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Mechanics of rotating isolated horizons
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Black hole mechanics was recently extended by replacing the more commonly used event horizons in
stationary space-times with isolated horizons in more general space-times~which may admit radiation arbi-
trarily close to black holes!. However, so far the detailed analysis has been restricted to nonrotating black holes
~although it incorporated arbitrary distortion, as well as electromagnetic, Yang-Mills, and dilatonic charges!.
We now fill this gap by first introducing the notion of isolated horizon angular momentum and then extending
the first law to the rotating case.
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I. INTRODUCTION

The zeroth and first laws of black hole mechanics apply
equilibrium situations and small departures therefrom.
standard formulations of these laws, black holes in equi
rium are represented by stationary space-times with reg
event horizons~see, e.g.,@1#!. While this idealization is a
natural starting point, from a physical perspective it see
quite restrictive.~See @2,3# for a detailed discussion.! To
overcome this limitation, a new model for a black hole
equilibrium was introduced in@2,3#. The generalization is
twofold. First, one replaces the notion of an event horiz
with that of an isolated horizon. While the former are defin
only retroactively using the fully evolved space-time geo
etry, the latter are defined quasilocally by suitably constra
ing the geometry of the horizon surface itself. Second,
drops the requirement that the space-time be stationary
asks only that the horizon be isolated. That is, the requ
ment that the black hole be in equilibrium is incorporated
demanding only that no matter or radiation fall through t
horizon, although the exterior space-time region may w
admit radiation. Consequently, the generalization in the c
of allowed space-times is enormous. In particular, spa
times admitting isolated horizons need not possessany Kill-
ing vector field; although event horizons of stationary bla
holes are isolated horizons, they are a very special cas
recent series of papers@3,4# has generalized the laws of blac
hole mechanics to this broader context. The notion of i
lated horizons has proved to be useful also in other cont
ranging from numerical relativity to background independ
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quantum gravity:~i! it plays a key role in an ongoing pro
gram for extracting physics from numerical simulations
black hole mergers@5–7#; ~ii ! it has led to the introduction
@4,8,9# of a physical model of hairy black holes, systemat
ing a large body of results on properties of these black ho
which has accumulated from a mixture of analytical and n
merical investigations; and~iii ! it serves as a point of depar
ture for statistical mechanical entropy calculations in wh
all non-rotating black holes~external or not! andcosmologi-
cal horizons are incorporated in a single stroke@2,10,11#.

The first treatment of black hole mechanics using isola
horizons@3# only considered undistorted, nonrotating ho
zons. That is, the boundary conditions it used imply thein-
trinsic geometry of the horizon is spherically symmetric a
the imaginary part of the Weyl curvature compone
C2—which encodes gravitational angular momentum
vanishes at the horizon. Although they do not constrain fie
in the exterior region in any way~even close to the horizon!,
these restrictions are, nonetheless, very strong. More
cently, these boundary conditions were significantly we
ened to allow for both distortion and rotation and the bas
geometric consequences of the more general boundary
ditions were analyzed@4#. The zeroth law of black hole me
chanics was also extended to the more general context,
the first law, to nonrotating but possibly distorted isolat
horizons. The purpose of this paper is to extend the first
to the rotating case. We will first introduce~quasilocal! defi-
nitions of angular momentum and mass of the isolated h
zon in this context and then establish the first law. Thus,
paper is a continuation of@4# and completes the task of de
riving the black hole mechanics of all isolated horizons
direct physical interest.

Let us outline the key new points which distinguish t
rotating case considered here. First, if the~gravitational con-
tribution to the! horizon angular momentum is to be nonzer
©2001 The American Physical Society16-1
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ASHTEKAR, BEETLE, AND LEWANDOWSKI PHYSICAL REVIEW D64 044016
the Weyl component Im@C2# cannot vanish on the horizon
Therefore, we will extend the Hamiltonian framework of@4#
by lifting the restriction on Im@C2#. Second, by analogy with
Killing horizons, in the nonrotating case it was natural
require the time-evolution vector field to lie along the n
normal to the horizon. In the general rotating case, by c
trast, we expect the natural ‘‘time-translation–like’’ vect
field to be space-like on the horizon, with components b
along the null generatorsandalong a transverse ‘‘rotational’
direction. Our evolution field will have this feature. Third,
have a well-defined notion of angular momentum, one
pects there should exist a rotational symmetry on the h
zon. We will analyze symmetries of all isolated horizons a
show that the boundary conditions imply that there are th
universal classes, characterized by the structure of the s
metry group: ~I! spherically symmetric horizons,~II ! axi-
symmetric horizons, and~III ! general, distorted horizon
~with no symmetry other than that along the null generato!.
To have a well-defined notion of angular momentum,
will focus on class II.~Class I was discussed in@3# while the
focus of @4# was onnonrotating isolated horizons in clas
III. !

In spite of these differences, the basic techniques use
this paper are very similar to those of@4#. The Hamiltonian
formalism is again employed to motivate the definition
horizon mass and, in our rotating case, also angular mom
tum. The first law again emerges as a necessary and s
cient condition for the evolution to be Hamiltonian, but no
acquires new terms resulting from the angular momentum
the horizon.

The plan of this paper is as follows. Section II briefl
recalls the definition and basic structure of isolated horiz
as discussed in@4#. Section III analyzes the possible symm
tries of isolated horizons. Section IV proves the first law
black hole mechanics for space-times containing rotating
lated horizons. Section V summarizes the results and
Appendix discusses the issue of defining Hamiltonian gen
ating diffeomorphisms which need not be horizon symm
tries.

II. PRELIMINARIES

This section summarizes the basic properties of isola
horizons and introduces the notation used in this paper. S
cifically, Sec. II A recalls from@4# the definition of aweakly
isolated horizonin Einstein-Maxwell theory and several o
its immediate consequences. Section II B analyzes cer
geometric structures on the horizon. This discussion is es
tial to the classification of horizon symmetries presented
Sec. III and has not appeared before. Finally, Sec. II C
views the covariant phase space of space-times admi
weakly isolated horizons as inner boundaries, constructe
@4#.

Let us begin fixing a few conventions. Throughout th
paper, we assume all manifolds and fields are smooth
restrict ourselves to the Einstein-Maxwell theory. Space-ti
M is a four-dimensional manifold equipped with a met
gab of signature~2,1,1,1! and a Maxwell potentialAa . If
D is a null hypersurface in (M,gab), its future-directed
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null normal direction will be denoted$ l a%. This direction
field is naturally an equivalence class of vector fields onD
under rescaling by arbitrary positive functions. We refer to
simply as thenull normal to D. Pull-backs toD of the cova-
riant tensor fields onM ~or more generally, covariant indice
of arbitrary tensor fields! will be denoted by an under-arrow
and equalities restricted toD, by the symbol=. The ~degen-
erate! intrinsic geometry onD is described by the metric
qab :=gab←

. A tensorqab on D will be said to be an ‘‘inverse’’

of qab if it satisfiesqabqacqbd=qcd . Because of the degen
eracy of the intrinsic geometry onD, the inverse metric is no
unique, but can be changed freely by the addition of a te
of the form V(al b) with Va tangent toD and l bP$ l b%. The
expansionu ( l ) of the null normal fieldl aP$ l a% is defined by
u ( l ) :=qab¹al b , where¹a is the torsion-free connection o
M defined bygab . It is straightforward to check this defi
nition is independent of the choice of inverse metric, b
does depend upon the choice of null normal vector.

A. Weakly isolated horizons

A weakly isolated horizon consists of a pair (D,@ l a#),
whereD is a three-dimensional submanifold ofM and @ l a#
is an equivalence class of vector fields onD underconstant
rescalings, such that

~i! D is topologicallyS23R and null, @ l a# lies along its
null normal and the space of its integral curves is diffeom
phic to S2;

~ii ! The expansionu ( l ) of D vanishes for any choicel a

P@ l a# of the null normal;
~iii ! The space-time connection has a~partial! symmetry

along @ l a# in the sense that

@Ll ,¹ a←# l b=0 ~2.1!

for any choice ofl aP@ l a#;
~iv! All equations of motion hold atD; and
~v! The Maxwell potentialA is gauge-adaptedto the ho-

rizon in the sense that

LlA a←
50 ~2.2!

for any choice ofl aP@ l a#.
A Killing horizon ~with topology S23R! in Einstein-

Maxwell theory is automatically a weakly isolated horizo
under this definition, provided the Maxwell field strength
symmetric along the Killing field and the gauge of its pote
tial is chosen to satisfy Eq.~2.2!. If the Killing field is de-
fined only in a neighborhood of the horizon, there is no o
vious way to fix the freedom of rescaling it by a consta
This freedom is reflected in our freedom to rescalel by a
constant. Note, however, the definition admits a mu
broader class of examples. To explore this class, let us b
by examining the motivations behind the conditions the
selves.

Some of the restrictions made by the above conditions
relatively tame. For example, the topological requiremen
condition~i! simply restricts the horizon to have the topolog
which one expects to arise from gravitational collapse. T
6-2
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MECHANICS OF ROTATING ISOLATED HORIZONS PHYSICAL REVIEW D64 044016
restriction can be weakened to allow for more general
pologies@4,12#, though we shall not discuss this possibili
further here. More importantly, the remainder of conditi
~i! makes clear the roles ofD and @ l a#: D is the horizon
surface and@ l a# is a distinguished class of its null normal
Condition~iv! is also straightforward; it applies a dynamic
restriction closely analogous to the one usually imposed
infinity. However, while the metric at infinity is required t
approach aspecificasymptotic solution to the Einstein equ
tions, condition~iv! allows the metric to approachany solu-
tion to the Einstein equations at the horizon.

Conditions~i! and ~iv! are satisfied on a wide variety o
surfaces, including many even in Minkowski space-tim
However, the vast majority of these surfaces do not have
characteristics one would intuitively expect on a ‘‘horizon
The first key condition which distinguishes a weakly isolat
horizon is condition~ii !. It implies the cross-sectional area
D is constant ‘‘in time,’’ thereby capturing the notion of
isolation without introducing a Killing field. The horizon
area is denotedaD and we define its radiusRD by

aD54pRD
2 .

This condition makes the definition dramatically strong
For example, it implies there are in fact no weakly isolat
horizons in Minkowski space-time.

To discuss condition~iii !, it will be useful to first explore
some consequences of condition~ii ! by itself. First, sincel a

P@ l a# is normal toD, it is automatically twist-free and geo
detic:

l a¹al b=k~ l !l
b. ~2.3!

