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We have recently introduced a discrete model of Lorentzian quantum gravity, given as a regularized non-
perturbative state sum over simplicial Lorentzian space-times, each possessing a unique Wick rotation to the
Euclidean signature. We investigate here the phase structure of the Wick-rotated path integral in three dimen-
sions with the aid of computer simulations. After fine tuning the cosmological constant to its critical value, we
find a whole range of the gravitational coupling constanfor which the functional integral is dominated by
nondegenerate three-dimensional space-times. We therefore have a situation in which a well-defined ground
state of extended geometry is generated dynamically from a nonperturbative state sum of fluctuating geom-
etries. Remarkably, its macroscopic scaling properties resemble those of a semiclassical spherical universe.
Measurements so far indicate tHgt defines an overall scale in this extended phase, without affecting the
physics of the continuum limit. These findings provide further evidence that didooet@tziangravity is a
promising candidate for a nontrivial theory of quantum gravity.
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I. INTRODUCTION formulated on discretized versions of the space of all space-
time geometriegthat is, of space-time metrics modulo dif-
The aim of discrete approaches to quantum gravity is théeomorphisms One popular class of models is based on
nonperturbative construction of a quantum theory of gravityapplying Regge’s ide@2] of approximating smooth space-
as the continuum limit of a discretized state sum, analogouimes (M,g,,,) by piecewise linear, simplicial manifolds in a
to Feynman's construction of the quantum-mechanicafuantized context. Unfortunately such models have to date
propagator of a particl§1]. Among quantizers of gravity, prodl_Jced little convincing ewden_ce of interesting continuum
path-integral formulations have fallen into disrepute, bothPhysics, for reasons that are ultimately not well understood
because of the nonrenormalizability of the perturbation serieksee[3] for a recent review of discrete models in four dimen-
and because of the unboundedness of the action, whicions(4D)l. _
seems to render Euclidean approactesleast formal con- A serious criticism one can .I(_—:-vel at.these quels_ls that
tinuum path integrals and covariantly formulated cosmologithey are all formulated for positive-definite Euclidedie-
cal models ill defined. Although this does not necessarily mannian metricsgg),, and not for physical metricg,, of
constitute an obstacle to the existence afomperturbative indefinite, Lorentzian signature. This is done for technical
path integral, it raises the question of how such a quantity i§€asons, since in a concrete regularized formulation one must
to be constructed. make sure that the state sum/integfatonvergesHowever,
There is little hope of evaluating the continuum path in-it is important to realize that, in a nonperturbative context,
tegral directly, because of the complicated functional form of

the_ grgvitational acti_on and beca_luse of quantum-fie_ld theo- Zlor_ DgLor]eiS[gLor]

retic divergences, with the ensuing need to regularize in a Lor(M)/Diff (M) MY

way compatible with the symmetries of the theory. This leads

to additional complications, since the invariance group of HZEu:f [DgEu]e_S[gEu] 0
general relativity is the group of space-time diffeomor- EU(M)/Diff (M) mr

phisms, and not the Poincageoup of quantum field theory
on a fixed, flat background, so that standard regularizatiois an ad hocsubstitution: away from a handful of metrics
methods cannot be applied. with special symmetries(for example, flat Minkowski
There are alternative regularization schemes, much in thepace, there is no straightforward “Wick rotation”
spirit of Feynman’s treatment of the nonrelativistic particle,g;‘ﬂﬁgﬁ‘; (or, equivalentlyt— —it).
It may well be that the absence of an interesting con-
tinuum limit in these statistical models of dynamical geom-
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in terms ofLorentziangeometries. A suitable starting point is beyond the so-called ¢=1 barrier” (in our case, this is
the method ofdynamical triangulationsa variant of the equivalent to the number of coupled Ising models exceeding
quantum Regge calculus program, which has the advantagh.
of being amenable to both numerical simulations and ana- These are very interesting results from the point of view
lytic treatments. Following Regge’s original concept of de-of systems of two-dimensional random geometries, but our
scribing “geometry without coordinates,” the “sum over all ultimate interest lies in the physical, four-dimensional case,
paths” is performed directly over physically inequivalent ge- and the physics of “general relativity” in two, three, and four
ometries. Unlike in continuum path-integral approachesdimensions is very different. Where dynamically triangulated
there is no need to introduce coordinates and to subsequentitclideanmodels seem to go wrong oh>2 is in the domi-
gauge-fix them(In this sense, diffeomorphism invariance is nance of highly degenerate geometries over their statistical
manifest) In our model, instead of using equilateral Euclid- ensembles. It is encouraging that one can show the absence
ean triangulations, we take the state sum over a certain clag$ the same type of geometries from the Lorentzian ensemble
of Lorentzian Regge manifolds, obtained by gluing togethet5,6], but one could still be worried about the occurrence of
a number of simple simplicial Lorentzian building blocks. (less extremg pathologies. The only way to determine
The model has been constructed explicitly in two, threewhether Lorentzian gravity does indeed solve the problems
and four space-time dimensiof$—6], and been solved ex- of the Euclidean approach, is to investigate its phase struc-
actly ind=2 [4,7]. Each Lorentzian geometrpr “history”)  ture in the continuum limit, either by numerical simulations
has a foliated structure, with @iscrete proper timet label- ~ or by solving it explicitly.
ing successive spatial sliceNote that this proper time is Before embarking on the physically relevant casedof
simply one of the parameters characterizing the discrete ge=4, we will in this paper investigate Lorentzian quantum
ometries, and not a “gauge choice,” since the formalism isgravity in three dimensiongSome of the results presented
completely coordinate invariant from the outsén. addition,  here have been announced recentlyi0,11].) Apart from
each history has a causal structure, induced from the piecé#eing a new statistical model of three-dimensional fluctuat-
wise linear Lorentzian metric structure. Each spatial slice is 419 geometries, there is also some interest from the point of
(d—1)-dimensional equilateral triangulation of Euclideanview of quantum gravity proper. Although largely an un-
simplices, with squared edge Iengtliﬁacez a?, and spatial physical theory, 3D quantum gravity is an extensively stud-
topology changes are not allowéd line with the continuum  i€d systenf12,13. It is often invoked as a model system for
notion of causality. the full theory, since its classical equations resemble in many
A unique Wick rotation is defined on every Lorentzian Ways those of general relativity. The big difference from
history. It maps a given triangulation with certain assign-=4 is the fact that there are no propagating physical field
ments of edge lengths into the same topological trianguladegrees of freedom. After solving the constraints of the
tion, but with the(squarediedge lengths of itime-likelinks ~ theory, only a finite-dimensional phase space remains. Al-

