ 1

~it equals the number of antiparticles!. In this writing one
sees that the nonvanishing character of^HV& is due to theb
coefficients which govern the vacuum decay; see Eq.~A6! in
the Appendix.

We now reconsider the flux̂TVV& without making use of
the Bogoliubov coefficients and with less emphasis on
notion of particle. This alternative method is based on
Wightman function evaluated in the in vacuum:

^0inuF†~U,V!F~U8,V8!u0in&

5E
0

`

dk wk
in~U,V!wk

in* ~U8,V8!. ~18!

In terms of this function, using Eq.~5!, the mean flux onJ1

reads

^TVV&52 lim
V8→V

@^0inu]VF†]V8Fu0in&

2^0outu]VF†]V8Fu0out&#

52
1

2p
lim

V8→V

]V]V8@ lnuUcl~V8!2Ucl~V!u2 lnuV82Vu#

5
1

6p H S dUcl

dV D 1/2

]V
2F S dUcl

dV D 21/2G J

-
s

n
-
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5
1

24p F S d2Ucl

dV2 D S dUcl

dV D 21G2

2
1

12p
]VF S d2Ucl

dV2 D S dUcl

dV D 21G . ~19!

Again, the subtraction of the out vacuum flux follows fro
the prescription of subtracting the contribution of t
Minkowski vacuum. In this point splitting method, it i
through that prescription that the notion of vacuum deca
reintroduced. Indeed, onJ 1, the above subtraction i
equivalent to normal ordering with respect to out operato
@This is straightforwardly proved by using Eq.~10!.# More-
over, the fact that̂ TVV& and ^HV& vanish only for inertial
trajectories,2 i.e., when]V

2Ucl50, confirms that their nonva
nishing character is due to the nonadiabaticity@24# of the
scattering, a notion deeply rooted in the spontaneous crea
of pairs of particles. In conclusion, a close examination
the point splitting method and that based on Bogoliubov
efficients reveals their complete agreement in flat space-t
In @25# this correspondence was extended to curved sp
time by introducing Bogoliubov coefficients which are d
fined locally.

From Eq.~19! we learn that the energy flux is local in th
it depends only on three derivatives of the trajectoryUcl(V)
evaluated at the retarded timeV ~remember that we are o
the left of the mirror!. We shall see below that this locality i
a consequence of dealing with a perfectly reflecting mir
for all frequencies.

Notice finally that in Eq.~16!, the first term is positive
definite and gives a positive total energy^HV&. Indeed, being
a total derivative, the second term does not contribute
^HV& when the trajectory is asymptotically inertial sinc
Ucl(V);V for asymptotically late and earlyV’s. This might
not be the case for trajectories which enter or leave the sp
through null infinities because of the infinite Doppler effe
encountered asymptotically.

B. Partially transmitting mirrors

In this subsection we study partially transmitting~but still
recoil-less! noninertial mirrors. We shall proceed in thre
steps. We first show that the scattering by a noninertial m
ror is most simply described in terms of the wave functio
which are eigenmodes of the proper time of the mirror.~We
shall call them the proper-time modes.! When using these
modes, the matrix relating the scattered modes to the in
ones is diagonal in the frequency, exactly as for the sca
ing of Minkowski modes by a mirror at rest. Second, w

2For uniform acceleration, the two terms in Eq.~19! cancel each
other, leading to a null flux. However, the Bogoliubov coefficien
bvk do not vanish, thereby indicating that particles are produc
Moreover, when used in Eq.~17! they lead to a divergent integrate
energy. To establish the compatibility of the null flux with th
divergent result requires a regularization scheme. To obtain su
scheme is the main reason for considering the dynamical mod
Sec. III.
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shall see that these modes are well adapted for introdu
partially reflecting coefficients with arbitrary frequenc
dependent phase and amplitude. Indeed, since this matr
diagonal in the proper-time frequency, unitarity constrains
elements in a simple manner, frequency by frequency. Th
for both partial and total reflection, we shall see that t
usual Bogoliubov coefficients, Eq.~9!, relating the in and out
Minkowski modes are simply obtained from this diagon
matrix.

To satisfy this program, we first need to construct t
proper-time modes. To this end it is very useful to introdu
new lightlike coordinatesu, v such that the timelike coordi
nate (u1v)/25t is the proper time of the mirror and th
spacelike one defined byv2u/25r is such that the trajec
tory readsr5r05const. These new coordinates are defin
by two analytic functionsu(U) andv(V) whereU,V are the
Minkowski lightlike coordinates. These functions are det
mined by the mirror trajectoryUcl(V) and the two conditions
defining t and r. Indeed, along the mirror’s trajectory, th
length element obeys

ds25]VUcl~V!dV25]UVcl~U !dU25dv25du25dt2.
~20!

This gives

dv
dV

5A]VUcl,
du

dU
5A]UVcl. ~21!

One verifies that the Jacobiansdv/dV and du/dU define a
time-dependent boost since they satisfy (du/dV)(du/dU)
51 for all t. The proper-time modes are then simply giv
by

wl~u!5
e2 ilu

A4pulu
,

wl~v !5
e2 ilv

A4pulu
. ~22!

They form a complete basis onJ 2 andJ 1 since our con-
dition that the trajectory emerge fromi 2 and finish oni 1

implies that thev andu axes cover those ofV andU, respec-
tively.

In the case of total reflection, the scattering along
mirror atr5r0 is trivial. When using the conventions of th
former subsection@Eqs.~6! and~11!#, one has, on the left o
the mirror,

wl
U, in~u,v !5wl~u!2e2ilr0wl~v !52e2ilr0wl

V,out~u,v !.
~23!

The new subscriptsU and V indicate which side ofJ 2

(J 1) is the asymptotic support of the in~out! functions. We
have introduced it in order to describe partial reflecti
which requires us to consider simultaneously both sides
the mirror. Using this notation, on the right of the mirro
one has

d.

a
of
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wl
V, in~u,v !5wl~v !2e22ilr0wl~u!52e22ilr0wl

U,out~u,v !.
~24!

It will be useful to express these relations by a 232 matrix
Sl as

wl
i ,out5Sl

i j wl
j , in~[al

j , in5Sl
i j al

i ,out!. ~25!

At fixed l, the indices of rows and columnsi, j are the new
subscriptU or V. As usual, repeated indices are summ
over. For total reflection, one has

Sl5S 0 2e12ilr0

2e22ilr0 0 D , ~26!

We now consider partial reflection. When consideri
elastic reflection, the matrixSl relating in and out modes
which generalizes Eq.~25! is unitary.@That is, we generalize
total reflection in a restricted way since we keep both
linearity and the unitarity of Eq.~25!.# Unitarity constrains
the elements ofSl ,

Sl5S sueiwu 2 iReiw

2 iR8eiw8 sveiwv D , ~27!

to obey

R5R8, su5sv ,

su
21R251, w85wu1wv2w. ~28!

~For simplicity of the expressions, we have not written t
argumentl, but all variables should be understood asl de-
pendent.! Physically,R and s correspond to the reflectio
and transmission coefficients; i.e., when working in the r
frame of the mirror, the probability for an incident quantu
of frequencyl to be reflected isR2.