Motivated by the usual definition for Killing horizons, th
accelerationk ( l ) of l a will be called the surface gravity ofD
with respect to the normall a. As one can see from Eq.~2.3!,
when l a is rescaled within@ l a#, the surface gravity scales b
the same factor. Thus, the surface gravity of a weakly i
lated horizon is generally defined only up to a positive co
stant multiplicative factor. Second, given the vanishing tw
and expansion ofl a, one can use the Raychaudhuri equat
for the null congruence generated byl a to conclude itsshear
must also vanish, and that

Rabl
al b=0. ~2.4!

Third, the vanishing twist, shear, and expansion ofl a imply
the existence of a one-formva , intrinsic toD, satisfying

¹ a←
l b=val b. ~2.5!

This one-formva is independent of the choice ofl bP@ l b#
and its contraction withl a will yield the surface gravityk ( l )
defined above. Furthermore, as we will now discuss, con
tion ~iii ! causesva to play a central role in the theory o
weakly isolated horizons.

One important consequence of Eq.~2.5! is that l a is a
symmetry of the degenerate intrinsic geometry ofD in the
sense that

Llqab=0. ~2.6!
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In the case of a non-null hypersurface in space-time
which the intrinsic geometry is nondegenerate, the existe
of a Killing vector for the intrinsic metric would automati
cally imply the intrinsic connection was likewise preserv
along that Killing vector. In other words, for a nondegener
intrinsic geometry, the restriction~2.1! of condition ~iii !
would follow from Eq.~2.6!. However, this is not the case fo
a null hypersurface since the intrinsic metric does not de
mine the intrinsic connection uniquely. Thus, condition~iii !
must be imposed separately. The logic of making this rest
tion, however, is clear: we are extending the symmetry~2.6!
of the degenerate metric to the intrinsic connection onD
given by ¹ a←

. Note, however, that condition~iii ! does not

restrict theentire connection onD, but only its action onl b.
In fact, given the definition~2.5!, condition~iii ! can be writ-
ten simply as

Llva50. ~2.7!

This formula is much easier to apply in practice than E
~2.1!, which is why the one-formva plays an important role
in our formulation.~If one requires thatl a be a symmetry of
the full pull-back of the connection toD, we obtain isolated
horizons @4,6#. While this stronger condition is physicall
reasonable, it is significantly more difficult to check its v
lidity in examples. Since the stronger condition is not need
in our proof of the zeroth and the first laws, we have chos
to work with weakly isolated horizons.!

Finally, let us examine condition~v! on the Maxwell field.
At first, the symmetry requirement~2.2! on the Maxwell field
appears similar to the restriction~2.7! placed on the horizon
geometry by condition~iii !. However, the two are actually
quite different. While Eq.~2.7! represents a genuine restri
tion on the physical fields at the horizon, Eq.~2.2! can al-
ways be achieved via a gauge transformation when the o
conditions are satisfied. Using the Einstein equations at
horizon and the consequence~2.4! of the Raychaudhuri
equation one can show the one-forml aFab is null at the
horizon. Since this one-form is also orthogonal tol b, it must
be proportional tol b , whence1

l4 F
]

=0. ~2.8!

Then, using the Cartan formula for the Lie derivative and
Maxwell equations at the horizon, one finds

Ll F
]

= l4dF
]

1 d~ l4F!←——
50.

Thus, because the field strength is already compatible w
the symmetry~2.2! imposed on the Maxwell potential b
condition~v!, Eq. ~2.2! is indeed merely a~partial! choice of
gauge.

We conclude this subsection with several remarks. E
of these points is discussed in more detail in@4#.

First, while this paper explicitly examines only thos
weakly isolated horizons which occur in Einstein-Maxwe

1The symbol•4• represents the contraction of a vector field on t
first index of a differential form.
6-3
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theory, it is not difficult to generalize the definition give
here to allow other matter fields near the horizon. Howev
it is not possible to incorporate arbitrary types of matter,
only those which satisfy a certain energy condition. Spec
cally, the stress-energy tensor of each matter field prese
the horizon must have the property thatTabl

b is future di-
rected and causal2 for any l bP@ l b#. This condition follows
immediately from the dominant energy condition which
usually assumed in proofs of the laws of black hole mech
ics. Moreover, since the Maxwell~or Yang-Mills, etc.! field
satisfies the dominant energy condition, it will automatica
meet the~weaker! demand made here. This condition is e
sential to the derivation of Eq.~2.4! from the Raychaudhur
equation and to the associated proof that the horizon is sh
free.

Second, the conditions given above imply the space-t
geometry at a weakly isolated horizon is algebraically s
cial. This is an interesting feature which carries over fro
the stationary context where the Kerr-Newman black h
space-times are~globally! of Petrov type II-II. However,
there are several important differences. One can show@ l a# is
a repeated principal null direction at the horizon, since
space-time geometry is necessarily of Petrov type II the
However, it is not generally possible to identify a seco
repeated principal null direction at such a horizon, so
geometry need not be of type II-II. Moreover, the space-ti
geometryaway from the horizon may not be algebraical
special at all; our conditions constrain only the local, horiz
geometry. Since@ l a# is a repeated principal null direction fo
the space-time metric at the horizon, the Newman-Pen
curvature components satisfy

C0=C1=0

in any null frame which includes an elementl aP@ l a# at D. It
then follows that the Newman-Penrose componentC2 is
‘‘gauge-invariant’’ ~i.e., independent of the other three nu
tetrad elements! at D. In particular, the imaginary part ofC2
can be expressed without reference to any null tetrad u
the one-formva introduced in Eq.~2.5!:

dv52 Im@C2#2e, ~2.9!

where 2eab denotes the natural area two-form onD ~see the
next subsection!.

Third, the conditions enable a simple proof of the zero
law of black hole mechanics for generic weakly isolated h
rizons. Examining the definition~2.3! of surface gravity for a
weakly isolated horizon and the definition~2.5! of va , one
finds

k~ l !5 l ava , ~2.10!

since~by the Cartan formula! we have

dk~ l ![d~ l4v!5Llv2 l4dv.

2A vector is said to becausalif it is either time-like or null.
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The first term on the right-hand side vanishes because of
~2.7!, while the second vanishes because dv is given by Eq.
~2.9! and the contraction of2eab with @ l a# vanishes. Thus,
the surface gravity of a weakly isolated horizon is inde
constant; the zeroth law holds. Note, however, that beca
D is equipped only with anequivalence class@ l a# of null
normals, we have the constant rescaling freedoml a→ l̃ a

5cla under which the surface gravity transforms viak ( l )
→k ( l̃ )5ck ( l ) . Therefore, while surface gravity is consta
on an isolated horizon, we cannot assign a particular valu
it. This is not surprising: one cannot assign a specific num
cal value to surface gravity even on alocally defined Killing
horizon, since the Killing field is defined only up to rescalin
by a constant. Finally, we note the argument establishing
zeroth law for weakly isolated horizons can also be appl
to the Maxwell field. Repeating this argument, withv re-
placed byA, and applying Eqs.~2.2! and~2.8! one finds the
quantity l4A is also constant over the horizon surface. M
tivated by this fact, we define theelectric potentialof the
horizon by

F~ l !ª2 l aAa . ~2.11!

Once again, while the electric potential is always const
over D, its value is not fixed.

B. Geometrical structures

We will first discuss the relation between certain types

fields onD and fields on the 2-sphereD̂ of integral curves of
@ l a# and then show that ifk ( l ) is nonzero,D admits a natural
foliation. This discussion will be useful especially in Sec.
for our analysis of the symmetry algebras of weakly isola
horizons.

Denote byP the natural projection mapP from D to D̂. A
vector fieldWa defined intrinsically onD can be unambigu-

ously projected to a vector fieldŴa on D̂ if and only if LlW
a

is proportional to l a. Similarly, a covariant tensor field
Ta1 ...an

on D is a pull-back underP of a tensor fieldT̂a1 ...am

on D̂ if and only if two conditions hold:~i! Ta1 ...am
is trans-

versal to l in the sense that the contraction of any of
indices withl vanishes; and~ii ! the Lie derivativeLlTa1 ...an

vanishes. These are rather general properties of manif
ruled by one-dimensional curves.

Applying them to the case of a weakly isolated horizo
we conclude that the degenerate metricqab is the pull-back

to D of a Riemannian metricq̂ab on D̂. The connection one-
form va does satisfy condition~ii ! above. However, since

l ava=k~ l ! ,

it defines a one-formv̂a on D̂ only in the extremal case, i.e.
only whenk ( l )=0. Finally, the projection mapP enables us
to define a preferred area element2eab on D. Using the Rie-
mannian metricq̂ab , one can construct the area elementêab

on D̂ and pull that two-form back toD underP. By construc-
tion, the resulting two-form2eab on D satisfies
6-4
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l a2eab50 and Ll
2eab50.

The first of these results was already used in the proof of
zeroth law in the last subsection.

Let us now assume thatk ( l ) is nonzero and discuss th
preferred foliation ofD ~for further details and a discussio
of global subtleties, see@6#!. For simplicity, consider first the
‘‘nonrotating case’’ where Im@C2#50. According to Eq.
~2.9!, this is precisely the case where the connection formva
is curl-free. Hencev5dv for some functionv on D. Further-
more, l4dv5k ( l ) is a nonzero constant onD, since@ l a# is
transverse to thev5const surfaces. Thus,v5const surfaces
define a natural foliation ofD by a family of 2-spheres.

To conclude, let us consider the rotating case. Wh
Im@C2# no longer vanishes in this case, it is still consta
along each generator ofD, i.e., is a pull-back of a function

Im@̂C2] on D̂. Using Eq.~2.9! as the motivation, let us intro

duce a one-formâa on D̂ such that dâ52 Im@̂C2]ê. Of
course, this potentialâa is not unique; one is free to add to

the gradient of any function onD̂. There is, however, a natu
ral gauge condition which fixes this ambiguity: Since the

are no harmonic one-forms on the 2-sphereD̂, there exists a
unique one-formâa such that

dâ52 Im@̂C2] ê and d̂.̂â50, ~2.12!

whereêab is the area element onD̂ and.̂ denotes the Hodge

dual onD̂. Let aa be the pull-back toD of âa and set

ṽa5va2aa .

