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Black hole mechanics was recently extended by replacing the more commonly used event horizons in
stationary space-times with isolated horizons in more general space{ivhieh may admit radiation arbi-
trarily close to black holesHowever, so far the detailed analysis has been restricted to nonrotating black holes
(although it incorporated arbitrary distortion, as well as electromagnetic, Yang-Mills, and dilatonic ¢harges
We now fill this gap by first introducing the notion of isolated horizon angular momentum and then extending
the first law to the rotating case.
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[. INTRODUCTION quantum gravity(i) it plays a key role in an ongoing pro-
gram for extracting physics from numerical simulations of

The zeroth and first laws of black hole mechanics apply tdlack hole merger§5—7]; (ii) it has led to the introduction
equilibrium situations and small departures therefrom. IN4,8,9 of a physical model of hairy black holes, systematiz-
standard formulations of these laws, black holes in equilibing a large body of results on properties of these black holes
rium are represented by stationary space-times with regulawhich has accumulated from a mixture of analytical and nu-
event horizongsee, e.g.[1]). While this idealization is a merical investigations; andii ) it serves as a point of depar-
natural starting point, from a physical perspective it seemgure for statistical mechanical entropy calculations in which
quite restrictive.(See[2,3] for a detailed discussionTo  all non-rotating black holegexternal or ngtand cosmologi-
overcome this limitation, a new model for a black hole in cal horizons are incorporated in a single str¢Re10,1].
equilibrium was introduced if2,3]. The generalization is The first treatment of black hole mechanics using isolated
twofold. First, one replaces the notion of an event horizorhorizons[3] only considered undistorted, nonrotating hori-
with that of an isolated horizon. While the former are defined?0ns. That is, the boundary conditions it used imply ithe
only retroactively using the fully evolved space-time geom-trinsic geometry of the horizon is spherically symmetric and
etry, the latter are defined quasilocally by suitably constrainth® imaginary part of the \Weyl curvature component
ing the geometry of the horizon surface itself. Second, oné?2—Wwhich encodes gravitational angular momentum—
drops the requirement that the space-time be stationary an@nishes at the horizon. Although they do not constrain fields
asks only that the horizon be isolated. That is, the requirel the exterior region in any waeven close to the horizon
ment that the black hole be in equilibrium is incorporated bythese restrictions are, nonetheless, very strong. More re-
demanding only that no matter or radiation fall through thecently, these boundary conditions were significantly weak-
horizon, although the exterior space-time region may welned to allow for both distortion and rotation and the basic,
admit radiation. Consequently, the generalization in the clas§géometric consequences of the more general boundary con-
of allowed space-times is enormous. In particular, spaceditions were analyzefh]. The zeroth law of black hole me-
times admitting isolated horizons need not possessKill- ~ chanics was also extended to the more general context, and
ing vector field; although event horizons of stationary blackthe first law, to nonrotating but possibly distorted isolated
holes are isolated horizons, they are a very special case. rizons. The purpose of this paper is to extend the first law
recent series of papel3,4] has generalized the laws of black t0 the rotating case. We will first introduc¢quasilocal defi-
hole mechanics to this broader context. The notion of isohitions of angular momentum and mass of the isolated hori-
lated horizons has proved to be useful also in other context&on in this context and then establish the first law. Thus, this

ranging from numerical relativity to background independent?@per is a continuation ¢#] and completes the task of de-
riving the black hole mechanics of all isolated horizons of

direct physical interest.

*Email address: ashtekar@gravity.phys.psu.edu Let us outline the key new points which distinguish the
"Email address: beetle@physics.utah.edu rotating case considered here. First, if fgeavitational con-
*Email address: jerzy.lewandowski@fuw.edu.pl tribution to the horizon angular momentum is to be nonzero,
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the Weyl component Ifi¥',] cannot vanish on the horizon. null normal direction will be denotedl®}. This direction
Therefore, we will extend the Hamiltonian framework[d]  field is naturally an equivalence class of vector fieldsfon
by lifting the restriction on Irft¥,]. Second, by analogy with under rescaling by arbitrary positive functions. We refer to it
Killing horizons, in the nonrotating case it was natural tosimply as thenull normalto A. Pull-backs toA of the cova-
require the time-evolution vector field to lie along the null riant tensor fields ovM (or more generally, covariant indices
normal to the horizon. In the general rotating case, by conof arbitrary tensor fieldswill be denoted by an under-arrow
trast, we expect the natural “time-translation—like” vector and equalities restricted @, by the symbol2. The (degen-
field to be space-like on the horizon, with components botterate intrinsic geometry onA is described by the metric
along the null generatoendalong a transverse “rotational” Qab:égib- Atensorg®” on A will be said to be an “inverse”
direction. Our evolution field will have this feature. Th|rd, to of Jab if it Satisfiesqabqacqbdé Ocg - Because of the degen_

have a well-defined notion of angular momentum, one exeracy of the intrinsic geometry ak, the inverse metric is not
pects there should exist a rotational symmetry on the horiynique, but can be changed freely by the addition of a term
zon. We will analyze symmetries of all isolated horizons andyf the formv@ P with Vv tangent toA and|®e{I®}. The
shpw that the boundary con(_jitions imply that there are thre%xpansionem of the null normal field @< {12} is defined by
universal classes, cha_ractenzed by the structure of thg SYNy,,: A gaPV 1, , whereV, is the torsion-free connection on
metry group:(l) spherically symmetric horizongJl) axi-  vf defined byg,,. It is straightforward to check this defi-
symmetric horizons, andlil) general, distorted horizons nition is independent of the choice of inverse metric, but
(with no symmetry other than that along the null generators ygeg depend upon the choice of null normal vector.
To have a well-defined notion of angular momentum, we
will focus on class Il (Class | was discussed [B] while the
focus of [4] was onnonrotatingisolated horizons in class
I.) A weakly isolated horizon consists of a pai,(12]),

In spite of these differences, the basic techniques used iwhereA is a three-dimensional submanifold 8ft and[[?]
this paper are very similar to those [ef]. The Hamiltonian is an equivalence class of vector fields drunderconstant
formalism is again employed to motivate the definition of rescalings, such that
horizon mass and, in our rotating case, also angular momen- (i) A is topologically S*X R and null,[1?] lies along its
tum. The first law again emerges as a necessary and suffiull normal and the space of its integral curves is diffeomor-
cient condition for the evolution to be Hamiltonian, but now phic to S?;
acquires new terms resulting from the angular momentum of (ii) The expansiord;, of A vanishes for any choict
the horizon. e[12] of the null normal;

The plan of this paper is as follows. Section Il briefly  (iii) The space-time connection hagpartia) symmetry
recalls the definition and basic structure of isolated horizonglong[12] in the sense that
as discussed i]. Section Il analyzes the possible symme-
tries of isolated horizons. Section IV proves the first law of [£.Va]I°P20 (2.1
black hole mechanics for space-times containing rotating iso-
lated horizons. Section V summarizes the results and thfor any choice ofi2e[12];
Appendix discusses the issue of defining Hamiltonian gener- (iv) All equations of motion hold af; and
ating diffeomorphisms which need not be horizon symme- (v) The Maxwell potentialA is gauge-adaptedo the ho-
tries. rizon in the sense that

A. Weakly isolated horizons

LIA,=0 (2.2
Il. PRELIMINARIES -

This section summarizes the basic properties of isolatetbr any choice oflie[12].
horizons and introduces the notation used in this paper. Spe- A Killing horizon (with topology S*XR) in Einstein-
cifically, Sec. Il A recalls fron{4] the definition of aveakly = Maxwell theory is automatically a weakly isolated horizon
isolated horizonin Einstein-Maxwell theory and several of under this definition, provided the Maxwell field strength is
its immediate consequences. Section IIB analyzes certaisymmetric along the Killing field and the gauge of its poten-
geometric structures on the horizon. This discussion is essetial is chosen to satisfy Eq2.2). If the Killing field is de-
tial to the classification of horizon symmetries presented irfined only in a neighborhood of the horizon, there is no ob-
Sec. lll and has not appeared before. Finally, Sec. Il C revious way to fix the freedom of rescaling it by a constant.
views the covariant phase space of space-times admittinghis freedom is reflected in our freedom to reschley a
weakly isolated horizons as inner boundaries, constructed ioonstant. Note, however, the definition admits a much
[4]. broader class of examples. To explore this class, let us begin

Let us begin fixing a few conventions. Throughout thisby examining the motivations behind the conditions them-
paper, we assume all manifolds and fields are smooth ansklves.
restrict ourselves to the Einstein-Maxwell theory. Space-time Some of the restrictions made by the above conditions are
M is a four-dimensional manifold equipped with a metric relatively tame. For example, the topological requirement in
Oap Of signature(—,+,+,+) and a Maxwell potentiah, . If condition(i) simply restricts the horizon to have the topology
A is a null hypersurface inX,g,p), its future-directed which one expects to arise from gravitational collapse. This
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restriction can be weakened to allow for more general toin the case of a non-null hypersurface in space-time on
pologies[4,12], though we shall not discuss this possibility which the intrinsic geometry is nondegenerate, the existence
further here. More importantly, the remainder of conditionof a Killing vector for the intrinsic metric would automati-
(i) makes clear the roles af and[I2]: A is the horizon cally imply the intrinsic connection was likewise preserved
surface and|2] is a distinguished class of its null normals. along that Killing vector. In other words, for a nondegenerate
Condition(iv) is also straightforward; it applies a dynamical intrinsic geometry, the restrictioi2.1) of condition (iii)
restriction closely analogous to the one usually imposed atould follow from Eq.(2.6). However, this is not the case for
infinity. However, while the metric at infinity is required to a null hypersurface since the intrinsic metric does not deter-
approach apecificasymptotic solution to the Einstein equa- mine the intrinsic connection uniquely. Thus, conditi@in)
tions, condition(iv) allows the metric to approacny solu-  must be imposed separately. The logic of making this restric-
tion to the Einstein equations at the horizon. tion, however, is clear: we are extending the symme2rg)
Conditions(i) and (iv) are satisfied on a wide variety of of the degenerate metric to the intrinsic connection fdon
surfaces, including many even in Minkowski space-time.given by V , . Note, however, that conditiofiii) does not
However, the vast majority of these surfaces do not have thgsgyict theentire connection o, but only its action ori®.
characteristics one would intuitively expect on a “horizon.” |, et given the definitiori2.5), condition(iii ) can be writ-
The first key condition which distinguishes a weakly isolated;g, simply as
horizon is conditior(ii). It implies the cross-sectional area of
A is constant“in time,” thereby capturing the notion of Liw,=0. 2.7
isolation without introducing a Killing field. The horizon

area is denoted, and we define its radiug, by This formula is much easier to apply in practice than Eq.

