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Can Schwarzschildean gravitational fields suppress gravitational waves?
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Gravitational waves in the linear approximation propagate in Schwarzschild space-time similarly to electro-
magnetic waves. A fraction of the radiation scatters off the curvature of the geometry. The energy of the
backscattered part of an initially outgoing pulse of the quadrupole gravitational radiation is estimated by
compact formulas depending on the initial energy, the Schwarzschild radius, and the location and width of the
pulse. The backscatter becomes negligible in the short wavelength regime.
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I. INTRODUCTION

Backscattering has been investigated for a long time
various wave equations~see, for instance, Ref.@1#!. In gen-
eral relativity, this topic has been studied since the ea
1960s@2,3#. This paper continues the program that star
with the study of the backscatter of scalar@4# and electro-
magnetic fields@5,6#. Here we investigate the propagation
even-parity gravitational waves in a~fixed! background
Schwarzschild space-time, assuming a nonstationary so
The discussion, however, proceeds without any referenc
the source. We only deal with field quantities. It is assum
that the initial data are those of an isolated pulse~burst! of a
gravitational wave. The main question that is answered
what fraction of the initially outgoing radiation may underg
backscattering before reaching null infinity? The strength
the backscattering is assessed by bounding the fraction o
initial burst energy that will not reach a distant observer
the main pulse. The even-parity waves are the only wa
which are radiated during the axisymmetric collision of no
spinning black holes@9#, and since in this case the Schwarz
child space-time is a valid starting point for an approxim
tion scheme, it gives us an opportunity to bound the stren
of the phenomenon in a fairly realistic astrophysical conte

The following five sections of the paper give a theoreti
description of the backscattering effect. Section II descri
the notation and the Zerilli equation. In Sec. III, the initi
data are bounded by the initial energy, and a solution
sought in the form of a superposition of an outgoing rad
tion ~defined by initial data! and a backscattered term. Th
evolution of the backscattered term can be bounded by s
tions of two differential inequalities. The bounds that a
derived in Sec. IV and in the Appendix deal with a gene
situation; no assumption is made about the initial radiati
In Sec. V, we discuss initial data that are of compact supp
the relative width of the support being small. Such data c
respond to radiation that is dominated by short waveleng
In this case stronger estimates are derived. They imply
in the limit of short wavelengths~the relative width of the
support tending to zero! the backscattering effect becom
negligible. In Sec. VI, the ‘‘small relative width condition
of Sec. V is supplemented by the assumption that the in
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burst is far away from the horizon.

II. FORMALISM

The space-time geometry is defined by a Schwar
childean line element,

ds252S 12
2m

R Ddt21
1

12
2m

R

dR21R2dV2, ~2.1!

where t is a time coordinate,R is a radial coordinate tha
coincides with the areal radius, anddV25du21 sin2 udf2 is
the line element on the unit sphere: 0<f,2p and 0<u
<p. Throughout this paperG, the Newtonian gravitationa
constant, andc, the velocity of light, are set equal to 1.

As explained in Sec. I, we restrict ourselves to even-pa
axial perturbations. Their propagation is ruled, in the line
approximation, by the Zerilli equation@7#. Formulated in
terms of the gauge-invariant amplitudeC defined by Mon-
crief @8#, this equation reads, in the case ofl 52 multipole
@9#,

~2] t
21] r*

2
!C5VC, ~2.2!

where the potentialV is given by

V~R!56S 12
2m

R D 2 1

R2 1S 12
2m

R D 63m2S 11
m

RD
2R4S 11

3m

2RD 2 ,

~2.3!

and where

r * 5R12m lnS R

2m
21D ~2.4!

is the tortoise radial coordinate.
Consider a set of functionsC i(r * 2t), i 50, 1, and 2,

that satisfy the following linear relations:
©2001 The American Physical Society12-1
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] tC153C0 ,
~2.5!

] tC25C12m] tC1 .

The combination

C̃[C0~r * 2t !1
C1~r * 2t !