Then, dṽa50 and l aṽa5k ( l ) on D. Thus, v̂ has the same
properties thatva had in the nonrotating case. Therefore,
defines a foliation ofD by a family of 2-spheres. Our gaug
choice is natural in the sense that it is the only choice
which this more general construction, when applied to
nonrotating case, reproduces the natural foliation obtai
above.~Indeed, in the nonrotating case and in our gauge,âa

vanishes onD̂ and ṽa5va on D.! While this foliation is
used only to elucidate certain points in this paper, it play
key role in the analysis of the near-horizon, strong field
ometry @7# and in extracting physics from space-times o
tained via numerical simulations, such as those associ
with black hole mergers@7,5#.

C. Covariant phase space

In the spirit of @4#, we will use Hamiltonian methods to
introduce notions of angular momentum and mass of wea
isolated horizons. In this subsection, we recall from@4# the
structure of the underlying phase space.

The most interesting space-times containing weakly i
lated horizons are of the black hole type, so we will tailor t
topological structure of the underlying space-time manif
to this case. Specifically, fix a manifoldM̃ with boundary
where the boundary consists of four components: an inte
boundaryD̃, topologicallyS23R which will finally serve as
the isolated horizon, an outer boundaryt` , also topologi-
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cally S23R which will serve as a time-like cylinder at spa
tial infinity, and two surfacesM 6, which are intended to be
space-like and to serve as future and past boundaries ofM.
The intersections ofM 6 with D andt` will be denotedSD

6

andS`
6 respectively~see Fig. 1!. The inner boundaryD will

be equipped with a privileged equivalence class@ l a# of vec-
tor fields under constant rescalings, whose integral cur

constitute a 2-sphereD̂. In the Hamiltonian framework, we
will not be interested in the surfacesM 6 andt` . Therefore,
it is convenient to introduceMªM̃2(M 1øM 2øt`) and

DªD̂2(SD
1øSD

2).
We will consider the Einstein-Maxwell theory in a firs

order framework based on tetrads. Therefore, our ba
physical fields will consist of a triple (eI

a ,AaI
J ,Aa) on M,

where eI
a is a tetrad on space-time,AaI

J is the connection
form ~relative to a fiducial flat connection]a! for a connec-
tion Da in the frame bundle over space-time, andAa is a
Maxwell connection on a trivialU(1) bundle overM ~see
@4#!. ~Whenever needed, these fields will be extended to
boundariesSD

1 of D by continuity.! These fields are subjec
to certain boundary conditions: We require that each spa
time (M,eI

a) is asymptotically flat at spatial infinity and ad
mits (D,@ l a#) as a weakly isolated horizon. For convenienc
we will fix an internal tetrad (l I ,nI ,mI ,m̄I) at each point ofD
and require the tetrad field to satisfyl IeI

aP@ l a# on D. ~This
can always be achieved and serves to eliminate an irrele
part of the tetrad-rotation freedom.!

With this kinematical structure at hand, we can no
specify the action functional:

S@e,D,A#5
21

16pG E
M

Tr@S∧F#1
1

16pG E
t`

Tr@A∧S#

2
1

8p E
M

F∧.F, ~2.13!

where the traces are taken over the internal~tetrad! indices,
FabI

J denotes the curvature of the connectionAaI
J, and the

two-formsSabI
J are defined in terms of the~co-!tetrad field

by

SabI
J
ªe I

J
KLea

Keb
L .

FIG. 1. The region of space-timeM under consideration has a
internal boundaryD and is bounded by two partial Cauchy surfac
M 6 which intersectD in the 2-spheresSD

6 and extend to spatia
infinity i o.
6-5
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Interestingly, while the asymptotic boundary term is need
to make the action principle well-posed given the asympt
cally flat fall-off conditions imposed near infinity, no suc
boundary term is needed at the horizon surfaceD. ~For de-
tails, see@4#.!

Our covariant phase spaceG will consist of the space o
solutions (eI

a ,AaI
J,Aa) to the Einstein-Maxwell equations

satisfying the boundary conditions specified above. As us
the symplectic structure is constructed onG using the~anti-
symmetrized! second variation of the action~2.13!. Applying
the equations of motion to this second variation, one disc
ers the integral overM reduces to surface terms atM 6 and
at D ~the surface term att` vanishes because of th
asymptotic fall-off conditions!. In order to reduce the expres
sion for the second variation further, it is convenient to
troduce a pair of scalar functions onD which act as ‘‘poten-
tials’’ for the surface gravity and electric potential. Given a
point (eI

a ,AaI
J,Aa) in phase space, the scalar fieldc is de-

fined by

c50 on SD
2 , and Llc5k~ l ! ~2.14!

and the scalar fieldx by

x50 on SD
2 , and Llx52F~ l ! . ~2.15!

Note that both of these functions are completely determi
by the physical fields.~A priori there is some freedom in th
choice of initial values ofc and x on SD

2 . While the sym-
plectic structure is sensitive to these choices, none of
final results are.! Expressed in terms ofc andx, the surface
term atD in the second variation of the action turns out to
exact and thus reduces to a pair of integrals onSD

6 . The
integral overM 2, together with its surface term atSD

2 is then
taken to define the symplectic structure for the theory.
fact, when the equations of motion hold and both variatio
satisfy the linearized equations of motion, the integral wh
defines the symplectic structure may be taken over any
tial Cauchy surfaceM in M. It is given by

V~d1 ,d2!5
21

16pG E
M

Tr@d1A∧d2S2d2A∧d1S#

2
1

8pG R
SD

d1cd2
2e2d2cd1

2e

1
1

4p E
M

d1A∧d2~.F!2d2A∧d1~.F!

2
1

4p R
SD

d1xd2~.F!2d2xd1~.F!,

~2.16!

whereM intersectsD in SD . Details of this result are dis
cussed in@4#.

In the covariant Hamiltonian framework, infinitesim
gauge transformations are in 1-1 correspondence with
degenerate directions of the symplectic structure. For
ample, in the asymptotically flat contextwithout internal
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boundaries, infinitesimal diffeomorphisms and internal Lo
entz rotations are in the kernel of the symplectic structur
and only if they vanish asymptotically. Thus, infinitesim
diffeomorphisms which asymptotically approach Killin
fields of the flat background metric are not gauge; they
generated by nontrivial Hamiltonians which define t
Arnowitt-Desir-Ḿisner ~ADM ! 4-momentum and angula
momentum. The situation is similar at the internal bound
D. Infinitesimal diffeomorphisms and internal Lorentz rot
tions need not be in the kernel of the symplectic struct
unless they vanish onD. Indeed, we will show in Sec. IV tha
space-time motions corresponding to time translations
rotations are generated by nontrivial Hamiltonians with s
face terms both at infinity and at the horizon. The horiz
surface terms will then be interpreted as the horizon ene
and angular momentum. However, since infinitesimal int
nal rotations~and gauge transformations of the Maxwe
theory! on D are not automatically in the kernel of the sym
plectic structure, one must separately ensure that phys
quantities such as energy and angular momentum are g
invariant.

III. SYMMETRIES OF A WEAKLY ISOLATED HORIZON

In this section we analyze the possible symmetries o
weakly isolated horizon. Because the generators@ l a# of D are
not assumed to be complete, we will focus oninfinitesimal
symmetries. Since the horizon is the inner boundary
space-times under consideration while spatial infinity is
outer, one would expect the horizon symmetries to be an
gous to the asymptotic symmetries at spatial infinity. Thus
is natural to define the horizon symmetry algebraL to be the
quotient of the Lie algebra of all infinitesimal space-tim
diffeomorphisms which preserve the horizon structure by
sub-algebra consisting of elements which vanish on the
rizon. The key question now is: What is the horizon structu
relevant for these considerations? It is here that one wo
expect a significant departure from the situation at spa
infinity. At infinity, all metrics approach a fixed flat metri
since the relevant geometric structure—and hence also
symmetry algebra—is universal; it does not vary from o
space-time to another. At the horizon, by contrast, we ar
the strong field regime and the near-horizon geometry
vary from one space-time to another. Therefore, we do
expect the relevant horizon structure or the symmetry a
bra L to be universal. Nonetheless, because the horizon
boundary and all geometries under consideration are sub
to the same boundary conditions, one would expect the
rizon symmetry algebra to fall in a small number of ‘‘un
versality classes.’’ We will see that this expectation is c
rect.

To identify the relevant horizon structure, let us return
the definition of weakly isolated horizons and examine
geometric structures that are essential to the definition. F
we have the manifoldD and the equivalence class@ l a# of
null normals. This structure is shared by all weakly isolat
horizons. However, to specify the conditions that@ l a# must
satisfy for (D,@ l a#) to qualify as an isolated horizon, we als
introduced nonuniversal fields (qab ,va) which vary from
6-6
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one point in our covariant phase space to another.3 There-
fore, to construct the algebraL corresponding to a given
isolated horizon, it is natural to focus on space-time vec
fields whose action preserves (D,@ l a#,qab ,va) and factor out
by those which vanish onD.

Thus, we can ignore the space-time manifoldM and
work just with vector fieldsWa which are tangential toD. To
qualify as symmetries, they should satisfy the following tw
conditions:

LWl a=cWl a with cW constant onD, ~3.1!

and

LWqab=0 and LWva=0. ~3.2!

The set of vector fieldsWa satisfying both Eqs.~3.1! and
~3.2! form a Lie algebra under the usual commutator brack
This is the symmetry Lie algebra for the horizon in questio
We will denote it byS and refer to these vector fieldsWa as
infinitesimal symmetries of the horizon.

Before analyzing the full algebra, let us note that, ir
spective of the specific weakly isolated horizon under c
sideration,S is at least one-dimensional: By settingWa5 l a

for any l aP@ l a#, we see Eqs.~3.1! and ~3.2! are automati-
cally satisfied by virtue of the very definition of weakly iso
lated horizons. These infinitesimal symmetries preserve e
integral curve ofl. More generally, denote byI all elements
Wa of S of the formWa5 f l a for some functionf on D. This
will be the sub-algebra of allgenerator-preservingsymme-
tries. Now, given any infinitesimal symmetryWa in S and an
infinitesimal symmetryf l a in I, Eq. ~3.1! implies the com-
mutator@W, f l #a is again proportional tol a.

