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Localization of Kaluza-Klein gauge fields on a brane
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In phenomenological models with extra dimensions there is a natural symmetry group associated with a
brane universe—the group of rotations of the normal bundle of the brane. We consider Kaluza-Klein gauge
fields corresponding to this group and show that they can be localized on the brane in models with warped
extra dimensions. These gauge fields are coupled to matter fields which have a nonzero rotation moment
around the brane. In a particular example of a four-dimensional brane embedded into six-dimensional asymp-
totically anti—de Sitter space, we calculate the effective four-dimensional coupling constant between the lo-
calized fermion zero modes and the Kaluza-Klein gauge field.
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[. INTRODUCTION [15], cosmological constafl6—18, supersymmetry break-
ing [19] problems with large extra dimensions was also dis-
The possibility to treat observable gauge fields as arisingussed.
from dimensional reduction of higher-dimensional general An important problem which must be addressed in phe-
relativity has a long histor/1]. If we suppose that the space- nomenological models with a brane universe is how the ob-
time is a direct product of four-dimensional Minkowski servable matter fields of the standard model of particle phys-
space R* with coordinates x*, w=0,...,3 on an ics are localized on the brane. The mechanism of localization
n-dimensional “internal spaceK" parametrized by coordi- of fermions is known for a long timg20] while mechanisms
natesy?, a=1,...n, the four-dimensional gauge fields of localization of gauge fields21-24 were only found re-
A’ can be described by thea components of the higher- cently.
dimensional metric In this paper we discuss the question whether it is possible
to localize the Kaluza-Klein fielde:\i on the brane and to
treat them as observable gauge fields. If the brane is embed-
Uur T GabASAY  GapA) ded in a space-time with=2 extra dimensions there is a
9apAP 9 (1.1 “natural” symmetry group associated to the brane: the group
abu ab of rotations of its normal bundle. In the caserof2 extra
dimensions the brane can be treated as a stringlike defect in

In this simple form such an approach to the gauge interacd higher-dimensional space-time. The symmetry group of the
tions faces certain problems such as, for example, the prolormal bundle idJ(1) and corresponds to rotations of nor-
lem of obtaining realistic pattern of four-dimensional fermi- Mal vectors around the brane. We analyze the gaugeAigld
ons with different charges with respect t82 after ~Which corresponds to this symmetry in Kaluza-Klein ansatz
dimensional reduction of higher-dimensional fermion fields(1-). We show thatA, can be localized on a four-
[2]. The problem of chiral fermions can be solved in modelsdimensional string even if the exira dimensions are noncom-
with additional fundamental higher-dimensional gauge fieldg*act and have infinite volume, as it is, for example, in the
fields in topologically nontrivial configurationf3], or in ~ Space-times considered in RE8]. We consider coupling of
models with noncompact internal spagds the field A, to the localized fermion fields in a particular

If we deal with noncompact internal spaces, we face dnodel where a four-dimensional brane is embedded into a
problem how to explain the observable four-dimensionafSix-dimensional(asymptotically anti—de Sittgrspace-time
structure of the universe. One is forced to consider the obl25—30. In this space-time both the Kaluza-Klein fiefd,
servable space-time as a surfadgang embedded in a Which corresponds to thg(1) symmetry of rotations of the
higher-dimensional manifol@i5,6]. The idea of the “brane Normal bundle and the fermion zero modes which have non-
world” received considerable attention recently due to newZ€ro momentum of rotation around the string are localized.
deve|opments in the String theory_ A new impu'se to higher_We calculate the effective four-dimensional fine structure
dimensional model bu||d|ng was given by Reﬁg’s] where constanta in this model and find that it is related to the
the possibility of having “large” or infinite extra dimensions curvature radius of anti-de Sitter space-time and to the
was considered in relation to the hierarchy problem of parthickness of the brane.
ticle physics. The observational consequences of the brane
world picture for the accelerator physi¢8], astrophysics Il. GAUGE FIELDS ASSOCIATED TO THE GROUP
[10], and cosmology11-14 were extensively studied re- OF ROTATIONS OF NORMAL BUNDLE
cently. The possibility of solving the fermion mass hierarchy