R
1

C2~r * 2t !

R2 ~2.6!

solves Eq.~2.2! in Minkowski space-time (m50); it repre-
sents purely outgoing radiation.

Let the initial data of a solutionC of Eq. ~2.2! coincide

with C̃ at t50. Then, initially,C represents a purely outgo
ing wave. It should be noted that the assumption that ini
data are~initially ! purely outgoing is made in this paper on
for the sake of clear presentation. In the linear approxima
the propagation of the initially outgoing radiation is indepe
dent of whether or not ingoing radiation is present.

We decompose the sought solutionC(r * ,t) into the

known partC̃ and an unknown functiond:

C5C̃1d. ~2.7!

Due to the choice of the initial data made above, one had
5] td50 at t50.

III. ENERGY ESTIMATES

Let us assume that the quadrupole initial data are defi
by a smooth triad of the functionsCk (k50, 1, and 2) with
the initial support@a,b# (b,`). That guarantees that th
initial energy density multiplied by R2, r5„(] tC)2

1(] r* C)21VC2
…/hR , is smooth and vanishes on th

boundarya. HerehR5122m/R holds.
The energy content inside a part of a Cauchy hypersur

S t that is exterior to a ball of a radiusR can be defined as
E(R,t)[*R

`drr(r ,t). Let us point out that in order to ensur
a proper normalization of the energy flux at infinity, the
should be a normalization constant in the definition of
energyE(R,t). We decided to omit it, since later on we sha
be interested only in the relative efficiency of the backsc
ter; thus the normalization factor cancels out. The total ini
energy corresponding to the hitherto defined initial data
equal toE(a,0).

Lemma 1.Defining

C1[
3

2
A~21A2/3!E~a,0!,

C2[A2E~a,0!,

C3[A 2E~a,0!

ha~2A611!
, ~3.1!

and introducing the two non-negative functions
04401
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g1~R!5 lnS 22m1R

a22m D
132m5S 21

5~22m1R!5 1
1

5~22m1a!5D
120m4S 21

~22m1R!4 1
1

~22m1a!4D
180m3S 21

3~22m1R!3 1
1

3~22m1a!3D
120m2S 21

~22m1R!2 1
1

~22m1a!2D
110mS 21

22m1R
1

1

22m1aD ~3.2!

and

g2~R!5R2a116m4S 21

3~22m1R!31
1

3~22m1a!3D
1~16m3!S 21

~22m1R!2 1
1

~22m1a!2D1~24m2!

3S 21

22m1R
1

1

22m1aD18m lnS 22m1R

22m1a D ,

~3.3!

the following inequalities hold att50 and forR>a:

uC1~R!u

R3/2
<C1hR

3/2Ag1~R!,

uC2~R!u

AhRR2
<C2Ag2~R!1C1

6m

Aa
Ag1~R!S 12Aa

R
D

16C3

m

Aa
A12S a

R
D 2A611

3S 1

Aha

2
1

AR

a
2

2m

a
D ,

uC̃~R!u

AR
<C3A12S a

RD 2A611

, ~3.4!
2-2
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uC0~R!u

AR
<C3A12S a

R
D 2A611

1C1hR
3/2Ag1~R!

1C2Ag2~R!

R
1C1

6m

AaR
Ag1~R!S 12Aa

R
D

16C3

m

AaR
A12S a

R
D 2A611

3S 1

Aha

2
1

AR

a
2

2m

a
D .

Proof. One can explicitly verify that

2hRS C1

R2 12
C2

R3 D5] tC̃1] r* C̃,

~3.5!

hRS 2
C0

R
1

C1

R2 D5] tC̃1] r* C̃1
2hRC̃

R
.

Equations~3.5!, using relations~2.6!, result in

]RS hR
23/2 C1

R3/2D 52
3

2R1/2hR
3 S ] tC̃

hR
1/2

1AhR]RC̃1
2C̃AhR

R D ,

]RS hR
21/2C2

R2 D 5
1

hR
2S ] tC̃

h
R

1/2
1AhR]RC̃ D

1
3m

Rh
R

3/2
S C̃

R
2

C1

R2 D . ~3.6!