(which interpolate between the spatial slicesdefined from  though one has not yet been able to make full use of this
12 .=—aa®tol2 =+aa® wherea>0. This leads to an ©Observation in a configuration space path-integral formula-
analytic continuation from Lorentzian to Euclidean signaturelion, it suggests that one may still be able to solve 3D gravi-
of the Regge action in the complex plane and gives a fational modelsanalytically.
precisemeaning to the map Edql). The derivation of the partition function and the explicit
For finite (discrete volume, the Lorentzian gravity mod- construction of 3D Lorentzian simplicial space-times was
els thus obtained are well defined in the sense of being st&ven in[5]. In order to make this paper self contained, we
tistical systems whose transfer matrix is bounded and posiill summarize the main results below and at the beginning
tive. One is then interested in whether they exhibit anyof Sec. lll. The Einstein action of a giveismooth) Lorent-
critical behavior as functions of the bare coupling constantszian geometry in three dimensions is
leading to continuum theories of quantum gravity. Second, 1
one wants to compare their properties with those of the cor- _ 3y [~ Aatn(P
responding Euclidean dynamically triangulated models. It S90] 167G f d*x - detg(R—24), @
should perhaps be emphasized at this point that our nonper-
turbative path-integral method is in principle exéahd not Where G and A denote the gravitational and cosmological
formal). It does involve a specific choice of a “measure,” but constants. For the continuous, piecewise linear geometries
one would expect from universality arguments that the fineemployed in our simplicial discretization, we use the Regge
details of any choices made at the discretized level will noform of the action2,14], expressed purely in terms of geo-
alter the continuum theory. metric (coordinate-independentata, namely, the geodesic
As already mentioned above, id=2 the Lorentzian €dge lengths of the simplicial complexes.
model is exactly soluble and lies in a different universality ~In order to make the state sum well defined, we analyti-
class from its Euclidean counterpafvhich can also be cally continue the Regge action associated with each 3D
solved exactly and is better known as 2D Liouville quantumlorentzian triangulation to Euclidean form by changing the
gravity). Its geometric properties are different, which alsolength assignments of all time-like edges frofp.= —a? to
affects its behavior when matter is coupled to the gravitalime=+a2 The main aim of this paper is to analyze the
tional degrees of freedof8,9]. Quite remarkably, and unlike phase structure of the model defined by the path integral
Liouville gravity, the coupled system remains well behavedobtained after this “Wick rotation”:
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rithm on the ensembl@;(S'x S?) of causal 3D geometries,

~ ﬁe'S(NO'N?"T) as well as a characterization of the triangulations and the
T(S%S Monte Carlo moves in terms of dual graphs. Our numerical

12 12 results are presente_d in Sec_:. V. We chargcterize the different

N —— e SeMNoNa T (3) phases by measuring various geometric observables, and

F(Sx ) C(T) give a detailed description of the geometric properties of the
physically interesting “extended” phase. Finally, Sec. V con-

whereC(T) is the order of the symmetry group of the trian- tains a summary and discussion of our results. There are
gulationT. The “measure factor” IZ(T) appears naturally three appendices. In Appendix A, various identities and deri-
in the counting of unlabeled triangulatiofs5]. As usual in  vations for 3D simplicial geometries are collected, Appendix
the theory of critical phenomena, we do not expect the deB contains more details on dual graphs, and Appendix C
tailed choice of the measure to affect the continuum limit ofsome technical specifications of the Monte Carlo simulation.
the theory, a behavior that has already been corroborated by
the 2D models of Euclidean and Lorentzian quantum gravity. || RENORMALIZATION IN DISCRETE QUANTUM
In Eq. (3), the Euclidean three-dimensional Regge actgn GRAVITY

is expressed in terms of the total numbers of vertices and ) o
tetrahedraN, andNj, according to As we know from the study of Euclidean simplicial quan-

tum gravity[16], there is a well-defined strategy to search for
Se(Ng,N3,T)=—koNg+ksN3, (4) possible continuum limits for the type of discretized gravity
_ _ _ _ ) model we are considering. For each vak of the bare
with the associated dimensionless bare coupling constants;nerse gravitational coupling there is a critical vak§gko)

