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Can Schwarzschildean gravitational fields suppress gravitational waves?

Edward Malec
Institute of Physics, Jagiellonian University, 30-59 KrakdReymonta 4, Poland

Gerhard ScHar
Theoretical Physics Institute, Friedrich Schiller University, 07743 Jena, Max-Wien Pl. 1, Germany
(Received 9 March 2001; published 25 July 2p01

Gravitational waves in the linear approximation propagate in Schwarzschild space-time similarly to electro-
magnetic waves. A fraction of the radiation scatters off the curvature of the geometry. The energy of the
backscattered part of an initially outgoing pulse of the quadrupole gravitational radiation is estimated by
compact formulas depending on the initial energy, the Schwarzschild radius, and the location and width of the
pulse. The backscatter becomes negligible in the short wavelength regime.
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I. INTRODUCTION burst is far away from the horizon.
Backscattering has been investigated for a long time for Il. FORMALISM

various wave equationsee, for instance, Refl]). In gen- ) ) ]
eral relativity, this topic has been studied since the early The space-time geometry is defined by a Schwarzs-
1960s[2,3]. This paper continues the program that startecchildean line element,
with the study of the backscatter of scaldi and electro-

magnetic field$5,6]. Here we investigate the propagation of ds2=— ( 1— 2m dt2+ dR2+R2d02, (2.1
even-parity gravitational waves in #ixed) background R B 2_m
Schwarzschild space-time, assuming a nonstationary source. R

The discussion, however, proceeds without any reference to

the source. We only deal with field quantities. It is assumedvheret is a time coordinateR is a radial coordinate that

that the initial data are those of an isolated pulsersy of a  coincides with the areal radius, adf)?=d6?+ sir? ad¢? is

gravitational wave. The main question that is answered ishe line element on the unit spheres@®<2# and 0<¢

what fraction of the initially outgoing radiation may undergo < 7. Throughout this pape®, the Newtonian gravitational

backscattering before reaching null infinity? The strength otonstant, ana, the velocity of light, are set equal to 1.

the backscattering is assessed by bounding the fraction of the As explained in Sec. |, we restrict ourselves to even-parity

initial burst energy that will not reach a distant observer inaxial perturbations. Their propagation is ruled, in the linear

the main pulse. The even-parity waves are the only waveapproximation, by the Zerilli equatiofi7]. Formulated in

which are radiated during the axisymmetric collision of non-terms of the gauge-invariant amplitude defined by Mon-

spinning black holef9], and since in this case the Schwarzs-crief [8], this equation reads, in the caselef2 multipole

child space-time is a valid starting point for an approxima-[9],

tion scheme, it gives us an opportunity to bound the strength

of the phenomenon in a fairly realistic astrophysical context. (— at2+ af*)\lfszp, (2.2
The following five sections of the paper give a theoretical

description of the backscattering effect. Section Il describegyhere the potentiaV is given by

the notation and the Zerilli equation. In Sec. lll, the initial

data are bounded by the initial energy, and a solution is ) m
sought in the form of a superposition of an outgoing radia- omi2 1 om) 83 1+ &
tion (defined by initial dataand a backscattered term. The V(R)=6( 1- —) —2+(1— —) 7,
evolution of the backscattered term can be bounded by solu- R/ R R4 1+ 3_m)
tions of two differential inequalities. The bounds that are 2R

derived in Sec. IV and in the Appendix deal with a general 2.3
situation; no assumption is made about the initial radiation.

In Sec. V, we discuss initial data that are of compact suppor@nd where
the relative width of the support being small. Such data cor-

respond to radiation that is dominated by short wavelengths.