The integration froma to R and the use of the Schwar
inequality yields

uC1~R!u

R3/2
<

3hR
3/2

2
A~21A2/3!E~a,0!S E

a

R

dr
1

rh r
6D 1/2

.

~3.7!

Integrating*a
Rdr(1/rh r

6), one immediately arrives at the firs
of the postulated inequalities.

In order to show the third inequality, notice th

uC̃(R)uRA65u*a
Rdr] r„C̃(r )r A6

…u. The latter expression is
bounded from above, using the Schwarz inequality, by

A2E
a

R

dr~h r~] rC̃!216h rC̃
2/r 2!AE

a

R

drh r
21r 2A6

<A 2E~a,0!

ha~2A611!
RA610.5F12S a

RD A611G1/2

, ~3.8!

where the inequality in Eq.~3.8! follows from the monoto-
nicity of the energy as function ofR. The first factor on the
04401
left hand side of this inequality is not greater thanA2E(a,0)
since 6h r /r 2<V(r )/h r . The replacement ofh r

21 by ha
21

and the integration of the other factor leads to the des
result.

The second of Eqs.~3.6! can be integrated. The Schwa

inequality and direct integration, as well as theC̃ and C1
estimates, should be used in order to obtain the second
equality of Lemma 1. TheC0 estimate, in turn, follows from

the identityC05C̃2C1 /R2C2 /R2 and the preceding es
timates.

IV. ESTIMATE OF THE DIFFUSED ENERGY

Let us define the strength of the backscattered radia
that is directed inward by

h2~R,t !5
1

hR
~] t1] r* !d~R,t !. ~4.1!

Let the outgoing null geodesicG̃ (R,t) originate at (R,t). If a
point lies on the initial hypersurface, then we will writ

G̃ (R,0)[G̃R . By G̃ (R0 ,t0),(R,t) will be understood a segment o

G̃ (R0 ,t0) ending at (R,t).
A straightforward calculation shows that the rate of t

energy change alongG̃a is given by

~] t1] r* !E~R,t !52@hR
2h2

2 ~R,t !1Vd2~R,t !#. ~4.2!

It is necessary to point out that in the case of the initial po
R0.a the result would be more complicated; the different

tion of the energy alongG̃R0
would depend also onC0 ,C1

andC2. If, however, the outgoing null geodesics isG̃a , then
it starts froma whereC0 ,C1 andC2 do vanish. Since these
functions depend on the differencer * 2t, their values along
outgoing geodesics are constant, and that allows one to

clude that they vanish atG̃a .
The energy loss, that is, the amount of energy that

fused inwardG̃a is equal to a line integral alongG̃a :

dEa[E~a,0!2E`5E
a

`

drFh rh2
2 1

Vd2

h r
G . ~4.3!

Our goal is to find an estimate ofdEa of a single pulse of
radiation based only on the information about the posit
and the energy of the initial pulse. Obviously, 0<dEa
<E(a,0) holds. We are interested in deriving in this secti
a frequency independent bound, but later we obtain estim
that are frequency sensitive.

d is initially zero, and its evolution is governed by th
following equation:

~2] t
21] r*

2
!d5Vd1S V26

hR
2

R2D S C01
C1

R
1

C2

R2 D
1

2mhR

R4 F23C112
C2

R G . ~4.4!
2-3
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One can define an ‘‘energy’’H(R,t) of the fieldd which is
contained in the exterior of a sphere of radiusR as follows:

H~R,t !5E
R

`

drS ~] td!2

h r
1h r~] rd!21d2

V

h r
D . ~4.5!

The rate of change ofH along G̃ (R,t) is given by

~] t1] r* !H~R,t !