(2.1), which is why the one-fornw, plays an important role
aA:477R§_ in our formulation.(If one requires that® be a symmetry of
the full pull-back of the connection t4, we obtain isolated
This condition makes the definition dramatically stronger.horizons[4,6]. While this stronger condition is physically
For example, it implies there are in fact no weakly isolatedreasonable, it is significantly more difficult to check its va-
horizons in Minkowski space-time. lidity in examples. Since the stronger condition is not needed
To discuss conditiofiii ), it will be useful to first explore in our proof of the zeroth and the first laws, we have chosen
some consequences of condition by itself. First, sincd? to work with weakly isolated horizons.

e[12] is normal toA, it is automatically twist-free and geo- Finally, let us examine conditiofv) on the Maxwell field.

detic: At first, the symmetry requiremef2.2) on the Maxwell field
ac 1b b appears similar to the restrictid@.7) placed on the horizon
1%Vl 2 k)17 (2.3 geometry by conditior(iii). However, the two are actually

quite different. While Eq(2.7) represents a genuine restric-
tion on the physical fields at the horizon, E.2) can al-
ways be achieved via a gauge transformation when the other
conditions are satisfied. Using the Einstein equations at the

o e oin .
mzegénﬁ ;Zif(ﬂe?rm;h'?r:e]’si?; sgrfar‘gsif]r%\;'g jvcil‘ils biy horizon and the consequenc¢g.4) of the Raychaudhuri

i o ’ . g y caKly SOequation one can show the one-foldF,, is null at the
lated horizon is generally defined only up to a positive con-,

stant multiplicative factor. Second, given the vanishing twisthonzon' Sl_nce this one-form is also orthogonal toit must
. : .~ be proportional td,,, whencé

and expansion df?, one can use the Raychaudhuri equation

for the null congruence generated IByto conclude itshear IJF ADQ. (2.9

must also vanish, and that -

Motivated by the usual definition for Killing horizons, the
accelerationk ) of I will be called the surface gravity af
with respect to the normaf. As one can see from E.3),

Then, using the Cartan formula for the Lie derivative and the

alba ; ) .
Rapl“1"2£0. (2.4 Maxwell equations at the horizon, one finds

Third, the vanishing twist, shear, and expansiorn@imply
the existence of a one-forim,, intrinsic to A, satisfying

Vglbéwalb. (2.9

L, FAlJdF+ d(1JF) =0.
— — —

Thus, because the field strength is already compatible with
the symmetry(2.2) imposed on the Maxwell potential by

. L . condition(v), Eq. (2.2) is indeed merel artia) choice of
This one-formw, is independent of the choice ¢?e[I°] gauglel V). Eq.2.2is i y gpartia) choi
anq its contraction with" will yield the ;urface gravitkq)y = e conclude this subsection with several remarks. Each
defined above. Furthermore, as we will now discuss, condi-:

. ) of these points is discussed in more detai[4f
tion (iii) causesw, to play a central role in the theory of it \while this paper explicitly examines only those
weakly isolated horizons.

_ : a weakly isolated horizons which occur in Einstein-Maxwell
One important consequence of EQ.5) is thatl? is a

symmetry of the degenerate intrinsic geometryAofn the

sense that L _ _
The symbol- - represents the contraction of a vector field on the

L,0ap2 0. (2.6) first index of a differential form.
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theory, it is not difficult to generalize the definition given The first term on the right-hand side vanishes because of Eq.
here to allow other matter fields near the horizon. However(2.7), while the second vanishes becauseisl given by Eq.
it is not possible to incorporate arbitrary types of matter, but(2.9) and the contraction ofe,;, with [I2] vanishes. Thus,
only those which satisfy a certain energy condition. Specifithe surface gravity of a weakly isolated horizon is indeed
cally, the stress-energy tensor of each matter field present abnstant; the zeroth law holds. Note, however, that because
the horizon must have the property thag|® is future di- A is equipped only with arequivalence clas§l?] of null
rected and causafor any I°<[I°]. This condition follows normals, we have the constant rescaling freeddm 12
immediately from the dominant enel’gy condition which is :Cla under which the surface gra\/ity transforms \Ra)
usually assumed in proofs of the laws of black hole mechan-, ;= c« ;. Therefore, while surface gravity is constant
ics. Moreover, since the Maxwelor Yang-Mills, etc) field  on an isolated horizon, we cannot assign a particular value to
satisfies the dominant energy condition, it will automaticallyit, This is not surprising: one cannot assign a specific numeri-
meet the(weakey demand made here. This condition is es-ca| value to surface gravity even oraally defined Killing
sential to the derivation of Eq2.4) from the Raychaudhuri  horizon, since the Killing field is defined only up to rescaling
equation and to the associated proof that the horizon is sheay a constant. Finally, we note the argument establishing the
free. zeroth law for weakly isolated horizons can also be applied
Second, the conditions given above imply the space-timgy the Maxwell field. Repeating this argument, withre-
geometry at a weakly isolated horizon is algebraically spepjaced byA, and applying Eqs(2.2) and(2.8) one finds the
cial. This is an interesting feature which carries over fromgyantity| JA is also constant over the horizon surface. Mo-
the stationary context where the Kerr-Newman black hol&jyated by this fact, we define thelectric potentialof the

space-times aréglobally) of Petrov type II-Il. However, porizon by
there are several important differences. One can gh&jnis
a repeated principal null direction at the horizon, since the D) =—1%A,. (2.11

space-time geometry is necessarily of Petrov type Il there.

However, it is not generally possible to identify a secondOnce again, while the electric potential is always constant
repeated principal null direction at such a horizon, so theover A, its value is not fixed.

geometry need not be of type Il-Il. Moreover, the space-time

geometryaway from the horizon may not be algebraically B. Geometrical structures

special at all; our conditions constrain only the local, horizon We will first discuss the relation between certain tvpes of
geometry. Sincgl?] is a repeated principal null direction for yp

the space-time metric at the horizon, the Newman-Penrosields onA and fields on the 2-sphere of integral curves of

curvature components satisfy [12] and then show that ilf<(|) is nonzeroA admits a natural
foliation. This discussion will be useful especially in Sec. llI
WoAW,AQ for our analysis of the symmetry algebras of weakly isolated
horizons.
in any null frame which includes an elemdfAt[1%] atA. It Denote byP the natural projection map fromAto A. A

then follows that (t_he NedwmanéPenrOfsi corplponﬁ’r)t is ! vector fieldW? defined intrinsically omA can be unambigu-

“gauge-invariant” (i.e., independent of the other three nu . S R . a

tetrad elemenjsat A. In particular, the imaginary part oF , pusly propcted to aavect'or'fleld/ onA if a.”d only if ﬁ'W.
proportional tol®. Similarly, a covariant tensor field

can be expressed without reference to any null tetrad usinﬁ _ A
the one-formw, introduced in Eq(2.5): a, ..a, ONA'is a pull-back unde of a tensor fieldl,, 5
on A if and only if two conditions hold(i) Ta, a, is trans-
versal tol in the sense that the contraction of any of its

where 2e,, denotes the natural area two-form An(see the indices withl vanishes; andii) the Lie derivativel; T, 5
next Subgectim vanishes. These are rather general properties of manifolds

Third, the conditions enable a simple proof of the zerothfuled by one-dimensional curves. , ,
law of black hole mechanics for generic weakly isolated ho- APPlying them to the case of a weakly isolated horizon,
rizons. Examining the definitiof2.3) of surface gravity fora We conclude that the degenerate metyig is the pull-back

weakly isolated horizon and the definitid®.5 of w,, one  to A of a Riemannian metrif,, on A. The connection one-

do=2 Im[¥,]2%, (2.9

finds form w, does satisfy conditiofii) above. However, since
K(|):|awa, (21@ Iaa)aé YO
since(by the Cartan formulawe have it defines a one-fornd, on A only in the extremal case, i.e.,
only whenky4 0. Finally, the projection maf enables us
dey=d(lJw)=Liw—1ldw. to define a preferred area elemét,, on A. Using the Rie-

mannian metrid,,, one can construct the area elemegy

onA and pull that two-form back td underP. By construc-
2A vector is said to beausalif it is either time-like or null. tion, the resulting two-fornfe,;, on A satisfies
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|a26ab:O and £|263b: 0.

The first of these results was already used in the proof of the
zeroth law in the last subsection.