In this case stronger estimates are derived. They imply that

in the limit of short wavelengthgthe relative width of the

support tending to zejothe backscattering effect becomes is the tortoise radial coordinate.

negligible. In Sec. VI, the “small relative width condition” Consider a set of function¥;(r* —t), i=0, 1, and 2,
of Sec. V is supplemented by the assumption that the initiathat satisfy the following linear relations:

R
r*=R+2mIn(ﬁ—1) (2.9

0556-2821/2001/64)/0440128)/$20.00 64 044012-1 ©2001 The American Physical Society



EDWARD MALEC AND GERHARD SCHAFER

PHYSICAL REVIEW D64 044012

at\I’]_:?)\Po, R _ | _2m+R
2.9 9:(R)=Inl ——om
O V,=V;—mo,W,.
1
5
The combination +32m (5( 2m+ R)5 5(—2m+a)>
1
~ Wi(r*—t) Wy(r*—t) 4
T=wy(rr -ty + —+ 2(R2 2.6 +20m (( 2m+ R)4 (—2m+a)’
1
. . . . _ L _ 3
solves Eq(2.2) in I\_/Ilnkow_skl_ space-time = 0); it repre +80m (3( 2MTR) 3(—2m+a)3
sents purely outgoing radiation.
Let the initial data of a solutioW of Eq. (2.2) coincide , 1
with W att=0. Then, initially, V' represents a purely outgo- +20m (( 2m+ R)2 (—2m+a)?
ing wave. It should be noted that the assumption that initial
data ard(initially) purely outgoing is made in this paper only “10m 1 3.2
for the sake of clear presentation. In the linear approximation —-2m+ R —2m+a '
the propagation of the initially outgoing radiation is indepen-
dent of whether or not ingoing radiation is present.
We decompose the sought solutioki(r*,t) into the and
known part¥ and an unknown functio@:
V="+5. 2.7) ® , —1 1
-2m+R —-2m+
Due to the choice of the initial data made above, one has 3(=2m+R)™ 3(-2m+a)
=g,6=0 att=0. Lom? - ol
A omrr? T (mamray?) M)
lll. ENERGY ESTIMATES
-1 —-2m+R
Let us assume that the quadrupole initial data are defined X “om+R + “om+a +8min “om+al’
by a smooth triad of the function®, (k=0, 1, and 2) with
the initial support[a,b] (b<w). That guarantees that the 3.3
initial energy density multiplied byR?, p=((4,¥)?
+ (9« W)2+VW¥?)/ 5g, is smooth and vanishes on the o -
boundarya. Here 7g=1—2m/R holds. the following inequalities hold at=0 and forR=a:
The energy content inside a part of a Cauchy hypersurface
3, that is exterior to a ball of a radiuR can be defined as
E(R,t)=/Rdrp(r,t). Let us point out that in order to ensure 1w, (R)|
izati infini 1 3/2
a proper normalization of the energy flux at infinity, there —5  <CimrVO1(R),
should be a normalization constant in the definition of the R¥
energyE(R,t). We decided to omit it, since later on we shall
be interested only in the relative efficiency of the backscat-
ter; thus the normalization factor cancels out. The total initial VLR 6m
energy corresponding to the hitherto defined initial data is a
?y P g <CyVg2(R)+C1—=vg1(R)| 1 \/:
equal toE(a,0). \/ER Ja R
Lemma 1Defining
m a 2V6+1
3 +6C;—\/1-| =
Ci=V(2+213E(a,0), Ja R
1 1
X
C,=1\2E(a,0), V7. [R 2m
a a
c | 2E(a,0) 3.1
3E - =, .
7/a(2\/5+ 1) |q’(R)| a 2V6+1
. ) ) ) =Cz3\/1- —) , (3.9
and introducing the two non-negative functions JR R
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|‘I’0(R)|<

q\2V6+1
& S Nilg]  remNa®)

g>(R) 6m a
2 2R +C1\/a—\/91(R)< \/%)
m a 2V6+1
+6C3E 1—(§)
1 1
X

\/73_ /R 2m
a a

Proof. One can explicitly verify that

v, v, ~ ~
— MR Rz +2R3 ﬁt\lf-i-é’r*\lf,
5 (3.5
v, ¥ ~ ~ 2np¥Y
nR(2—°+—§ =W+ 9, + ZRT
R R
Equations(3.5), using relationg2.6), result in
R % 3 [g¥ 2\ 7r
J )= —— +\7rdr ¥ + :
R( KT oRV2,3 | b2 R R
g 1
-12 52| _ /_
5R( 7R ?) —7 + &Rllf
3m (v V¥,
RAER R (3.6