3 of the bare cosmological constant such that the model is well
a a’A

Ko=-—=, ks=———+ i(gK_ 1) (5)  defined forks> k$(ko) and diverges fokz<k5(ko). One can
4G 48/27G 4G hope to obtain a continuum limit fdt;—k§(ko) because in
this limit the expectation valugN3) may diverge for suitable

(see Appendix A for a derivationThis form of the action is powersn.

familiar from former work in Euclidean dynamical triangu- *  Thig program has been carried out successfully in both
lations [16]. The parametek, is proportional to the bare Euclidean and Lorentzian quantum gravityds:2 (see[17]
inverse gravitational coupling constant, whilgis a combi- ¢ o recent review It offers a nonperturbative field-
nation of the bare gravitational and cosmological constant§,qoretical definition of 2D quantum gravity where the bare

[often referred fto—somewhat |mpreC|seI_y—“3|m_pIy as thecosmological constark;, is additively renormalized accord-
(bare cosmological constaht The geodesic “lattice spac- ing to

ing” (edge lengthis given bya>0 and«w=arccos(1/3) is
the dihedral angle of an equilateral tetrahedron. k,=kS+Aa?, (6)

To keep things simple, we are assuming that the spatial
slices have the topology of two-dimensional spheres. In adwith A denoting the 2D continuum cosmological constant,
dition, for the convenience of the numerical simulations, weand where the criticatS comes entirely from the entropy of
are using periodic boundary conditions in tfeuclidean  the two-dimensional triangulations. We expect an analogous
time direction, unless specified otherwise. The sum in(B.  aqditive renormalization of the bare cosmological coupling
is taken over the set of all causal triangulatiGhgS! x S?) constantks in 3D quantum gravity, but in this cadé de-
compatible with this topology, and constructed according topends not only on the entropy of the three-dimensional tri-
the rules described in Seq. Il below. The intgger parameter angulations but also on the gravitational coupliag since
denotes the total extent idiscret¢ proper time, i.e., the he Einstein action gives a nontrivial weight to each triangu-

; ; 1
number of spatial slices of constant [0,T]." lation (contrary to two dimensions, where the curvature term
In this paper we explore the phase diagram of three;q topological.

dimensional discrete Lorentzian gravity. We are particularly Taking the infinite-volume limit of a regularized quantum
interested in identifying those regions of coupling-constantie|q theory does not necessarily lead to a continuum quan-
space where a continuum limit may exist. This is done withy,, field theory. For example, the Ising model on a infinite
the help of Monte Carlo simulations of the statistical en-,q_dimensional lattice will only representca=1/2 confor-
semble defined by E¢3), combined with qualitative analyti- .5/ field theory if at the same time the temperat(séich
cal arguments. _ , ~plays the role of a coupling constant in the theoig fine
Th_e rest of this paper is c_)rganl_zed as follows. S_ectlon '_'tuned to the critical temperature of the Ising model. Only
contains some general considerations on the behavior of dig;nen approaching the critical temperature will the long-
crete quantgm gravjty models u_nder renormalization. In Secrange spin fluctuations become important and allow us to
Il we describe the implementation of the Monte Carlo algo-tqget ahout the details of the lattice regularization, thereby
making contact with continuum physics.
By contrast, 2D quantum gravity is an example where the
e have slightly changed our notation with respedish where  infinite-volume limit of the regularized theory automatically
the total proper time was calletl leads to the continuum theory. This was to be expected as the
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cosmological coupling is the only coupling constant of the
theory, and at the same time conjugate to the space-time / /\ =\ Pt / t+1
volume. | 71N/ X
. It |s.not immediately clgar what to gxpect in three- / /\-\/ \/ & /t
dimensional quantum gravity. The classical thedafter
gauge fixing has no propagatinfeld degrees of freedom, 3.1) 1,3) 22
but is described by a finite number Gfeichmiuler) param-
eters, whose number depends on the topology of the spatial FIG. 1. The three types of tetrahedral building blocks used in
slices. Since in the theory of critical phenomena a divergengliscrete 3D Lorentzian quantum gravity, and their location with
correlation length and the associated fine tuning of a coutespect to the spatial slices of constant intetger
pling constant are usually associated witliedd degree of
freedom, it is tempting to conjecture that the situation will betransition at a specific value df, would strongly suggest
as in two dimensions, namely, that the infinite-volume limittaking the continuum limit by fine tuning, to this point,
of 3D Lorentzian quantum gravitfobtained by fine tuning defining in the process the renormalization of the gravita-
the cosmological constantoincides with the continuum tional constant. The issue of nonrenormalizability could be
limit, without the need for further fine tuning. circumvented if the fixed point was nontrivial, not allowing
In three dimensions, we must in addition understandor a simple expansion in geometry. To some extent this is
which role the gravitational coupling constant plays in ourrealized in 2+ e-dimensional quantum gravity, which pos-
formulation. In the exponentiated action, it multiplies the sesses a nontrivial fixed poifit9—-21. Of course the chal-
curvature termfd>x+/ detg(x)R(x) of the classical Einstein lenge in such a scenario would be to understand how its
action, from which the classical dynamics is derived. More-excitations are related to the degrees of freedom, or rather
over, it is exactly this term that gives rise to the nonrenorthe lack of degrees of freedom, of the classical 3D gravity
malizability of three-dimensional quantum gravity, when onetheory. Conversely, if no second- or higher-order transition is
considers perturbation theory around a classical solutiorpresent and one can still define a continuum limit, it is likely
This means that it does not make much sense to exparifiat no renormalization of the gravitational constant is nec-
around a given flat background in a conventional way. Al-€ssary.
though the underlying quantum theory may not have any In order to find answers to these questions, we will in this
divergencesg(since there may not be any propagating fieldpaper analyze data coming from numerical studies of three-
degrees of freedomwe are likely to end up with a infinite dimensional Lorentzian gravity. Attempts to solve the model
set of divergent countertermdsynless there is some as yet analytically are underway and will be reported elsewhere
undiscovered cancellation mechanism. [22]. As will be described in the following, our investigation
There are well-known ways to circumvent this deadlockprovides evidence thdt) a continuum limit exists(ii) there
in the case of three-dimensional gravity, for example, byis a well-defined ground state which dominates the func-
quantizing in the reduced, finite-dimensional phase spacdional integral and thus represents a “background geometry,”
either in a geometric formulation usirgy,, or using gauge- and(iii ) the bare gravitational coupling constant sets a length
theoretic (Chern-Simonks variables [12,13. (However, it scale for the geometry, but is not renormalized.
should be remembered that even classically, the relation be-
tween thgse two “time-full” and “time-l_ess_" formulations IS |II. NUMERICAL IMPLEMENTATION OF THE MODEL
only partially understood18].) How this is reflected in a
path-integral quantization in terms of geometries is much Which are the three-dimensional Lorentzian geometries
less cleawe mean here aonfigurationspace path integral, contributing to the state sum of E¢l)? Starting from a
rather than a phase space path integrss far as we know, sequence of two-dimensional equilateral triangulations, a
there is not even a generally accepted answer to whether gree-dimensional Lorentzian triangulation is obtained by
not the gravitational coupling constant should be renormalfilling the spaces between pairs of such spatial slices by three
ized. types of tetrahedral building blocks, in such a way as to form
If our discretized nonperturbative model possesses a cora simplicial manifold They are:(i) the so-called3,1) tetra-
tinuum limit, it should provide an answer to this question. hedra with a triangle in the spatiaplane and a vertex in the
For example, the presence of a nontrivial second-order phasgatialt+1 plane; their number in any given sandwidht
+1] is denoted byN5;(t), and their total number biNs;;
(i) the (1,3) tetrahedra with a vertex in theplane and a
20One could try to view such a theory as an effective Iow-energymangle in thet+1 plane; their number in any given sand-