52hRFhRS ] td

hR
1]Rd D 2

1
V

hR
d2G24mE

R

`

drh r

] td

r 4

3F 23C11
2C2

r
1

63mS 11
m

r D
4S 11

3m

2r D 2 S C01
C1

r
1

C2

r 2 D G
<4mE

R

`

dr
] td

r 4 F 23C11
2C2

r
1

63mS 11
m

r D
4S 11

3m

2r D 2

3S C01
C1

r
1

C2

r 2 D G . ~4.6!

Herein the inequality follows from the omission of the no
positive boundary term. This allows one to estimate
maximal valueHM of the d energyH: namely,

AHM<10.43
mAE~a,0!

a
1O~m2!. ~4.7!

The calculation is essentially simple, but the algebra is q
lengthy and some numerical integrations are required.
tails are relegated to the Appendix. We would like to po
out that theO(m2) terms become dominant only when th
location of the initial radiation pulse is smaller than 6.6m. At
a515m the neglected terms contribute much less than
leading term proportional tom.

Now, the integration of the first part of Eq.~4.6! along

G̃ (a,0) yields

H~`!2H~0!52E
a

`

dRFhRS ] td

hR
1]Rd D 2

1
V

hR
d2G

2E
a

`

dR4mE
R

`

dr
] td

r 4 F 23C11
2C2

r

1

63mS 11
m

r D
4S 11

3m

2r D 2 S C01
C1

r
1

C2

r 2 D G .

~4.8!
04401
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Initially, H vanishes~both d and] td vanish! andH is mani-
festly non-negative. The first integral on the right hand s
of Eq. ~4.8! is recognized to be justdEa . The second inte-
gral in turn can be shown to be bounded—using the Schw
inequality and then the results of the Appendix—by

2AHMS 10.43
mAE~a,0!

a
1O~m2! D .

Thus, Eq.~4.8! implies

dEa<2S 10.43
mAE~a,0!

a
1O~m2! DAHM

<F54.5S 2m

a D 2

1O~m3!GE~a,0!; ~4.9!

the right hand side of the first inequality achieves a maxim
value whenH is maximal and that implies the second i
equality. Thus, in summary, for the fraction of the energy th
could diffuse through the null coneCa , the following theo-
rem holds:

Theorem.dEa /E(a,0) satisfies the inequality

dEa

E~a,0!
<54.53S 2m

a D 2

1O~m3/a3!. ~4.10!

We would like to point out that the above derivation is mo
efficient and simpler than the one used in Ref.@5# or @6#
when dEa was estimated directly on the basis of the es
mates ofd andh2 . This alternative approach would requir
a laborious integration of the field equation, and the fin
estimate would be much worse.

V. WAVELENGTH OF THE INITIAL RADIATION AND
THE BACKSCATTER

In this section we shall consider the backscatter of
radiation that is initially of compact support and, in additio
the condition (a2b)/a!1 is satisfied. The leading
contribution—only terms that are quadratic inm2-—will be
found.

Under the above conditions one infers from Eq.~3.4! that,
on the initial hypersurface,

uC1~R!ub3/2<C1b3/2Ag1~R!<C1Ab2a

a
b3/2 ~5.1!

and

uC2~R!u<C2b2Ab2a ~5.2!

are valid. With the same accuracy, inequality~A3! of the
Appendix reads
2-4
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~] t1] r* !AH~R,t !<2mS E
R

R(b)

drh r

9C1
2

r 8 D 1/2

12mS E
R

`

dr
4C2

2

r 10 D 1/2

<6mC1Ab2a

a
b3/2S E

R

R(b)

dr
1

r 8D 1/2

14mC2b2Ab2aS E
R

R(b)

dr
1

r 10D 1/2

.

~5.3!

Herein, the integration extends fromR, where RPG̃a , to

R(b), which is defined by@R(b),t#PG̃b . One hasR(b)
2R5b2a up to the termm0. The integral*R

R(b)dr(1/r 8) is
bounded from above by (b2a)/R8, and the integral
*R

R(b)dr(1/r 10) is bounded from above by (b2a)/R10, again
to lowest order in powers ofm.