Jag=

In the models with large or infinite extra dimensions the
gauge fieldsA‘; which appear by dimensional reduction
*Email address: neronov@theorie.physik.uni-muenchen.de mechanism(1.1) are not considered as observable gauge
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fields of the standard model because of the following reamore involved if we consider branes of nonzero thickness.
sons. The Kaluza-Klein fieldAi (1.1 are, in general, not The stress-energy tensor of the brane is different from zero in
confined to the brane and can propagate in the bulk. Tha regionM*xK"={r<e¢} for some smalle. The surfacer
tower of Kaluza-Klein excitations of these fields starts from= e is a 3+ n-dimensional boundari¥*x K" of the thick
very low masses. For example, in the model with submilli-brane. The grouf® is the group of isometries ofK". It can
meter extra dimension¥] the mass scale of Kaluza-Klein be quite arbitrary. For example, in the model considered in
excitations is of order of 10° eV which means that there Ref.[18], this group isSU(2)xU(1).

must be corrections to Coulomb law at distances of order of If we introduce a coordinate systemx*,6%) on

1 mm. In the case of noncompact extra dimensions one erM“x K", the background metrigwith AZzO) in the vicin-
counters another difficulty: some of the Kaluza-Klein gaugeity of the brane can be written in the form

fields can be completely reshuffled into other componets of

metric perturbations. Consider the case of single extra di- ds=e""7,, dx* dx’+e*"Vdr?+ o(r)gay()d6*d6®,

mension. A four-dimensional branm* is embedded in (2.6)
higher dimensional bulkM?® as a level surface of some
function F(x*), A=0,...,5 whereg,p(6) is a G-symmetric metric orvK". The func-

tions w»(r),\N(r) and ¢(r) are found from the

4. Ay —
M™:{F(x™) =0} (2.0 (4+ n)-dimensional Einstein equations
If we take coordinateg” on the brane and the functidhas 1
a coordinate system in the vicinity of the brane, the metric on Rag— 59a8RTAQag=87G4 1 TaB, (2.7
M takes the form 2
d<2= 9,0, AX X+ gyyd F2 2.2 where G,,,, A are (4+n)-dimensional gravitational and

cosmological constants arithg is stress-energy tensor gen-
since vectorN,=F , is a normal to the surfaceB(x*)  erated by the brane.

— const. Comparing Eq2.2) with Eq. (1.1) we find that it is In what follows we will analyze in detail the case of two
always possible to find a coordinate system in the neighbor€Xtra dimensions when there is single angular coordifate
hood of the brane in which We concentrate our attention only @),, components of
metric perturbations and leave aside a more complicated
Aﬂ(xA)EO. (2.3 question of self-consistent analysis of interaction of six-

. o . dimensional gravitational perturbations with matter localized
If the extra dimension is honcompact, such a coordinate sysgn the brane.

tem can be chosen globally a#g, can be always removed
by a gauge transformation of five-dimensional theory.

. . . . . I1l. EQUATIONS OF MOTION FOR A
The situation changes if the number of extra dimensions Q "

is n=2. In this case we have-#n coordinate transforma- The Ricci tensor for the metri¢2.6) perturbed by the
tions fields A, (2.9 in the linear inA, approximation has the
form
xA—xA+ EA(x) (2.9
) ) V// VI)\/ VI(PI

at our disposal. Therefore we can impos¢ @ gauge con- Ru= —e”"‘nw 572 + %+ 7 )
ditions on the metric. For exampley,, =0, g4s=1, Qaa ¢
=0,a=1,...,(n—1). After such a gauge fixing the metric 1 . .
becomes 5 (AT ALL), (3.9

Ot GabAZA) 0 gapAl - . N

gaB™ 0 1 0 . (25) R,U,HZT(P(AV,,U.V_AV,,U,;.L)_'—(PT _A;;—}_(?_V’
gabA,tl 0 Jab
) a S(P, ¢/2 (P” ¢/)\/ gDIV/