theory with limited predictive power, much in the same way as theWiCh [tt+1] IS denoted byNys(t), and- their toFaI r?“mber
Y . ’ y and (iii) the (2,2 tetrahedra with one link in the

nonlinear sigma model is used as an effective field theory for piorpy Ny - . :
physics, describing some aspects of low-energy QCD. HoweveP!@ne and another one in the 1 plane; their number in any
this is not what we are after in a nonperturbative definition of 3pgiven sandwiclit,t+1] is denoted byN,,(t), and their total
guantum gravity. We want a theory whose predictions in the connumber byN,, (see Fig. 1

tinuum limit areall independent of the cutoff of the regularized ~ Several of our numerical measurements involve the two-

theory, although they may in principle depend on a nonperturbadimensional volume of the spatial slices. In our model there
tively induced mass scale. are two natural ways of defining the spatial volume at ttme
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-
-
FIG. 2. In a flip move, the four tetrahedra inside a diamond

configuration are reassigned by flipping the diagonal of the central
square. FIG. 3. Insertion or removal of a vertex in the central triangle
transforms two into six tetrahedra and vice versa.

One can define it simply as the number of triangles in the

spatial slice of constant integéer diagonal, accompanied by the corresponding reassignment of
the tetrahedra constituting the diamotidg. 2).
NS (t)=Ng(t)=Ny5(t—1) (7) (2) (3) Consider a triangle in theplane together with its

two neighboring tetrahedra, whose two tigs ; andv,_1 lie
in the t+1 and thet—1 planes. We can always insert a
vertexv, at the center of the triangle and connect it to the
exterior vertices of this configuration by adding five internal
links, thus replacing the original two tetrahedra by &¥g.

3). The correspondinmverse movean only be performed if
In a phase of extended geometguich thaiN,5~Nay;~N22), e can identify a vertex, of order six(i.e., belonging to six

both definitions should lead to equivalent results. For mos{etrahedra together with two links ¢;,0;_1) and ©,v;+ 1)

purposes, we have found it convenient to work with the tWoypich are both of order three. In this case one can just re-