The integration froma to R and the use of the Schwarz
inequality yields
R 1 1/2
dr—s| .
fLor

3.7

Integratingf Xdr(1/r »°), one immediately arrives at the first
of the postulated inequalities.
In order to show the third inequality, notice that

|W(R)|R®=|[Rdrg,(W(r)r'®)|. The latter expression is
bounded from above, using the Schwarz inequality, by

R ~ T i ¢
\/ZJ dr(ﬂr(&r‘l’)2+67h‘1’2/r2)\/f dr7]r_1r2\f6
. a
\‘%"'1 1/2
S MR@o{l_(i)
77a(2\/6+1) R

, (38
where the inequality in Eqg3.8) follows from the monoto-
nicity of the energy as function d®. The first factor on the

3/2
3R

VAR _
R¥2

J(2+ J2/3)E(a,0)
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left hand side of this inequality is not greater thd@E(a,0)
since 6y, /r?<V(r)/n,. The replacement ofy, * by 7,*
and the integration of the other factor leads to the desired
result.

The second of Eq¥3.6) can be integrated. The Schwarz

inequality and direct integration, as well as tie and v,
estimates, should be used in order to obtain the second in-
equality of Lemma 1. Tha&, estimate, in turn, follows from

the identity\lfozqf—\IfllR—\Ifz/R2 and the preceding es-
timates.

IV. ESTIMATE OF THE DIFFUSED ENERGY

Let us define the strength of the backscattered radiation
that is directed inward by

h(R,t)=%(at+(9r*)5(R,t). 4.1

Let the outgoing null geodesﬁ(m) originate at R,t). If a
pomt lies on the initial hypersurface, then we will write

F(R 0)—FR By F(Ro to).(R.1) will be understood a segment of
F(Roio) ending at R,t).

A straightforward calculation shows that the rate of the
energy change alonfj, is given by

(di+ 0)E(R,1) = —[ 73h2 (R,1)+ V& (R,1)]. (4.2

It is necessary to point out that in the case of the initial point
Ry>a the result would be more complicated; the differentia-

tion of the energy aloni‘R0 would depend also oW, ¥,
andW,. If, however, the outgoing null geodesicsﬁg, then
it starts froma whereW,, ¥, and¥, do vanish. Since these

functions depend on the differencé—t, their values along
outgoing geodesics are constant, and that allows one to con-

clude that they vanish zﬁa.
The energy loss, that is, the amount of energy that dif-

fused inward'lza is equal to a line integral annEa:

2

o
}. 4.3

r

SE,=E(a,0)—E..= f dr{ nh% +
a

Our goal is to find an estimate &E, of a single pulse of
radiation based only on the information about the position
and the energy of the initial pulse. Obviously<OGE,
=<E(a,0) holds. We are interested in deriving in this section
a frequency independent bound, but later we obtain estimates
that are frequency sensitive.

6 is initially zero, and its evolution is governed by the
following equation:

2
2 R v, v,
(— 32+ d5) 5=V o+ v—6¢>(xy0+ =t
2m 4
RfR —S\Ifl+2?2}. (4.9
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One can define an “energy® (R,t) of the field § which is
contained in the exterior of a sphere of radRigs follows:

- 2
H(R,t)=fRdr((&;75) +nr(ar5)2+5zl). (4.5

r Ny

The rate of change df anngf(R,t) is given by

PHYSICAL REVIEW D64 044012

Initially, H vanishegboth 6 and ;6 vanish andH is mani-
festly non-negative. The first integral on the right hand side
of Eq. (4.8 is recognized to be jusfE,. The second inte-
gral in turn can be shown to be bounded—using the Schwarz
inequality and then the results of the Appendix—by

mvE(a,0) )
(O+ T HH(R,L) 2\/HM(1O.4BT+O(m ).
%0 4 oo 2+ V 5|4 jwd &o
S - — 21— 4m A N
7R TR | R T R e Thus, Eq.(4.8) implies
m
- myE(a,0)
2w, 63'“(“ ; v, v, 5Eas2<10.43T+O(m2)) JHuy
X| =3¥,+ + | Vot —+ —
r 3m r r )
41+ — 2m
2r <|54.9 — +0(m®) |[E(a,0); 4.9
m

G&n 1+ i . . . . . . .
—am °°dr<9t_5 _3v.+ 2V, N r the right hand side of the first inequality achieves a maximal
I PR oy 3m\? value whenH is maximal and that implies the second in-
4| 1+ or equality. Thus, in summary, for the fraction of the energy that

could diffuse through the null con€,, the following theo-

rem holds:
v, v, Theorem.SE,/E(a,0) satisfies the inequality
X ‘I’O'f' T+ r—2 (4.6)
2
Ea <54.5x| —| +0(m¥ad). (4.10
E(a,0) a

Herein the inequality follows from the omission of the non-

positive boundary term. This allows one to estimate the

maximal valueH,, of the § energyH: namely,

We would like to point out that the above derivation is more
efficient and simpler than the one used in Ré&f} or [6]

mvyE(a,0) 5 when SE, was estimated directly on the basis of the esti-
\/HMs10.43—a +0(m). 4.7) mates ofé andh_ . This alternative approach would require

a laborious integration of the field equation, and the final

The calculation is essentially simple, but the algebra is quitestimate would be much worse.
lengthy and some numerical integrations are required. De-
tails are relegated to the Appendix. We would like to point
out that theO(m?) terms become dominant only when the
location of the initial radiation pulse is smaller thanr@.6At
a=15m the neglected terms contribute much less than the
leading term proportional tm.

Now, the integration of the first part of E¢4.6) along

V. WAVELENGTH OF THE INITIAL RADIATION AND
THE BACKSCATTER

In this section we shall consider the backscatter of the
radiation that is initially of compact support and, in addition,
the condition &—b)/a<l is satisfied. The leading

(a0 yields contribution—only terms that are quadraticrrt-—uwill be
o 0,0 2y found.
H()—H(0)=~— f dR 7g T +drd| + . 8 Under the above conditions one infers from E3}4) that,
a R R

on the initial hypersurface,

b—a
|V, (R)|[b¥?<C,b¥%g,(R)<C; V Tb?’/z (5.1

® G v,
—J dR4mf dr—| —3¥;+ —
a R r r

and

|¥,(R)|<C,b%\b—a (5.2

are valid. With the same accuracy, inequali3) of the

(4.8 Appendix reads
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R(b) 9q,2 1/2
(at+ﬂr*)\/H(R,t)$2mf o|r77,7$—1
R
" 4\1’5 1/2
+2m Rdrm
5 /b_ab3’2 fR(b)d 1\12
g —_— R—
mC, a . rr8
1/2
Rb) 1
+4m02b2\/b—a(f drm) .
R r

(5.3

Herein, the integration extends froR where Refa, to
R(b), which is defined b>{R(b),t]el~“b. One hasR(b)
—R=b—a up to the termmC. The integral/ R®dr(1/r®) is
bounded from above by b(a)/R® and the integral
JR®)dr(1/r19 is bounded from above byb(-a)/R*, again
to lowest order in powers ah.

Thus one arrives at

(ﬁt+ar*)\/H(R,t)s4m(b—a)b3’2(%4—

Cy\b

R5

(5.9

The integration of this inequality along the null geodefégc
yields

b3/2

VHy=m(b—a) —-(2C;+Cp) +O(m?).
a

(5.9

Taking into account the condition that-a<a, one arrives
at

P o ol P | PV
< — |z — .
MS 5 a a 15 (m*/b?)