In what follows we imposewu5wv52f, a condition
which expresses that the transmitted part of the scatterin
independent of the sign of the momentum. In anticipation
Sec. III, we point out that this equality is automatically s
isfied when considering parity-invariant Hamiltonians~see
@26#, Chap. 3.4!. In this case the matrix reads

Sl5e2 ifS A12R2 2 iReiu

2 iRe2 iu A12R2D . ~29!

In principle, the common phasee2 if could be reabsorbed in
a redefinition of the modes. However, when using in and
modes conventionally defined, i.e.,wl

V, in(v)5wl
V,out(v)

5wl(v) of Eq. ~22!, the phasef is unequivocally fixed. As
we shall see in the next section, this convention is autom
cally used when considering interactions perturbatively. T
is also the case in the DF model. Indeed, the limiting cas
total reflection given in Eq.~26! is reached forR→1 and
f5p/2 for all l. One also finds that the other phaseu is
related to the mirror location byu52r0l.
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To complete our second step, we should describe parti
and antiparticles simultaneously. To this end, we group th
operators (al

U, in ,al
V, in ,bl

U, in† ,bl
V, in†) in a four-vector al

m, in

and the out operators (al
U,out,al

V,out,bl
U,out†,bl

V,out†) in
al

m,out. Similarly, we group their corresponding modes in t
four-vectorswl

m, in andwl
m,out. Since we work with a charged

field, the modes associated withbl
i† might not be complex

conjugates of those associated withal
i ~as is the case when

dealing with a charged field in an electromagnetic field: s
e.g., Sec. 1.3 in@8#!. Explicitly, in our case, the four mode
are (wl

U ,wl
V ,w̄l

U* ,w̄l
V* ) wherew̄l

i designate the two mode
associated with the antiparticles operatorbl

U andbl
V .

We then introduce the 434 matrix given by

Sll85d~l2l8!S Sl 0

0 S̄l*
D , ~30!

whereS̄l is the scattering matrix for the antiparticles. Sin
Sll8 is block diagonal, unitarity constrainsSl and S̄l sepa-
rately.Sll8 acts on the in four-vector as follows:

wl
m,out5Sll8

mn wl8
n, in , ~31!

where continuous repeated indices are integrated from 0̀
and discrete ones summed over the four components de
at fixed frequency. With these choices, the components
Sll8 are the Bogoliubov coefficients conventionally define
By conventionally defined we mean the equations wh
generalize Eq.~13!, i.e.,

al8
j , in

5all8
i j al

i ,out1b̄ll8
i j bl

i ,out†,

bl8
j , int†

5bll8
i j * al

i ,out1āll8
i j * bl

i ,out†, ~32!

where the Bogoliubov coefficientsa,ā,b,b̄ are now
232 matrices. By direct identification, one obtains

all8
i j

5^wl8
j , inuwl

i ,out&5Sll8
i j ,

āll8
i j

5^w̄l8
j , inuw̄l

i ,out&5Sll8
i 12 j 12* ,

bll8
i j

5^w̄l8
j , inuwl

i ,out* &5Sll8
i j 12* ,

b̄ll8
i j

5^wl8
j , inuw̄l

i ,out* &5Sll8
i 12 j . ~33!

When Sll8 is block diagonal in the sense of Eq.~30!, one
obviously hasbll8

i j
5b̄ll8

i j
50. In full generality,Sll8 satis-

fies unitarity in the following sense:

~S†!ll9
mn Sl9l8

nm8 5d~l2l8!dmm8. ~34!

This equation generalizes Eqs.~10! to partially transmitting
mirrors.

With Eqs.~26!, ~30!, and~31!, we have shown that scat
tering in the DF model is trivial when using proper-tim
9-6
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modes. We have done more since Eqs.~31! and~33! apply to
all partially transmitting mirrors governed bySl given by
Eq. ~29!.

The last step consists in finding the relationship betw
Sll8 and the Bogoliubov coefficients between in and o
Minkowski modes. This is simply achieved by introducin
the 434 matrix which relates the~unscattered! Minkowski
th

ou
or

i

04401
n
t

modes of frequencyk52 i ] t to the~unscattered! proper-time
modes of frequencyl52 i ]t :

fk
m5Bkl

mnwl
n . ~35!

The elements of this matrix are given by
Bkl5S ^wl
Uufk

U& 0 2^wl
U* ufk

U& 0

0 ^wl
Vufk

V& 0 2^wl
V* ufk

V&

^wl
Uufk

U* & 0 2^wl
U* ufk

U* & 0

0 ^wl
Vufk

V* & 0 2^wl
V* ufk

V* &

D 5S akl
UU 0 bkl

UU* 0

0 akl
VV 0 bkl

VV*

bkl
UU 0 akl

UU* 0

0 bkl
VV 0 akl

VV*

D . ~36!
nts

al
he
ill
en-

y
he
d

is
te
ra

as
SinceBkl relates unscattered modes, it is independent of
charge of the particle; hence,Bkl

11[akl
UU5ākl

UU[Bkl
33 . The

same equality applies toakl
VV , bkl

VV , andbkl
UU .

The important point for us is thatBkl also relates the in
Minkowski modes to the in proper-time modes and the
Minkowski modes to the out proper-time modes. Theref
the linear relation between in and out Minkowski modes
given by

fv
m,out5Svk

mm8fk
m8, in , ~37!

where

Svk
mm85Bvl

mnSll8
nn8 ~Bkl8

21
!n8m8. ~38!

Repeated indices are summed over, and the inverse ofB is
defined by

wl
n5~Bkl

21!nmfk
m . ~39!

It is given by

Bkl
215S akl

UU* 0 2bkl
UU* 0

0 akl
VV* 0 2bkl

VV*

2bkl
UU 0 akl

UU 0

0 2bkl
VV 0 akl

VV

D . ~40!

Explicitly, using the dictionary ~33! now applied to
Minkowski modes, the four coefficientsSvk

1n are

avk
UU5d~v2k!2 i E

0

`

dl~avl
UUTl

UUakl
UU* ~41!

1bvl
UU* T̄l

UU* bkl
UU),

avk
UV52 i E

0

`

dl~avl
UUTl

UVakl
VV*

1bvl
UU* T̄l

UV* bkl
VV!,
e

t
e
s

bvk
UU* 5 i E

0

`

dl~avl
UUTl

UUbkl
UU* 1bvl

UU* T̄l
UU* akl

UU!,

bvk
UV* 5 i E

0

`

dl~avl
UUTl

UVbkl
VV* 1bvl

UU* T̄l
UV* akl

VV!.

Similar equations give expressions for the other compone
of Svk

mn . We have writtenSl as Sl512 iTl ~and S̄l51
2 i T̄l! in order to extract the trivial part of the diagon
elements. This trivial part leads to the delta function in t
first equation. The usefulness of this expression is that it w
be easily related to the perturbative expressions we shall
counter in the next section.