vqumes_N(ZS“’z)(t). o . move v, and both links ¢,,v,+1), replacing in an obvious
We will explore the infinite-volume limit of the ensemble way the six tetrahedra by two.
of discrete Lorentzian geometries by performing a Monte (4) (5) The fourth move can be performed on any configu-
Carlo simulation where each suggested local change of triration consisting of a pair of &,2) and a(3,1) [or a(1,3)]
angulation(a “move”) is accepted or rejected according 10 tetrahedron having a triangle in common. We can remove the
certain probabilities depending on the change in the actiofyjangle (but not its links and verticésand insert a link dual
and the local geometry. _ . . to it, connecting the two vertices which did not belong to the
Our local updating algorithm consists of five basic MOVeSriangle (see Fig. 4 In this way the original3,1) and(2,2)
They ch_ange one Lorentzian trigngulation into another, whilggtrahedra are replaced by of#1) and two(2,2) tetrahedra,
preserving the constant-time slice structure, as well as th@itnout introducing any changes in the two-dimensional spa-
total proper timeT. We are confident that this set of moves is tj5| sjices. The fifth move is the inverse of the fourth move,
ergodic in the space of all allowed Lorentzian triangulationsremacing a suitable configuration of of@1) [or (1,3)] tet-
at fixed T, although we do not as yet have complete formal,ghedron and two adjaceli2,2) tetrahedra by a pair of a
proof. Note that all of the moves described below will be (3,1) [or (1,3] and a(2,2) tetrahedron.
rejected in the updates if they lead to triangulations where Note that not all of the local moves preserve the three
pairs of vertices are connected by more than one link oyolume. We will use a standard way of dealing with this
where triplets of vertices belong to more than one trianglesityation, developed for dynamically triangulated models in
since this violates theimplicial manifoldproperty. Let us  gimensions three and fo{it6]. This method ensures that the
now describe each of the moves in turn. ~volume of the system fluctuates around a prescribed value
(1) Consider two neighboring triangles in the spatial N, with a well-defined range of fluctuations.
plane. Each of them belongs to a tetrahedron above and be- | the implementation of the numerical code it is conve-
low that plane. Assume now that both the ti&)1) tetrahe-  pient to work not with the triangulations and their constitu-

dra above and the twd3) tetrahedra below share a triangle. ents put with the dual graphs, which are given by specific
Together, the four tetrahedra form a diamond whose tips lie

in thet—1 and in thet+1 plane, and whose intersection
with thet plane is a square. The move consists of flipping the
link that forms the diagonal of this square to the opposite

or measure it at half-integeérand defind

N(25+l/2)(t):=N13(t)+Ngl(t)+NZZ(t)- (8)

3This definition is the simplest one in that it counts the number of
building blocks att=1/2. We could put in individual weights re- FIG. 4. A neighboring pair of 43,1) and a(2,2) tetrahedron is
flecting the actual areas of the cross sections of the tetrahedra, butrégplaced by anoth€B,1) tetrahedroriwhose tip lies now in the top
would not affect our results below. right-hand cornerand a(2,2) tetrahedron on either of its flanks.
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bicolored graphgdrawn as gray and black horizontal lines half-
integert.

classes of¢* graphs. Like the triangulations, all of the

graphs have a foliated structure. This is most naturally asso-  4&5:

ciated with half-integer times, because the vertices of the

dual graph are located at the centers of the tetrahedra of the

original triangulation. To visualize the geometry of the glu- o , ,

ings and the moves in this dual language, we adopt a color- FIG. 6. Graphical illustration of the Monte Carlo moves in terms

ing for the dual graphs. A link dual to a triangle of(&,1) of dual bicolored graphs. In moves 1 and 2 and 3, dual links from

tetrahedron is “black,” and one dual to a triangle of B3 two _adjac_ent sandwiches are affected. Moves 4 and 5 take place
o M . - . . within a given[t,t+ 1] sandwich.

tetrahedron is “gray.” This results in a unique coloring for

all links dual to “time-like” triangles(lying inbetweenspa-

tial slice9, since it is not possible to directly glue a gray to a correspond to allowed Lorentzian triangulations, since their

black triangle. This can only be done if the triangles areduals may violate the 3D simplicial manifold constraints.

space-like(i.e., if they are both contained in the same sliceThis matrix model(with some additional assumptions about

t=cons). The links dual to such triangles are thereforeuniversality can be taken as the starting point for an analyti-

double coloredFig. 5, lefy. We can now construct for each cal solution of the transfer matrix of simplicial 3D quantum

“sandwich,” i.e., each triangulated space-time slifgt gravity [22].

2&3:
FIG. 5. How the tetrahedral building blocks give rise to dual /k / N\

+1], a bicolored graplfwith topology S?) by projecting all The time evolution in the dual picture can be thought of
unicolored dual links associated with the sandwich to the as follows. A bicolored graph at timer 1/2 consists of two
plane att+1/2. components: a blacky® graph dual to the triangulation at

In this way each3,1) tetrahedron gives rise to three black time t, and a gray$® graph dual to the triangulation at
links, sharing a trivalent intersection. Each of the links cany 1 The way in which the two original spatial triangulations
;antd ﬁt t(?e certl)tetr of e|thert ?ﬂomérlt) tetrahed:o? Or: % 2 are glued together is encoded in the intersection pattern of
elranhedron, but never at e center o(la_s) etrahedron. o “superposition” of the two graphs at tinte-1/2. If we
[An analogous statement holds for the triplet of gray ImksvieW the black and gray trivalent graphs as representing in

associated with &l1,3) tetrahedron.Consequently, eadl2,2)
tetrahedron in the sandwich correspondg toa %lour-valent vefind out states, their transition amplitude is a function of the

tex of the dual graph, with alternate colors black-gray-black- number of topologically inequivalent ways of superposing
gray for the incoming linkgFig. 5, righd. The end result is a the two graphs (subject to some *dual” manifold