@W, f l #a=~cWf 1LWf !l a,

wherecW is the constant appearing in Eq.~3.1!. Hence,I is

in fact an ideal of the Lie algebraS. Denote byŜ the quotient

Lie algebra:Ŝ5S/I. For reasons explained below, we w
refer to it as the algebra of projected symmetries. Thus,
algebraS of infinitesimal horizon symmetries is a sem

direct sum4 of I and Ŝ.
To determine the structure ofS, therefore, it suffices to

examine the Lie algebrasI and Ŝ separately. Let us begin
with the former. SettingWa5 f l a in Eq. ~3.1! we obtain

Ll f 5Cf ~3.3!

whereCf is a constant onD. The first of the two conditions
in Eq. ~3.2! does not restrict.f in any way while the second
implies

3Recall from Sec. II A that the essential restrictions are captu
by two conditions:~i! Llqab=0; and~ii ! Llva=0.

4Had D been complete, we could have integratedL to obtain a
horizon symmetry groupG which would have been a semi-dire

product of the groups generated byI and Ŝ, the former being the
normal subgroup ofG.
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0=Lf lv=d~ f l4v!=k~ l !df . ~3.4!

Therefore, ifk ( l )Þ0, thenf must be constant onD. In this
case the only generator-preserving symmetries are given
WaP@ l a# and I is one-dimensional. On the other hand,
k ( l )50 @i.e., (D,@ l #) is extremal#, Eq. ~3.4! imposes no con-
dition on f. In this case,f has only to satisfy Eq.~3.3! andI
is infinite-dimensional.

Next, let us examine the quotient Lie algebraŜ. Since
every infinitesimal symmetryWa must satisfy Eq.~3.1!, it

can be projected unambiguously to a vector fieldŴa on D̂.
We can now use our discussion of Sec. II B on the relat

between fields onD with those on the 2-sphereD̂ of its

generators to analyzeŜ in terms of these projectionsŴa.
The first of Eqs.~3.2! is satisfied if and only ifŴa is a

Killing field on (D̂,q̂ab):

LŴq̂ab50.

Denote byK the isometry Lie algebra of (D̂,q̂ab). We have

shown thatŜ is a sub-algebra ofK. In general, it will only be
a proper sub-algebra becauseWa must also satisfy Eq.~3.2!.

Nonetheless, the fact thatŜ is a sub-algebra ofK plays a key
role in the classification ofS because the dimension an

topology of D̂ imposes severe restrictions onK. On the one

hand, every Killing fieldŴa on D̂ is of the formêab]bĥ for
some functionĥ. On the other hand, since all metrics on
2-sphere are conformal to one another, any Killing field fo
generic metric must be a conformal Killing field of a fixe
round 2-sphere metric on that sphere. Every conformal K
ing vector fieldŴa of a round metric belongs to one of th
following classes:~i! a rotation,~ii ! a combination of a boos
and rotation commuting with each other, with a nonze
boost component, and~iii ! a null rotation, the set of zeros o
the vector field has exactly one element. Now, in cases~ii !
and~iii !, all the orbits of the vector field converge to a sam
point of the sphere at whichŴa50 @there are two such
points in case~ii !#. Since the functionh is constant on every
orbit, it follows that in these cases it would be constant sin
Ŵa50 on the entire sphere. Therefore, a nontrivial Killin
vector fieldŴa is of class~i!.

Thus, we conclude that a general metric on a 2-spher
of one of three types:

~1! The metric is round;K is three-dimensional and iso
morphic toso(3);

~2! The metric is axially symmetric;K is one-dimensional
and isomorphic toso~2!;

~3! The metric has no Killing fields;K is zero-
dimensional~i.e., consists only of the zero element!.

In each case, the sub-algebras ofK are easy to character
ize. Only in the first case doesK admit a nontrivial sub-
algebra which then must be isomorphic toso~2!. Hence, the

quotient algebraŜ must be isomorphic either toso~3! or
so~2! or must be the trivial Lie algebra consisting of only th
zero element.

d

6-7
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Thus we can divide the set of all weakly isolated horizo
into the three classes:

~I! Spherically symmetric; the algebraŜ of projected sym-
metries is three-dimensional. Ifk ( l )Þ0, the horizon symme-
try algebraL is the four-dimensional semi-direct sum of th
additive groupR of reals withso~3!. If k ( l )50, thenL is the
semi-direct sum of the infinite dimensional Lie algebra d
fined by Eq.~3.3! with so~3!.

~II ! Axi-symmetric; Ŝ is one-dimensional. Ifk ( l )Þ0, the
horizon symmetry algebraL is the two-dimensional Abelian
Lie algebra generated by vector fieldsala1bfa wherefa is
a rotation onD and a,b constants. Ifk ( l )50, thenL is the
semi-direct sum of the infinite dimensional Lie algebra d
fined by Eq.~3.3! with so~2!.

~III ! Generic;Ŝ is zero-dimensional. Ifk ( l )Þ0, the hori-
zon symmetry groupL is one-dimensional. Ifk ( l )50, thenL
is the infinite dimensional Lie algebra defined by Eq.~3.3!.

As mentioned in the Introduction, in the next section,
will focus on class II. We will conclude with two remarks

~1! In the above discussion, we have focussed only
symmetries of the relevant horizon geometry. In t
Einstein-Maxwell theory, it is natural to require that an i
finitesimal symmetryWa of a given weakly isolated horizon
also satisfyLWFab=0. Physically, this condition requires th
symmetry to preserve the flux of the magnetic field throu
the horizon. It is natural to demand the same of the elec
flux. Therefore, we will also insist thatLW(.F)ab=0 at the
horizon. Neither of these additional conditions will affect t
classification scheme described above in any way.

~2! As shown in Sec. II B, ifk ( l )Þ0, the weakly isolated
horizon (D,@ l a#) admits a canonical foliation by 2-sphere

SD which can be used to lift vector fields onD̂ to ‘‘horizon-
tal’’ vector fields onD. In particular, then, there is a canon

cal injection of the projective symmetry algebraŜ into the
total symmetry algebraS. As a result, the semi-direct sum
structure reduces simply to a direct sum structure. In
case, one can writeany symmetry vectorWa in the form

Wa5BWl a1hW
a , ~3.5!

whereBW is a constant andhW
a is a horizontal vector field

~i.e., tangent to the preferred 2-spheresSD!, satisfying
LlhW

a 50. The condition LWva50 further implies
LhW

va=0, and henceLhW
(Im@C#2)=0.

IV. ANGULAR MOMENTUM, MASS AND THE
FIRST LAW

In this section we will introduce definitions of mass a
angular momentum for type II weakly isolated horizons a
derive the first law of black hole mechanics in this conte
As in the nonrotating case treated in@4#, we will use a
Hamiltonian framework.

This section is divided into five parts. In the first, w
make appropriate restrictions on the phase space to en
the introduction of a useful notion of angular momentu
The second subsection considers the issue of defining Ha
tonians generating canonical transformations correspon
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to space-timediffeomorphisms and provides criteria for the
existence. In the third subsection, we specialize this disc
sion to the case where the diffeomorphism reduces to a
tational symmetry at the horizon and show the correspond
Hamiltonian does indeed exist. This Hamiltonian is inte
preted as the horizon angular momentum. The fourth sub
tion considers space-time diffeomorphisms which can be
terpreted as time-translations and analyzes the issue
whether their induced action on the phase space is Ha
tonian~i.e., preserves the symplectic structure!. In contrast to
the rotational case, the answer is not always in the affirm
tive: As in @4#, the necessary and sufficient condition for t
evolution to be Hamiltonian is precisely that the first la
holds. Thus, for every space-time vector fieldta which gen-
erates a Hamiltonian evolution, there is an associated en
ED

(t) and angular momentumJD satisfying the first law. The
last subsection shows that, in the Einstein-Maxwell ca
there is a natural way to select a preferred class of evolu
vector fields t0

a for which ED
(t0) can be interpreted as th

horizon mass MD . The corresponding first law is then th
canonical generalization of the standard first law of bla
hole mechanics to the context of rotating, weakly isola
horizons.

A. The phase space of rigidly rotating horizons

Physical observables such as energy and angular mom
tum are naturally associated with symmetries: energy is
sociated with time-translations and angular momentum w
rigid rotations. For example, in the familiar construction
the ADM energy, one first introduces a vector fieldta in
space-time which asymptotically approaches a tim
translation symmetry of the fixed flat metric at infinity an
constructs the HamiltonianHt generating the correspondin
time-evolution in the phase space. Since Einstein’s theor
generally covariant, ‘‘on shell’’~i.e., when the constraints
are satisfied!, the Hamiltonian reduces to two-surface int
grals on the boundaries of the Cauchy surface under con
eration. Under the standard assumption that there are no
ternal boundaries, the on-shell valueE`

(t) of the Hamiltonian
is thus given just by a two-surface integral at infinity, whic
is interpreted as the total ADM energy of space-time w
respect to the asymptotic time-translation ofta. Likewise, to
define the total angular momentum of space-time, one c
siders a space-time vector fieldwa which approaches a rigid
rotation of the asymptotic metric at infinity. The angular m
mentumJ`

(w) is then the surface integral at infinity giving th
on-shell value of the Hamiltonian generating rotations alo
wa. To define energy and angular momentum of an isola
horizon, it is therefore natural to examine Hamiltonia
which generate appropriate symmetries at the horizon.

Let us begin with angular momentum. In the above p
cedure, while there is considerable freedom in the choice
wa, these vector fields must approach afixedrotational Kill-
ing field fa of the universal flat metric at infinity. This con
dition plays a key role in the standard proof of the existen
of a Hamiltonian generating the corresponding motions
phase space. More importantly, the requirement has a d
physical origin. Angular momentum isnot a scalar quantity
6-8
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in physical theories and has several independent com
nents. By fixing one particular axial symmetry across all
ymptotically flat space-times, one effectively guarantees
same component of angular momentum is calculated for
space-times. Ifwa were to approach different rotational Kill
ing fields of the flat background in different space-time
even if one could construct the corresponding conser
quantity, it would be difficult to interpret it physically.

To define the angular momentum of weakly isolated h
rizons, it would be natural to start with vector fieldswa

which approach a rotational symmetry on the horizon. Re
however that, in contrast to infinity, weakly isolated horizo
do not have a universal metric and, furthermore, the metr
in class III isolated horizons need not admitany rotational
symmetry at all. Therefore, it is natural first to restrict ou
selves to class II, i.e., axi-symmetric, weakly isolated ho
zons. Note however that, even in this case, the metric on
horizon is not universal, sincea priori we do not have a fixed
rotational vector fieldfa on D that the space-time vecto
fieldswa can be required to approach. Therefore, for a me
ingful comparison of horizon angular momenta of differe
space-times, it is convenient to introduce afixed rotational
vector fieldfa on the horizon and admit only those spac
times in the phase space which have thisfa as the horizon
symmetry. We will do so.