The fieldsA,, a=1,...,(h—1) cannot be removed by a ——)A/’ﬁ -t 5= ol
coordinate transformation. These fields have a clear geo- 2 22 ¢ 2¢ ¢
metrical meaning. Let the coordinate=x* be a distance (3.2
from the braneM* placed ar =0. Then the fields;\i are the
gauge fields associated to the symmetry grGupf rotations 1 . v
of the normal bundle of the brane. In the simplest case RﬂrIZ—(QDAﬂ)'—?AM, (3.9
of a thin four-dimensional branél* embedded into a ®
higher-dimensional manifold\ **" the coordinates®?, a )2 i Y
=1,...,(0—1) parametrize a smalln( 1)-dimensional Ro= 20" /24 )i\ e oA ¢
sphere around the point=0 of location of the brane and the " 21202 20 ¢
group of the normal bundle SO(n). The groupG may be (3.9
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-V

¢€ ,
Reo="— Al (3.5
AN 12 ”
_ -V -\ @A ¢ ror
Rgo—goe AM,H+e 7—5—7—(,0 v

(3.6

WhenA,=0 we get from Eq(2.7), the expression of(r),
A(r), and¢(r) through the brane stress-energy tenbgg .
In the presence &, the uv, ur, r 6, andg6 components of
Einstein equation§2.7) become

-A(IU”V):O, (37)
(e gA,) =0, (3.9
A, =A, ,=0. (3.9

Here a prime denotes the derivative with respectand dot

denotes the) derivative. The only nontrivial equation is the
w6 component of Einstein equations. In the most simple cas

of flat extra dimensions when the background metric is

ds?=n,, dx* dx"+dr2+r2d6? (3.10
it reduces to
5
Ayt AL F =0, (3.1
where we have denoted
Fuo=Au AL (3.12

First of all we can see that the “zero mod&,(x”) which
does not depend on # and satisfies

Fuv,=0 (3.13

PHYSICAL REVIEW D 64 044018

Since the metri¢3.15 differs from Eq.(3.10 on coordinate
transformation, it is again a solution of the Einstein equa-
tions.

Obviously, by the same way of reasoning, the pure gauge
configuration(3.16 must be a solution of the perturbed Ein-
stein equations on a general background of the fG2r6).

The n6 component of the Einstein equations in the general
case is

(3.17

Taking the# derivative of Eq.(3.17) and combining it with
Eq. (3.8) we find thatA, does not depend of. Making a
coordinate transformatio8.14) we can always fix the coor-
dinate system in such a way that the condition

(ev—)\/Z(PS/ZA;L) "4 e)\/2(P5/2FMV,V: 0.

A, ,=0 (3.18

is satisfied on a particular surface=r,. Then, from Eq.
(3.9 we conclude that the conditio®.18 remains valid for
all r. Equation(3.17) in the gauge(3.18 reduces after the

Eourier transformA ,(p,r) = fd*x e P»'A ,(x,r) to

(evf)\IZ(PSIZA'//L) "4 e)\/2¢5/2m2'AM: 0, (3.19
where we have denoted®= — p.p*. This equation can be
solved, for example, in the case of flat extra dimensions
(3.10, A=v=0, ¢=r2. The modes withm?#0 which are
regular atr =0 have the form

C
A= 5 3a(mn),

(3.20

where J,(2) is the Bessel function an€ is an arbitrary
constant.