: o : _constraints—see Appendix B for details
gggbgaeghQ;Sé/hag?asaagic%rraspi?} It?] ;'nl:léﬁ“?l;? ?h eMpoerre_ The five Monte Carlo moves described earlier can also be

turbative expansion of the two-matrix model defined by the rephrased in the language of intersecting colafédyraphs,
partition function as illustrated in Fig. 6. The diagrams appearing in Fig. 6
contain all dual links affected by a given move. Since the
1 moves 1, 2, and 3 are symmetric with respect to the plane
— _(¢é+ ¢ZB) t=const, a change in one of the trivalent graphs is always
2 accompanied by an equivalent change of its mirror image of
the opposite color. Moves 4 and 5 assume a particularly
simple form: one link of a given color is “dragged across” a
vertex of the opposite colofNote that in the graphical rep-
(9)  resentation of this particular move, the cubic vertices repre-
sent (3,1 or (1,3) tetrahedra and the black-gray crossings
where, as usual, the quadratic terms give rise to propagatof8,2) tetrahedrd.Details about the numerical implementation
or links, and the cubic and quartic interaction terms correin terms of this dual picturéincluding lattice sizes, update
spond exactly to the tri- and four-valent intersections illus-efficiency, number of sweeps, etcan be found in Appen-
trated in Fig. 5. Note that not all graphs generated by(Bgy. dices B and C.

Z(ag,ag,B)= J dopgdegexpntr

B
+ 5 Ot 5 R+ 5 dodadeds
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FIG. 7. The order parameter=N,,/N5 for
configurations withl = 64, andN;= 16 000(long
dark curve and 64 00Qshort light curve, plotted
as a function oky. The curve is a linear interpo-
lation between data point§Error bars smaller
than width of curve.

ko

IV. NUMERICAL RESULTS The location of the phase transition depends weakly on the
. . . total lengthT in time direction, and the jump im becomes
Having presented our numerical setup, we are now in

osition o extract a number of phvsical properties of the "€ pronounced for larger volumes. Figure 8 is an illustra-
P . imber of pny prop . tion of the extreme cas&€=1, where we have chosdree
Lorentzian model. We will first investigate the phase diagram

of the regularized theory, and try to understand which of th instead of periodic boundary conditiofthe triangulations at

continuum-limit scenarios outlined in Sec. Il is realized. Wee[he initial imet=1 and the final tima=2 are allowc_ed to_
fluctuate freely, so that the topology of space-time is

will then analyze the geometry characterizing the different > 4
phases. Since we have a distinguish@mhd coordinate- chinged tch X[O(’jl]'ﬁf Fia. 7. fde>Ke~6.64 onl
invariany notion of proper timet, we can extract invariant S can be read off from Fg. 7, 1o ~Ko=0.54 only a

information of the system by studying correlation functionsmigimaI nléng)ber of(_2_,2) teﬁrahedra ié present. I;r hish C%n be
in t. This will be done by measuring distributions of spatial U"derstood by rewriting the action E#) to make the de-

slice volumeN$*/) as a function of the total proper tinfe pendence o2, explicit. In Appendix A we derive
and correlators(N$*Y2)(t;)N$*2)(t,)) between spatial ko
volumes, as well as the intrinsic Hausdorff dimensitjiof SE:ZN22+
a typical spatial slice.

k
ky— ZO> N5—2k,T, (11)

_ which shows that for fixedN; and T (and positive gravita-
A. The phase diagram tional couplingk,) @ minimalN,, corresponds to a minimum
In order to explore the phase diagram of the regularize®f the Euclidean action.
Lorentzian model we must find an order parameter, and ex- The entropy of configurations witN,, different from its
plore how it changes with the coupling constant, in this caséninimal value will in general ensure that the ratids dif-
ko. We have found that the ratio between the total numbeferent from zero, even wheh;—o. However, since the
N,, of (2,2) tetrahedra and the total space-time volukg number of such configurations for fixed; grows at most
exponentially withN3, this leaves the possibility that for
~ Npp N2o 1g Sufficiently largek, the terme koN224 will dominate over the
" N3 Nyt Ng+Njs (10 entropy contribution and trigger a phase transition to a phase
with only a minimal number of2,2) tetrahedra, such that

serves as an efficient order parameter. We shall not be con-0 in the cc_)ntinuum_ limit. .
The physics of this phase can be readily understood. In

cerned with a continuum interpretation of this parameter . S :
(which is not obvioussince we will go on to show that no terms of the matrix model, a situation with 1(®,2) tetrahe-

continuum physics is associated with the transition we obdra corresponds to choosing the coupling consfar0 in
serve as a function of. In Figs. 7 and 8 we show the ratio  £d- (9, thsus reducing the model toa product of two inde-
as a function ofk, for two different types of space-time Pendent¢” matrix models. Since g matrix model at its
configurations. In Fig. 7 all geometries have 64 spatial slice§'itical point describes two-dimensional Euclidean quantum
(T=64), with total space-time volumeNs=16000 and gravity, .the matrix model anaclogy strongly suggests that the
N5=64000. One observes a rapid drop to zeroréky) Lorentzian 3D model f_oko> kg can bg viewed as a product
aroundk,~6.64. Increasind\s, the drop becomes a jump, of uncoupled 2D gravity models. This conclusion seems to
characteristic for a first-order phase transition. A detailed

study of the neighborhood &,=6.64 reveals aweak) hys-

teresis as one performs a cycle, moving above and below thefin this situation the critical point is changed frok§j=6.64 to
critical valuekg, again as expected in a first-order transition.k§=6.42.

