
PHYSICAL REVIEW D, VOLUME 64, 044018
Localization of Kaluza-Klein gauge fields on a brane

Andrey Neronov*
Theoretische Physik, Universita¨t Munchen, 80333, Munich, Germany

~Received 7 March 2001; published 27 July 2001!

In phenomenological models with extra dimensions there is a natural symmetry group associated with a
brane universe—the group of rotations of the normal bundle of the brane. We consider Kaluza-Klein gauge
fields corresponding to this group and show that they can be localized on the brane in models with warped
extra dimensions. These gauge fields are coupled to matter fields which have a nonzero rotation moment
around the brane. In a particular example of a four-dimensional brane embedded into six-dimensional asymp-
totically anti–de Sitter space, we calculate the effective four-dimensional coupling constant between the lo-
calized fermion zero modes and the Kaluza-Klein gauge field.
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I. INTRODUCTION

The possibility to treat observable gauge fields as aris
from dimensional reduction of higher-dimensional gene
relativity has a long history@1#. If we suppose that the space
time is a direct product of four-dimensional Minkows
space R4 with coordinates xm, m50, . . . ,3 on an
n-dimensional ‘‘internal space’’Kn parametrized by coordi
natesya, a51, . . . ,n, the four-dimensional gauge field
Am

a can be described by thema components of the higher
dimensional metric

gAB5S gmn1gabAm
a An

b gabAm
b

gabAm
b gab

D . ~1.1!

In this simple form such an approach to the gauge inte
tions faces certain problems such as, for example, the p
lem of obtaining realistic pattern of four-dimensional ferm
ons with different charges with respect toAm

a after
dimensional reduction of higher-dimensional fermion fie
@2#. The problem of chiral fermions can be solved in mod
with additional fundamental higher-dimensional gauge fie
fields in topologically nontrivial configurations@3#, or in
models with noncompact internal spaces@4#.

If we deal with noncompact internal spaces, we face
problem how to explain the observable four-dimensio
structure of the universe. One is forced to consider the
servable space-time as a surface~brane! embedded in a
higher-dimensional manifold@5,6#. The idea of the ‘‘brane
world’’ received considerable attention recently due to n
developments in the string theory. A new impulse to high
dimensional model building was given by Refs.@7,8# where
the possibility of having ‘‘large’’ or infinite extra dimension
was considered in relation to the hierarchy problem of p
ticle physics. The observational consequences of the b
world picture for the accelerator physics@9#, astrophysics
@10#, and cosmology@11–14# were extensively studied re
cently. The possibility of solving the fermion mass hierarc
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@15#, cosmological constant@16–18#, supersymmetry break
ing @19# problems with large extra dimensions was also d
cussed.

An important problem which must be addressed in p
nomenological models with a brane universe is how the
servable matter fields of the standard model of particle ph
ics are localized on the brane. The mechanism of localiza
of fermions is known for a long time@20# while mechanisms
of localization of gauge fields@21–24# were only found re-
cently.

In this paper we discuss the question whether it is poss
to localize the Kaluza-Klein fieldsAm

a on the brane and to
treat them as observable gauge fields. If the brane is em
ded in a space-time withn>2 extra dimensions there is
‘‘natural’’ symmetry group associated to the brane: the gro
of rotations of its normal bundle. In the case ofn52 extra
dimensions the brane can be treated as a stringlike defe
a higher-dimensional space-time. The symmetry group of
normal bundle isU(1) and corresponds to rotations of no
mal vectors around the brane. We analyze the gauge fieldAm
which corresponds to this symmetry in Kaluza-Klein ans
~1.1!. We show that Am can be localized on a four
dimensional string even if the extra dimensions are nonco
pact and have infinite volume, as it is, for example, in t
space-times considered in Ref.@6#. We consider coupling of
the field Am to the localized fermion fields in a particula
model where a four-dimensional brane is embedded int
six-dimensional~asymptotically anti–de Sitter! space-time
@25–30#. In this space-time both the Kaluza-Klein fieldAm
which corresponds to theU(1) symmetry of rotations of the
normal bundle and the fermion zero modes which have n
zero momentum of rotation around the string are localiz
We calculate the effective four-dimensional fine structu
constanta in this model and find that it is related to th
curvature radius of anti–de Sitter space-time and to
thickness of the brane.