Equations~41! are the central result of this section. The
give the in-out overlaps of Minkowski modes in terms of t
matricesTl ,T̄l computed in the rest frame of the mirror an
the overlaps between the free~unscattered! Minkowski and
proper-time modes.

It is then easy to obtain the mean flux emitted by th
partially transmitting noninertial mirror when the initial sta
of the field is the Minkowski vacuum. The same algeb
which gave Eq.~16! now gives

^TVV&5^TVV&particle1^TVV&antiparticle, ~42!

where

^TVV&particle5ReH (
j 5U,V

E E
0

`

dv dv8
Avv8

2p

3Fe2 i ~v82v!VS E
0

`

dk bvk
V j * b

v8k

Vj D
2e2 i ~v81v!VS E

0

`

dk āvk
V j * bv8k

V j D G J . ~43!

^TVV&antiparticle is given by the same expression withā,b re-
placed bya,b̄. Here^TVV& possesses the same structure
9-7
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Eq. ~16!. However, four kinds of coefficientsa, b should be
considered since we are dealing withpartial reflection of
chargedparticles.

When the scattering is independent of the energy
charge of the particles, i.e., whenR andf defined in Eq.~29!

are independent ofl and whenS̄l* 5S2l , integration overl
can be trivially performed as it expresses the completenes
the wl modes. In this case, as in the DF model, one
bvk

UU5bvk
VV50. One also finds that the emitted flux is simp

^TVV&5R2^TVV&DF, ~44!

where ^TVV&DF is the flux found in the DF model; see Eq
~16!.

Instead, whenR and f depend on the energy and/or th
charge,bvk

UU and bvk
VV will be, in general,3 different from

zero. In this case, one also loses the possibility of reexpr
ing the flux in terms of the derivatives of the trajectory as
did in Eq. ~19!. This can be understood from Eq
~41!: when expressingTl as a series in powers ofl, one
would obtain for̂ TVV& a nonlocal expression inV unless the
series inl stops after a finite number of terms.

C. Additional remarks

In this subsection, we relate the matricesSll8 and Svk ,
which act linearly on in and out operators, to the conve
tional S matrix acting on multiparticle states in Fock spac
With this identification we shall be able to relate the Bog
liubov coefficients, Eqs.~41!, to transition amplitudesand
not only to expectation values as in Eq.~43!.

By definition@26#, the action of this operator on states a
operators is the following:

u0in&5Ŝu0out&,

al
i ,out5Ŝ21al

i , inŜ, bl
i ,out†5Ŝ21bl

i , in†Ŝ. ~45!

Since we are dealing with elastic scattering, this opera
contains exactly the same information as the matri
Sl ,S̄l . Indeed, the block-diagonal character of Eq.~30! and
the linearity of Eq.~31! tell us thatŜ is the exponential of a
quadratic form of the proper-time operatorsal ,bl :

Ŝ5e2 i ~al
i , ins

ll8
i j

a
l8
j , in†

2bl
i , in†s̄

ll8
j j

b
l8
j , in

!. ~46!

Then straightforward algebra gives

sll85d~l2l8!S f arcsin~R!eiu

arcsin~R!e2 iu f D ,

s̄ll85sll8~R̄,ū,f̄ !, ~47!

3bvk
UU50 requires thatT̄l

UU* 52T2l
UU for all l.0 and similarly

for the VV coefficients. In the next section, we shall see that
condition is satisfied for time-independent couplings w
U~1! symmetry.
04401
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whereR,u,f have been defined in Eq.~29! and R̄,ū,f̄ are
defined in the same way fromS̄l . We note that in the DF
model, i.e., in the limit of perfect reflection,sll8 is given by

sll8
DF

5d~l2l8!S p

2 D S 1 eiu

e2 iu 1 D 5 s̄ll8
DF . ~48!

Although the configurations on the left and right of the m
ror completely decouple, theS matrix Ŝ treats both sides
simultaneously.

To anticipate the expression ofŜ in terms of Minkowski
operators which will mix creation and destruction operato
it is a convenient to rewrite Eq.~46! in term of the four-
vectoral

m, in ,

Ŝ5e2 i ~al
m, ins

ll8
mn

,a
l8
n, in†

!, with ~sll8
mn

!5S sll8
i j 0

0 2 s̄ ll8
i j D .

~49!

To obtain the expression ofŜ in terms of the Minkowski
operatorsak

i , in ,bk
i , in , it suffices to use the matrixBvl to re-

place proper-time operators by Minkowski ones. Explicit
one obtains

Ŝ5exp@2 i ~av
m, insvv8

mn av8
n, in†

!#,

with

svv8
mn

5Bvl
mm8sll8

m8n8~Bv8l8
†

!nn8. ~50!

Formally, Ŝ provides the answer to all questions conce
ing asymptotic states and expectation values. For insta
the probability amplitude governing the~Minkowski!
vacuum decay, Eq.~A6!, is simply

Z215^0outu0in&5^0inuŜu0in&. ~51!

Similarly, the probability amplitude for an initial quantum o
momentumk to be scattered and for no pair to be created

^0outuav
i ,outak

j , in†u0in&5^0inuav
i , inŜak

j , in†u0in&5
1

Z
~a21!kv

j i .

~52!

The last equality is easily obtained by using Eq.~32! to ex-
pressav

i ,out in terms ofak
j , in andbv

j ,out†. In the same way, the
Bogoliubov coefficientb is related to the probability ampli
tude to find a pair of out quanta in the in vacuum by

bvk
i j ~ ā21!kv8

j i 8 52
^0outuav

i ,outbv8
i 8,outu0in&

^0outu0in&

52
^0inuav

i , inbv8
i 8, inŜu0in&

^0inuŜu0in&
. ~53!

In this, we recover Eq.~15!. It should be stressed that thes
relationsdeterminethe physical interpretation of the overlap
a, b given in Eqs.~41!. In fact, the second-quantized fram
work was never used to obtain Eq.~41!: only the linearity of

e
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the relations and the orthonormal character of the prop
time and Minkowski-mode bases were exploited.

The physical interpretation ofa, b is the following: to
first order in the transfer matrixTl , a ~b! divided byZ gives
the probability amplitude to scatter a quantum~to produce a
pair of quanta!, sincea21.11 iT (b.2 iT). Upon consid-
ering higher-order terms inTl , one loses the simplicity o
the relationship so as to get the above equations. The sim
relation in the linear regime will be nicely confirmed in th
next section when using perturbation theory. We shall se
particular that division byZ corresponds to the usual restri
tion of keeping only the connected graphs engendered by
development ofŜ5Te2 ig*dt H in powers ofg. We shall fur-
ther comment on these aspects at the end of Sec. III.

III. SELF-INTERACTING MODEL

In this section, following @28,29,10#, we introduce a
model based on self-interactions which derives from an
tion principle. In the first part, we consider time-independ
couplings. In this case, resumming the Born series leads
in Eq. ~30!, to diagonal matrices in the proper-time energyl
with parametersR and f, which depend onl according to
the number of derivatives in the interaction Hamiltonian. T
important difference is that causality is now built in, as fo
lows from interactions governed by an action. This mo
will also be generalized by considering a thick mirror with
nonzero width. Using a perturbative approach, we shall
that the thickness acts as a UV cutoff.