Let us now assume that, is nonzero and discuss the
preferred foliation ofA (for further details and a discussion
of global subtleties, sgé]). For simplicity, consider first the
“nonrotating case” where IfP,]=0. According to Eq. -
(2.9), this is precisely the case where the connection fegm M — §°
is curl-free. Hencev=dv for some functiorv on A. Further-
more, | Idv =« is a nonzero constant oh, since[l?] is

FIG. 1. The region of space-time! under consideration has an

transverse to the = const surfaces. Thus = const surfaces internal boundanA and is bounded by two partial Cauchy surfaces
N ) T M= which intersectA in the 2-spheresS; and extend to spatial

define a natural foliation oA by a family of 2-spheres. infinity i°
To conclude, let us consider the rotating case. While '
Im[W¥,] no longer vanishes in this case, it is still constant

along each generator d, i.e., is a pull-back of a function cally S*x R which will serve as a time-like cylinder at spa-

N ~ _ o ) tial infinity, and two surface$1*, which are intended to be
Im[W2] on A. Using Eq.(2.9) as the motivation, let us intro- - gpace-fike and to serve as future and past boundariég of

duce a one-forma, on A such that &=2 Imf‘l'z]%. Of  The intersections ok~ with A and 7., will be denotedS}
course, this potential, is not uAnique; one is free to add to it andS;; respectively(see Fig. 1 The inner boundanA will
the gradient of any function oA. There is, however, a natu- be equipped with a privileged equivalence clpisy of vec-
ral gauge condition which fixes this ambiguity: Since theretor fields under constant rescalings, whose integral curves

are no harmonic one-forms on the 2-sph‘&|;ahere exists a constitute a 2—spher§. In the Hamiltonian framework, we

unique one-formx, such that will not be interested in the surfacé™ and ... Therefore,
R . it is convenient to introduceé:= M —(MTUM U ..) and
da=2 |m[\1’2]6 and dka=0, (212 AZA_(SXUSX)

. - A We will consider the Einstein-Maxwell theory in a first-
wheree;, is the area element ol and denotes the Hodge orger framework based on tetrads. Therefore, our basic
dual onA. Let a, be the pull-back ta\ of &, and set physical fields will consist of a tripleef’,A,,” ,A,) on M,
wheree? is a tetrad on space-timé,,” is the connection
form (relative to a fiducial flat connectiofy,) for a connec-
Then, d5,=0 and|%&,=r(, on A. Thus,& has the same tion D, in the frame bundle over space-time, aAd is a

properties thats, had in the nonrotating case. Therefore, it M@xwell connection on a trivial(1) bundle overM (see
defines a foliation oft by a family of 2-spheres. Our gauge [4). (Whene+ver needed, thesg fields will 'be extended to the
choice is natural in the sense that it is the only choice fofoundariesSy of A by continuity) These fields are subject
which this more general construction, when applied to thd® certain boundary conditions: We require that each space-
nonrotating case, reproduces the natural foliation obtainetime (M,ey) is asymptotically flat at spatial infinity and ad-
above.(Indeed, in the nonrotating case and in our gadge, Mits (A,[1%]) as a weakly isolated horizon. For convenience,
vanishes omA and @,—w, on A.) While this foliation is V€ will fix an internal tetrad (',n',m',m') at each point ofA

. . e :
used only to elucidate certain points in this paper, it plays &nd require the tetrad field to satisfief e [17] on A. (This

key role in the analysis of the near-horizon, strong field gea" always be achlevgd and serves to eliminate an irrelevant
ometry[7] and in extracting physics from space-times ob-Part of the tetrad-rotation freedom.

tained via numerical simulations, such as those associated With this kinematical structure at hand, we can now
with black hole merger§7,5]. specify the action functional:

W= wa— Ay

C. Covariant phase space Se,D,Al= RJ TX0OF]+
M

In the spirit of[4], we will use Hamiltonian methods to
introduce notions of angular momentum and mass of weakly 1
isolated horizons. In this subsection, we recall frph the T8 fMFD*F' (2.13
structure of the underlying phase space.

The most interesting space-times containing weakly iso- ] o
lated horizons are of the black hole type, so we will tailor theWheJre the traces are taken over the mtel(m_slira? indices,
topological structure of the underlying space-time manifoldFabi” denotes Jthe curvature of the connectidy”, and the
to this case. Specifically, fix a manifoldt with boundary two-forms2.,p,” are defined in terms of theo-tetrad field

where the boundary consists of four components: an interngy

boundaryA, topologicallyS?x R which will finally serve as
. . . S ‘J==E J eKeL )
the isolated horizon, an outer boundary, also topologi- abl I'KLEa G

167G LTr[ADE]
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Interestingly, while the asymptotic boundary term is neededoundaries, infinitesimal diffeomorphisms and internal Lor-
to make the action principle well-posed given the asymptoti-entz rotations are in the kernel of the symplectic structure if
cally flat fall-off conditions imposed near infinity, no such and only if they vanish asymptotically. Thus, infinitesimal
boundary term is needed at the horizon surfAcéFor de-  diffeomorphisms which asymptotically approach Killing
tails, sed4].) fields of the flat background metric are not gauge; they are
Our covariant phase spatewill consist of the space of generated by nontrivial Hamiltonians which define the
solutions €f',A,’,A,) to the Einstein-Maxwell equations, Arnowitt-Desir-Misner (ADM) 4-momentum and angular
satisfying the boundary conditions specified above. As usuamomentum. The situation is similar at the internal boundary
the symplectic structure is constructed Brusing the(anti-  A. Infinitesimal diffeomorphisms and internal Lorentz rota-
symmetrizedi second variation of the actiq®.13. Applying  tions need not be in the kernel of the symplectic structure
the equations of motion to this second variation, one discovunless they vanish of. Indeed, we will show in Sec. IV that
ers the integral oveM reduces to surface terms ldt™ and  space-time motions corresponding to time translations and
at A (the surface term atr,. vanishes because of the rotations are generated by nontrivial Hamiltonians with sur-
asymptotic fall-off conditions In order to reduce the expres- face terms both at infinity and at the horizon. The horizon
sion for the second variation further, it is convenient to in-surface terms will then be interpreted as the horizon energy
troduce a pair of scalar functions @anwhich act as “poten- and angular momentum. However, since infinitesimal inter-
tials” for the surface gravity and electric potential. Given anynal rotations(and gauge transformations of the Maxwell
point (ef',A,°,A,) in phase space, the scalar figlds de- theory on A are not automatically in the kernel of the sym-
fined by plectic structure, one must separately ensure that physical
guantities such as energy and angular momentum are gauge
#=0 on Sy, and L=« (2.14  invariant.

and the scalar fielgy by
. SYMMETRIES OF A WEAKLY ISOLATED HORIZON

x=0 on Sy, and Lix=-®q). 219 In this section we analyze the possible symmetries of a
Note that both of these functions are completely determine€akly isolated horizon. Because the generdttiisof A are
by the physical fields(A priori there is some freedom in the Not assumed to be complete, we will focus iafinitesimal
choice of initial values ofy and y on Sy . While the sym-  Symmetries. Since the horizon is the inner boundary of
plectic structure is sensitive to these choices, none of th&Pace-times under consideration while spatial infinity is the
final results aré.Expressed in terms af and y, the surface  Outer, one would expect the horizon symmetries to be analo-
term atA in the second variation of the action turns out to be90Us t0 the asymptotic symmetries at spatial infinity. Thus, it
exact and thus reduces to a pair of integralsSin The is natural to define the horizon symmetry algelirto be the

integral overM ~, together with its surface term & is then g_uotient of _the Lie _algebra of all infinit_esimal space-tim_e
taken to define the symplectic structure for the theory. In iffeomorphisms ‘.Nh.'Ch preserve the hqnzon structure by its
; . -7 sub-algebra consisting of elements which vanish on the ho-
fact, when the equations of motion hold and both Varlat'onsrizon The key question now is: What is the horizon structure
satisfy the linearized equations of motion, the integral WhiChrelev;':mt for these consideratic.ms'7 It is here that one would
defines the symplectic structure may be taken over any par- L ) o ;
tial Cauchy surfacé in M. It is given by expect a s_|gr_1|f_|cant depar_ture from the situation at spatlal
infinity. At infinity, all metrics approach a fixed flat metric
since the relevant geometric structure—and hence also the
f Tr 6;A08,% — 5,A08,3 ] symmetry algebra—is universal; it does not vary from one
M space-time to another. At the horizon, by contrast, we are in
the strong field regime and the near-horizon geometry can
O1 8,2 €— 8,45,%€ vary from one space-time to another. Therefore, we do not
Sa expect the relevant horizon structure or the symmetry alge-
1 bra £ to be universal. Nonetheless, because the horizon is a
+ —f 5;A08,( K F)— 8,A08,(*F) boundary and all geometries under consideration are subject
4 Ju to the same boundary conditions, one would expect the ho-
1 rizon symmetry algebra to fall in a small number of “uni-
- jﬂ 81x (K F)— 8,x81(k F), versality classes.” We will see that this expectation is cor-
4m Js rect.
(2.16 To identify the relevant horizon structure, let us return to
the definition of weakly isolated horizons and examine the
where M intersectsA in S, . Details of this result are dis- geometric structures that are essential to the definition. First,
cussed if4]. we have the manifold\ and the equivalence clagt*] of
In the covariant Hamiltonian framework, infinitesimal null normals. This structure is shared by all weakly isolated
gauge transformations are in 1-1 correspondence with thieorizons. However, to specify the conditions thEt] must
degenerate directions of the symplectic structure. For exsatisfy for (A,[12]) to qualify as an isolated horizon, we also

ample, in the asymptotically flat contextithout internal  introduced nonuniversal fieldsq4,,w,) which vary from

Q(&ﬁsz

- 87G

044016-6



MECHANICS OF ROTATING ISOLATED HORIZONS

one point in our covariant phase space to anothEnere-
fore, to construct the algebré corresponding to a given

PHYSICAL REVIEW 4 044016

isolated horizon, it is natural to focus on space-time vectoiTherefore, ifx(,#0, thenf must be constant oa. In this

fields whose action preserves (12],q,p,,) and factor out
by those which vanish oA.

Thus, we can ignore the space-time manifold and
work just with vector field&V which are tangential ta. To

case the only generator-preserving symmetries are given by
W?2e[1?] and 7 is one-dimensional. On the other hand, if
k=0 [i.e., (A,[l]) is extremal, Eq.(3.4) imposes no con-
dition onf. In this casef has only to satisfy Eq.3.3) andZ

qualify as symmetries, they should satisfy the following twois infinite-dimensional.

conditions:
Lyl3Acyl? with ¢, constant onA, (3.9
and
Liwlap20 and Lyw,2 0. (3.2

The set of vector field®\? satisfying both Eqgs(3.1) and

(3.2 form a Lie algebra under the usual commutator bracket
This is the symmetry Lie algebra for the horizon in question.