II. GAUGE FIELDS ASSOCIATED TO THE GROUP
OF ROTATIONS OF NORMAL BUNDLE

In the models with large or infinite extra dimensions t
gauge fieldsAm

a which appear by dimensional reductio
mechanism~1.1! are not considered as observable gau
©2001 The American Physical Society18-1
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ANDREY NERONOV PHYSICAL REVIEW D 64 044018
fields of the standard model because of the following r
sons. The Kaluza-Klein fieldsAm

a ~1.1! are, in general, no
confined to the brane and can propagate in the bulk.
tower of Kaluza-Klein excitations of these fields starts fro
very low masses. For example, in the model with subm
meter extra dimensions@7# the mass scale of Kaluza-Klei
excitations is of order of 1023 eV which means that ther
must be corrections to Coulomb law at distances of orde
1 mm. In the case of noncompact extra dimensions one
counters another difficulty: some of the Kaluza-Klein gau
fields can be completely reshuffled into other componets
metric perturbations. Consider the case of single extra
mension. A four-dimensional braneM4 is embedded in
higher dimensional bulkM 5 as a level surface of som
function F(xA), A50, . . . ,5

M4:$F~xA!50%. ~2.1!

If we take coordinatesxm on the brane and the functionF as
a coordinate system in the vicinity of the brane, the metric
M 5 takes the form

ds25gmn dxm dxn1g44dF2 ~2.2!

since vectorNW A5F ,A is a normal to the surfacesF(xA)
5const. Comparing Eq.~2.2! with Eq. ~1.1! we find that it is
always possible to find a coordinate system in the neighb
hood of the brane in which

Am~xA![0. ~2.3!

If the extra dimension is noncompact, such a coordinate
tem can be chosen globally andAm can be always remove
by a gauge transformation of five-dimensional theory.

The situation changes if the number of extra dimensi
is n>2. In this case we have 41n coordinate transforma
tions

xA→xA1jA~x! ~2.4!

at our disposal. Therefore we can impose 41n gauge con-
ditions on the metric. For example,g4m50, g4451, g4a
50, a51, . . . ,(n21). After such a gauge fixing the metri
becomes

gAB5S gmn1gabAm
a An

b 0 gabAm
b

0 1 0

gabAm
b 0 gab

D . ~2.5!

The fieldsAm
a , a51, . . . ,(n21) cannot be removed by

coordinate transformation. These fields have a clear g
metrical meaning. Let the coordinater 5x4 be a distance
from the braneM4 placed atr 50. Then the fieldsAm

a are the
gauge fields associated to the symmetry groupG of rotations
of the normal bundle of the brane. In the simplest ca
of a thin four-dimensional braneM4 embedded into a
higher-dimensional manifoldM 41n the coordinatesua, a
51, . . . ,(n21) parametrize a small (n21)-dimensional
sphere around the pointr 50 of location of the brane and th
group of the normal bundle isSO(n). The groupG may be
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more involved if we consider branes of nonzero thickne
The stress-energy tensor of the brane is different from zer
a regionM43Kn5$r<e% for some smalle. The surfacer
5e is a 31n-dimensional boundaryM43]Kn of the thick
brane. The groupG is the group of isometries of]Kn. It can
be quite arbitrary. For example, in the model considered
Ref. @18#, this group isSU(2)3U(1).

If we introduce a coordinate system (xm,ua) on
M43]Kn, the background metric~with Am

a 50) in the vicin-
ity of the brane can be written in the form

ds25en(r )hmn dxm dxn1el(r )dr21w~r !gab~u!dua dub,

~2.6!

where gab(u) is a G-symmetric metric on]Kn. The func-
tions n(r ),l(r ) and w(r ) are found from the
(41n)-dimensional Einstein equations

RAB2
1

2
gABR1LgAB58pG41nTAB , ~2.7!

where G41n , L are (41n)-dimensional gravitational and
cosmological constants andTAB is stress-energy tensor gen
erated by the brane.

In what follows we will analyze in detail the case of tw
extra dimensions when there is single angular coordinatu.
We concentrate our attention only ongmu components of
metric perturbations and leave aside a more complica
question of self-consistent analysis of interaction of s
dimensional gravitational perturbations with matter localiz
on the brane.