Thus one arrives at

~] t1] r* !AH~R,t !<4m~b2a!b3/2S 1.5C1

AaR4
1

C2Ab

R5 D .

~5.4!

The integration of this inequality along the null geodesicG̃a
yields

AHM<m~b2a!
b3/2

a7/2
~2C11C2!1O~m2!. ~5.5!

Taking into account the condition thatb2a!a, one arrives
at

HM<
4m2

a2 S b2a

a D 2S b

aD 3S C11
C2

2 D 2

1O~m3/b3!.

~5.6!

Since the amount of backscattered energydEa is bounded
from above by 2HM , as shown in Sec. IV, one finally arrive
at the following estimate
b
.
l-

04401
dEa

E~a,0!
<

8m2

a2 S b2a

a D 2S b

aD 3S 3

2
A21A2

3
1

1

A2
D 2

1O~m3/a3!<84
m2

a2 S b

aD 3S b2a

a D 2

1O~m3/a3!.

~5.7!

If ( b2a)/a,0.1, then the above formula predicts

dEa

E~a,0!
<0.84

m2

a2 . ~5.8!

It is clear that if the relative width of the initial pulse tends
zero, then the effect becomes negligible. This can be tra
lated into the dependence on the wavelength of the radia
@6#: The compression of the support of a function leads to
decrease of its wavelength scale in its Fourier transform

A careful analysis of the higher order terms would sho
that they give a contribution to~5.7! that also scales like
@(b2a)/a#2. In the case whena'2m, Eq.~5.7! would be of
the form

dEa

E~a,0!
<C~x!S b2a

2m D 2

, ~5.9!

whereC(x) is a large number andx[2m/a. One can show
that lim

x→1
C(x)5`, but on the other handC(x) is fixed,

when 2m/a is fixed. Thus Eq.~5.9! implies that whenb
→a, then the backscatter becomes negligible. Radiation
is dominated by infinitely short wavelengths does not ba
scatter.

VI. MORE ESTIMATES ON HIGH FREQUENCY
RADIATION

We assume initial data of compact support@a,b#. The
initial energyE(a,0) ~see the beginning of Sec. III! reads,
expressed in terms of functionsC0 , C1 andC2, as follows:
E~a,0!5E
a

b

drr5E
a

b

drF6$r @rC0~r !1C1~r !#1C2~r !%2

r 6
1S C08~r !1

rC18~r !1C28~r !

r 2 D 2

1
„22C2~r !2r $C1~r !1r @rC08~r !1C18~r !#1C28~r !%…2

r 6 G . ~6.1!
t

The radiation energy in the wave zone is known to
E(a,0)5C*a

bdr(C08)
2. This can be compatible with Eq

~6.1! ~modulo a normalization constant, which is not re
eevant here!, if the terms with (C08)
2 give a leading contribu-

tion.
One notices, that, ifCm(R) (m50,1,2) are of compac
2-5
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support, then uCm(R)u5u*a
Rdr] rCm(r )u

<A(R2a)*a
Rdr] rCm

2 (r ). Combining this with Eq.~2.5!,
one arrives at

3uC0~r !u5uC18~r !u<3Ab2aAE
a

b

dr~C08!2,

uC1~r !u5uC28~r !u<2~b2a!3/2AE
a

b

dr~C08!2,

~6.2!

uC2~r !u<0.8~b2a!5/2AE
a

b

dr~C08!2.

Taking Eq.~6.2! into account, one concludes that if

C1~b2a!/a!1 ~6.3!

(C1 is a constant of the order of 100!, then the energy is wel
approximated byE(a,0)52*a

bdr(C08)
2.

In such circumstances it is clear that our analysis can
greatly simplified. First of all the contribution coming from
C2 to the backscatter is much smaller than that due toC1;
note an additional power of (b2a)/a in the relevant esti-
mate of Eq.~6.2!. Second, estimate~5.1! of C1 is now re-
placed by a stronger result:

uC0~r !u<
1

A2
~b2a!3/2AE~a,0!. ~6.4!