We will denote it byS and refer to these vector fields® as
infinitesimal symmetries of the horizon.

Before analyzing the full algebra, let us note that, irre-
spective of the specific weakly isolated horizon under con

sideration,S is at least one-dimensional: By settilig=12
for any12€[1?], we see Eqs(3.1) and (3.2) are automati-

cally satisfied by virtue of the very definition of weakly iso-

Next, let us examine the quotient Lie algetﬁ‘s’a Since
every infinitesimal symmetry%v® must satisfy Eq(3.2), it

can be projected unambiguously to a vector I8 on A.
We can now use our discussion of Sec. I B on the relation

between fields om\ with those on the 2—spher§ of its
generators to analyzé in terms of these projectiong/?.
The first of Egs.(3.2) is satisfied if and only ifW? is a
Killing field on (A,§.p):

L\0ap=0.

Denote byKC the isometry Lie algebra ofﬁ(,qab). We have

shown thatSis a sub-algebra df. In general, it will only be
a proper sub-algebra becals® must also satisfy E¢3.2).

Nonetheless, the fact thatis a sub-algebra df’ plays a key

lated horizons. These infinitesimal symmetries preserve eadlvle in the classification ofS because the dimension and

integral curve of. More generally, denote Ly all elements
W2 of S of the formW?= |2 for some functiorf on A. This
will be the sub-algebra of aljenerator-preservingymme-
tries. Now, given any infinitesimal symmet/? in S and an
infinitesimal symmetnyfl2 in Z, Eq. (3.1) implies the com-
mutator[ W, fl ]2 is again proportional td?.

[W,fIT2A (ewf+ Lwf )13,

wherecyy is the constant appearing in E®.1). Hence,Z is
in fact an ideal of the Lie algebts. Denote bysS the quotient

topology of A imposes severe restrictions & On the one
hand, every Killing fieldW? on A is of the form&®°g,h for
some functionh. On the other hand, since all metrics on a
2-sphere are conformal to one another, any Killing field for a

generic metric must be a conformal Killing field of a fixed
round 2-sphere metric on that sphere. Every conformal Kill-

ing vector fieldW? of a round metric belongs to one of the
following classes(i) a rotation,(ii) a combination of a boost
and rotation commuting with each other, with a nonzero
boost component, an(i) a null rotation, the set of zeros of

Lie algebra:S=S/Z. For reasons explained below, we will the vector field has exactly one element. Now, in c&igs
refer to it as the algebra of projected symmetries. Thus, th@nd(iii), all the orbits of the vector field converge to a same
algebra$ of infinitesimal horizon symmetries is a semi- point of the sphere at whichV®=0 [there are two such

direct surd of 7 and S.
To determine the structure , therefore, it suffices to

examine the Lie algebrag and S separately. Let us begin
with the former. SettingVv?=fl2 in Eq. (3.1) we obtain

£|f = Cf (33)
whereC; is a constant oA. The first of the two conditions
in Eqg. (3.2) does not restrictf in any way while the second
implies

points in casdii)]. Since the functior is constant on every
orbit, it follows that in these cases it would be constant since

W2=0 on the entire sphere. Therefore, a nontrivial Killing

vector fieldW2 is of class(i).

Thus, we conclude that a general metric on a 2-sphere is
of one of three types:

(1) The metric is round/C is three-dimensional and iso-
morphic tosa(3);

(2) The metric is axially symmetrid is one-dimensional
and isomorphic t®a2);

(3) The metric has no Killing fields;KC is zero-
dimensional(i.e., consists only of the zero elemgnt

3Recall from Sec. Il A that the essential restrictions are captured |n each case, the sub-algebrastofire easy to character-

by two conditions:(i) £,q,p20; and(ii) £,w,2 0.
“Had A been complete, we could have integratedo obtain a

ize. Only in the first case doe§ admit a nontrivial sub-
algebra which then must be isomorphicst2). Hence, the

horizon symmetry grouy which would have been a semi-direct quotient algebra:S must be isomorphic either tea3) or

product of the groups generated Byand 3‘, the former being the
normal subgroup of.

s02) or must be the trivial Lie algebra consisting of only the
zero element.
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Thus we can divide the set of all weakly isolated horizonsto space-timaliffeomorphisms and provides criteria for their
into the three classes: existence. In the third subsection, we specialize this discus-

(1) Spherically symmetric; the aIgebﬁaof projected sym- sion to the case where the diffeomorphism reduces to a ro-
metries is three-dimensional. if;y# 0, the horizon symme- tational symmetry at the horizon and show the corresponding
try algebra’ is the four-dimensional semi-direct sum of the Hamiltonian does indeed exist. This Hamiltonian is inter-
additive groupR of reals withsa(3). If «(,=0, then’ is the preted as the horizon angular momentum. The fourth subsec-

semi-direct sum of the infinite dimensional Lie algebra de-{ion considers space-time diffeomorphisms which can be in-
fined by Eq.(3.3) with so(3). terpreted as time-translations and analyzes the issue of

whether their induced action on the phase space is Hamil-
tonian(i.e., preserves the symplectic strucfuta contrast to
the rotational case, the answer is not always in the affirma-
tive: As in[4], the necessary and sufficient condition for the
Y A ; , ; evolution to be Hamiltonian is precisely that the first law
geml-d|rect sum of' the infinite dimensional Lie algebra de'holds. Thus, for every space-time vector fieldwhich gen-
fined by Eq.(3.3)AW|th s0(2). erates a Hamiltonian evolution, there is an associated energy
(1) Generic;S is zero-dimensional. Ify#0, the hori-  E() and angular momenturd, satisfying the first law. The
zon symmetry grougt is one-dimensional. lk;y=0, thenL  |ast subsection shows that, in the Einstein-Maxwell case,

is the infinite dimensional Lie algebra defined by E8.3).  there is a natural way to select a preferred class of evolution
As mentioned in the Introduction, in the next section, Weyactor fieldstg for which E(Ato) can be interpreted as the

will focus on class Il. We will conclude with two remarks. horizon mass M. The corresponding first law is then the
(1) In the above discussion, we have focussed only O anonical generalization of the standard first law of black

symmetries of the releya}nt horizon geometry. In .thehole mechanics to the context of rotating, weakly isolated
Einstein-Maxwell theory, it is natural to require that an in- horizons

finitesimal symmetryW? of a given weakly isolated horizon
also satisfyL\F 4,2 0. Physically, this condition requires the
symmetry to preserve the flux of the magnetic field through
the horizon. It is natural to demand the same of the electric Physical observables such as energy and angular momen-
flux. Therefore, we will also insist that,,(* F),,20 atthe tum are naturally associated with symmetries: energy is as-
horizon. Neither of these additional conditions will affect the sociated with time-translations and angular momentum with
classification scheme described above in any way. rigid rotations. For example, in the familiar construction of
(2) As shown in Sec. Il B, ifc(,#0, the weakly isolated the ADM energy, one first introduces a vector figfdin

horizon (A,[1?]) admits a canonical foliation by 2-spheres space-time which asymptotically approaches a time-
S, which can be used to lift vector fields dnto “horizon-  translation symmetry of the fixed flat metric at infinity and

tal” vector fields onA. In particular, then, there is a canoni- constructs the HamiltoniaH generating the corresponding
time-evolution in the phase space. Since Einstein’s theory is

generally covariant, “on shell’(i.e., when the constraints
are satisfief] the Hamiltonian reduces to two-surface inte-
%rals on the boundaries of the Cauchy surface under consid-
eration. Under the standard assumption that there are no in-

WA=B,12+hd,, (3.5 ternal boundaries, the on-shell valE&’ of the Hamiltonian

is thus given just by a two-surface integral at infinity, which

whereB,, is a constant ané3, is a horizontal vector field Is interpreted as the total ADM energy of space-time with
(i.e., tangent to the preferred 2-spher8g), satisfying respect to the asymptotic time-translationtdf Likewise, to
£,hd=0. The condition Lyw,=0 further implies dgfine the total gngular momentum of space-time, one con-
Ly wa20, and henceSy, (Im[W],)AO. siders a space-time vector fiejd which approaches a rigid

w w rotation of the asymptotic metric at infinity. The angular mo-
mentumJ{?) is then the surface integral at infinity giving the
on-shell value of the Hamiltonian generating rotations along
¢?. To define energy and angular momentum of an isolated

In this section we will introduce definitions of mass and horizon, it is therefore natural to examine Hamiltonians
angular momentum for type Il weakly isolated horizons andwhich generate appropriate symmetries at the horizon.
derive the first law of black hole mechanics in this context. Let us begin with angular momentum. In the above pro-
As in the nonrotating case treated 4], we will use a cedure, while there is considerable freedom in the choice of
Hamiltonian framework. ¢?, these vector fields must approacfixedrotational Kill-

This section is divided into five parts. In the first, we ing field ¢* of the universal flat metric at infinity. This con-
make appropriate restrictions on the phase space to enaldéion plays a key role in the standard proof of the existence
the introduction of a useful notion of angular momentum.of a Hamiltonian generating the corresponding motions in
The second subsection considers the issue of defining Hamiphase space. More importantly, the requirement has a direct
tonians generating canonical transformations correspondinghysical origin. Angular momentum isot a scalar quantity

(II) Axi-symmetric; S is one-dimensional. lf,#0, the
horizon symmetry algebr4 is the two-dimensional Abelian
Lie algebra generated by vector fielal'+ b ¢® where ¢? is
a rotation onA anda,b constants. Ifk)=0, then. is the

A. The phase space of rigidly rotating horizons

cal injection of the projective symmetry algehfainto the
total symmetry algebrd&. As a result, the semi-direct sum
structure reduces simply to a direct sum structure. In thi
case, one can writany symmetry vectoiV? in the form

IV. ANGULAR MOMENTUM, MASS AND THE
FIRST LAW
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in physical theories and has several independent comp@ince we fixed the rotational symmetry fiefgf on A, this
nents. By fixing one particular axial symmetry across all asgenerality is not necessary for the definition of angular mo-
ymptotically flat space-times, one effectively guarantees thenentum. However, as we will see in Sec. IV D, it is essential
same component of angular momentum is calculated for allo the definition of energy because, in contrast to spatial
space-times. I were to approach different rotational Kill- infinity, the near horizon geometry can vary from one space-
ing fields of the flat background in different space-times ime to another. This complication makes the question of
even if one could construct the corresponding conserve@Xistence for certain Hamiltonians rather more subtle in the
quantity, it would be difficult to interpret it physically. presence of a weakly isolated horizon.