III. EQUATIONS OF MOTION FOR Aµ

The Ricci tensor for the metric~2.6! perturbed by the
fields Am ~2.5! in the linear inAm approximation has the
form

Rmn52en2lhmnS n9

2
2

n8l8

4
1n821

n8w8

4w D
1

1

2
~Ȧm,n1Ȧn,m!, ~3.1!

Rmu5
e2nw

2
~An,mn2An,mm!1

we2l

2 F2Am9 1S l8

2
2n8

2
5w8

2 DAm8 1S w82

2w2
2

w9

w
1

w8l8

2w
2

w8n8

w D AmG ,

~3.2!

Rmr5
1

2w
~wȦm!82

n8

2
Ȧm , ~3.3!

Rrr 522n92n821n8l81
1

2 S w82

2w2
1

w8l8

2w
2

w9

w D ,

~3.4!
8-2
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Rru5
we2n

2
Am,m8 , ~3.5!

Ruu5we2nȦm,m1e2lS w8l8

4
2

w82

4w
2

w9

2
2w8n8D .

~3.6!

WhenAm50 we get from Eq.~2.7!, the expression ofn(r ),
l(r ), andw(r ) through the brane stress-energy tensorTAB .
In the presence ofAm themn, mr , ru, anduu components of
Einstein equations~2.7! become

Ȧ(m,n)50, ~3.7!

~e2nwȦm!850, ~3.8!

Ȧm,m5Am,m8 50. ~3.9!

Here a prime denotes the derivative with respect tor and dot
denotes theu derivative. The only nontrivial equation is th
mu component of Einstein equations. In the most simple c
of flat extra dimensions when the background metric is

ds25hmn dxm dxn1dr21r 2 du2 ~3.10!

it reduces to

Am9 1
5

r
Am8 1Fmn,n50, ~3.11!

where we have denoted

Fmn5Am,n2An,m . ~3.12!

First of all we can see that the ‘‘zero mode’’Am(xn) which
does not depend onr ,u and satisfies

Fmn,n50 ~3.13!

is a solution of the six-dimensional Einstein equations. T
last system of equations is just the four-dimensional M
well equations on electromagnetic fieldAm(x). The U(1)
gauge group of electromagnetism is identified with the gro
SO(2) of rotations of the normal bundle of the brane. I
deed, let us make a coordinate transformation

ũ5u1v~xm! ~3.14!

which rotates normal vectors to the brane at the pointxm on
a small anglev(xm). The background metric~3.10! in new
coordinates takes the form

ds25~hmn1r 2v ,mv ,n! dxm dxn1dr21r 2dũ2

22r 2v ,m dxm dũ ~3.15!

from where we see that in new coordinates

Am52v ,m . ~3.16!
04401
e

e
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Since the metric~3.15! differs from Eq.~3.10! on coordinate
transformation, it is again a solution of the Einstein equ
tions.

Obviously, by the same way of reasoning, the pure ga
configuration~3.16! must be a solution of the perturbed Ein
stein equations on a general background of the form~2.6!.
The mu component of the Einstein equations in the gene
case is

~en2l/2w5/2Am8 !81el/2w5/2Fmn,n50. ~3.17!

Taking theu derivative of Eq.~3.17! and combining it with
Eq. ~3.8! we find thatAm does not depend onu. Making a
coordinate transformation~3.14! we can always fix the coor
dinate system in such a way that the condition

Am,m50 ~3.18!

is satisfied on a particular surfacer 5r 0. Then, from Eq.
~3.9! we conclude that the condition~3.18! remains valid for
all r. Equation~3.17! in the gauge~3.18! reduces after the
Fourier transformÃm(p,r )5*d4x e2 ipnxn

Am(x,r ) to

~en2l/2w5/2Ãm8 !81el/2w5/2m2Ãm50, ~3.19!

where we have denotedm252pmpm. This equation can be
solved, for example, in the case of flat extra dimensio
~3.10!, l5n50, w5r 2. The modes withm25” 0 which are
regular atr 50 have the form

Am5
C

r 2
J2~mr!, ~3.20!

where J2(z) is the Bessel function andC is an arbitrary
constant.