In the second part, we work with time-dependent co
plings. We shall work perturbatively up to second order
the interactions. The novelty concerns the transients indu
by the switching on and off of the coupling.

A. Scattering with g constant

To exploit the fact that the coupling ist independent, it is
convenient to work with the coordinates~t, r! in which the
mirror is at rest. In these coordinates, the interaction
grangian reads

L int5gE E
2`

1`

dt dr f ~r!J„F~t,r!,F†~t,r!…. ~54!

Here g is the coupling parameter, andf is a real function
which specifies the thickness of the mirror and which is n
malized as*2`

1`dr f (r)51. Also, J is a Hermitian operator
which is quadratic in the complex field. We shall consid
three different cases:F†F1FF†, F†i ]JtF, and
]tF

†]tF1]tF]tF
†. In the following equations, we sha

present the details only with the second expression. At
end of the derivation, we shall give the final results for t
two other cases.

Given Eq.~54!, Eq. ~1! is now replaced by

~]t
22]r

2!F~t,r!5g f~r!2i ] rF. ~55!

Being linear, the solution can be expressed as
04401
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F~t,r!5F in~t,r!1gE E
2`

1`

dt8 dr8

3Gret~t,r;t8,r8! f ~r8!2i ]t8F~t8,r8!

5Fout~t,r!1gE E
2`

1`

dt8 dr8

3Gadv~t,r;t8,r8! f ~r8!2i ]t8F~t8,r8!,

~56!

in terms of the homogeneous solutionF in (Fout) which de-
termines the initial~final! data. The retarded and advanc
Green’s functions are defined, as usual, by

Gret~t,r;t8,r8!5E E
2`

1`

dl dl
1

4p2

e2 il~t2t8!1 i l ~r2r8!

l 22~l1 i e!2

~50 for t8.t!,

Gadv~t,r;t8,r8!5E E
2`

1`

dl dl
1

4p2

e2 il~t2t8!1 i l ~r2r8!

l 22~l2 i e!2

~50 for t8,t!. ~57!

To exploit the time independence of the couplingg, we work
at fixed energy with

wl~r!5E
2`

1`

dt
1

2p
F~t,r!eilt. ~58!

In a Fourier transform, Eqs.~56! give

wl~r!5wl
in~r!1 igE

2`

1`

dr8 f ~r8!wl~r8!eilur2r8u

5wl
out~r!2 igE

2`

1`

dr8 f ~r8!wl~r8!e2 ilur2r8u.

~59!

These equations have been obtained by using

E
2`

1`

dl
eil ~r2r8!

l 22~l6 i e!2 5
62ip

2~l6 i e!
e6 ilur2r8u, ~60!

and by having taken the limite→0.
We now decompose the quantized modeswl

in in terms of
creation and destruction operators:

wl
in~r!5

1

A4pl
~al

U, ineilr1al
V, ine2 ilr! ~ for l.0!

5
1

A4pulu
~bulu

U, in†e2 i ulur1bulu
V, in†ei ulur! ~ for l,0!.

~61!

We do the same for the out modes. Then, forf (r)5d(r
2r0), Eqs.~59! give
9-9
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S al
U,out

al
V,outD 5

1

12 ig S 1 ige22ilr0

ige2ilr0 1 D S al
U, in

al
V, inD . ~62!

We recover the linear structure ofSl in Eq. ~25!. Since the
unitarity of Sl provides al

i ,out5Sl
i j * al

j , in , when using the
definitions of Eq.~29!, we obtain

R5
g

A11g2
, f5arctan~g!, u52lr0 . ~63!

In the strong-coupling limit~i.e., for g→1`!, one obtains
the total reflection~26! in a l-independent manner. This is
special feature of the couplingJ5F†i ]JtF, which is associ-
ated with a dimensionlessg.

This analysis can be repeated with the two other opera
previously defined. The presence or absence of derivative
J modifies the IR or UV behavior ofR. For J5F†F
1FF†, one obtains@28#

Rl5
g/l

A11g2/l2
, fl5arctan~g/l!, u52lr0 .

~64!

In this case, the mirror is totally reflecting in the IR. Th
leads to strong IR divergences when considering tim
dependent couplingg. On the contrary, whenJ5]tF

†]tF
1]tF]tF

†, we get

Rl5
gl

A11g2l2
, fl5arctan~gl!, u52lr0 . ~65!

In this case, the mirror is transparent in the IR limit. Th
useful property will be exploited in Sec. IV.

We notice that the transfer matrixTl can be expressed i
a general way according to the numbern of derivatives]t in
the interaction term:

Tl5
2gln21

12 igln21Ae
S 1 e2ilr0

e22ilr0 1 D . ~66!

In this expression, we have not taken the limite→0 in using
Eq. ~60!. The functionAe5l/(l1 i e) determines the ana
lytical properties ofTl in the complexl plane. The specifi-
cation of the pole ofAe follows from that ofGret in Eq. ~57!.
It guarantees thatcausalitywill be respected@28#. This cru-
cial ingredient was missing in Sec. II B wherein the mat
Tl can be chosen from the outset. In that kinematic fram
work, the analytical properties should be imposed by han
one wishes to implement causality. On the contrary, in
present case causality follows from the Heisenberg equat
~56!.

Equations~59! and ~61! also determine the relation be
tween the antiparticle in and out operatorsbl

i† . By direct

computation one findsT̄l* 52T2l . This is precisely the

condition which givesbvk
UU5bvk

VV50; see footnote 3. When

usingTl ,T̄l in Eqs.~41!, we obtain the Bogoliubov coeffi
cients relating inertial modes. And from these coefficien
04401
rs
in

-

-
if
e
ns

,

one gets the mean value of the energy fluxTVV as in Eq.
~43!, but with causality built in.

We now study the case of a thick mirror withJ given by
F†i ]JtF. To display the effects off (r) in Eq. ~54!, it is
convenient to work with the~spatial! Fourier components
Equation~59! becomes

wl,l5wl,l
in 2

2gl

~l1 i e!22 l 2 E
2`

1`

dl8 f l 2 l 8wl,l 8

5wl,l
out2

2gl

~l2 i e!22 l 2 E
2`

1`

dl8 f l 2 l 8wl,l 8 . ~67!

For an arbitrary window functionf, these equations do no
lead to analytic relations between asymptotic in and
fields. Therefore, to estimate the effects off (r), we use
perturbation theory. To first order ing, we get

Tl
f 52gS 1 2p f 2l*

2p f 2l 1
D . ~68!

For a normalized Gaussian functionf centered onr0 , the
nondiagonal terms which determine the reflection probabi
arege62ilr0e22l2s2

. Therefore,s, the spread of the mirror
reduces the reflection of high frequencies: forl@1/s, the
mirror is completely transparent~this is also true for the two
otherJ’s!.