Thus, let us now fix a vector fieldfa on the inner bound-
ary D of M such that~i! it has a vanishing Lie bracket with
@ l a#, ~ii ! it vanishes on exactly two generators ofD, and~iii !
it has closed, circular orbits of affine length 2p. For calcula-
tional convenience, we will also insist that it be tangent
the past boundarySD

2 of the horizon. Like the equivalenc
class@ l a#, this fa will now be regarded as an extra structu
fixed onD once and for all. The phase space will now cons
of the submanifoldGf of the covariant phase spaceG ~of
Sec. II C!, consisting of those asymptotically flat solution
(eI

a ,AaI
J ,Aa) to the field equations for which (D,@ l 2#,fa) is

a type II horizon withfa as its rotational symmetry.~Thus,
Lfl aP@ l a#, Lfqab=0, Lfva=0, andLfFab=0.! We will
refer toGf as the phase space of rigidly rotating horizons.
the next two subsections we will show that onGf we can use
the standard strategy of defining conserved quantities~out-
lined in the beginning of this subsection! and arrive at a
definition of the horizon angular-momentumJD .

B. Existence of Hamiltonian generating space-time
diffeomorphisms

Fix a vector fieldWa in each space-time inGf such that
the diffeomorphisms it generates preserve the boundary
ditions both at spatial infinity and at the horizon. As d
cussed below, the Lie derivatives of (eI

a ,AaI
J ,Aa) by Wa

define a vector fielddW on Gf . The key question of this
subsection is: IsdW Hamiltonian? Or, alternatively, does th
Lie derivative of the symplectic structure alongdW vanish?
We will find a necessary and sufficient condition for the a
swers to these questions to be in the affirmative. This re
will then be used to define the horizon angular moment
and energy in the next two subsections. In this subsect
we will allow Wa to vary from one space-time to anothe
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Since we fixed the rotational symmetry fieldfa on D, this
generality is not necessary for the definition of angular m
mentum. However, as we will see in Sec. IV D, it is essen
to the definition of energy because, in contrast to spa
infinity, the near horizon geometry can vary from one spa
time to another. This complication makes the question
existence for certain Hamiltonians rather more subtle in
presence of a weakly isolated horizon.

For calculational simplicity, it is useful to introduce a un
versal foliation of the horizon by 2-spheres, although o
final results do not depend on it. We saw in Sec. II B tha
nonextremal, weakly isolated horizon admits a natural fo
tion of this type. But we would like to incorporate the e
tremal case as well. Let us therefore define the leaves of
foliation as the rigid translations of the past boundarySD

2 of
D along any element of the equivalence class@ l a#. ~In the
nonextremal case, these are precisely the level surfaces o
function c appearing in the symplectic structure and th
foliation coincides with the preferred foliation if and only
the past boundarySD

2 is a leaf of the preferred foliation.! The
practical advantage of introducing such a foliation is tha
allows us to decompose a vector fieldWa on the horizon into
vertical and horizontal components, exactly as in Eq.~3.5!.

Consider, then, a smooth assignment of a vector fieldWa

on M to each space-time in the phase spaceGf such that, at
infinity, Wa is an asymptotic symmetry, and on the horiz
Wa is tangential toD, and

Wa5BWl a1hW
a ,

with LlhW
a 50 andBW a constant5 on D. The motion in phase

space associated to the diffeomorphism alongWa is given
simply by the Lie derivative:

dWSabI
J5LWSabI

J , dWAaI
J5LWAaI

J

and

dWAa5LWAa .

When the background fields (SabI
J ,AaI

J ,Aa) satisfy the
field equations of Einstein-Maxwell theory, one can eas
verify that dW satisfies the linearized equations of motion.
therefore represents a tangent vector field on covariant p
space. This vector field generates a canonical transforma
if it preserves the symplectic structure, i.e., ifLdW

V50.

Equivalently,dW is a canonical transformation if and only
there exists a Hamiltonian functionHW on phase space suc
that

dHW5V~d,dW! ~4.1!

5As we saw in Sec. III, ifk ( l )50, BW need not be constant onD
for Wa to define a symmetry of that horizon. However, our purpo
here is to consider asmoothassignment of symmetry vectors t
many different horizons. By continuity in phase space, therefo
BW should be constant in this case as well.
6-9
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for all tangent vectorsd to phase space.~As with any gen-
erally covariant theory, one expects the Hamiltonian, if
exists, will consist only of surface terms. We will see th
this expectation is correct.!

Using the symplectic structure~2.16! and dropping terms
which vanish when the equations of motion hold andd sat-
isfies the linearized equations of motion, the right side of
~4.1! becomes

V~d,dW!5
1

16pG E
M

d Tr@dA∧~W4S!1~W4A!dS#

2
1

8pG R
SD

~dc!~dW
2e!2~dWc!~d2e!

2
1

4p E
M

d@dA∧~W4.F!1~W4A!d~.F!#

2
1

4p R
SD

~dx!„dW~.F!…2~dWx!„d~.F!….

~4.2!

The remaining bulk terms reduce to surface integrals onSD

andS` . The integrals onS` are the usual ones and are n
the main focus of this subsection. On the other hand,
surface terms atSD arising from the bulk integrals, togethe
with those already present in Eq.~4.2!, will provide the criti-
cal test of whetherdW defines a symmetry of the symplect
structure; we will focus on these.

The first issue one must address is the definition ofdWc
and dWx. Since c and x are uniquely determined by th
triplet (eI

a ,AaI
J ,Aa) at the horizon@see Eqs.~2.14! and

~2.15!#, dWc and dWx are completely unambiguous. How
ever, their explicit expressions involve a subtlety. For de
niteness, let us considerdWc. One may first be tempted t
set dWc5LWc. However, recall the definition~2.14! of c
requiredc to vanish onSD

2 . The naive definition ofdWc
generally does not preserve this condition. Hence the n
expression is incorrect and must be modified to ensure
dWc vanishes onSD

2 . To address this problem, let us pr
ceed systematically and return to definition~2.14! of c. Us-
ing the second part to the definition~2.14! of c and the
propertiesLWl a=0 andLWva=0 of W, it follows that

Ll~dWc!=0.

SincedWc must vanish onSD
2 , we concludedWc=0 on all

of D. A similar argument applies tox, since we conclude

dWc505dWx.

Note that the subtlety arose becausec and x are potentials
for physical fields. Since all other terms in Eq.~4.2! involve
the fields themselves, there is no further subtlety in defin
the action ofdW ; the action is given simply by the Lie de
rivative.
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The remainder of the calculation is straightforward. T
surface terms in Eq.~4.2! arising from the bulk integrals can
be expressed in terms ofva and 2eab . The final result can be
conveniently expressed as

V~d,dW!5
21

8pG R
SD

d@~hW4v!2e#2~dhW4v!2e

1k~W!d
2e2

1

4p R
SD

d@~hW4A!.F#

2~dhW4A!.F2F~W!d~.F!

1
1

16pG R
S`

Tr@dA∧~W4S!1~W4A!dS#

2
1

4p E
S`

dA∧~W4.F!1~W4A!d~.F!,

~4.3!

whereF (W) denotes the electric potential of the horizon re
tive to the vertical component ofWa. The right side of this
result consists of integrals both at the horizon and at infin
If the HamiltonianHW is to exist, then the right side of Eq
~4.3! must be equal to the exact variation of some expr
sion. As is well-known, the surface integrals at infinity c
themselves be written as exact variations wheneverWa be-
comes a symmetry of the asymptotic metric at infinity. Ho
ever, there is noa priori reason why the surface integral
the horizon is an exact variation. Thus, somewhat surp
ingly, although the evolution generated byWa does yield a
flow on the phase spaceGf , this flow need not be Hamil-
tonian. The necessary and sufficient condition for it to
Hamiltonian is precisely that the surface integral onSD in
Eq. ~4.3! equalsdHD

(W) for some functionHD
(W) on Gf ~de-

pending only on values of horizon fields!.

C. Angular momentum

To define angular momentum, let us assign a vector fi
wa on M to each space-time inGf such that its restriction to
D is given by our fixed rotational vector fieldfa. Since we
are primarily interested only in the horizon angular mome
tum, to avoid the unnecessary analysis of the terms at in
ity, let us further require thatwa vanishes outside some com
pact neighborhood of the horizon.~We will relax this
requirement after obtaining the expression of the horizon
gular momentum.! Then, settingWa5wa, Eq. ~4.3! simpli-
fies: the term at infinity vanishes anddhW

a can be set to zero
Thus, we now have

V~d,dw!5
21

8pG R
SD

d@~f4v!2e#

2
1

4p R
SD

d@~f4A!.F#.

The right side of this expression is clearly the variation of
integral overSD . Therefore, we conclude the Hamiltonia
6-10



r,

tu

ad
a
a
ck
te
re

ro

r

an
t
or
la

x-

a

la

c
-

fo
il

via
wo

re-
n-

e-

m.

r

en
ve
ral

as-

e
ral,

at

glo-

-

ion.
rate

n-

MECHANICS OF ROTATING ISOLATED HORIZONS PHYSICAL REVIEW D64 044016
generating motions alongwa does indeed exist. Moreove
that Hamiltonian will consist of a single surface term atD
whose value may be taken to define the angular momen
JD of the horizon:

JDªHD
f52

1

8pG R
SD

~f4v!2e2
1

4p R
SD

~f4A!.F,

~4.4!

where the integral can be evaluated onany cross-section of
D. This definition is manifestly~quasi-!local to the horizon.
Sinceva and 2eab are invariant under the permissible tetr
rotations, the gravitational term is invariant under intern
Lorentz rotations at the horizon. Using the fact th
Lf(.F)ab=0 and the Maxwell equations, it is easy to che
that the Maxwell term is also gauge invariant. Finally, no
that, in contrast to the standard angular momentum exp
sions at infinity@13#, the horizon angular momentumJD in-
cludes contributions from both the gravitational and elect
magnetic fields. In this respect the right side of Eq.~4.4! is
completely analogous to the expression of the horizon ene
derived in@4# in the nonrotating case.