Although the zero modeAm(x) is always a solution of
Einstein equations locally, it can fail to be a global soluti
if the rotation invariance~3.14! is spontaneously broken. A
simple example of this is when the flat extra dimensio
~3.10! are compactified on two-dimensional torusT2.

IV. LOCALIZATION OF Aµ ON THE BRANE

If the rotation symmetry~3.14! is not broken, the zero
mode of the field Am is a global solution of higher-
dimensional Einstein equations which, from the fou
dimensional point of view, describes massless gauge fi
propagating along the brane. Equation~3.19! is a Strum-
Liouville equation and the zero modeAm(xn) is its normal-
izable solution in a space-time~2.6! which satisfies the con
dition

N5E dr el/2w5/2,`. ~4.1!

In such a space-time the massless fieldAm(xn) mediates a
Coulomb-like interaction between particles localized on
brane. For example, if we take a space-time with comp
extra dimensions with topology of a sphereS2, the bulk
metric is
8-3
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ANDREY NERONOV PHYSICAL REVIEW D 64 044018
ds25hmn dxm dxn1
1

~11r 2/a2!2
dr21

r 2

~11r 2/a2!2
du2,

~4.2!

wherea is the radius of the sphere. This corresponds to

n50,

l522 log~11r 2/a2!, ~4.3!

w5r 2/~11r 2/a2!

and the integralN ~4.1!, obviously, converges.
Zero mode of the fieldAm can be normalizable also i

space-times with noncompact extra dimensions. Let us t
for example, a space-time considered in Ref.@6#. This space-
time is a solution of six-dimensional Einstein equatio
coupled to cylindrically symmetric magnetic field

f ru5B0Awel/222n, ~4.4!

whereB0 is an arbitrary magnetic field strength. In the ca
when the cosmological constant in the bulk and on the br
are zero, the space-time metric is

ds25S 11
r 2

a2D 2/3

~hmn dxm dxn1dr2!1
r 2 du2

~11r 2/a2!2
,

~4.5!

where the parametera is related to the field strength~4.4!

a25
2

3pG6B0
2

. ~4.6!

The geometry of extra dimensions is schematically prese
on Fig. 1. The sizeRu of the circle parametrized byu shrinks
to zero asr→`.

The integralN ~4.1! converges

N5E
0

` r 5 dr

~11r 2/a2!14/3
5

27a6

440
~4.7!

and the zero modeAm(xn) is a normalizable solution of Eq
~3.19! Note, that the volume of extra dimensions

FIG. 1. The geometry extra dimensions.
04401
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V5E A2g dr du5E S 11
r 2

a2D 2/3

r dr du ~4.8!

is infinite so that the metric~4.5! does not localize gravity.
It is interesting to consider situation when both grav

and the gauge field are localized on the brane. This can
achieved in a six-dimensional generalization of Rand
Sundrum model which was considered in Refs.@26,27,23#.
The space-time is a solution of Einstein equations~2.7! with
negative cosmological constantL. A string of finite sizee is
placed atr 50 so that the stress-energy tensorTAB is differ-
ent from zero in a small region 0<r ,e aroundr 50. Out-
side the string in the regione,r ,` the space-time metric is
the six-dimensional anti–de Sitter metric

ds25e2crhmn dxm dxn1dr21e2crR2 du2. ~4.9!

Here R is an arbitrary constant which sets the size of t
circle S1 parametrized byu. Parameterc is related to the
bulk cosmological constant~2.7! as

c5A2
2L

5
. ~4.10!

The geometry of extra dimensions in this case is similar
that of space-time~4.5!: the size of the circleS1 param-
etrized byu goes to zero asr→` ~see Fig. 1!. The metric
inside the brane is determined by the detailed structure of
brane stress-energy tensorTAB(r ).

Equation~3.19! on Am reduces for the metric~4.9! to

~e27cr/2Ãm8 !81e25cr/2m2Ãm50. ~4.11!

Its general solution in the gauge~3.19! is

Ãm
0 5e7r /4FC1J7/2S 2m

c
ecr/2D1C2Y7/2S 2m

c
ecr/2D G

~4.12!

The zero mode solutionAm(x) of Eq. ~4.11! is a normal-
izable solution of Eq.~4.11! since the integralN ~4.1! is
converging

N5
2R5

5c
. ~4.13!