To define the angular momentum of weakly isolated ho- For calculational simplicity, it is useful to introduce a uni-
rizons, it would be natural to start with vector fielgst ~ Vversal foliation of the horizon by 2-spheres, although our
which approach a rotational symmetry on the horizon. Recalfinal results do not depend on it. We saw in Sec. II B that a
however that, in contrast to infinity, weakly isolated horizonsnonextremal, weakly isolated horizon admits a natural folia-
do not have a universal metric and, furthermore, the metricdion of this type. But we would like to incorporate the ex-
in class Il isolated horizons need not adraity rotational ~ tremal case as well. Let us therefore define the leaves of the
symmetry at all. Therefore, it is natural first to restrict our- foliation as the rigid translations of the past bound&gyof
selves to class Il, i.e., axi-symmetric, weakly isolated hori-A along any element of the equivalence cl@Ey. (In the
zons. Note however that, even in this case, the metric on theonextremal case, these are precisely the level surfaces of the
horizon is not universal, sin@priori we do not have a fixed function ¢ appearing in the symplectic structure and this
rotational vector field$? on A that the space-time vector foliation coincides with the preferred foliation if and only if
fields ¢? can be required to approach. Therefore, for a meanthe past boundarg, is a leaf of the preferred foliationThe
ingful comparison of horizon angular momenta of differentpractical advantage of introducing such a foliation is that it
space-times, it is convenient to introducdixed rotational  allows us to decompose a vector fighd on the horizon into
vector field $? on the horizon and admit only those space-vertical and horizontal components, exactly as in &)
times in the phase space which have tfsas the horizon Consider, then, a smooth assignment of a vector figld
symmetry. We will do so. on M to each space-time in the phase spEgesuch that, at

Thus, let us now fix a vector fiel¢® on the inner bound- infinity, W? is an asymptotic symmetry, and on the horizon
ary A of M such that(i) it has a vanishing Lie bracket with W? is tangential toA, and
[12], (i) it vanishes on exactly two generatorsAfand(iii )
it has closed, circular orbits of affine lengthr2For calcula- We=Byl®+hj,
tional convenience, we will also insist that it be tangent to o
the past boundar$, of the horizon. Like the equivalence With £;h},=0 andB,y a constariton A. The motion in phase
class[12], this ¢2 will now be regarded as an extra structure Space associated to the diffeomorphism aléhy is given
fixed onA once and for all. The phase space will now consistSimply by the Lie derivative:
of the submanifoldl”, of the covariant phase spade (of
Sec. 110, consisting of those asymptotically flat solutions Swan’=LwZan’ s SwAa’=LwAy’

(e?,A,,’ ,A,) to the field equations for which([12], ¢?) is

a type Il horizon with¢? as its rotational symmetryThus, and

Lgl?e[l?], L4020, Lyw,20, and L,F,,A0.) We will

refer tol" , as the phase space of rigidly rotating horizons. In owAa=LwAa .

the next two subsections we will show thatbp we can use

the standard strategy of defining conserved quantipes- When the background fieldsngﬂ,Aa,J,Aa) satisfy the
lined in the beginning of this subsectioand arrive at a field equations of Einstein-Maxwell theory, one can easily

definition of the horizon angular-momentuin . verify that éy satisfies the linearized equations of motion. It
therefore represents a tangent vector field on covariant phase
B. Existence of Hamiltonian generating space-time space. This vector field generates a canonical transformation
diffeomorphisms if it preserves the symplectic structure, i.e.,ﬁtswﬂzo.

Fix a vector fieldW? in each space-time ifi ; such that Equivalently, 6y, is a canonical transformation if and only if

the diffeomorphisms it generates preserve the boundary cofl€ré exists a Hamiltonian functidt,, on phase space such
ditions both at spatial infinity and at the horizon. As dis- that
cussed below, the Lie derivatives o&(,A,’,A,) by W2

define a vector fields,, on I',. The key question of this
subsection is: 18, Hamiltonian? Or, alternatively, does the

Lie derivative of the symplectic structure aloy, vanish?

We will find a necessary and sufficient condition for the an- 555 we saw in Sec. IIl, ificy=0, By need not be constant ah
swers to these questions to be in the affirmative. This reSUR)r W2 to define a symmetry of that horizon. However, our purpose
will then be used to define the horizon angular momentunhere is to consider amoothassignment of symmetry vectors to
and energy in the next two subsections. In this subsectiormany different horizons. By continuity in phase space, therefore,
we will allow W2 to vary from one space-time to another. By, should be constant in this case as well.

SHy=Q(8,5,) (4.2)
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for all tangent vector$ to phase spac€As with any gen- The remainder of the calculation is straightforward. The
erally covariant theory, one expects the Hamiltonian, if itsurface terms in Eq4.2) arising from the bulk integrals can
exists, will consist only of surface terms. We will see thatbe expressed in terms ef, and %¢,;,,. The final result can be

this expectation is corregt. conveniently expressed as
Using the symplectic structur@.16) and dropping terms
which vanish when the equations of motion hold ahsat- -1

- 2_7_ 2
isfies the linearized equations of motion, the right side of Eq. (%)= g5 éSA A (hwlw) e]=(shytw) e
(4.1) becomes

1
+ k) 02— —— fﬁsA S (hyJA) % F]

1 4

9(5,5w)=m

f d T SAO(WS) + (WA) 83 ]
M — (ShyJA) K F—® ) 5(K F)

1

876 fﬁsA(M)szf)_wW)(‘szf) + oG i, TLOADIWII) + (WIA) 53]

—if d SAT(WIHk F)+ (WJA)5(kF)] —if SAT(W_I%F)+(WJA)S(*F
41 Jm ar s ( )+( )8( X F),

1 4.3
“am §. (VGURE) () (LX)

where® ., denotes the electric potential of the horizon rela-
(4.2 tive to the vertical component &/, The right side of this
result consists of integrals both at the horizon and at infinity.
The remaining bulk terms reduce to surface integralSgn If the HamiltonianHyy is to exist, then the right side of Eq.
andS. . The integrals orS, are the usual ones and are not (4.3 must be equal to the exact variation of some expres-
the main focus of this subsection. On the other hand, th&ion. As is well-known, the surface integrals at infinity can
surface terms a8, arising from the bulk integrals, together themselves be written as exact variations whenéVerbe-
with those already present in E@.2), will provide the criti- ~ comes a symmetry of the asymptotic metric at infinity. How-
cal test of whetheb,, defines a symmetry of the symplectic €ver. there is na priori reason why the surface integral at
structure; we will focus on these. the horizon is an exact variation. Thus, somewhat surpris-
The first issue one must address is the definitiodgy ~ INdly, although the evolution generated By* does yield a

and Syx. Since ¢ and y are uniquely determined by the flow on the phase spade,, this flow need not be Hamil-

triplet (e?,AmJ-Aa) at the horizon[see Egs.(2.14 and tonian. The necessary and sufficient condition for it to be

(2.19], 6w and Sy are completely unambiguous. How- Hamiltonian is precisely that the surface \iArInegraI 8nin
ever, their explicit expressions involve a subtlety. For defi-EQ- (4.3 equalssH{" for some funghorH& YonT, (de-
niteness, let us considekyy. One may first be tempted to Pending only on values of horizon fields

set Swi= L. However, recall the definitiofi2.14) of

required ¢ to vanish onS, . The naive definition ofé\yy C. Angular momentum

generally does not preserve this condition. Hence the naive g gefine angular momentum, let us assign a vector field
expression is incorrect and must be modified to ensure thata gy A1 to each space-time ifi, such that its restriction to
dwiy vanishes orfy . To address this problem, let us pro- A is given by our fixed rotational vector fiekd?. Since we
ceed systematically and return to definitith14) of . Us-  are primarily interested only in the horizon angular momen-
ing the second part to the definitioi2.14) of  and the tym, to avoid the unnecessary analysis of the terms at infin-

propertiesCy|#20 and Lyw, 20 of W, it follows that ity, let us further require thap? vanishes outside some com-
pact neighborhood of the horizorfWe will relax this
L(6wip) £ 0. requirement after obtaining the expression of the horizon an-

gular momentum.Then, settingV?= ¢?, Eq. (4.3) simpli-
fies: the term at infinity vanishes aidth, can be set to zero.