B. Scattering with g time dependent

In this subsection, the coupling parameter is a function
the proper timeg(t)5g f(t) where f (t) is normalized by
*2`

1`dt f (t)52T, with 2T the proper-time lapse during
which the interactions are turned on. Unlike what we had
the former subsection, resumming the Born series is
longer possible since the time dependence of the coup
destroys the decoupling of the equations into sectors at fi
frequencyl. Thus we shall work perturbatively: all quan
tities will be evaluated up to second order ing. In fact, we
meet a situation analogous of that of a thick mirror whi
mixes different momenta.

We first remind the reader that in the interacting pictu
the operatorF evolves freely, i.e., withg50: it obeys Eq.
~1! and not Eq.~55!. Therefore the in operatorsav ,bv speci-
fied at t52` coincide with the out operators and are equ
to the usual Minkowski operators. Hence they define
~Minkowski! vacuumu0&. Instead, the states evolve throug
the action of the time-ordered operator:

uC~ t51`!&5TeiL uC~ t52`!&, ~69!

whereL5g*dt f (t)J engenders self-interactions. Since t
trajectory is time like,T, the time ordering with respect to th
Minkowski time t, is equivalent to that of the proper timet.

To make contact with Sec. II, we work in this section wi
the stateuC0(t)& which is equal tou0& for t5t52`. When
expressing its final value in the basis of the unperturb
states, i.e., the states which would have been stationary in
absence of interactions (g50), we get
9-10
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uC0~t51`!&

5u0&1(
i , j

E E
0

`

dv dv8~Bvv8
i j

1Cvv8
i j

!uvv8& i j ,

~70!

where

Bvv8
i j

5 ig^0uav
i bv8

j S E
2`

1`

dt f ~t!J~t! D u0&,

uvv8& i j [av
i†bv8

j † u0&, ~71!

Cvv8
i j

52g2^0uav
i bv8

j

3S E
2`

1`

dtE
2`

t

dt8 f ~t! f ~t8!J~t!J~t8! D u0&c .

~72!

We have limited the expansion ing to these three terms sinc
we shall compute the energy-momentum tensor up tog2

terms only. As before,i,j denote theU, V sectors andv,v8
Minkowski energies. The symbol^ &c means that only the
connectedpart of the expectation value is kept. This restr
tion follows from the fact that the contribution of the disco
nected graphs cancels out since they also appear in the
nominator of the matrix elements; see, e.g.,@26#.

Using Eq.~70!, the expectation value ofTVV is given by

^TVV&5^C0~t51`!uTVVuC0~t51`!&c

5ReH(
j
E E

0

`

dv dv8
Avv8

2p

3Fe2 iV~v82v!E
0

`

dk~Bvk
V j * Bv8k

V j
1B̄vk

V j * B̄v8k
V j

!

2e2 iV~v81v!~Bvv8
VV

1B̄vv8
VV

1Cvv8
VV

1C̄vv8
VV

!G J ,

~73!

whereB̄vk
i j andC̄vv8

VV are related to the unbarred quantities

inverting particle and antiparticle operators: thus,B̄vv8
i j

5Bv8v
j i and C̄vv8

VV
5Cv8v

VV .
Since the integral of the second term in Eq.~73! vanishes,

and since barred and unbarred quantities differ at most b
phase, the total energy received on theV part of J 1 is

^HV&[E
2`

1`

dV^TVV&c52(
j
E

0

`

dv vE
0

`

dkuBvk
V j u2.

~74!

Hence only theB terms contribute to the energy as theb
terms did in Eq.~17!.

In order to compute the local properties of the flux, w
need to compute the second term of Eq.~73!. To this end we
decomposeCvv8

VV into two parts:
04401
-

de-

a

Cvv8
VV

5Rvv8
VV

2^0uav
Vbv8

V Du0&c , ~75!

where

Rvv8
VV

52
1

2
^0uav

Vbv8
V LLu0&c , ~76!

D5
g2

2 S E
2`

1`

dtE
2`

1`

dt8 f ~t! f ~t8!e~t2t8!J~t!J~t8! D
~77!

and e(t2t8)5u(t2t8)2u(t82t). Then ^TVV&D , the
contribution ofD to ^TVV&, enjoys the following properties
~see Appendix A in@17# for a similar analysis applied to a
two-level atom coupled to radiation!. First, it carries no en-
ergy. This is obvious since it is built with terms which a
containeiV(v1v8). Second, it vanishes forf (t)5cst. This
can be understood from the fact that the time ordering pr
erties can be encoded in the analytical properties of the
trix Tl which is diagonal inl; see Eq.~66!. This means that
this term modifies the shape of the transients related to
switching on and off of the interaction, but without affectin
their energy content. In the rest of the paper, we shall the
fore ignore this term.

We now computeRvv8
VV . Since only the connected pa

should be kept, we can insert the following operator betwe
the two operatorsL in Eq. ~76!:

(
i , j

E
0

`

dkE
0

`

dk8 ak
i†bk8

j †u0&^0uak
i bk8

j . ~78!

Grouping together, as in Eq.~73!, the first- and second-orde
contributions ing, we get

Bvv8
VV

1B̄vv8
VV

1Rvv8
VV

1R̄vv8
VV

5(
i
E

0

`

dk~Āvk
V j * Bv8k

V j
1Av8k

V j * B̄vk
V j !, ~79!

with

Avk
i j * 5^0uav

i ~11 iL !ak
j †u0&c ,

Āvk
i j * 5^0ubv

i ~11 iL !bk
j †u0&c . ~80!

Hence we find that̂TVV& is given by Eq.~42! with

^TVV&particle5Re(
j
E

0

`

dvE
0

`

dv8
Avv8

2p

3Fe2 iV~v82v!S E
0

`

dk Bvk
V j * Bv8k

V j D
2e2 iV~v81v!S E

0

`

dk Āvk
V j * Bv8k

V j D G . ~81!

^TVV&antiparticleis given by the same expression withĀvk
V j ,Bvk

V j

replaced byAvk
V j ,B̄vk

V j .
9-11
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Thus, to second order ing, we recover the structure of Eq
~43!, which gives the flux emitted by a partially transmittin
mirror. The Bogoliubov coefficientsavk

V j andbvk
V j have been

replaced by the transition amplitudesAvk
V j andBvk

V j . In this,
we recover the correspondence of Eqs.~52! and ~53! when
considered to first order in the transfer matrixTl . This is not
surprising since the evolution operatorTeiL , which defines
Avk* andBvk given in Eqs.~80! and~71!, is, by definition, the

operatorŜ of Eq. ~45!.
This correspondence is nicely illustrated in the case wh

g(t)5g andJ5F†i ]JtF. In this case, to orderg, but what-
ever is the mirror’s trajectoryU5Ucl(V), one has the fol-
lowing identities:

Avk
VU5gavk , Bvk

VU5gbvk , ~82!

whereavk andbvk are the overlaps, Eq.~9!, computed in the
DF model. These relations establish thatavk andbvk should
be viewed as transition amplitudes. This is important for
following reason. It implies that the momentum transfers
the mirror ~which have been neglected so far! associated
with the transitions described byA and B are, respectively,
\(k1v) and \(2k1v). This fact imposes limitations
when considering the emission of ultrahigh~trans-Planckian!
frequencies since neglecting the momentum transfers
quires \v!M , where M is the mass of the mirror@10#.
Thus, when high-frequency quanta are emitted, the vali
of the predictions obtained with a recoil-less modelmustbe
questioned@11#.