Note that the zero mode ofAm is normalizable even in a
more general space-time of ‘‘global string,’’ considered
Refs.@23,31#

ds25e2c1rhmn dxm dxn1dr21e2c2r du2. ~4.14!

Herec1 andc2 are arbitrary positive constants related to t
stress-energy tensorTAB(r ) of the string which is nonzero
even whenr→`.

V. MATTER FIELDS BOUND TO THE BRANE

The field Am interacts with matter fields bound to th
brane. As an example we consider fermion fields propaga
8-4
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on the background~2.6!. Consider a six-dimensional Dira
spinorC which satisfies the equation

GADAC50. ~5.1!

The six-dimensional gamma matricesGA are defined with
the help of vielbeinEB̂

A and flat space gamma matricesG Â

GA5EB̂
A
G B̂ ~5.2!

~the indexes with hat are six-dimensional Lorenz indexe!.
The covariant derivative is defined as

DAC5C ,A1
1

2
vA

ÂB̂s ÂB̂C, ~5.3!

wherevA
B̂Ĉ is the spin connection expressed through vielb

EB̂
A and s B̂Ĉ5 1

4 @G B̂G Ĉ#. Taking the coordinate vielbein fo
the metric~2.6!

Em
â5en/2dm

â ,

Er
r̂5el/2, ~5.4!

Eu
û5Aw

we find

vm
ÂB̂s ÂB̂5

n8

2
e(n2l)/2Gm̂G r̂ ,

vu
ÂB̂s ÂB̂5

w8

2Aw
e2l/2GûG r̂ . ~5.5!

Let us consider the solutions of Eq.~5.1! which satisfy the
condition

G 0̂•••G 3̂G r̂GûC5C ~5.6!

and can be presented in the form

C5eiqux~r !c~xm!, ~5.7!

whereq is an integer. The two-component spinorx(r ) satis-
fies

iG r̂Gûx52x ~5.8!

while the four-component spinorc(x) is chiral in four-
dimensional sense

iG 0̂•••G 3̂c5c ~5.9!

and satisfies the four-dimensional massless Dirac equati

Gm̂]mc50. ~5.10!

From Eq.~5.1! we derive an equation onx
04401
n

x81S n81
w8

4w
1

el/2

Aw
qD x50 ~5.11!

which is readily integrated

x~r !5constw21/4expH 2n2qE
r 0

r

dr8
el/2

Aw
J . ~5.12!

The solutions of Eq.~5.1! must be normalizable with respec
to the norm

^C,C&5E d4x dr duA2gC̄G0C

5E dr e3n/21l/2Awuxu2. ~5.13!

In the case of space-time~4.9! the normalized solutions o
Eq. ~5.11! are given by

xq~r !5
q1/2

p1/2R
e5cr/4 expH 2q

cR
~12ecr/2!J . ~5.14!

The solution withq50 with trivial dependence onu grows
at larger and is not localized on the brane. But the solutio
with q.0 decrease far from the brane. Here we have
glected a contribution from the region 0<r ,e inside the
brane into the integral~5.13!. In principle, the requirement o
convergence of Eq.~5.13! in the limit r→0 will impose
restrictions on the number of normalizable zero mode so
tions of Eq.~5.1!.

VI. COUPLING OF Aµ TO MATTER FIELDS

The fermion fieldC ~5.1! produces a stress-energy tens

TAB
C 5

i

2
~C̄G (ADB)C2D (AC̄GB)C!. ~6.1!

The mu component ofTAB
C is

Tmu
C 5

i

4
en/2~C̄Gm̂C ,u2C̄ ,uGm̂C!1

iAw

4
~C̄GûC ,m

2C̄ ,mGûC!1
iAw

4
e(n2l)/2S n82

w8

w D C̄Gm̂G r̂GûC.

~6.2!

If we restrict our attention to theC configurations of the
form ~5.7!, ~5.8!, ~5.9!, then Eq.~6.2! reduces to

Tmu
C 5

en/2ux~r !u2

2 Fq2e2l/2
Aw

2 S n82
w8

w D G c̄Gm̂c.

~6.3!