T
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FIG. 8. The order parameter=N,,/N3 for
configurations withT=1 and N;=16 000, but
with free boundary conditions, plotted as a func-
tion of ky. The curve is a linear interpolation
between data pointgError bars smaller than the
width of the curve.

be corroborated by our numerical results. Figure 9 is a typibecomes flatter dg, approaches its critical value and imme-
cal “snapshot” of a space-time geometry, taken during thediately beyondg, the distribution approximates&function
computer simulations. The spatial volum$™¥2(t) is  around7=1.
shown as a function of the timte Apparently it can change This last result can be understood as follows. We know
from essentially zero to a “macroscopic” size in a single from the simulations that the number ¢2,2) tetrahedra
time step, which implies that there cannot be any correlationgrops to a minimum beyond the critical poikf. To first
between slices separated by a few time steps. A differerdpproximation, these tetrahedra therefore do not contribute
measurement of the correlation between successive spati@ the entropy in that region. Moreover, since a minimal set
volumes is depicted in Fig. 10. We have again cho$en of (2,2) tetrahedra can basically interpolate between any pair
=1 and free boundary conditions, in order to have spatiabf “incoming” (3,1) and “outgoing” (1,3) configurations,
slices of a reasonably large size, but a qualitatively similathe combinatorics is governed by tseparatecountings of
behavior is expected fofr>1 too. We show the distribution those configurations, subject only to an overall volume con-
of the (normalized difference straint N3+ Nq3=N3z;—N,,~Nz=const. Individually, the
configurations at=1 andt=2 are simply 2D Euclidean

triangulations, whose number for a given spatial voludjd
INg(t=2)—N5(t=1)| ° i o

. . B ~
is known to be proportional t@°z”(N§?) 52 From#(1

T(1—=2)=
N3 —2)=|1—2N;3/N5|, and taking into account that the mini-
|N(s)(2)_ N(s)(1)| mal interpolatingN,, configuration can be inserteshywhere
= 2 2 (12 in the incoming and outgoing configurations, one finds
N31(1) +Ny3(1)+Noy(1)

of the spatial volumes of the initial and final slice. Fgrless

than the criticaki~6.427 is peaked around zero. The peak

#( N31—> N13) ~ eCN31N§1(3/2)eC(N3_N31)( N3— N31) —(3/2)

~(1-7%) "3, (13

N7

FIG. 9. Monte Carlo snapshot of the distribu-
tion of spatial volumesNS$*¥2(t), for T=32,
N3;=16 000, andky,= 6.7 (that is, above the criti-
cal value kj=6.64. The volumes are plotted
symmetrically about a central horizontahxis.

L L L L
10 15 20 25

L
30
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FIG. 10. The probability distributio®(7) of
7=|N$(2)— N2 (1)|/N4 for k,=6.0, 6.1, 6.2,
6.3, 6.4, and 6.42highest to lowest peak around
7=0; the valueky,=6.42 corresponds to the
phase transition poiptand 6.44 (distribution
peaked around)ifor total volumeN;= 8000 and
free boundary conditions.

0.2 0.4 0.6 0.8 1

for the combined entropy at fixed voluniy. In agreement These two “extreme” regions of the phase diagram can be
with Fig. 10, it shows that the most likely configurations areregarded as artifacts of our particular way of setting up the
those where the entire 3D volume is concentrated at one dfiscretized theory. They may be seen as remnants of the
the slices, that is, eithéd3;~0, N13~Nj or vice versa. phases of degenerate geometries observed previously in 3D
The situation is very different in the phase wkh<kg . Euclidean quantum gravifyL 6]. However, unlike the Euclid-
Our measurements Gfat T=1 are an indication that also in ean theory, Lorentzian gravity possesses a large rekfion
general in this phase the volumes of successive spatial slicesk,<k§ of coupling constant space where the quantum ge-

will be strongly coupled, i.e., their volume difference will be ometry is extended and well behaved, and whose description
small. Since this behavior is not favored by the action, thgye shall turn to next.

prevalence of such configurations must have to do with the

presence of th€2,2) tetrahedra and their associated entropy

(i.e., the number of ways they can combine with each other B. The phase of extended geometry

and with other tetrahedra to form interpolating “sand-  Let us now analyze the structure of the phase of interme-

wiches”)_. Thi; observation turns out to be of great impor- jiste gravitational coupling?8<k0< kS, where all types of
tartlceas:jnce It sr—.;e_ms.toﬂl:.e a’;]the her?rthof .tlTE eg"ergggcg.?étrahedral building blocks contribute nontrivially. Quite re-
extended geometries in this phase, which will be describe '.Hwarkably, and unlike in the phase whéeg>kg we observe

(r:r;g;gtztr?z”elg éhe@neéasfﬁnc;?ﬁclinIgg}ﬁ;iﬁ?ﬁgiﬁ;ﬁ; "Rere the emergence of well-defined three-dimensional con-
ydgr=1.1np P y figurations. Figure 11 shows a shapshot of a typical geometry

Bhase transition at some~small@"ossibly negative value atky,=5.0, consisting of 16 000 tetrahedra, for 32.[As in

ko, such thatr=1 for ko<<ko [with no (3,1) or (1,3 tetra-  the previous Fig. 9, we plot—symmetrically around an arbi-

hedra surviving in the continuum linjitindeed, for fixed\5 trary axis—the spatial volumﬁ(f“’z)(t) as a function ot.]

and negativek, the action Eq.(11) has a minimum forr  £qji0ning the computer-time history of this extended object,