Sincedy ¢y must vanish ors, , we concludedy 2 0 on all
wy A wy Thus, we now have

of A. A similar argument applies tg, since we conclude

1
Bur=0= B, 0(6.00= 5 §, A(d107%

Note that the subtlety arose becaugand y are potentials

for physical fields. Since all other terms in Eg.2) involve

the fields themselves, there is no further subtlety in defining
the action oféy; the action is given simply by the Lie de- The right side of this expression is clearly the variation of an
rivative. integral overS, . Therefore, we conclude the Hamiltonian

—i3€5 JA)kF
am (G IMXFL
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generating motions along? does indeed exist. Moreover, First suppose that there is no Maxw@ any othey field

that Hamiltonian will consist of a single surface termfat in a neighborhood ol and ¢? is in fact a Killing field of a

whose value may be taken to define the angular momenturspecific geometry in our phase-spalcg in this neighbor-

J, of the horizon: hood. Then, one could also define the angular momentum via
Komar integral. To analyze the relation between the two

o ) 1 definitions, first consider the one-form, on A which is
Ja=Hi=~5-5 S (¢lw) ““a4r Js (¢JA)KF, normal to the foliation byS, and is normalized with
. . (4.4) 1n,A —1 everywhere. It is easy to shoWVn,2 wy,

whereV, denotes the space-time connection. Using this re-
where the integral can be evaluated amy cross-section of lation in the gravitational contribution to the angular momen-
A. This definition is manifestlyquasijlocal to the horizon. tum definition(4.4), one finds
Sincew, and %¢,, are invariant under the permissible tetrad 1 1
rotations, the gravitational term is invariant under internal - = 2 _ _— 2
Lorentz rotations at the horizon. Using the fact that ) 8mwG iA(un'n) ‘" 87G ngA (Vigin)%e
L 4(*F)ap2 0 and the Maxwell equations, it is easy to check
that the Maxwell term is also gauge invariant. Finally, note _ ﬁ;
that, in contrast to the standard angular momentum expres- 167G Js,
sions at infinity[13], the horizon angular momentudy in-
cludes contributions from both the gravitational and electrowhere we have used the Killing property of in the last
magnetic fields. In this respect the right side of B44) is  equality. By rewriting the last integral in terms of the space-
completely analogous to the expression of the horizon energyme dual of the two-form @, we obtain
derived in[4] in the nonrotating case.
It is natural to ask if the horizon angular momentum can 3 _ 1
be expressed directly in terms of space-time curvaturk. at A7 8nG S,
The intuition derived from the Newman-Penrose framework
suggests that the gravitational contribution to the angulafhe right side is precisely the Komar angular momentum.
momentum is encoded in the componenf¥y] of the Weyl  Thus, in any space-time in whict? can be extended to a
curvature. We will now show that his rule of thumb is ex- space-time Killing fieldo? in a neighborhood ofA, the
plicitly realized in the present construction. Singé is a  gravitational contribution td, agrees with the usual Komar
Killing vector of the intrinsic horizon geometry, it is also a expression defined by?. As at infinity, this is an exact
symmetry of the area elemert,,. Thus, we findC,2e  agreement, not just a proportionality. Finally note that, even
=d(¢J%€)=0, from which it follows that¢2e=df for  in the presence of Maxwell fields on the horizon, the above
some smooth functiori satisfying £,f A0 on the horizon. discussion establishes the equality of the Komar integral
Now, since? is tangent toS, , we have with the gravitational termin Eq. (4.4).
A second definition of angular momentum is the one as-
, ” 5 sociated with infinity[13]. However, the integral at infinity
iA(d’J“’) €= %SA“’D(‘M €)= iﬂ“ Im[W5]%, represents theotal angular momentum, including that in the
' radiation fields outside the horizon. Therefore, in general,
Hne does not expect the two to agree. Indeegriori, it is
not clear to which component of the angular momentum at
infinity we should compard, . However, this problem dis-
appears if the space-time under consideration admits a glo-
gl rotational Killing field ¢* (with £ Fap=0 on M),

(1Jdg) - n?e,

*de.

where we have performed an integration by parts in the la
step. Next, consider the electromagnetic term in &d).
Since L, FAO and dkFAOQ, it follows that ¢ 1% F=dg
for some smooth functiog satisfying £,g2 0 on the hori-
zon. Hence, using an identical argument as above we ¢ < )= a
replace the term ¢_IA) involving the electromagnetic po- whose restriction td is given by ¢®. Let us therefore con-

tential by the Newman-Penrose componentof the Max- sider this _case.a. T
well field (given by ;=222 (k ), +iF,.]). Thus, we Now, sincee?® is everywhere a Killing field of the space-

can re-express the horizon angular momentdrd) as time under con5|d§rat|0n,_th_e_ve(_:tor fiedi) on the phase_
space can only define an infinitesimal gauge transformation.

1 1 However, such a gauge transformation defines a degenerate
Ih=—5—F= é fIm[¥,]%e+ — é gIm[¢1]%. direction of the symplectic structure. Thus, we have
47TG Sa 27T Sa

(4.9 SH=0(8,54)=0

Since the integrands in E@4.5) are Lie-dragged by, the  for all tangent vectorss at any axially symmetric point

full expression can be projected to the 2-spHewef genera-  (ef,A,”,A,) of the phase space. Therefore, on any con-

tors of A. nected component of the phase-spEgeconsisting of space-
Having the precise definition at hand, we can now ask fotimes which admity? as a Killing field,H , must be a con-

its relation with other notions of angular momentum avail-stant. Note, however, that withG=c=1, H, has

able in the literature. dimensions of angular momenturf{length?] while the
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theory has no dimensionful constant with that dimengrern  in class I. As we just showed], satisfies this condition.
call: the cosmological constant is zgroTherefore, the Thus, the additive constant is fixed in a natural fashion.

Hamiltonian itself must vanish. Finally, from E@t.3) it fol- (3) An important question for this framework is whether

lows that, on shell, the Hamiltonian consists only of twothe event horizon of a Kerr-Newman black hole is a rigidly
surface terms: rotating isolated horizon and, if so, whether the above defi-
nition of angular momentum reproduces the standard result.

Hy=Jdx—Jo. The answer, in both cases, is in the affirmative. Being Killing

horizons, these event horizons are in particular weakly iso-
We therefore conclude that if the space-time admits a globahted horizons and the axi-symmetry of the ambient space-
rotational Killing field ¢* which reduces tap? on A, then time defines the field? on A. Thus, these are rigidly rotat-
ing isolated horizons. Finally, the discussion above shows
Ja=Jde (4.6 that in this casd, equalsMa, the standard angular momen-
tum J., defined at infinity. Thugas with the horizon mass in
whereJ, is thetotal horizon angular momentuidefined by  the non-rotating casp4]), our horizon angular momentum
¢%). expression(4.4) contains not only the “bare” angular mo-
At first this result(4.6) is rather surprising, both math- mentum one may naively associate with the horizon but also

ematically and physically, because one would have expecteghe contributions from the electromagnetic hair outside.
J.. andJ, to differ from each other by the angular momen-

tum in the Maxwell field outside the horizon. However, a
closer examination shows that the result is to be expected but D. The first law
for rather subtle reasons. Let us first consider the mathemati- 14 state the first law of black hole mechanics for isolated

cal aspect. In the axi-symmetric case, it is well known thatorizons, we must first define horizon energy. As with angu-
J. is given by the Komar integral;; defined bye® at infin-  |ar momentum in the previous subsection, we will base our
ity [14]. We saw above that the gravitational contribution todefinition of energy on the Hamiltonian generating transla-
J, equals the Komar integrdl evaluated at the horizon. It tions along an appropriate symmetry of the horizon. How-
turns out that, using the Cartan identity, th&-angular mo-  ever, which particular symmetrW?=1t2 would correspond
mentum in the bulk electromagnetic field—i.e., the integralio the desired time-translations is not immediately clear.
J Tape?dS® over any partial Cauchy surface extending from Therefore, we will begin with ararbitrary symmetry field
the horizon to infinity—can in fact be expressed as surface?. At the horizon, then, it only has to satisfy

integrals. The term at infinity vanishes because of the fall-off

conditions while the term at the horizon is precisely the elec- '+ Q% e[1?] or t2=B( y1*—Qyo? (4.7
tromagnetic contribution td, . Thus, the bulk electromag-

netic contribution to the-component of angular momentum

is already contained i, through the Maxwell horizon term. for some constant® ;) ,B( ;) on A. (The latter depends not
Physically, one can understand the situation as follows. 1PNly on the specific choice df* but also ofl®e[1%].) The
general, ifA extends in the future all the way 0, the con_stanﬂ(t) \_NlII be referred to as the angular ve_Ipcr[y of the
horizon angular momenturd, is to be thought of as the horizon relative tot?. Note that. both the specific element
angular momentum “left over dt" after allowing for radia-  Ba.p!® of [I*] andQ, , determined by, can depend on
tion.” (This is completely analogous to the situation with thethe dynamical fieldsef',A,”,A,); in the numerical relativ-
horizon mass analyzed in detail[i8].) Now, if ¢ is a Killing ity terminology, we are considering “live” evolution vector
vector, there is no radiation of the-component of angular fields t2. This generality is essential, in particular because

momentum, since the-component evaluated at is the the physically appropriate angular veloci€y, of A will
same as that evaluatedidt sinced,=J... vary from one space-time to another. To summarize, to each

We will conclude with three remarks. point in the phase spade,, we assign a vector fieltf on

(1) Let us restrict ourselves to class(ile., spherically M satisfying Eq(4.7) on A, allowing the vector field to vary
symmetrig weakly isolated horizons. In this casg,,, w,,  from one point of the phase space to another.
andA, are Lie-dragged by all three rotational vector fields. T0 analyze the question of whethéy is a Hamiltonian
Hence, the pull-backs to the spherical sectionsgfaindA,  vector field onl’,, we must determine whether the right side
must vanish and the integrand of E@.4) therefore van- Of Hamilton’s equations4.1) is the exact variation of some
ishes. Thus, as one would physically expegtyvanishes on Hamiltonian. We have already calculated the quantity in
all class | horizons. question for an arbitrary vector fieM/® in Eq. (4.3). Since

(2) The vector f|e|d6‘p determines the Ham”toniaH(p the surface terms at |nf|n|ty are not central to this discussion,
only up to an additive constant. How was this freedom fixed®s in the angular momentum calculation above, for simplicity
in Eq. (4.4? In the case where the cosmological constantet us first assume that vanishes outside of some compact
vanishes, this constant can be fixed to zero because therengighborhood ofA. The only potential obstruction t6; be-
no parameter available in the theory with the correct dimening Hamiltonian lies in the horizon surface term of £4.3).
sion. Even when the cosmological constant is not zero, th8eing linear iné;, this surface term defines a one-foXn
freedom can still be eliminated, e.g., simply by the physicalon phase space. From the right side of E43), X} can be
requirement that horizon angular momentum should vanislexpressed as
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A

—[6(— Q) JATKRF+ D, 6(KkF) 4.9

where we have decomposddas in Eqg. (3.5 with h;
=—0)¢?. Let us begin with the first integral. Sinag is
fixed once and for all o\, the variationsin the second term
only affectsQ . Therefore, the second term will simply
cancel the part of the first term where the variation Kitg
and we can therefore write the first two terms together as

1
87G jgs — Q9 (pJw)?el.
A

However, the quantit) ;) is constant oveA and may there-

PHYSICAL REVIEW 4 044016

momentumJ, and the charg®, .® Other factors such as the
local geometry(i.e., distortion of the horizon cannot affect
these “extrinsic parameters.” Moreover, these parameters
must satisfy certain nontrivial relations:

dky(as,Ja,Qa) A y(as,Ja,Qa)
=87G
AN day

Ik y(@s,Ja,Qa) _
dQx

D 1y(ay,Jx,Qa)

877G 72,

dQp(ay, Iy, Qa) 9P y(an,Ja,Qa)
dQx - NN

(4.1)

Now, on any given pointe?,A,,’,A,) in the phase space,
Ky y, and® ) are completely determined by the hori-
zon value oft?. Conversely, at any given phase space point,
k() uniquely determines the vertical componenttdfand
Q(, the horizontal component. Therefore, relatigdsll)
constrain the permissible choices of the assignment od

fore be pulled outside the integral. The remaining integranagach space-time ifi,. These strong restrictions are the nec-

is exactly thes-variation of the gravitational contribution to
the angular momenturt%.4). Analogous procedures can be
applied to the secondi.e., electromagnetjcterm of Eq.