(5.6)

Since the amount of backscattered eneéify, is bounded
from above by H,,, as shown in Sec. IV, one finally arrives
at the following estimate

PHYSICAL REVIEW D 64 044012

303 /2 \F 1
2 3 2

m2 3 _ 2
+O(m3/a3)s84—2(—) (— +0(m?ad).
a“\a a

2 b 2

a

SE, 8m2/ b—a
<
E(a,00 a?\ a

(5.7

If (b—a)/a<0.1, then the above formula predicts

%Fa 0 84m—2 5.8
=
E(a,00 = a’’ 5.8

Itis clear that if the relative width of the initial pulse tends to
zero, then the effect becomes negligible. This can be trans-
lated into the dependence on the wavelength of the radiation
[6]: The compression of the support of a function leads to the
decrease of its wavelength scale in its Fourier transform.

A careful analysis of the higher order terms would show
that they give a contribution t¢5.7) that also scales like
[(b—a)/a]?. In the case whea~2m, Eq.(5.7) would be of
the form

Ea

E(a,0)

C(x)

b—a)2
: (5.9

2m

whereC(x) is a large number ang=2m/a. One can show
that lim ,C(x) =, but on the other han@(x) is fixed,

when 2n/a is fixed. Thus Eq.(5.9 implies that whenb

—a, then the backscatter becomes negligible. Radiation that
is dominated by infinitely short wavelengths does not back-
scatter.

VI. MORE ESTIMATES ON HIGH FREQUENCY
RADIATION

We assume initial data of compact supppatb]. The
initial energy E(a,0) (see the beginning of Sec. )Iteads,
expressed in terms of functiofls,, ¥, andW¥,, as follows:

+

E(a,0)= f:drp= Lbd

r6

r[6{r[r*1'o(r)+‘I’1(r)]+\1'2(r)}2

vy r‘I’i(r)+‘I’é(r))2

r2

(6.9

rG

+(—2wz<r>—r{\lf1(r>+r[r\lf&(r)w;(r)]w;(r)}f]

The radiation energy in the wave zone is known to beevant herg if the terms with () give a leading contribu-

E(a,O)szgdr(\If(’))z. This can be compatible with Eq.

(6.1) (modulo a normalization constant, which is not rel-

tion.
One notices, that, i ,(R) (©=0,1,2) are of compact

044012-5



EDWARD MALEC AND GERHARD SCHAFER PHYSICAL REVIEW D64 044012

support, then |\PM(R)|:|f§dra,\I'M(r)| Results of Flanagan and Hughgd]| and Buonanno and
<\(R—a)fRdrg,¥2(r). Combining this with Eq.(2.5, Damour[12] showed that the merger part of the gravitational
one arrives at . wave signal could be a significant part of the total energy

emitted. The wave pulse during the merger phase can be

b inside 3 m. For a very compact pulse located in this region,
3| Wo(r)|=[W¥i(r)[<3yb—-a f dr(Wg)?, inequality (5.9) of Sec. V can still yield a nontrivial bound,
2 but in the general case our estimates fail. The main reason
5 why we lose much in accuracy is that we are forced to use
|W1(r)|=|¥5(r)|<2(b—a)%?+ /f dr(¥})?, several times—for the sake of generality—the Schwarz in-
a equality. The present bounds can be significantly improved if

(6.2 initial data are explicitly known, since in this case they can
be numerically bounded by an exact expression involving the

5o | P N2 initial energy, and the Schwarz inequality would be used
[¥2(r)[<0.8(b-a) fa dr(Wo). only once. On the other hand, it has been discovered that the
backscattering can be quite strong when a signal propagates
Taking Eg.(6.2) into account, one concludes that if from within the photon sphergl3]. In a forthcoming paper
we shall discuss, and compare with the results of our present
Cyi(b—a)/a<1 (6.3 paper, several aspects of the backscattering of gravitational

) ] waves where the sources of the gravitational waves are taken
(C, is a constant of the order of 10@hen the energy is well jnto account.