It is natural to ask if the horizon angular momentum c
be expressed directly in terms of space-time curvature aD.
The intuition derived from the Newman-Penrose framew
suggests that the gravitational contribution to the angu
momentum is encoded in the component Im@C2# of the Weyl
curvature. We will now show that his rule of thumb is e
plicitly realized in the present construction. Sincefa is a
Killing vector of the intrinsic horizon geometry, it is also
symmetry of the area element2eab . Thus, we findLf

2e
5d(f4

2e)50, from which it follows thatf4

2e5df for
some smooth functionf satisfying Ll f =0 on the horizon.
Now, sincefa is tangent toSD , we have

R
SD

~f4v!2e5 R
SD

v∧~f4

2e!5 R
SD

2 f Im@C2#2e,

where we have performed an integration by parts in the
step. Next, consider the electromagnetic term in Eq.~4.4!.
SinceLf.F=0 and d.F=0, it follows that f4.F5dg
for some smooth functiong satisfyingLlg=0 on the hori-
zon. Hence, using an identical argument as above we
replace the term (f4A) involving the electromagnetic po
tential by the Newman-Penrose componentf1 of the Max-
well field ~given by f15 1

4
2eab@(.F)ab1 iFab#). Thus, we

can re-express the horizon angular momentum~4.4! as

JD52
1

4pG R
SD

f Im@C2#2e1
1

2p R
SD

g Im@f1#2e.

~4.5!

Since the integrands in Eq.~4.5! are Lie-dragged byl, the

full expression can be projected to the 2-sphereŜ of genera-
tors of D.

Having the precise definition at hand, we can now ask
its relation with other notions of angular momentum ava
able in the literature.
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First suppose that there is no Maxwell~or any other! field
in a neighborhood ofD andwa is in fact a Killing field of a
specific geometry in our phase-spaceGf in this neighbor-
hood. Then, one could also define the angular momentum
Komar integral. To analyze the relation between the t
definitions, first consider the one-formna on D which is
normal to the foliation bySD and is normalized with
l ana=21 everywhere. It is easy to showl a¹anb=vb ,
where¹a denotes the space-time connection. Using this
lation in the gravitational contribution to the angular mome
tum definition~4.4!, one finds

JD52
1

8pG R
SD

~f4¹ ln!2e5
1

8pG R
SD

~¹ lf4n!2e

5
1

16pG R
SD

~ l4dw!•n2e,

where we have used the Killing property ofwa in the last
equality. By rewriting the last integral in terms of the spac
time dual of the two-form dw, we obtain

JD5
1

8pG R
SD

.dw.

The right side is precisely the Komar angular momentu
Thus, in any space-time in whichfa can be extended to a
space-time Killing fieldwa in a neighborhood ofD, the
gravitational contribution toJD agrees with the usual Koma
expression defined bywa. As at infinity, this is an exact
agreement, not just a proportionality. Finally note that, ev
in the presence of Maxwell fields on the horizon, the abo
discussion establishes the equality of the Komar integ
with the gravitational termin Eq. ~4.4!.

A second definition of angular momentum is the one
sociated with infinity@13#. However, the integral at infinity
represents thetotal angular momentum, including that in th
radiation fields outside the horizon. Therefore, in gene
one does not expect the two to agree. Indeed,a priori, it is
not clear to which component of the angular momentum
infinity we should compareJD . However, this problem dis-
appears if the space-time under consideration admits a
bal, rotational Killing field wa ~with LwFab50 on M!,
whose restriction toD is given byfa. Let us therefore con-
sider this case.

Now, sincewa is everywhere a Killing field of the space
time under consideration, the vector fielddw on the phase
space can only define an infinitesimal gauge transformat
However, such a gauge transformation defines a degene
direction of the symplectic structure. Thus, we have

dHf5V~d,df!50

for all tangent vectorsd at any axially symmetric point
(eI

a ,AaI
J ,Aa) of the phase space. Therefore, on any co

nected component of the phase-spaceGf consisting of space-
times which admitwa as a Killing field,Hf must be a con-
stant. Note, however, that withG5c51, Hf has
dimensions of angular momentum@~length!2# while the
6-11
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ASHTEKAR, BEETLE, AND LEWANDOWSKI PHYSICAL REVIEW D64 044016
theory has no dimensionful constant with that dimension~re-
call: the cosmological constant is zero!. Therefore, the
Hamiltonian itself must vanish. Finally, from Eq.~4.3! it fol-
lows that, on shell, the Hamiltonian consists only of tw
surface terms:

Hf5JD2J` .

We therefore conclude that if the space-time admits a glo
rotational Killing field wa which reduces tofa on D, then

JD5J` ~4.6!

whereJD is thetotal horizon angular momentum~defined by
fa!.

At first this result~4.6! is rather surprising, both math
ematically and physically, because one would have expe
J` andJD to differ from each other by the angular mome
tum in the Maxwell field outside the horizon. However,
closer examination shows that the result is to be expected
for rather subtle reasons. Let us first consider the mathem
cal aspect. In the axi-symmetric case, it is well known t
J` is given by the Komar integralJ`

K defined bywa at infin-
ity @14#. We saw above that the gravitational contribution
JD equals the Komar integralJD

K evaluated at the horizon. I
turns out that, using the Cartan identity, thewa-angular mo-
mentum in the bulk electromagnetic field—i.e., the integ
*Tabw

adSb over any partial Cauchy surface extending fro
the horizon to infinity—can in fact be expressed as surf
integrals. The term at infinity vanishes because of the fall
conditions while the term at the horizon is precisely the el
tromagnetic contribution toJD . Thus, the bulk electromag
netic contribution to thew-component of angular momentum
is already contained inJD through the Maxwell horizon term
Physically, one can understand the situation as follows
general, if D extends in the future all the way toi 1, the
horizon angular momentumJD is to be thought of as the
angular momentum ‘‘left over ati 1 after allowing for radia-
tion.’’ ~This is completely analogous to the situation with t
horizon mass analyzed in detail in@3#.! Now, if w is a Killing
vector, there is no radiation of thew-component of angula
momentum, since thew-component evaluated ati 1 is the
same as that evaluated ati o, sinceJD5J` .

We will conclude with three remarks.
~1! Let us restrict ourselves to class I~i.e., spherically

symmetric! weakly isolated horizons. In this case,qab , va,
andAa are Lie-dragged by all three rotational vector field
Hence, the pull-backs to the spherical sections ofva andAa
must vanish and the integrand of Eq.~4.4! therefore van-
ishes. Thus, as one would physically expect,JD vanishes on
all class I horizons.

~2! The vector fielddw determines the HamiltonianHw

only up to an additive constant. How was this freedom fix
in Eq. ~4.4!? In the case where the cosmological const
vanishes, this constant can be fixed to zero because the
no parameter available in the theory with the correct dim
sion. Even when the cosmological constant is not zero,
freedom can still be eliminated, e.g., simply by the physi
requirement that horizon angular momentum should van
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in class I. As we just showed,JD satisfies this condition.
Thus, the additive constant is fixed in a natural fashion.

~3! An important question for this framework is wheth
the event horizon of a Kerr-Newman black hole is a rigid
rotating isolated horizon and, if so, whether the above d
nition of angular momentum reproduces the standard res
The answer, in both cases, is in the affirmative. Being Killi
horizons, these event horizons are in particular weakly i
lated horizons and the axi-symmetry of the ambient spa
time defines the fieldfa on D. Thus, these are rigidly rotat
ing isolated horizons. Finally, the discussion above sho
that in this caseJD equalsMa, the standard angular momen
tum J` defined at infinity. Thus~as with the horizon mass in
the non-rotating case@4#!, our horizon angular momentum
expression~4.4! contains not only the ‘‘bare’’ angular mo
mentum one may naively associate with the horizon but a
the contributions from the electromagnetic hair outside.

D. The first law

To state the first law of black hole mechanics for isolat
horizons, we must first define horizon energy. As with ang
lar momentum in the previous subsection, we will base
definition of energy on the Hamiltonian generating trans
tions along an appropriate symmetry of the horizon. Ho
ever, which particular symmetryWa5ta would correspond
to the desired time-translations is not immediately cle
Therefore, we will begin with anarbitrary symmetry field
ta. At the horizon, then, it only has to satisfy

ta1V~ t !f
aP@ l a# or ta5B~ l ,t !l

a2V~ t !f
a ~4.7!

for some constantsV (t) ,B( l ,t) on D. ~The latter depends no
only on the specific choice ofta but also ofl aP@ l a#.! The
constantV (t) will be referred to as the angular velocity of th
horizon relative tota. Note that both the specific elemen
B( l ,t)l

a of @ l a# and V (t) , determined byta, can depend on
the dynamical fields (eI

a ,AaI
J ,Aa); in the numerical relativ-

ity terminology, we are considering ‘‘live’’ evolution vecto
fields ta. This generality is essential, in particular becau
the physically appropriate angular velocityV (t) of D will
vary from one space-time to another. To summarize, to e
point in the phase spaceGf , we assign a vector fieldta on
M satisfying Eq.~4.7! onD, allowing the vector field to vary
from one point of the phase space to another.

To analyze the question of whetherd t is a Hamiltonian
vector field onGf , we must determine whether the right sid
of Hamilton’s equations~4.1! is the exact variation of some
Hamiltonian. We have already calculated the quantity
question for an arbitrary vector fieldWa in Eq. ~4.3!. Since
the surface terms at infinity are not central to this discuss
as in the angular momentum calculation above, for simplic
let us first assume thatta vanishes outside of some compa
neighborhood ofD. The only potential obstruction tod t be-
ing Hamiltonian lies in the horizon surface term of Eq.~4.3!.
Being linear ind t , this surface term defines a one-formXD

t

on phase space. From the right side of Eq.~4.3!, XD
t can be

expressed as
6-12
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XD
t ~d!5

1

8pG R
SD

d@~2V~ t !f4v!2e#2@d~2V~ t !f!4v#2e

1k~ t !d
2e1

1

4p R
SD

d@~2V~ t !f4A!.F#

2@d~2V~ t !f!4A#.F1F~ t !d~.F! ~4.8!

where we have decomposedt as in Eq. ~3.5! with ht
52V (t)f

a. Let us begin with the first integral. Sincef is
fixed once and for all onD, the variationd in the second term
only affectsV (t) . Therefore, the second term will simpl
cancel the part of the first term where the variation hitsV (t)
and we can therefore write the first two terms together a

1

8pG R
SD

2V~ t !d@~f4v!2e#.

However, the quantityV (t) is constant overD and may there-
fore be pulled outside the integral. The remaining integra
is exactly thed-variation of the gravitational contribution t
the angular momentum~4.4!. Analogous procedures can b
applied to the second~i.e., electromagnetic! term of Eq.
~4.8!, likewise yielding the electromagnetic contribution
JD . Furthermore, since the surface gravity and electrost
potential are both constant overD, we can pull them outside
the respective integrals and Eq.~4.8! reduces to

XD
t ~d!5

k~ t !