We see thatTmu
C is proportional to the four-dimensional cu

rent

j m5c̄Gm̂c. ~6.4!
8-5
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Substituting the stress-energy tensor~6.3! into the Einstein
equations~2.7! we find that Eq.~3.19! on Am is modified

~en2l/2w5/2Ãm8 !81el/2w5/2m2Ãm

528pG6e2n1l/2w3/2uxu2Q j̃m , ~6.5!

where j̃ m is the Fourier transform j̃ m(p,r )
5*d4p e2 ipmxm

j m(x,r ) of the four-dimensional current. W
also have denoted

Q5q2e2l/2
Aw

2 S n82
w8

w D . ~6.6!

We can write a solution of this equation in terms of a Gree
function D̃(p,r ,r 8)

Ãm528pG6 j̃ mE dr8 D̃~p,r ,r 8!Qe2n1l/2w3/2uxu2.

~6.7!

The Green’s function of Eq.~6.5! is expressed in terms o
normalized solutionsAm

0 (r ) of homogeneous equation~3.19!
for a fixedm2

D̃~p,r ,r 8!5
1

Np2
1 (

m2.0

Am
0 ~r !Am

0 ~r 8!

p21m2
, ~6.8!

whereN is the normalization constant~4.1!. If we are inter-
ested in the behavior ofAm at large distances from th
source, we can restrict attention to the limitp2→0 in which
zero mode solution of Eq.~3.19! gives the leading contribu
tion into the Green’s functionD̃. In this limit

Ãm'
8pG6

N

j̃ m~p!

p2 E dr8 Qw3/2e2n1l/2ux~r 8!u2. ~6.9!

In the case of asymptotically anti–de Sitter space-time~4.9!
the normalization constantN is given by Eq.~4.13! while the
charged zero modes of Dirac field have the radial pro
x(r ) given by Eq.~5.14!. In the limit

cR!1. ~6.10!

when the curvature radiusr5c21 of anti–de Sitter space i
much larger than the thickness of the braneR, the expression
~6.9! for Ãm reduces to

Ãm5
10cG6

R3

~q j̃m!

p2
. ~6.11!

Comparing the last equation to the standard expression o
four-dimensional Maxwell theory we find the effective fin
structure constant

a5
5cG6

2pR3
. ~6.12!
04401
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From Eq.~5.14! we can see that the fermion zero mod
with nonzero chargeq are localized in a region with a size o
order of the brane thicknessR. If R is small enough we can
approximate the profilex(r ) by delta function

uxu2'
1

R
d~r !. ~6.13!

If we are interested in interactions of particles localized
the brane we need only the expression for the Green’s fu
tion D̃ at r ,r 850. The exact expression forD̃ can be found
in a way similar to the one used in Ref.@32# for the calcu-
lation of the Green’s function for gravitational perturbatio
of Randall-Sundrum model. Forr ,r 850 we get

D̃~p!5
5c

2k2
2

1

k

H3/2
(1)~2k/c!

H5/2
(1)~2k/c!

, ~6.14!

where k252p2. Expressing the Hankel functionsH3/2
(1)(z)

andH5/2
(1)(z) through the elementary functions we get forAm

Ãm5
4G6

R3 S 5c

2k2
1

2~c22ik !

4k216ick23c2D q j̃m ~6.15!

In the case of static configurationsp050 the first term in the
last equation gives the conventional Coulomb law at la
distances from a static source. The second term of Eq.~6.15!
results in corrections of order ofO(1/L3) to Coulomb law at
distancesL;c21 along the brane.

VII. CONCLUSION

We have considered models in which a brane universeM4

is embedded into a space-timeM 6 with n52 warped infi-
nite extra dimensions. The Kaluza-Klein fieldAm associated
to theU(1) group of rotations of the normal bundle ofM4 is
localized on the brane if the background metric~2.6! is such
that the integralN ~4.1! is converging. In the case of asymp
totically anti–de Sitter metric in six-dimensional bulk th
fermion zero modes which possess nonzero rotation mom
q around the brane are localized onM4 @see Eq.~5.14!#.
They are charged with respect toAm and Am mediates
Coulomb-like interaction between these zero modes.
have calculated the effective four-dimensional fine struct
constanta ~6.12! in such a model. It is expressed through t
inverse curvature radiusc of the bulk anti–de Sitter spac
and the brane thicknessR. The presence of infinite extra
dimensions results in modification of the four-dimension
photon propagator and in power-law corrections to the C
lomb law at the distances of order of the inverse curvat
radiusc of anti–de Sitter space~6.15!.