The repetition of the calculation of Sec. V finally gives~tak-
ing into account the above conditions!

dEa

E~a,0!
<S 2m

a D 2S b2a

a D 4

. ~6.5!

VII. CONCLUSIONS

In our paper we derived upper bounds for the backsca
ing of gravitational quadrupole waves propagating outw
from a central compact object. The calculations were
stricted to situations where the initial configuration was
ther an arbitrarily shaped wave with support outside so
radiusa or the wave was a sharp pulse, i.e., its extension
small compared to its initial locationa. The obtained uppe
bounds show that, for a given central object, the backsca
ing is weaker the farther outside from the central object
waves begin to propagate, and that is also weaker the m
compact the pulses are, i.e., the higher the involved frequ
cies are. Both results confirm previous completely differ
calculations by Price, Pullin, and Kundu@10#. Backscattering
should thus be strongest for pulses which begin to propa
outward close to the horizon of a black hole. This clai
however, needs further investigation for the following re
sons. First, we gave bounds from above and not from be
for the amount of backscattered energy. Second, the lin
approximation may not be accurate enough very close to
horizon.
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Results of Flanagan and Hughes@11# and Buonanno and
Damour@12# showed that the merger part of the gravitation
wave signal could be a significant part of the total ene
emitted. The wave pulse during the merger phase can
inside 3 m. For a very compact pulse located in this regi
inequality ~5.9! of Sec. V can still yield a nontrivial bound
but in the general case our estimates fail. The main rea
why we lose much in accuracy is that we are forced to
several times—for the sake of generality—the Schwarz
equality. The present bounds can be significantly improve
initial data are explicitly known, since in this case they c
be numerically bounded by an exact expression involving
initial energy, and the Schwarz inequality would be us
only once. On the other hand, it has been discovered tha
backscattering can be quite strong when a signal propag
from within the photon sphere@13#. In a forthcoming paper
we shall discuss, and compare with the results of our pre
paper, several aspects of the backscattering of gravitati
waves where the sources of the gravitational waves are ta
into account.
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APPENDIX

In order to show estimate~4.7! one begins with the sec
ond inequality of Eq.~4.6!. Note thatH(t50)50, since
d(R,t50)5] td(R,t)u t50. Thence the integration of Eq

~4.6! along G̃a,(R,t) yields

HM<E
a

`dr

h r
uR~r !u, ~A1!

whereR(r ) stands for the right hand side of Eq.~4.6!. Our
task consists in estimating the line integral ofuR(r )u.

In order to do this, one uses the estimates of Eq.~3.4!.
The calculation is quite long, and we will describe only t
main points. In the first step one uses the Schwarz inequa
on the right hand side of Eq.~4.6!, in order to obtain an
expression of the type

4mS E
R

`

dr
~] td!2

h r
D 1/2

3S E
R

`

drh r

f 2~r !

r 8 D 1/2

, ~A2!

where f (r ) denotes (23C1)2 or (2C2 /r )2, or the squares
of the terms that are proportional to 63m. The first integral
can be bounded byAH(R); therefore, Eq.~4.6! and ~A2!
yield
2-6
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~] t1] r* !AH~R,t !

<2mS E
R

`

drh r

9C1
2

r 8 D 1/2

12mS E
R

`

dr
4C2

2

r 10 D 1/2

12mS E
R

`

drS 63mS 11
m

r D
4S 11

3m

2r D 2 D 2

C0
2

r 8 D 1/2

12mS E
R

`

drS 63mS 11
m

r D
4S 11

3m

2r D 2 D 2

C1
2

r 10D 1/2

12mS E
R

`

drS 63mS 11
m

r D
4S 11

3m

2r D 2 D 2

C2
2

r 12D 1/2

.

~A3!