Although the zero modé\ ,(x) is always a solution of
Einstein equations locally, it can fail to be a global solution
if the rotation invariancd3.14) is spontaneously broken. A
simple example of this is when the flat extra dimensions
(3.10 are compactified on two-dimensional tortis.

is a solution of the six-dimensional Einstein equations. The

last system of equations is just the four-dimensional Max-

well equations on electromagnetic fiehd,(x). The U(1)

gauge group of electromagnetism is identified with the group

IV. LOCALIZATION OF A, ON THE BRANE

If the rotation symmetry(3.14 is not broken, the zero

SO(2) of rotations of the normal bundle of the brane. In-mode of the fieldA, is a global solution of higher-

deed, let us make a coordinate transformation

D= 0+v(xH) (3.14

which rotates normal vectors to the brane at the pofhon
a small anglev(x*). The background metri€3.10 in new
coordinates takes the form

ds?=(7,,+1% ,v ) dx* dx’+dr?+r2d6?

—2r% , dx*do (3.15
from where we see that in new coordinates
A,=—v,. (3.19

dimensional Einstein equations which, from the four-
dimensional point of view, describes massless gauge field
propagating along the brane. Equatith19 is a Strum-
Liouville equation and the zero mode,(x") is its normal-
izable solution in a space-tim@.6) which satisfies the con-
dition

N= f dr eM2p52< o0, 4.1

In such a space-time the massless fiald(x”) mediates a
Coulomb-like interaction between particles localized on the
brane. For example, if we take a space-time with compact
extra dimensions with topology of a sphe®8, the bulk
metric is

044018-3



ANDREY NERONOV PHYSICAL REVIEW D 64 044018

RB r2 2/3
sz \/—gdrdazf 1+—2) rdrde (4.8
a
€ F is infinite so that the metri¢4.5) does not localize gravity.

and the gauge field are localized on the brane. This can be
achieved in a six-dimensional generalization of Randall-
Sundrum model which was considered in R¢65,27,23.
The space-time is a solution of Einstein equati¢h3) with
negative cosmological constafit A string of finite sizee is
5 placed atr =0 so that the stress-energy ten3qg is differ-

1 dr2+ r de? ent from zero in a small region<9r <e aroundr=0. Out-
(1+r2/a?)? (1+r2/a?)? ' side the string in the regioa<<r <oo the space-time metric is

(4.2)  the six-dimensional anti—de Sitter metric

|
!
: It is interesting to consider situation when both gravity
|

FIG. 1. The geometry extra dimensions.

ds’=p,, dx* dx"+

— A v 2 - 2 2
wherea is the radius of the sphere. This corresponds to ds’=e ', dx*dx"+dri+e “R*d¢%. (4.9

Here R is an arbitrary constant which sets the size of the

v=0, circle St parametrized byd. Parameter is related to the
bulk cosmological constari2.?) as
A=—2log(1+r?/a?), 4.3
[ 2A
¢:r2/(1+r2/a2) C= _?. (4.10
and the integraN (4.1), obviously, converges. The geometry of extra dimensions in this case is similar to
Zero mode of the fieldd, can be normalizable also in that of space-time4.5): the size of the circleS' param-

space-times with noncompact extra dimensions. Let us takétrized by# goes to zero as—x (see Fig. 1 The metric

for example, a space-time considered in RR&}. This space- inside the brane is determined by the detailed structure of the
time is a solution of six-dimensional Einstein equationsbrane str_ess—energy tensbga(r). _
coupled to cylindrically symmetric magnetic field Equation(3.19 on A, reduces for the metri¢4.9) to

. y=Boy@eM2 2", 4.4 (e T°"7AL) +e”"m7A =0, (4.11

. . o Its general solution in the gaug8.19 is
whereB,, is an arbitrary magnetic field strength. In the case 9 gauge.19