IV. APPLICATIONS

The aim of this section is to illustrate the usefulness of
dynamical model in which one can switch on and off t
coupling between the mirror and radiation field. First, w
analyze the properties of the energy flux associated with
switching on and off when the mirror is at rest (z50) and in
Minkowski vacuum. As expected, we shall see that the fl
is localized in the transitory periods where the coupling
turned on or off. Moreover, the mean frequency emitted
given by the switching rate of the coupling.

Second, we generalize this analysis by replacing
Minkowski vacuum by a thermal bath. Then we use the w
known parallel between inertial systems in a thermal b
and uniformly accelerated systems in vacuum to obtain~for
the first time! a regularized expression of the flux emitted
a uniformly accelerated mirror.

A. Transients in vacuum

We first focus on the frequency content of the transien
For an inertial mirror at rest atz50 in Minkowski vacuum,
the transition amplitudesA andB of Eqs.~80! and ~71! can
be expressed in terms of the Fourier transforms off (t):

f v5
1

2p E dt f~ t !eivt. ~83!

To orderg, we obtain
04401
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Avk
i j * 5d~v2k!d i j 1 ig f v2k

j ~v,k!

Avk
, ~84!

Bvk
i j 5 ig f v1k

j ~v,2k!

Avk
, ~85!

where

j ~v,k!5H 1 for F†F1FF†,

v1k for F†i ]J tF,

vk for ] tF
†] tF1] tF] tF

†.

~86!

Thus, to orderg2, the mean number ofV particles of energy
v is given by

^Nv
V&52(

j
E

0

`

dkuBvku2. ~87!

The factor of 2 arises from the fact that it is equally proba
to emit aUV or a VV pair of quanta of energyv andk.

To further analyze the transients associated with
switching on and off of the coupling to the mirror, we sha
work with the function

f ~ t !5
1

2 F tanhS t1T

D D2tanhS t2T

D D G . ~88!

It is almost constant during a lapse of time 2(T2D) centered
aboutt50, and the time intervals of the switching on and o
are .4D. In the limit D→0, f tends to the square window
@u(t1T)2u(t2T)#/2. The Fourier components off are

f v5
D

2

sin~vT!

sinh~vpD/2!
. ~89!

One sees that the UV behavior is exponentially damped
D. On the contrary, in the IR,f v→T/p, as expected since
the coupling lasts 2T.

When considering the first two cases ofj (v,k) of Eq.
~86!, this last observation implies that the mean numb
^Nv& is ill defined since the integral overk in Eq. ~87! di-
verges in the IR. Therefore, to obtain well-defined expr
sions, we shall work with the third case. In this case, one

^Nv
V&5

g2D2

2
vE

0

`

dv8 v8
sin2@~v1v8!T#

sinh2@~v1v8!pD/2#
. ~90!

It is perhaps appropriate to discuss the condition on
~dimensionful! coupling constantg which guarantees the va
lidity of Eq. ~87!, which follows from a perturbative treat
ment limited to orderg2. The condition is that the mea
number of quanta per quantum cell~which is equal to
^Nv&dv.^Nv&p/T in the limit vT@1! be well approxi-
mated by Eq.~87!. This requires that the probability to obtai
two quanta in a cell is negligible with respect to that
obtaining one. This translates mathematically byg2!TD in
the limit of interestT/D@1, i.e., when the flat plateau i
much longer that the slopes. The conditiong2!TD means
that the limit T→` can be safely taken. Instead, the lim
9-12
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D→0 is more delicate. A sufficient condition consists
working at fixed g̃2!1, where g̃5g(TD)21/2. A stronger
condition is to impose that the total number of particle em
ted, *0

`^Nv
V&dv, be finite in the limitD→0. In this case,ḡ

5g/D should be held fixed.
When studying Eq.~90!, one first notices that in the limi

T→` with g andD fixed the total number of particles emi
ted is independent ofT, thereby not giving rise to a golde
rule behavior characterized by a linear growth inT. Second,
^Nv

V& is maximum forv}1/D. Finally, for vD@1, one has

^Nv
V&.e2pvD. We thus find all the expected attributes

transients: their particle content is independent of the du
tion T when T/D@1, and their Fourier content is peake
around the adiabatic switching rateD21.

We now study the space-time repartition of the ene
fluxes associated with these transient effects. We first no
that once theD term defined in Eq.~75! has been dropped
the mean flux can be expressed as

^TVV&522 Im~^0uTVVLu0&!1Re~^0uL@TVV ,L#u0&!.
~91!

Of course, by decomposingL and TVV in terms of creation
and annihilation operators, one would recover, respectiv
the linear and quadratic contributions of Eq.~81!. However,
being interested in the space-time properties, we shall no
so and shall work instead in the time ‘‘representation.’’
this approach,̂TVV& is governed by theV part of the~posi-
tive frequency! Wightman function. This latter obeys

]VW~V2V8!5]V^0uF†~V,U !F~V8,U8!u0&

52
1

4p

1

V2V82 i e
. ~92!

Using this function, the first term of Eq.~91! reads

^TVV& lin528g ImF E dt f~ t !$] t]VW~V2t !%2G
5

g

12p
] t

3f ~ t5V!. ~93!

To obtain this result, we have integrated by parts 3 tim
The boundary contributions all vanish sincef given in Eq.
~88! decreases faster that any power oft. The last integration
is trivially performed by using Im@(x2ie)21#5pd(x). These
properties explain the local character of the expecta
value.4

4It should be pointed out that we could have written^TVV& lin as a
commutator. This, however, is not appropriate since one loses
analytical properties ofW which are encoded byi e ~they arise from
frequency content of the vacuum and play a crucial role in defin
the above expressions!. By performing first the commutator@or,
equivalently, by first taking the imaginary part in Eq.~93!#, one
would obtain an ill-defined expression. The same remark applie
the quadratic term ing. To obtain well-defined expressions, on
one commutation~and not two! should be done.
04401
-

a-

y
ce

y,

do

s.

n

To evaluate the second term of Eq.~91!, which is qua-
dratic in g, we proceed along the same lines. We first eva
ate the commutator so as to obtain a quadratic form inF and
FV , whereFV means only that theV part of the field op-
eratorF should be kept. We then notice that the derivativ
] t in J might be expressed as]V since they are evaluated a
z50, but they act both on theV andU parts ofF. Using this
notation, one gets

@TVV ,L#5 ig f ~V!@~]VFV
†]V

2F1]VFV]V
2F†!1H.c.#

1 ig f 8~V!@~]VFV
†]VF1]VFVF†!1H.c.#.

~94!