(4.8), likewise yielding the electromagnetic contribution to

essary and sufficient conditions for the flow generatedby
onT', to be Hamiltonian.

Thus, the restriction to the horizon of a permissible evo-
lution field t? is determined by this remarkably small set of

Ja . Furthermore, since the surface gravity and electrostatiparameters of the horizon. Note, however, that these argu-

potential are both constant ovAr we can pull them outside
the respective integrals and Ed.8) reduces to

K
87G

X\(8)= Say+ QI+ @ 16Qy. (4.9

Note that the right side of E4.9) is strongly reminiscent of
the first law of black hole mechanics. However, at this stag

one-formXj onT ;. The condition tha®, be Hamiltonian is
simply that the one-fornX\, is closed:

1
0= letAZ%(]IK(t)D]]{HaA—i— dQ Iy + P, [dQ, ,
(4.10

whered and [ denote the exterior derivative and exterior
product on the(infinite-dimensional phase spac#',. This
simple relation leads to some startling consequences whi
we now discuss.

A priori, the horizon value of? can vary from one space-

ments do not provide apecificchoice of functionsc;, and
Qy of the horizon parametees, ,J, ,Q, . Correspondingly,
for any choice of these functions satisfying E@.11), the
Hamiltonian generating evolution along the corresponding

is guaranteed to existThe term at infinity is already an
exact variation and is therefore not relevant to our discus-
sion,) The horizon surface term in that Hamiltonian is a natu-
ral measure of the enerd¥,, of the horizon relative to the
evolution fieldt®. By virtue of Eq.(4.8) and the calculations

@bove, the energil, is a function only ofa, ,J and
of our analysis, it only provides an explicit expression of the ' 9% y ofas 1, Qs

satisfies

830 far, our construction is very general. For any given physical
metric (satisfying our boundary conditionee can choose gr] so
that (A,[1]) is an isolated horizon witlx;y=0 andanother equiva-
lence clasgl’] with «,.,#0. Hence, for any values of the triplet
(aa,Jx,Qa), and an evolution field®ABI2—Q ¢* (with B#0),
there is a phase space point withy=Bx(,=0 and another with
k) # 0. Therefore, irrespective of the choice tf the evolution
will fail to be Hamiltonian unless we remove the spurious redun-
ancy in the phase space. This can be naturally accomplished as
llows. Denote bykgn(ay ,Ja,Qa) the function of the three in-
trinsic horizon parameters which yields surface gravity in the Kerr-
Newman family. We will excise those points from our phase space

time to another in any smooth fashion; for each such choic&q, which one of gy - Kk) Vanishes but the other does not. This

we obtain a flow on the phase space. Equatbhh0 implies

excision could have been carried out already in Sec. Il C when we

that most of these flows fail to preserve the symplectic strucmtroduced the phase space. We did not do so because the reason

ture. To begin with, for the flow to be Hamiltonian, the sur-
face gravityx(t), the angu_lar velocity) ) and the electric
potential® , can be function®nly of the areaa, , angular

behind the excision becomes clear only after #gl10. Note that
the phase space continues to contain all Kerr-Newman solutions,
including the extremal ones, after the excision.
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asymptotically approach a time-translation Killing field of
the fixed flat metric at infinity, we find that the total Hamil-
tonian has two terms:

t_ K
OBs 871G

Sayt+Qddy+®)6Q,. (412

This is our generalized first law, which holds for all weakly H,=E.—E}

isolated horizons. The analogy to the usual first law of black

hole mechanics is clear. where E!, is the ADM energy. Again, general arguments
Let us summarizeA priori there is freedom to aSSign an from Symp|ectic geometry |mp|y th&ﬂt is constant on each

evolution vector fieldt® on M to every point in the phase connected component of stationary solutions, assuming of

spacel’, in any smooth fashion; each assignment providescourse that? coincides with the stationary Killing field in

an evolution flows; onT'y,. However, most of these flows these space-times. As in the case of angular momentum, we

fail to preserve the symplectic structure. They do so if andcan argue that the value of this constant can only be zero in

only if the assignment is such that E@.10 [or, equiva-  the Einstein-Maxwell theory. Thus, in each stationary space-

lently, Eq.(4.11)] holds. While this is a severe restriction on time. the horizon energil, equals the ADM energy at in-
the assignment af*, as discussed below, it still leaves con- finity.

siderable freedom in the choice of the assignment. For each
such “permissible™t?, there is a well-defined horizon energy
and the first law holds. Thus, there is a precise sense in
which the first law(4.12) is a necessary and sufficient con-

E. Horizon mass

The procedure that led us to the definition of the horizon

dition for the &;-evolution to be Hamiltonian.

energyE}, is the same as the one used at spatial infinity to

Since there is generally no canonical choice of a singledefine the ADM energy. However, the boundary conditions at
“correct” evolution field at the horizon, there is no canonical infinity are such that the asymptotic value of the evolution

notion of the horizon energy. WhilE}, has a direct Hamil-
tonian interpretation in the phase spdcg, for a general
permissiblet? it does not admit an obviouspace-timenter-

field t* must coincide with one of the time translation Killing
fields of the fixed flat metric, since the space of viable time-
translations at infinity is three-dimensior{abrresponding to

pretation. In the next subsection, we will show that a canonithe unit space-like hyperboloid in the tangent space®nf
cal choice oft? can be made using no-hair theorems inOn the other hand, at the inner isolated horizon boundary, the

Einstein-Maxwell theory. The correspondifig, can be in-
terpreted as the horizon mass.
We will conclude with two remarks.

physically appropriaté® necessarily varies from one space-
time to another. In particular, if the horizon is nonrotatitfy,
points along the null normal to the horizon, while if it is

(1) There is a constructive procedure to obtain permissiblgotating, it has a component also along the rotational sym-

vector fields. Choose any smooth functieg of a, ,J ,Qx

satisfying the following regularity condition for each choice

of J,,Q, : the integrals

converge to well-defined functions df, and Q,, with a,
=47JQ*%+4J? (and k, vanishes if and only ifxy van-
ishes. Then, integrating the first of Eq$4.11) with respect
to a, and requiringQ(a,,Js,Q,) to tend to zero as;,
tends to infinity for any fixed values df, ,Q,, we obtain a
unique function Qg(a,,Jx,Qa). Now, given any point
(ef‘,AalJ Aj) inT',, there is a unique vector field on A
such thatk = kg and Q=0 (namely,t*A Byl*+ Qg¢?
whereBy is given by xo=Bg«k()). Finally, we can integrate
the second of Eqg4.11) with respect tca, and require that
® ) tends to zero as, tends to infinity(keepingd, andQ,
fixed), we obtain a functionb ) of a, ,J,,Q, which satis-
fies the second and third parts of E¢$.11). Thus, given a
sufficiently regular functionc, of a, ,J,,Qa, We can inte-

metry ¢2.

In the usual treatments of the first law, one restricts one-
self to perturbations of stationary backgrounds. Conse-
quently, one can single out a preferred time translation from
the 3-parameter family, adapted to the rest frame of the black
hole. The corresponding ADM energy is then also the ADM
mass. It is natural to ask if we can similarly single out a
canonical time translation also at the horizon and introduce
the notion of horizon mass. Note that this task is significantly
more difficult than the corresponding task at spatial infinity
first because the permissible time translations at the horizon
form an infinite dimensional family rather than three, and
second because, on the physical grounds mentioned above,
this canonical time translation at the horizon must vary from
one space-time to another. Nonetheless, because of the re-
markably strong restrictions on the extrinsic paramexgss
Q (), and®;, and thanks to the no-hair theorems, there is a
natural solution to this problem.

We have just seen in the previous subsection that the re-
striction of any evolution vector fieldt, to the horizon is
determined byxy and Q. and if the t®-evolution is to
define a Hamiltonian flow oiv ,, (), and{}, can only be
functions ofa, , J,, andQ, . These three quantities may be

grate Eq.(4.11) and, using physically motivated conditions regarded as the independent parameters of the horizon. The
to determine integration constants, obtain an admissible evgroblem of defining a canonical time-translation on the hori-

lution field t* and electric potentiaP ;) on A.
(2) If we now drop the restriction thdf vanish outside a

zon therefore reduces to that of making a canonical choice of
the two functionsky(as,Ja,Qa) and Qy(aa,Jda,Qa)-

finite neighborhood ofA in M but require instead that it Now, the event horizon of a Kerr-Newman black hole is in
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particular a weakly isolated horizon. It is natural, on these

K
stationary space-times, to choose the evolution field to coin- My=g -G 0 TQ81,+PQ,, (4.16
cide with the stationary Killing field. This choice selects for
us specific functions of the three parameters applicable to all weakly isolated horizons in Einstein-

R —G2(Q4+43%) Maxwell theory.