when the cosmological constant in the bulk and on the brane

. . A0 Tri4] 2m cr/2 2m cr/2
are zero, the space-time metric is Au=e"" Cady €77 +CoYqp €
r2\ 23 r2de? 12
ds’=| 1+ — (ﬂﬂydx"dX”+df2)+1+—2/22, The zero mode solutioA,,(x) of Eq. (4.11) is a normal-
a (1+r%a%) 4.5 izable solution of Eq.4.11 since the integraN (4.1) is
' converging
where the parametex is related to the field strengil4.4) 2R5
N=—. (4.13
5c
) 2
a :3776 B2’ (4.6 Note that the zero mode 0%, is normalizable even in a
6=o more general space-time of “global string,” considered in
. . . . efs.[23,3
The geometry of extra dimensions is schematically presenteﬁ [ g
on Fig. 1. The siz&, of the circle parametrized bg shrinks d2=e C1" 7,0 AXF X+ dri+e %' de?.  (4.14
to zero ag — .
The integralN (4.1) converges Herec,; andc, are arbitrary positive constants related to the
stress-energy tensdrag(r) of the string which is nonzero
fw r5dr 2736 s even wherr — o,
- 220143 440 :
0 (1+ria’) V. MATTER FIELDS BOUND TO THE BRANE
and the zero modg ,(x") is a normalizable solution of Eq. The field A, interacts with matter fields bound to the
(3.19 Note, that the volume of extra dimensions brane. As an example we consider fermion fields propagating
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on the background2.6). Consider a six-dimensional Dirac

spinor¥ which satisfies the equation
D ¥ =0. (5.1

The six-dimensional gamma matric€$ are defined with
the help of viereirEg and flat space gamma matricE8

rA=EgAr® (5.2

(the indexes with hat are six-dimensional Lorenz indéxes

The covariant derivative is defined as

1
DAV =W o+ =

5 (5.3

a)Aa'\I’

wherew,éié
Eg and oge=
the metric(2.6)

a_ w2 ca
EM—e 5#,

Ej=e"2, (5.4)

Ef=Vo
we find

!

14
AB .. __ —N)2p AT~
wlu O'AB—_2 e(" ) FMFr,

!

AB_.._ ¢

WYy OAB=—F— e Mrr;.

¢

(5.9

Let us consider the solutions of E&.1) which satisfy the
condition

Iy -3l =v (5.6
and can be presented in the form
W =e'9%(r)p(x"), (5.7)

whereq is an integer. The two-component sping(r) satis-
fies

i ox=—x (5.9
while the four-component spinog(x) is chiral in four-
dimensional sense

Cag=4 (5.9

and satisfies the four-dimensional massless Dirac equation

T4, =0, (5.10

From Eq.(5.1) we derive an equation og

PHYSICAL REVIEW D 64 044018

N2

=0 (5.1

" e
v+ —+—=

which is readily integrated
N2

x(r)=constp "~ 1/“exp|—v qf drT] (5.12

The solutions of Eq(5.1) must be normalizable with respect
to the norm

<«1r,\1f>:f d*x dr d6y/—g¥ oW

_ f dr e3V/2+)\/2\/5|X|2. (5.13

In the case of space-tinid.9) the normalized solutions of
Eq. (5.1 are given by

is the spin connection expressed through vielbein
#[T'ale]. Taking the coordinate vielbein for

0% s 20 2
)(q(lr)=7Tl,ZRe‘3r exp m(1-er. (514

The solution withq=0 with trivial dependence oA grows

at larger and is not localized on the brane. But the solutions
with >0 decrease far from the brane. Here we have ne-
glected a contribution from the region< <e inside the
brane into the integrdb.13. In principle, the requirement of
convergence of Eq(5.13 in the limit r—0 will impose
restrictions on the number of normalizable zero mode solu-
tions of Eq.(5.1).

VI. COUPLING OF A, TO MATTER FIELDS

The fermion field¥ (5.1) produces a stress-energy tensor

P — _
Thae=> (VI (aDg)¥ —Dx¥Tg)¥). (6.1)
The 1.6 component ofl /g is
T,‘fg &AW ;W y—W ;W) + J—(«?rgxlf
~W T3W)+ J_ew ”’2( (P)x?r,;r;rg,\lf.
(6.2