Then theg2 contribution ofTVV is

^TVV&quadr516g2f ~V!ReS i E dV8 f ~V8!@]V8]V
2W~V82V!#

3@]V8]VW~V82V!# D116g2]Vf

3ReS i E dV8 f ~V8!@]V8]VW~V82V!#2D
52

g2

12p
~ f ]V

4 f 12]Vf ]V
3 f !. ~95!

Having obtained explicit expressions for both terms
Eq. ~91!, we can now analyze the properties of^TVV&. First,
neither f appears in Eq.~93! nor f 2 in Eq. ~95!. Thus one
recovers the fact that an inertial mirror does not radiate wh
its coupling is constant. This is illustrated in Fig. 1. Secon
being given by derivatives off with respect to time, the mag
nitude of^TVV& scales with positive powers of the switchin
on and off rateD21.

Finally, to obtain the integrated value of the energy em
ted, as in Eq.~19!, one decomposeŝTVV& into two parts: a
total derivative which does not contribute to the total ene
and the rest which turns out to be positive definite. Explicit
we get

^TVV&5^TVV& lin1^TVV&quadr

5
g2

12p
~]V

2 f !22
1

12p
]VF2g]V

2 f

1g2S 1

2
]V

4~ f 2!2]V
2@~]Vf !2# D G . ~96!

Thus the total energy is

^HV&5
g2

12p E
2`

1`

dV~]V
2 f !25E

0

`

dv v^Nv
V&. ~97!

Here ^HV& is finite when the mean number^Nv& decreases
faster thanv22. This is the case when working with Eq.~88!
at fixedDÞ0. In this case, one finds

he

g
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^HV&5
2g2

45p

1

D3 FS T

D D . ~98!

The main featurêHV& is that it is independent ofT in the
limit T/D@1 ~see Fig. 2!, thereby confirming that the emit
ted energy is indeed associated with the two transitory p
ods, irrespectively of the lapse of time (52T) which sepa-
rates them.

To conclude this subsection, we consider the limitD
→0. This corresponds to the situation studied in@21# and@7#
in view of its analogies with the residual flux emitted at t
end of the evaporation of a black hole. In this limit,f (t)
becomes a step function, the energy flux is concentrated
narrow lapseD, and its frequency content diverges. In fa
^TVV& becomes adistribution since it is built on the deriva-
tives of f (t). More precisely, the singularity is worse than
delta, as clearly seen from Eq.~95!. This means that not only
the instantaneous flux̂TVV& diverges, but also that the tota
energy emitted is singular, as indicated in Eq.~98!.

Moreover, being singular, this singular behavior is n
universal. It depends on the number of derivatives in
Hamiltonian, and it might also vary when considering high
orders ing. Hence the question as to what is the flux emitt
by the disappearance of the reflection condition is not w
defined. To have a well-defined question, one should
choose a regular model such as that defined by Eq.~54! and
with g(t) given by Eq.~88!, and only then consider the sin
gular limit D→0. What we learn from this is that the D
model should be conceived as providing a useful approxi
tive description of some physical processes only when
predictions are well defined, i.e., independent of the cha
teristics of the original dynamical model~such as the mass o
the mirror or the precise nature of the coupling! when the
limits of large mass and large coupling are taken.

FIG. 1. The thin solid line isf (t) given by Eq.~88! for T510
and D51. The dashed line iŝTVV&quadr, and the thick line is the
part of ^TVV& which contributes to the energy; see Eq.~97!. These
two curves have been plotted in the same arbitrary units. The
havior of ^TVV& lin is similar to ^TVV&quadr.
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B. Flux emitted by a uniformly accelerated mirror

The case of uniform acceleration in a Minkowski vacuu
is a priori rather perplexing. On the one hand, Eq.~19! im-
mediately gives that the mean flux vanishes for uniform
celeration, i.e., forUV52a22. This is a consequence of th
fact that]t is a Killing vector in Minkowski space-time@30–
32#. On the other hand, however, the Bogoliubov coefficie
bvk of Eq. ~9! do not vanish@3,10#. Moreover, when used in
Eq. ~17!, they lead to a divergent energy^HV&. To conciliate
these results, one must infer that there is a singular flux
the past horizonV50, as is the case for a uniformly acce
erated ‘‘atom’’ coupled to the radiation field@33,8#. In fact,
as shown in Appendix C of@17#, this singular flux will be
found for all uniformly accelerated quantum systems coup
to the radiation field.

Our aim is now to show that there is indeed a singular fl
of energy along the past horizon when taking the limit
constant couplingg(t)5g at the end of the calculation. To
obtain the regularized expression for this flux, we shall g
eralize the analysis of the former section to a nonze
temperature heat bath and then use the isomorphism betw
the flux emitted by this mirror at rest in a heat bath at te
peraturea/2p and the flux emitted by a uniformly accele
ated mirror of accelerationa when expressed in the Rindle
coordinate system.

In a thermal bath, theV part of the Wightman function
obeys

]VWb~V2V8!52
1

4p

p

b
cothS p

b
~V2V82 i e! D . ~99!

It reduces to]VW of Eq. ~92! in the zero-temperature limi
for b→`. When replacingW by Wb in Eqs.~93! and ~95!,
we obtain the mean flux emitted in a thermal bath. It can
shown to be5

5The details of the calculation will be presented in@23#.

e-

FIG. 2. The plot isF(x) defined by Eqs.~98! and~97! in such a
way thatF→1 for x→`.
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^TVV&b5
g

12p
]V

3 f 2
g2

12p
@ f ~V!]V

4 f 12]Vf ]V
3 f #

2S 2p

b D 2F g

12p
]Vf 2

g2

12p
@ f ~V!]V

2 f 12]Vf ]Vf #G .
~100!

The first two terms are equal to Eq.~96!, and the last two
scale like (D/b)2. Thus they are negligible in the low
temperature limit b@D and dominant in the high
temperature regime.

We are now in position to obtain a regular expression
the flux emitted by a uniformly accelerated mirror
Minkowski vacuum. Using the well-known isomorphism b
tween systems at rest in a thermal bath and accelerated
tems in vacuum, the mean flux of Rindler energy emitted
a mirror of accelerationa is

^Tvv~v !&acc5^TVV~V5v !&b52p/a, ~101!

where v is the null advanced Rindler time@av5 ln(aV)#
when the mirror is located in the right Rindler quadrantz
.utu). When using Eq.~88!, the coupling between the mirro
and field is turned on during a proper-time lapse 2T and the
switching on and off rateD21 is now measured with the
proper timet.

In the limit T@b and a21, ^Tvv(v)&acc→0 at fixed uvu
,T since the flux is localized in the transients of ‘‘thick
ness’’D centered aroundv56T. In this, we recover the fac
that a uniformly accelerated mirror does not radiate. In
DF model, this immediately follows from Eq.~19!. ~As
noted above, this vanishing is a universal property of ac
erated systems when they have reached equilibrium with
Rindler bath@17#.!