approximated byE(a,0)=2/2dr(W¥{)2.
In such circumstances it is clear that our analysis can be

greatly simplified. First of all the contribution coming from ACKNOWLEDGMENTS
W, to the backscatter is much smaller than that du& o _ )
note an additional power ofb(-a)/a in the relevant esti- This work was supported in part by KBN Grant No. 2
mate of Eq.(6.2. Second, estimatés.1) of ¥, is now re- PO3B 010 16. One of the authdis.M.) gratefully acknowl-
Jena.
1
[Wo(r)|=—=(b—a)¥VE(a,0). (6.4
\/5 APPENDIX
The repetition of the calculation of Sec. V finally givéak- In order to show estimatél.7) one begins with the sec-
ing into account the above conditions ond inequality of Eq.(4.6). Note thatH(t=0)=0, since
O(R,t=0)=0,6(R,t)|;=o. Thence the integration of Eg.
SEa _(2m)*(b-a)* 6 (: 6 alon)gft ( y)iletldos ’ !
s|—| |— : .
E(a,0) a a 6.5 2R

VIl. CONCLUSIONS edr
HMSL7|R(V)|, (A1)
r

In our paper we derived upper bounds for the backscatter-
ing of gravitational quadrupole waves propagating outward
from a central compact object. The calculations were re- _ .
stricted to situations where the initial configuration was ei_whereR(r_) stgnds for the right .han.d side of E.6). Our
ther an arbitrarily shaped wave with support outside soméaSk consists in estlmatlng the line |ntegral|ﬁf(r)|.
radiusa or the wave was a sharp pulse, i.e., its extension Wa§_ In order to dc_’ th|s_, one uses the estimates .Of 6.
small compared to its initial locatioa. The obtained upper he_ calc_ulatlon IS quite long, and we will describe _only th?
bounds show that, for a given central object, the backscatteff'@n POINES. In the f'.rSt step one uses the Schwarz mequahty
ing is weaker the farther outside from the central object thé®" the F'ght hand side of E¢4.6), in order to obtain an
waves begin to propagate, and that is also weaker the mofePression of the type
compact the pulses are, i.e., the higher the involved frequen-
cies are. Both results confirm previous completely different .
calculations by Price, Pullin, and Kun@i0]. Backscattering 4m( f dr
should thus be strongest for pulses which begin to propagate R
outward close to the horizon of a black hole. This claim,
however, needs further investigation for the following rea-
sons. First, we gave bounds from above and not from belowheref(r) denotes ¢3W¥,)? or (2¥,/r)?, or the squares
for the amount of backscattered energy. Second, the lineaf the terms that are proportional tor@3The first integral
approximation may not be accurate enough very close to thean be bounded byH(R); therefore, Eq.(4.6) and (A2)
horizon. yield

(9¢0)*

1/2 o fZ(r) 1/2
” ) x(fRdrn,r—8> , (AZ)
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(at+ﬂr*)‘/H(Rit) estimates hold true on the initial hypersurfatg while here
" one needs estimates @y . This point is clarified later. It is
‘I’i v * 4‘1’2 useful to introduce dimensionless variables R/a and m
<2m drnr +2m dr—10 —m/a
r .
(i) First we shall consider the contribution that is due to
2 1/2 ~
63ml 1+ — 5 3¥;. Letrg be defined by ((;t) eI'; . The insertion of the
Lom r & bound given in Eq(3.4) bounds
a1+ 30 ) 9w\ M2
2r Zm( f dry, —5 )
2 1/2
63m| 1+ y?2 by
+2m —
3m) 2 r10 ra)| 12
4145 6mcl(f dr 77491( 0)) .
m 2 1/2 . . . . .
63ml 1+ — 5 Note thatg4(r) is an increasing function; therefore, if one
5 r vs replacesg,(ro) with g¢(r), then the integral that appears
+2m 3m\ 2 ﬁ : here cannot be smaller. In this way one utilizes the initial
4 1+ o information[energy inequality(3.4)] in order to control the

evolution. The integral in question can be performed explic-
(A3) itly, with the result