The integrands of Eq.~A3! are taken at a timet and (R,t)

PG̃a ; the integration extends over the partr>R of the
Cauchy hypersurfaceS t . At this place one inserts th
bounds onC0 , C1 and C2. That requires some care; th
04401
estimates hold true on the initial hypersurfaceS0, while here
one needs estimates onS t . This point is clarified later. It is
useful to introduce dimensionless variablesx5R/a and m̃
5m/a.

~i! First we shall consider the contribution that is due

3C1. Let r 0 be defined by (r ,t)PG̃ r 0
. The insertion of the

bound given in Eq.~3.4! bounds

2mS E
R

`

drh r

9C1
2

r 8 D 1/2

by

6mC1S E
R

`

drh r
4g1~r 0!

r 5 D 1/2

.

Note thatg1(r ) is an increasing function; therefore, if on
replacesg1(r 0) with g1(r ), then the integral that appear
here cannot be smaller. In this way one utilizes the init
information @energy inequality~3.4!# in order to control the
evolution. The integral in question can be performed exp
itly, with the result

6mC1S E
R

`

drh r
4g1~r !

r 5 D 1/2

5
6mC1

a2 AG1~x!. ~A4!

Here it holds that
2G1~x!5
m̃4~1372770m̃11880m̃222160m̃31960m̃4!

30~2112m̃!5x8
2

m̃3~99125110m110840m̃228880m̃32720m̃413360m̃5!

105~2112m!5x7

1
m̃2~2981213010m̃118440m̃217920m̃3241520m̃4127360m̃5!

420~2112m̃!5x6

2
m̃~4497211370m̃221720m̃21133040m̃32200240m̃41101600m̃5!

2100~2112m̃!5x5

1
37514650m̃235400m̃2193200m̃32110000m̃4149376m̃5

3360~2112m̃!5x4
2

11

336m̃x3
2

11

448m̃2x2
2

11

448m̃3x

1

11 lnS x

22m̃1x
D

896m̃4
2~280m̃42640m̃3x1560m̃2x22224m̃x3135x4!

lnS 22m̃1x

122m̃
D

140x8
. ~A5!

This rather long expression is quite well approximated byG15(114 lnx)/(16x4) if m/a!1. The integration of Eq.~A4!
along a null coneCa is done as follows. The integral*1

`AG1(x) is bounded from above:

E
1

`

dxhx
21AG1~x!<S E

1

`

dxx2G1~x! D 1/2S E
1

`

dxx22hx
22D 1/2

. ~A6!

Numerical integration yields

6C1

m

aAE
1

`~114 lnx!

16x2 1O„~m/a!2
…'8.24

mAE~a,0!

a
1O@~m/a!2#. ~A7!
2-7
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One can check that the neglected terms can give a cont
tion comparable to the leading term only at distances sma
than 6.6m.

~ii ! The calculation concerning the contribution of theC2
function is similar. The leading~proportional tom0) term is
*R

`dr(C2
2/r 10). uC2u is bounded in terms ofg2(x). g2(x) is

an increasing function, and a reasoning similar to that m
when discussingg1(x) leads to the conclusion that one th
can again use the initial energy inequality given by Eq.~3.4!.
One finds that*R

`dr(C2
2/r 10) is bounded from above by

2
1

a4 G2~x!

ª2
1

a4E
x

`

dy
g2~y!

y6 ~122m̃/y!2

5
4m̃2~23144m̃2120m̃2196m̃3!

21~2112m̃!3x7

2
2m̃~2211236m̃2408m̃22192m31576m̃4!

63~2112m̃!3x6

1
221188m̃1480m̃221968m̃311760m̃4

105~2112m̃!3x̃5
2

34

105x4

2
31

630m̃x3
2

31

840m̃2x2
2

31

840m̃3x
1

31 lnS x

x22m̃
D

1680m̃4

2

8m̃~60m̃2270m̃x121x2!lnS 22m̃1x

122m D
105x7

. ~A8!
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