ACKNOWLEDGMENTS

I am grateful to A.O. Barvinsky, V.F. Mukhanov, V.A
Rubakov, I. Sachs, and S. Solodukhin for fruitful discussio
of the subject of the paper. This work was supported
Grant No. SFB 375 der Deutschen Forschungsgemeinsc
8-6



hy

D

s

e

ys

.

d-

h

r,

t. B

ys.

LOCALIZATION OF KALUZA-KLEIN GAUGE FIELD S . . . PHYSICAL REVIEW D 64 044018
@1# Modern Kaluza-Klein Theories, edited by T. Appelquist, A.
Chodos, and P. G. O. Freund~Addison-Wesley, New York,
1987!.

@2# E. Witten, inModern Kaluza-Klein Theories@1#, p. 438.
@3# S. Randjbar-Daemi, A. Salam, and J. Strathdee, Nucl. P

B214, 491 ~1983!.
@4# C. Wetterich, Nucl. Phys.B255, 480 ~1985!.
@5# V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett.125B,

136 ~1983!.
@6# G. W. Gibbons and D. L. Wiltshire, Nucl. Phys.B287, 717

~1987!.
@7# N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Rev.

59, 086004~1999!.
@8# L. Randall and R. Sundrum, Phys. Rev. Lett.83, 4690~1999!.
@9# T. Han, J. D. Lykken, and R. Zhang, Phys. Rev. D59, 105006

~1999!.
@10# S. Cullen and M. Perelstein, Phys. Rev. Lett.83, 268 ~1999!.
@11# A. Neronov, Phys. Lett. B472, 273 ~2000!.
@12# P. Binetruy, C. Deffayet, U. Ellwanger, and D. Langlois, Phy

Lett. B 477, 285 ~2000!.
@13# R. Maartens, Phys. Rev. D62, 084023~2000!.
@14# A. Neronov and I. Sachs, ‘‘On metric perturbations in bran

world scenarios,’’ hep-th/0011254.
@15# N. Arkani-Hamed and M. Schmaltz, Phys. Rev. D61, 033005

~2000!.
@16# C. Csaki, J. Erlich, C. Grojean, and T. Hollowood, Nucl. Ph

B584, 359 ~2000!.
04401
s.

.

-

.

@17# N. Arkani-Hamed, S. Dimopoulos, N. Kaloper, and R
Sundrum, Phys. Lett. B480, 193 ~2000!.

@18# A. Neronov, ‘‘Brane world cosmological constant in the mo
els with large extra dimensions,’’ gr-qc/0101060.

@19# I. Antoniadis, C. Munoz, and M. Quiros, Nucl. Phys.B397,
515 ~1993!.

@20# R. Jackiw and C. Rebbi, Phys. Rev. D13, 3398~1976!.
@21# G. Dvali and M. Shifman, Phys. Lett. B396, 64 ~1997!.
@22# S. L. Dubovsky, V. A. Rubakov, and P. G. Tinyakov, J. Hig

Energy Phys.08, 041 ~2000!.
@23# I. Oda, Phys. Lett. B496, 113 ~2000!.
@24# G. Dvali, G. Gabadadze, and M. Shifman, Phys. Lett. B497,

271 ~2001!.
@25# A. G. Cohen and D. B. Kaplan, Phys. Lett. B470, 52 ~1999!.
@26# R. Gregory, Phys. Rev. Lett.84, 2564~2000!.
@27# T. Gherghetta and M. Shaposhnikov, Phys. Rev. Lett.85, 240

~2000!.
@28# I. Olasagasti and A. Vilenkin, Phys. Rev. D62, 044014

~2000!.
@29# N. Arkani-Hamed, S. Dimopoulos, G. Dvali, and N. Kalope

Phys. Rev. Lett.84, 586 ~2000!.
@30# E. Ponton and E. Poppitz, J. High Energy Phys.02, 042

~2001!.
@31# T. Gherghetta, E. Roessl, and M. Shaposhnikov, Phys. Let

491, 353 ~2000!.
@32# S. B. Giddings, E. Katz, and L. Randall, J. High Energy Ph

03, 023 ~2000!.
8-7