K=
2RV(R+GQA)*+4G%)] V. DISCUSSION
and In this paper, we gave a definition of angular momentum
J, for all rigidly rotating isolated horizons. The definition is
2GJ, (quasijlocal to the horizon; it makes no reference to infinity
= . — = (4.13 at all. In contrast to the usual angular momentum expression
RyV(RE+GQR)?+4G233 [13] at infinity, J, has an explicit contribution from the Max-

) _ well field on the horizon. If the space-time in a neighborhood
where, as beforea,=4nRj. Now, although the choice of the horizon is axi-symmetric and the matter fields vanish
(4.13 was madeonly for stationary cases, since there is ex-in that region,J, equals the usual Komar integral formula,
actly one Kerr-Newman solution for each set of isolated hogygluated at the horizon. If the space-time is globally axi-
rizon parameters, this choice uniquely fixes the two funcsymmetric, irrespective of whether there is a Maxwell field
tions. Thus, we can select a canonical time-translation on anyy, the horizon,J, equals the total angular momentum at
isolated horizon by requiring that the surface gravity and thgnfinity. If the weakly isolated horizon extends all the way to
angular velocity it defines be given by E@.13. [This pro- i+ \ye can regard, as the future limit of angular momen-
cedure is Junambl_guous becauBg,J,,Q, are determined  ym ajong future null infinityZ*. While these properties of
by (ef', Ay Ag) without any reference t6.] We will make  the 3, are very similar to those of horizon mald, , there is
this choice and denote ky any time-translation whose re- also an interesting difference: Whereas in the presence of
striction to the horizon coincides with this canonical choice.radiation in the exterior regioM , is always different from
The conditions(4.1]) then require us to partially gauge fix M ,,,, if the radiation field is axi-symmetricl, equals the

the Maxwell field such that angular momentum at infinityalong the rotational Killing
, ) vectop.
Qa Ri+GQji We have also generalized the standard first law of black

(4.14 hole mechanics. Although the final for®.16) of this law is
identical to that of the standard one, there are some important

(Again this is the same value which the electrostatic potentiaflifferences. First, our law is applicable to all space-times

of the horizon takes in a Kerr-Newman solutipiihe evo- which admit an isolated horizon inner boundary, including

lution generated by such lve vector fieldt? is then guar- those which allow radiation arbitrarily close to the horizon.
0

anteed to be Hamiltonian. We can then “integrate” the ex-S€cond, all quantities and variations that enter the first law
. : : . are definedocally at the horizon. In standard treatments, the
pression4.12) of the first law to find the horizon enerdg); . hvsical . d iat £ variati . i
Setting it equal to the masd, , we find physical meaning and appropriateness of variations is not as
clear because some quantities such as area, surface gravity,
and the angular velocity of the horizon are defined at the
horizon while others, like energy, angular moment(and
sometimes even the electric scalar poteptat evaluated at
infinity. Third, other treatments based on a Hamiltonian
Again, this gives the usual ADM mass for the Kerr-Newmanframework[1] often critically use the bifurcate two-surface
solutions. However, this definition appliesat isolated ho-  which does not exist in the extremal case. Therefore, ex-
rizons including those which admit radiation in the exteriortremal black holes are often excluded from the first law. The
region. Therefore, in generaM, differs from the ADM  present analysis never makes reference to bifurcate surfaces
massM spyv due to the energy in the radiation field. In the (which do not exist in physical space-times resulting from
Einstein-Maxwell theory under consideration, if the weakly gravitational collapse Therefore, our discussion of the first
isolated horizon were to extend all the way itd in the  |aw holds also in the extremal case. Finally, with obvious
distant futureM , can be thought of as the future limit of the modifications of boundary conditions at infinity, our analysis
Bondi mass at™ [3]. If the space-time is globally stationary, includes cosmological horizons where thermodynamic con-
there is no flux of radiation across future null infinify siderations are also applicall&5].
since the future limit of the Bondi mass coincides with the  Perhaps the most important aspect of this analysis is that
ADM mass. Finally, we wish to emphasize that we did notit sheds new light on the “origin™ of the first law: as in the
simply postulate Eq(4.15; it was systematically derived nonrotating case treated [d], it arose as a necessary and
using Hamiltonian methods. sufficient condition for the existence of a Hamiltonian gen-
With this (quasijlocal definition of the horizon mass, for erating time evolution. A new feature of our framework is
any preferred time-translatia§, we have acanonicalgen-  the existence of an infinite family of first laws corresponding
eralized first law to the infinite family of evolution “permissible” vector

TRy (RE+GQ2)2+4G22

V(RI+GQ3)%+4G233%
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fields t? [i.e., vector fields satisfying the necessary and suf- We can now calculate the action of the symplectic struc-
ficient condition(4.10 for the evolution to be Hamiltonign  ture on the vector field,, on I". The derivation of Eq(4.2)

In the Einstein-Maxwell case, using the no-hair results, ondrom Eq.(2.16 did not depend in any way oWw? defining a
can select a canonical live evolution fielfl. Correspond- symmetry of the horizon. We can therefore begin at that
ingly, there is a canonical notion of energy which can bepoint and substitute the new definitions &f and é,,x to
interpreted as the horizon maks, and hence a canonical find the analog of Eq(4.3) for generic horizon diffeomor-
first law. In more general theories which allow hairy black phisms. In fact, the result will be quite similar: For any tan-
holes, a canonical horizon mass cannot be defined on the fugient vector fields on I', we will have

phase space. Yet, even in this case, the isolated horizon

framework is directly useful: it enables one to relate proper- 1

ties of these hairy black holes to those of the corresponding (%:9w)=g—= ﬁAa[(hWJ“’)ze]_whWJ“’)ze
solitons[8].

Finally, our Lagrangian and Hamiltonian frameworks are ) 1
based on real tetrads and Lorefitather than self-duakcon- +Kw-)07€— 4 %s AL (N AV K F]
nections. It is therefore quite straightforward to extend our .
analysis to any space-time dimension. —(ohyJA) Kk F—® - (K F)
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_ sectionsS, of the horizon, the surface gravity and electric
APPENDIX: GENERAL HAMILTONIANS potential may take other valugsSince the right side con-

In Sec. IV, we constructed Hamiltonians generating thefains several terms which are not exact variations, there are a

infinitesimal symmetries of rigidly rotating weakly isolated number of possible barriers to the existence of a Hamiltonian
horizons. While this is the most interesting case from agenerating motions alonyv®. However, as we will now
physical perspective, for completeness, one may also wish how, there are a couple of interesting cases where the re-
consider more general space-time vector fishfswhich are ~ quired Hamiltonian does exist. - .
tangential toA and preserve the fixed equivalence clpi$s Consider first the case whéi is purely horizontal at the
thereon and ask: Can any of these lead to Hamiltonian evdiorizon, W32 hg,, with, moreoverhy, fixed (i.e., indepen-
lutions on thefull phase spac&? In this appendix we will ~dent of the space-time under consideratiorhus, W* gen-
analyze this issue. While a genevsf will of course not lead ~ erates a fixed diffeomorphism anwhich preserves the fam-
to a Hamiltonian evolution, there is an interesting subclasgy of cross-sectionsS, which, however, need not be a
which does. It may be useful in future investigations. rotation. Since we are interested in the horizon structure, let
Let us begin with an assignment of a vector fi§ld to ~ UsS also assume th&¥¢* vanishes in a neighborhood of infin-
each space-time in the full phase spdtevhich preserves ity. Then, the integrals at infinity in E§A2) vanish and only
(A,[13]) but is not necessarily an infinitesimal symmetry in the first two terms in each of the integrals ${ survive.
the sense of Sec. IVi.e., does not necessarily preserve Moreover, the second term in each integral vanishes because
(9ap,@a,Aq)]. As in Sec. IV, we can decompos#? into sh{, is zero. Thus, the flow generated by th&¥2 preserves

vertical and horizontal parts: the symplectic structure and the corresponding Hamiltonian
is given by
Wa: B\NI ay h\e}v
- 1
- 20—
with £;hyA 0. Note that the conditiorCyl®e [12] implies N =g7G fﬂf“wﬂ”) an %SA(WA)*F'
By is constrained only by’;B\,2 0. The variationss,y» and (A3)

Swyx of the potentials become
Note that this integral has the same form as the intggrd)
owy=(Bw—Bw) k), and Syx=(By—By) P, used to define the angular momentum in Sec. IV. However,
this formula applies to a general weakly isolated horizon,
which need not be rigidly rotating. Moreover, the horizontal
whereB,, denotes the restriction d,y to the past boundary vector fieldh, is arbitrary; it need not be a Killing vector of
S, of the horizon. Jap and indeed it need not even preserve the area-foem
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[Consequently, we cannot re-express E§3) in terms of  surface integrals a§, also vanish. Finally, sincd®,,20,
curvatures as in Eq(4.5.] One might hope this formula these remaining terms also vanish. Thus, the entire right side
could be used to define angular momentum in some sense fgf Eq. (A2) vanishes. Consequently, the associadggdis a
generic weakly isolated horizons. However, while the phasgegenerate directionf the symplectic structure, since, from
space interpretation of EGA3) is clear, ifh, does not gen-  the perspective of the Hamiltonian framewo#k, generates
erate rotations, its space-time interpretation is quite obscure,gauge transformationSuch transformations have no direct

Finally there is another family of vector field&* for  physical interest and may be quotiented out of the algebra of
which the flowé,, onI" is Hamiltonian, although physically = kinematically allowable diffeomorphisms. Indeed, since any
less interesting. LeW® be purely vertical at the horizon, W2 of the form described above can be written uniquely as a
W2A B2, with B2 0. As before, since we want to focus combination of one of these gauge transformations and an-
on the horizon terms, let us assume th&tvanishes outside other kinematically allowable vector field with,, constant
some neighborhood df. Then, terms at infinity in EqLA2)  over A, we may restrict attention to the later case without
vanish and becaud&, 2 0, the first two terms in each of the any loss of generality.
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