The integrands of EqLA3) are taken at a timé and R,t) gy(r)| 12 e
6mCl(f dro? )

eT,; the integration extends over the pareR of the 5 7—VG1(X).  (Ad)
Cauchy hypersurface,;. At this place one inserts the
bounds onV¥,, ¥, and ¥,. That requires some care; the Here it holds that

r a

m*(137—770m+ 1880m%— 2160m3+960m*)  m3(991—5110m+ 10840(m?— 888(m°®— 720m* + 3360n°)

—Gi(x)= =
2(x) 30(— 1+ 2m)5x8 105 — 1+ 2m) %’

m?(2981— 1301Gn+ 18440n?+ 7920m3— 41520m* + 27360(m°)
420 — 14 2m)°x®

m(4497-11370n— 21720m?+ 133040n°— 200240n*+ 101606n°)
210Q — 1+ 2m)°x°®

375+ 4650m— 35400n2+ 93200m3 — 110006n4+ 49376n° 11 11 11
3360 —1+2m)°x 336mx3  448m32%  448m°x
—2m+x
111In — n| ————
—2m+X - - - - 1-2m
+ " —(280m*— 640Mm3x + 560M?x° — 224mx°>+ 35x*) (A5)
896m* 1408

This rather long expression is quite well approximatedGoy=(1+4 Inx)/(16x*) if m/a<1. The integration of Eq(A4)
along a null coneC, is done as follows. The integrdlf’ G, (x) is bounded from above:

o o 1/2 o 1/2
fdxnx‘l Gl(x)s(f dxszl(x)) U dxx‘znx_z) . (AB)
1 1 1
Numerical integration yields
m »(1+4Inx m+E(a,0
6C,— f % +0((m/a)?)~ 824—()+O[(m/a)2] (A7)
1
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One can check that the neglected terms can give a contriblr the limit of m—0 the functionG,(x) coincides with
tion comparable to the leading term only at distances smallef— 4+ 5x)/(20x°). Similarly as before, in order to obtain a

than 6.6n.

(i) The calculation concerning the contribution of g
function is similar. The leadingproportional tom®) term is
Jadr(¥3/r9. |¥,| is bounded in terms af,(X). gy(x) is
an increasing function, and a reasoning similar to that mad
when discussing);(x) leads to the conclusion that one that
can again use the initial energy inequality given by &4).
One finds that zdr(¥5/r'% is bounded from above by

1
- gez(x)

1J‘°Cd
._—gx y

_ 4m?(—3+44m—120m?+ 96m°)
21(—1+2m)3x’

g2(y)

2m(— 21+ 236m—408m?— 192m3+ 576m*)
63(—1+2m)3x®

34

— 21+ 88m+ 480m2— 1968n3+ 1760m*
+ " 1056

105 — 1+ 2m)3x°

31In =
31 31 31 X—2m
630mx3  840m?x2  840mx 1680m*
B (60— 70 + 206 In| 2
m( X )In 1—om

(A8)

105’

term bounding VH,,, one should integrateyG,(x)/(1
—2m/x) along a null coneC,. This gives 0.15, up to terms
O(m), after manipulations similar to those done earlier. The
O(m) correction becomes dominant whem/a>0.3. After

8 reasoning similar to that applied above in the cas@ of
one finds that the total contribution due to the bound on the
V¥, function is equal to

ac \/fwd (—4+5x)m\/E(a,0)_21nm\/E(a,O)
2 1 X 20)(3 a —L£.1T a .
(A9)
In summary, one obtains
myE(a,0
\/HMs10.4sT()+O(m2). (A10)

In the above analysis, in E§A3), we neglected the terms
proportional to 6&. These give corrections of the order
O(m?) to the right hand side of E§A10). We checked that
their contribution is small in the regioa>6.6m. Our final
result[Eq. (4.10] tells us thata> /218m~ 15m is valid for

a nontrivial estimate. Therefore, all higher order terms in
Eqg. (A10) can be safely neglected.
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