However, this vanishing flux is accompanied by transi
effects whose Minkowski properties become singular in
limit T→` whatever the value ofD is. This simply follows
from the fact that the mean flux measured in the iner
system of coordinatesV, U5t6z is

^TVV~V!&acc5S dv
dVD 2

^Tvv@v5a21 ln~aV!#&acc

5S 1

aVD 2

^Tvv~v !&acc. ~102!

From this expression, using Eq.~88!, one finds that the
Minkowski flux diverges for allT if a.D21, i.e., if the
switching on is slower than the boost factordv/dV5e2av,
which diverges forv→2`. Whena,D21, the flux is well
defined and its maximal value, which grows likee2aT, is
reached aroundV5a21e2aT. This establishes the fact that i
the limit of constant couplingT→`, one has a singular flux
of energy along the past horizon. Quite surprisingly, the c
dition aD,1 tells us that accelerated mirrors which lead to
finite Minkowski flux have their fluxes dominated by the fir
two terms in Eq.~100!. That is, the flux is dominated by th
boosted vacuum transients governed byD rather than by the
temperature effects induced by the acceleration.
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Notice that if one requires that the total Minkowski e
ergy

^HV
acc&5E

2`

1`

dv eav^Tvv
acc& ~103!

and the mean number of Minkowski quanta emitted by
mirror be finite, one gets a weaker conditionaD,2. Indeed,
only one power of the boost factor should be tamed by
switching-on functionf. ~A similar condition also arises
when considering the fluxes emitted by an accelerated t
level atom@17#.! When this condition is met, using Eqs
~100!, ~101!, and~103!, we get

^HV
acc&5

g2

12p E
2`

1`

dv eav@~]v
2f !212a2~]v f !2#.

~104!

This energy is positive definite and diverges, as expec
like eaT whenaT@1.

V. CONCLUSIONS

In this paper we generalized the DF model which d
scribes the scattering of a radiation field by a mirror whi
follows a noninertial trajectory. We first considered partia
transmitting mirrors and then studied a dynamical mo
based on an action principle. We obtained the following
sults.

Equations~41! give the Bogoliubov coefficients in term
of the transfer matrixTl evaluated in the rest frame of th
mirror and the overlapsavl ,bvl which relate the
Minkowski plane waves of frequencyv to the proper-time
modes of~proper! frequencyl. This expression isuniversal
in that it governs all quantum systems coupled linearly a
stationarily to the radiation field. The only model-depende
quantity isTl . This is illustrated by the dynamical model o
Sec. III A, which gives rise to the diagonal transfer mat
given in Eq.~66!.

The main difference between the partially transmitti
mirrors defined in a purely kinematic way in Sec. III B an
the dynamical model of Sec. III A concerns causality: see
discussion which follows Eq.~66!.

In Sec. III B, we analyze the scattering in the interacti
picture. In this picture, there is no Bogoliubov transform
tion since the basis of asymptotic states is provided by
usual ‘‘free’’ states engendered by the Minkowski creati
operators. The nontrivial value of the energy flux emitted
the mirror results from the connected parts of the ma
elements of the evolution operatorŜ5TeiL ; see Eqs.~71!–
~73!.

Equations~52! and~53! as well as Eqs.~82! establish the
connection between the Bogoliubov matricesa andb, which
mathematically relate two bases of field modes, and the t
sition amplitudes for physical processes to occur, i.e.,
matrix elements ofŜ5TeiL . It should be noticed that a simi
lar relationship also exists between Bogoliubov coefficie
and the transition amplitudes of a two-level atom: see
~2.55! in @8#.
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The usefulness of the interacting picture is that it perm
us to switch on and off the coupling constant at some fin
time in a controlled manner. This possibility in turn allows
to obtain regularized expressions for the flux in situatio
where the flux is ill defined when using the DF model. Th
is illustrated in Sec. IV B with the case of uniform acceler
tion.

APPENDIX: THE in-out OVERLAP
IN THE GENERAL CASE

Our aim is to obtain an expression for the overlap b
tween the in and out vacua when the Bogoliubov coefficie
are nondiagonal. In this case, the original expression of
mefuchi and Umezawa@34# does not apply.

In order to have simple expressions for this overlap,
will use a discretized basis of wavepackets in which the
tegrals are replaced by sums and Dirac distributions by K
necker symbols. In addition to the in and out operators, i
appropriate to define a third class of operatorsâv ,b̂v . This
new basis generalizes the ‘‘Unruh’’ modes@27,8# in that âv

(b̂v) is made out ofak
in (bk

in), but is characterized by a fixe
out frequencyv:

avâv5(
k

avk* ak
in , avb̂v5(

k
avk* bk

in . ~A1!

The real coefficientsav are such that@ âv ,âv
† #51; there-

fore,av
2 5(kuavku2. The notion of particles and antiparticle

is obviously maintained since theâ are made ofain only.
Notwithstanding, for arbitraryavk andbvk , this new basis
is not orthogonal and the commutation rules are given b

@ âv ,âv8
†

#[Fvv85@ b̂v ,b̂v8
†

#5
(kavk* av8k

avav8
. ~A2!

By construction and from Eq.~13!, these new operators ar
related to the out operators by

av
out5avâv2(

v8
av8Bvv8b̂v8

† ,

bv
out5avb̂v2(

v8
av8Bvv8âv8

† ,

with
d

ck

04401
s
e

s

-

-
ts
-

e
-
-

s

Bvv8[(
k

bvkakv8
21 , ~A3!

where akv
21 is the inverse matrix ofavk . ~avk is always

invertible since otherwise there would exist incoming p
ticles whose scattering would give only antiparticles.!

As for the Unruh modes, the operatorsâ, b̂ are useful to
relate in a simple way the out vacuum to the in vacuu
Straightforward algebra indeed gives

u0out&5
1

Z
expS (

vv8k

av8
ak

Fvk
21Bkv8âv

† b̂v8
† D u0in&, ~A4!

whereZ is defined by

Z225u^0outu0in&u2. ~A5!

Even though Eq.~A4! looks cumbersome, one easily ver
fies that, to orderb2, it correctly gives the relationship be
tween the vacuum decay (Z.1) and the pair creation prob
ability of Minkowski quanta. Indeed, using
(F21)vv8^0inuâv8âv9

† u0in&5dv,v9 and the condition onBvv8
and Fvv8 , which arises from@av

out,bv8
out

#50 and Eq.~A2!,
one obtains

Z2511 (
vv8

uBvv8u
21O~b4!. ~A6!

This is the correct expression since the probability to hav
pair of out quanta is

u^0outuav
outbv8

outu0in&u25UBvv8
Z U2

5uBvv8u
21O~b4!.

~A7!

For completeness, we notice that when the scatterin
stationary ~as is the case for uniform acceleration and
black hole evaporation!, one has

Bvv85
bv

av
dv,v8 ,Fvv85dv,v8 . ~A8!

Since they are diagonal, Eq.~A4! becomes

u0out&5
1

Z
expS (

v

bv

av
âv

† b̂v
† D u0in&, ~A9!

thereby recovering the usual diagonal expression gover
by the ‘‘Unruh’’ operatorsâv ,b̂v .
,’’

ep.
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