8pG
daD1V~ t !dJD1F~ t !dQD . ~4.9!

Note that the right side of Eq.~4.9! is strongly reminiscent of
the first law of black hole mechanics. However, at this sta
of our analysis, it only provides an explicit expression of t
one-formXD

t on Gf . The condition thatd t be Hamiltonian is
simply that the one-formXD

t is closed:

05dXD
t 5

1

8pG
dk~ t !∧∧daD1dV~ t !∧∧dJD1dF~ t !∧∧dQD ,

~4.10!

whered and ∧∧ denote the exterior derivative and exteri
product on the~infinite-dimensional! phase spaceGf . This
simple relation leads to some startling consequences w
we now discuss.

A priori, the horizon value ofta can vary from one space
time to another in any smooth fashion; for each such cho
we obtain a flow on the phase space. Equation~4.10! implies
that most of these flows fail to preserve the symplectic str
ture. To begin with, for the flow to be Hamiltonian, the su
face gravityk (t) , the angular velocityV (t) and the electric
potentialF (t) can be functionsonly of the areaaD , angular
04401
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momentumJD and the chargeQD .6 Other factors such as th
local geometry~i.e., distortion! of the horizon cannot affec
these ‘‘extrinsic parameters.’’ Moreover, these parame
must satisfy certain nontrivial relations:

]k~ t !~aD ,JD ,QD!

]JD
58pG

]V~ t !~aD ,JD ,QD!

]aD

]k~ t !~aD ,JD ,QD!

]QD
58pG

]F~ t !~aD ,JD ,QD!

]aD

]V~ t !~aD ,JD ,QD!

]QD
5

]F~ t !~aD ,JD ,QD!

]JD
.

~4.11!

Now, on any given point (eI
a ,AaI

J ,Aa) in the phase space
k (t) , V (t) , andF (t) are completely determined by the hor
zon value ofta. Conversely, at any given phase space po
k (t) uniquely determines the vertical component ofta and
V (t) , the horizontal component. Therefore, relations~4.11!
constrain the permissible choices of the assignment oftn to
each space-time inGf . These strong restrictions are the ne
essary and sufficient conditions for the flow generated byd l
on Gf to be Hamiltonian.

Thus, the restriction to the horizon of a permissible ev
lution field ta is determined by this remarkably small set
parameters of the horizon. Note, however, that these a
ments do not provide aspecificchoice of functionsk (t) and
V (t) of the horizon parametersaD ,JD ,QD . Correspondingly,
for any choice of these functions satisfying Eq.~4.11!, the
Hamiltonian generating evolution along the correspondingta

is guaranteed to exist.~The term at infinity is already an
exact variation and is therefore not relevant to our disc
sion.! The horizon surface term in that Hamiltonian is a na
ral measure of the energyED

t of the horizon relative to the
evolution fieldta. By virtue of Eq.~4.8! and the calculations
above, the energyED

t is a function only ofaD ,JD ,QD and
satisfies

6So far, our construction is very general. For any given phys
metric~satisfying our boundary conditions! we can choose an@ l # so
that (D,@ l #) is an isolated horizon withk ( l )50 andanother equiva-
lence class@ l 8# with k ( l 8)Þ0. Hence, for any values of the triple
(aD ,JD ,QD), and an evolution fieldta=Bla2Vfa ~with BÞ0!,
there is a phase space point withk (t)[Bk ( l )50 and another with
k (t)Þ0. Therefore, irrespective of the choice ofta, the evolution
will fail to be Hamiltonian unless we remove the spurious redu
dancy in the phase space. This can be naturally accomplishe
follows. Denote bykKN(aD ,JD ,QD) the function of the three in-
trinsic horizon parameters which yields surface gravity in the Ke
Newman family. We will excise those points from our phase sp
for which one of (k ( l ) ,kKN) vanishes but the other does not. Th
excision could have been carried out already in Sec. II C when
introduced the phase space. We did not do so because the re
behind the excision becomes clear only after Eq.~4.10!. Note that
the phase space continues to contain all Kerr-Newman soluti
including the extremal ones, after the excision.
6-13
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dED
t 5

k~ t !

8pG
daD1V~ t !dJD1F~ t !dQD . ~4.12!

This is our generalized first law, which holds for all weak
isolated horizons. The analogy to the usual first law of bla
hole mechanics is clear.

Let us summarize.A priori there is freedom to assign a
evolution vector fieldta on M to every point in the phase
spaceGf in any smooth fashion; each assignment provid
an evolution flowd t on Gf . However, most of these flow
fail to preserve the symplectic structure. They do so if a
only if the assignment is such that Eq.~4.10! @or, equiva-
lently, Eq.~4.11!# holds. While this is a severe restriction o
the assignment ofta, as discussed below, it still leaves co
siderable freedom in the choice of the assignment. For e
such ‘‘permissible’’ta, there is a well-defined horizon energ
and the first law holds. Thus, there is a precise sens
which the first law~4.12! is a necessary and sufficient co
dition for thed t-evolution to be Hamiltonian.

Since there is generally no canonical choice of a sing
‘‘correct’’ evolution field at the horizon, there is no canonic
notion of the horizon energy. WhileED

t has a direct Hamil-
tonian interpretation in the phase spaceGf , for a general
permissibleta it does not admit an obviousspace-timeinter-
pretation. In the next subsection, we will show that a cano
cal choice of ta can be made using no-hair theorems
Einstein-Maxwell theory. The correspondingED

t can be in-
terpreted as the horizon mass.

We will conclude with two remarks.
~1! There is a constructive procedure to obtain permiss

vector fields. Choose any smooth functionk0 of aD ,JD ,QD

satisfying the following regularity condition for each choic
of JD ,QD : the integrals

E
a0

`

daD

]k0

]JD
and E

b0

`

daD

]k0

]QD

converge to well-defined functions ofJD and QD , with a0

54pAQ414J2 ~and k0 vanishes if and only ifkKN van-
ishes!. Then, integrating the first of Eqs.~4.11! with respect
to aD and requiringV(aD ,JD ,QD) to tend to zero asaD

tends to infinity for any fixed values ofJD ,QD , we obtain a
unique function V0(aD ,JD ,QD). Now, given any point
(eI

a ,AaI
J ,Aa) in Gf , there is a unique vector fieldta on D

such thatk (t)5k0 and V (t)5V0 ~namely,ta=B0l a1V0fa

whereB0 is given byk05B0k ( l )!. Finally, we can integrate
the second of Eqs.~4.11! with respect toaD and require that
F (t) tends to zero asaD tends to infinity~keepingJD andQD

fixed!, we obtain a functionF (t) of aD ,JD ,QD which satis-
fies the second and third parts of Eqs.~4.11!. Thus, given a
sufficiently regular functionk0 of aD ,JD ,QD , we can inte-
grate Eq.~4.11! and, using physically motivated condition
to determine integration constants, obtain an admissible e
lution field ta and electric potentialF (t) on D.

~2! If we now drop the restriction thatta vanish outside a
finite neighborhood ofD in M but require instead that i
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asymptotically approach a time-translation Killing field
the fixed flat metric at infinity, we find that the total Hami
tonian has two terms:

Ht5E`
t 2ED

t

where E`
t is the ADM energy. Again, general argumen

from symplectic geometry imply thatHt is constant on each
connected component of stationary solutions, assuming
course thatta coincides with the stationary Killing field in
these space-times. As in the case of angular momentum
can argue that the value of this constant can only be zer
the Einstein-Maxwell theory. Thus, in each stationary spa
time, the horizon energyED

t equals the ADM energy at in
finity.

E. Horizon mass

The procedure that led us to the definition of the horiz
energyED

t is the same as the one used at spatial infinity
define the ADM energy. However, the boundary conditions
infinity are such that the asymptotic value of the evoluti
field ta must coincide with one of the time translation Killin
fields of the fixed flat metric, since the space of viable tim
translations at infinity is three-dimensional~corresponding to
the unit space-like hyperboloid in the tangent space ofi o!.
On the other hand, at the inner isolated horizon boundary,
physically appropriateta necessarily varies from one spac
time to another. In particular, if the horizon is nonrotating,ta

points along the null normal to the horizon, while if it i
rotating, it has a component also along the rotational sy
metry fa.

In the usual treatments of the first law, one restricts o
self to perturbations of stationary backgrounds. Con
quently, one can single out a preferred time translation fr
the 3-parameter family, adapted to the rest frame of the bl
hole. The corresponding ADM energy is then also the AD
mass. It is natural to ask if we can similarly single out
canonical time translation also at the horizon and introd
the notion of horizon mass. Note that this task is significan
more difficult than the corresponding task at spatial infin
first because the permissible time translations at the hor
form an infinite dimensional family rather than three, an
second because, on the physical grounds mentioned ab
this canonical time translation at the horizon must vary fro
one space-time to another. Nonetheless, because of th
markably strong restrictions on the extrinsic parametersk (t) ,
V (t), andF (t) and thanks to the no-hair theorems, there i
natural solution to this problem.

We have just seen in the previous subsection that the
striction of any evolution vector fieldta to the horizon is
determined byk (t) and V (t) and if the ta-evolution is to
define a Hamiltonian flow onGf , k (t) , andV (t) can only be
functions ofaD , JD , andQD . These three quantities may b
regarded as the independent parameters of the horizon.
problem of defining a canonical time-translation on the ho
zon therefore reduces to that of making a canonical choic
the two functionsk (t)(aD ,JD ,QD) and V (t)(aD ,JD ,QD).
Now, the event horizon of a Kerr-Newman black hole is
6-14
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particular a weakly isolated horizon. It is natural, on the
stationary space-times, to choose the evolution field to c
cide with the stationary Killing field. This choice selects f
us specific functions of the three parameters

k5
RD

4 2G2~QD
4 14JD

2 !