If we restrict our attention to th& configurations of the
form (5.7), (5.8), (5.9), then Eq.(6.2) reduces to

e“’zlxmlz{ _WJE(, qo')
———|q-¢e ""—|v s

v
Two= 2 2

Yoy
6.3

We see thaifffg is proportional to the four-dimensional cur-
rent

.=yl (6.4)
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Substituting the stress-energy ten$6r3) into the Einstein
equations2.7) we find that Eq(3.19 on A, is modified

v—NI2, 5IZx 1\ N2 5/2-~2A
(e ® AM) +et e mA,

—— SWGGeZV+)\/2903/2|X|2QTMi (65)
where j_M Mis the  Fourier transform j,(p,r)
=Jd*p e "PxX"j (x,r) of the four-dimensional current. We
also have denoted

e

Q=qg-e 7(#—%). (6.6)

PHYSICAL REVIEW D 64 044018

From Eq.(5.14 we can see that the fermion zero modes
with nonzero chargg are localized in a region with a size of
order of the brane thickne$® If R is small enough we can
approximate the profilg/(r) by delta function

1
X~ n). (613

If we are interested in interactions of particles localized on
the brane we need only the expression for the Green’s func-

tion A atr,r'=0. The exact expression fdr can be found

in a way similar to the one used in RéB2] for the calcu-
lation of the Green’s function for gravitational perturbations
of Randall-Sundrum model. Forr’ =0 we get

We can write a solution of this equation in terms of a Green'’s

function A(p,r,r’)

A,= —SWGJIJ dr' A(p,r,r")Qe? M2 2,
(6.7

The Green’s function of Eq6.5) is expressed in terms of
normalized solutionA%(r) of homogeneous equati@8.19
for a fixedm?

~ 1 AS(HAS(r")
Aprr)=——s+ 2 ——5—5—, (6.8

P N pz m2>0 p2+ m?
whereN is the normalization constai.1). If we are inter-
ested in the behavior oA, at large distances from the
source, we can restrict attention to the lipft—0 in which
zero mode solution of Eq3.19 gives the leading contribu-

tion into the Green’s functiodh. In this limit

u [ ar Qe (. 69

~ 87wG
A~

m N

In the case of asymptotically anti—de Sitter space-tith6)
the normalization constai is given by Eq(4.13 while the

Z(o) 5¢c 1 H{)(2k/c) 6.1
P e Kn@) ko) '

where k?= —p?. Expressing the Hankel functiorts$})(z)
andH{J(2) through the elementary functions we get foy

2(c—2ik) ~

% 4G 5c
4k?+ 6ick—3c? A

=l b (6.15

In the case of static configuratiopg= 0 the first term in the
last equation gives the conventional Coulomb law at large
distances from a static source. The second term of &5
results in corrections of order @(1/L%) to Coulomb law at
distanced.~c ! along the brane.

VII. CONCLUSION

We have considered models in which a brane univiétée
is embedded into a space-tiriel ® with n=2 warped infi-
nite extra dimensions. The Kaluza-Klein fietd, associated
to theU(1) group of rotations of the normal bundle Mif* is
localized on the brane if the background metéd) is such
that the integraN (4.1) is converging. In the case of asymp-
totically anti—de Sitter metric in six-dimensional bulk the

charged zero modes of Dirac field have the radial profilefermion zero modes which possess nonzero rotation moment

x(r) given by Eq.(5.14. In the limit

cR<1.

(6.10

when the curvature radiys=c ! of anti—de Sitter space is
much larger than the thickness of the br&ehe expression

(6.9) for A, reduces to

5 _1%Ge (di,)

“ R3 p2

. (6.17)

q around the brane are localized on* [see Eq.(5.14)].
They are charged with respect #, and A, mediates
Coulomb-like interaction between these zero modes. We
have calculated the effective four-dimensional fine structure
constantx (6.12) in such a model. It is expressed through the
inverse curvature radius of the bulk anti—de Sitter space
and the brane thickned’. The presence of infinite extra
dimensions results in modification of the four-dimensional
photon propagator and in power-law corrections to the Cou-
lomb law at the distances of order of the inverse curvature
radiusc of anti—de Sitter spacé5.15).

Comparing the last equation to the standard expression of the

four-dimensional Maxwell theory we find the effective fine

structure constant

5cGq
o= .
27R3

(6.12
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