2RD
3A~RD

2 1GQD
2 !214G2JD

2

and

V5
2GJD

RDA~RD
2 1GQD

2 !214G2JD
2

, ~4.13!

where, as before,aD54pRD
2 . Now, although the choice

~4.13! was madeonly for stationary cases, since there is e
actly one Kerr-Newman solution for each set of isolated
rizon parameters, this choice uniquely fixes the two fu
tions. Thus, we can select a canonical time-translation on
isolated horizon by requiring that the surface gravity and
angular velocity it defines be given by Eq.~4.13!. @This pro-
cedure is unambiguous becauseRD ,JD ,QD are determined
by (eI

a ,AaI
J ,Aa) without any reference tota.# We will make

this choice and denote byt0
a any time-translation whose re

striction to the horizon coincides with this canonical choic
The conditions~4.11! then require us to partially gauge fi
the Maxwell field such that

F5
QD

RD

RD
2 1GQD

2

A~RD
2 1GQD

2 !214G2JD
2

. ~4.14!

~Again this is the same value which the electrostatic poten
of the horizon takes in a Kerr-Newman solution.! The evo-
lution generated by such alive vector field t0

a is then guar-
anteed to be Hamiltonian. We can then ‘‘integrate’’ the e
pression~4.12! of the first law to find the horizon energyED

t .
Setting it equal to the massMD , we find

MD5
A~RD

2 1GQD
2 !214G2JD

2

2GRD
. ~4.15!

Again, this gives the usual ADM mass for the Kerr-Newm
solutions. However, this definition applies toall isolated ho-
rizons including those which admit radiation in the exter
region. Therefore, in general,MD differs from the ADM
massMADM due to the energy in the radiation field. In th
Einstein-Maxwell theory under consideration, if the weak
isolated horizon were to extend all the way toi 1 in the
distant future,MD can be thought of as the future limit of th
Bondi mass ati 1 @3#. If the space-time is globally stationary
there is no flux of radiation across future null infinityI1

since the future limit of the Bondi mass coincides with t
ADM mass. Finally, we wish to emphasize that we did n
simply postulate Eq.~4.15!; it was systematically derived
using Hamiltonian methods.

With this ~quasi-!local definition of the horizon mass, fo
any preferred time-translationt0

a , we have acanonicalgen-
eralized first law
04401
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dMD5
k

8pG
daD1VdJD1FdQD , ~4.16!

applicable to all weakly isolated horizons in Einstei
Maxwell theory.

V. DISCUSSION

In this paper, we gave a definition of angular momentu
JD for all rigidly rotating isolated horizons. The definition i
~quasi-!local to the horizon; it makes no reference to infini
at all. In contrast to the usual angular momentum express
@13# at infinity, JD has an explicit contribution from the Max
well field on the horizon. If the space-time in a neighborho
of the horizon is axi-symmetric and the matter fields van
in that region,JD equals the usual Komar integral formul
evaluated at the horizon. If the space-time is globally a
symmetric, irrespective of whether there is a Maxwell fie
on the horizon,JD equals the total angular momentum
infinity. If the weakly isolated horizon extends all the way
i 1, we can regardJD as the future limit of angular momen
tum along future null infinityI1. While these properties o
theJD are very similar to those of horizon massMD , there is
also an interesting difference: Whereas in the presenc
radiation in the exterior regionMD is always different from
MADM , if the radiation field is axi-symmetric,JD equals the
angular momentum at infinity~along the rotational Killing
vector!.

We have also generalized the standard first law of bl
hole mechanics. Although the final form~4.16! of this law is
identical to that of the standard one, there are some impor
differences. First, our law is applicable to all space-tim
which admit an isolated horizon inner boundary, includi
those which allow radiation arbitrarily close to the horizo
Second, all quantities and variations that enter the first
are definedlocally at the horizon. In standard treatments, t
physical meaning and appropriateness of variations is no
clear because some quantities such as area, surface gr
and the angular velocity of the horizon are defined at
horizon while others, like energy, angular momentum~and
sometimes even the electric scalar potential! are evaluated a
infinity. Third, other treatments based on a Hamiltoni
framework@1# often critically use the bifurcate two-surfac
which does not exist in the extremal case. Therefore,
tremal black holes are often excluded from the first law. T
present analysis never makes reference to bifurcate surf
~which do not exist in physical space-times resulting fro
gravitational collapse!. Therefore, our discussion of the firs
law holds also in the extremal case. Finally, with obvio
modifications of boundary conditions at infinity, our analys
includes cosmological horizons where thermodynamic c
siderations are also applicable@15#.

Perhaps the most important aspect of this analysis is
it sheds new light on the ‘‘origin’’ of the first law: as in th
nonrotating case treated in@4#, it arose as a necessary an
sufficient condition for the existence of a Hamiltonian ge
erating time evolution. A new feature of our framework
the existence of an infinite family of first laws correspondi
to the infinite family of evolution ‘‘permissible’’ vector
6-15
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fields ta @i.e., vector fields satisfying the necessary and s
ficient condition~4.10! for the evolution to be Hamiltonian#.
In the Einstein-Maxwell case, using the no-hair results, o
can select a canonical live evolution fieldt0

a . Correspond-
ingly, there is a canonical notion of energy which can
interpreted as the horizon massMD and hence a canonica
first law. In more general theories which allow hairy bla
holes, a canonical horizon mass cannot be defined on the
phase space. Yet, even in this case, the isolated hor
framework is directly useful: it enables one to relate prop
ties of these hairy black holes to those of the correspond
solitons@8#.

Finally, our Lagrangian and Hamiltonian frameworks a
based on real tetrads and Lorentz~rather than self-dual! con-
nections. It is therefore quite straightforward to extend o
analysis to any space-time dimension.
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APPENDIX: GENERAL HAMILTONIANS

In Sec. IV, we constructed Hamiltonians generating
infinitesimal symmetries of rigidly rotating weakly isolate
horizons. While this is the most interesting case from
physical perspective, for completeness, one may also wis
consider more general space-time vector fieldsWa which are
tangential toD and preserve the fixed equivalence class@ l a#
thereon and ask: Can any of these lead to Hamiltonian e
lutions on thefull phase spaceG? In this appendix we will
analyze this issue. While a generalWa will of course not lead
to a Hamiltonian evolution, there is an interesting subcl
which does. It may be useful in future investigations.

Let us begin with an assignment of a vector fieldWa to
each space-time in the full phase spaceG which preserves
(D,@ l a#) but is not necessarily an infinitesimal symmetry
the sense of Sec. IV@i.e., does not necessarily preser
(qab ,va ,Aa)#. As in Sec. IV, we can decomposeWa into
vertical and horizontal parts:

Wa5BWl a1hW
a

with LlhW=0. Note that the conditionLWl aP@ l a# implies
BW is constrained only byLlBW=0. The variationsdWc and
dWx of the potentials become

dWc5~BW2BW
2!k~ l ! , and dWx5~BW2BW

2!F~ l !
~A1!

whereBW
2 denotes the restriction ofBW to the past boundary

SD
2 of the horizon.
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We can now calculate the action of the symplectic str
ture on the vector fielddW on G. The derivation of Eq.~4.2!
from Eq.~2.16! did not depend in any way onWa defining a
symmetry of the horizon. We can therefore begin at t
point and substitute the new definitions ofdWc anddWx to
find the analog of Eq.~4.3! for generic horizon diffeomor-
phisms. In fact, the result will be quite similar: For any ta
gent vector fieldd on G, we will have

V~d,dW!5
1

8pG R
SD

d@~hW4v!2e#2~dhW4v!2e

1k~W2!d
2e2

1

4p R
SD

d@~hW4A!.F#

2~dhW4A!.F2F~W2!d~.F!

1
1

16pG R
S`

Tr@dA∧~W4S!1~W4A!dS#

2
1

4p R
S`

dA∧~W4.F!1~W4A!d~.F!.

~A2!

The only difference here is thatk (W2) denotes the surface
gravity relative to the vertical partBWl a of Wa, evaluated at
SD

2 , and similarly for the electric potentialF (W2) . ~On other
sectionsSD of the horizon, the surface gravity and electr
potential may take other values.! Since the right side con
tains several terms which are not exact variations, there a
number of possible barriers to the existence of a Hamilton
generating motions alongWa. However, as we will now
show, there are a couple of interesting cases where the
quired Hamiltonian does exist.

Consider first the case whenW is purely horizontal at the
horizon, Wa=hW

a , with, moreover,hW
a fixed ~i.e., indepen-

dent of the space-time under consideration!. Thus,Wa gen-
erates a fixed diffeomorphism onD which preserves the fam
ily of cross-sectionsSD which, however, need not be
rotation. Since we are interested in the horizon structure
us also assume thatWa vanishes in a neighborhood of infin
ity. Then, the integrals at infinity in Eq.~A2! vanish and only
the first two terms in each of the integrals atSD survive.
Moreover, the second term in each integral vanishes bec
dhW

a is zero. Thus, the flow generated by theseWa preserves
the symplectic structure and the corresponding Hamilton
is given by

HhW
ª

21

8pG R
SD

~hW4v!2e2
1

4p R
SD

~hW4A!.F.

~A3!

Note that this integral has the same form as the integral~4.4!
used to define the angular momentum in Sec. IV. Howev
this formula applies to a general weakly isolated horizo
which need not be rigidly rotating. Moreover, the horizon
vector fieldhW

a is arbitrary; it need not be a Killing vector o
qab and indeed it need not even preserve the area-form2e.
6-16
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@Consequently, we cannot re-express Eq.~A3! in terms of
curvatures as in Eq.~4.5!.# One might hope this formula
could be used to define angular momentum in some sens
generic weakly isolated horizons. However, while the ph
space interpretation of Eq.~A3! is clear, ifhW

a does not gen-
erate rotations, its space-time interpretation is quite obsc

Finally there is another family of vector fieldsWa for
which the flowdW on G is Hamiltonian, although physically
less interesting. LetWa be purely vertical at the horizon
Wa=BWl a, with BW

2=0. As before, since we want to focu
on the horizon terms, let us assume thatWa vanishes outside
some neighborhood ofD. Then, terms at infinity in Eq.~A2!
vanish and becausehW

a =0, the first two terms in each of th
th

nd
,
s

.

ra

, J

e

04401
for
e

e.

surface integrals atSD also vanish. Finally, sinceBW
2=0,

these remaining terms also vanish. Thus, the entire right
of Eq. ~A2! vanishes. Consequently, the associateddW is a
degenerate directionof the symplectic structure, since, from
the perspective of the Hamiltonian framework,dW generates
a gauge transformation. Such transformations have no dire
physical interest and may be quotiented out of the algebr
kinematically allowable diffeomorphisms. Indeed, since a
Wa of the form described above can be written uniquely a
combination of one of these gauge transformations and
other kinematically allowable vector field withBW constant
over D, we may restrict attention to the later case witho
any loss of generality.
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