~1. (Configurations withr—1 for N3—¢c can actually be t js clear that although it does indeed fluctuate, the fluctua-

realized) ) . tions take place around a three-dimensional object of well-
Whether or not the system will undergo a phase transitionjefine linear extensichThe emergence of a ground state of

for sufficiently smallk, will depend on the balance between gytended quantum geometry is a highly nontrivial property of
action and entropy, which cannot be determined by simplgne | grentzian model, since we have at no stage put in a

qyalitative considerations. We have not investigated t_his_ "€ referred background geometry by harido structures of
gion of the coupling constant space further, given the limitedyis kind have ever been observed in dynamically triangu-
importance of negative gravitational coupling constants fromateq models ofEuclideanquantum gravity. It underscores
a quantum gravity viewpoint, and the fact that our computetne fact that the Lorentzian models are genuinely different

algorithm is not efficient at smak,. _ _and affirms our conjecturg5] that in d=3 they are less
In summary, we have arrived at the following tentative pathological than their Euclidean counterparts.

desc_ription of the_ phase diagr_am_ of 3D Lor(_entzian quantum pqr 4 fixedk, and N5, an overall “spherical” shape as
gravity: the bare inverse gravitational couBImg constant hagnawn in Fig. 11 is found only for sufficiently large At
two critical values kg andkg (possibly withk§= —). For

ko>k¢ the model describes the fluctuations of an uncorre=————

lated set of two-dimensional spatial geometries and has noth-sA trivial mode of fluctuations are the translations in time-
ing to do with a three-dimensional theory of gravity. Also for direction. Due to the periodicity of the boundary condition the

ko<k§ the space-time geometry degenerates, since the sp&enter of volume” of the extended configuration performs a ran-
tial slices at integet completely disappear from the theory. dom walk in thet direction.
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N2

FIG. 11. Monte Carlo snapshot
of the distributionN$*¥2(t) of
spatial volumes, forT=32, N3
=16 000, andk,=5.0 (that is, be-
low the critical valuek§=6.64).
The volumes are plotted sym-
metrically about a central horizon-
tal t axis.

0 5 10 15 20 25 30

small T, one observes a uniform distribution of spatial vol- opposite points of anS® configuration with radiusRss
umesN$*Y2(t) as a function ot. As T increases, the bulk ~ A2~V and attaching a thin cylinddrx S? (with spa-

of the space-time volume “condenses” into a region with atjg| radius at the cutoff scaldo the holes. This will produce
well-defined extenf.ru<T in time'direction(WhiCh we will a geometry of the k|nd Shown in F|g 11. A|th0ugh |t iS not
call theunivel’SQ, IeaVing over a thin stalk of minimal Spatial Strict'y Speaking a solution to Einstein’s equationsy it is “al-
radius everywhere else along thaxis. We will from now on  most as good” from the point of view of the path integral,
chooseT sufficiently large, so thal>T, for all volumes  since—independent of its metric properties—the contribu-
under consideration. We are interested in the “cosmological’tion of the stalk to the action is negligibl@ecause it does
properties of this extended universe, i.e., its geometric propnot grow proportionally to the three volume
erties at large scales. Our data for the scaling of the time Suppose for the moment that the rousitisolution corre-
eXteI’.]tTu of the universe as a function of the total volume aresponded to &'Ocab minimum of the action. Then the Singu_
consistent with lar “solution” of topology S?x S constructed above would
TU~N§’3. (14) also represent docal) minimum of thg ac_tion, and would
therefore be as relevant as tB2 solutionin the quantum
theory. Unfortunately, the argument is not quite as simple,
because the classical continuum Einstein action is un-
bounded from below, due to the presence of a kinetic term of
the “wrong” sign, coming from the conformal mode of the
metric. However, since the conformal mode is not a propa-
<N<zs+ 1’2)(t)>~ N§’3. (15) gat_ing degrge of freegiom. in eit.her classical general relativity
or in canonical quantizations, it should not cause any prob-
Relations(14) and (15) support an interpretation of the uni- |1€ms in a correct, nonperturbative path-integral quantization

verse as a genuinely three-dimensional object. There is d¥f gravity, not even in the Euclidean sectdn such a quan-
course naa priori reason that a ground state in a nonpertur-tum theory theeffectiveaction should be bounded from be-

bative theory of quantum gravitiif it exists) should bear low and semiclassical saddle-point considerations of the kind
any resemblance to @emijclassical geometry. Let us ex- made above may again be appropriate.

(We discuss below how a quantitative measurd pfis ob-

tained) Similarly, by anindependentmeasurement of the
volumesN$*2)(t) of spatial slices that lie within the uni-
verse, we have found a scaling behavior consistent with

plain briefly how such geometriegnd, more specifically, We have measured the correlation function
classical solutionsmight still make an appearance in this
context. 1T

For the simplest compact space-time topology, the solu- C(a)= ﬁzl (NSHRONST2(t+4))  (16)

tion to theclassicalEinstein equations with Euclidean signa-

ture and a positive cosmological constaktis the round _ ) _ .
three-spheréof constant positive scalar curvatuneith ra- @S @ function of the displacemedtto determine the scaling
dius Rss~A 2. Solving the equations with the constraint of T, with the space-time volumi;. This correlator has the

advantage of being translation invarianttiand allows for a

of fixed space-time volum¥ is equivalent to introducing an ) _ :
precise measurement by averaging over many independent

effective cosmological constanh ¢4~V 2°. We are not
aware of a classical solution with positive and topology
S'x S? (which is the topology used in our simulations
However, for our purposes we can “adapt” t82 solution to 5The continuum path integral in the proper-time gauge is dis-
this topology by cutting away two small open balls at two cussed if23].
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FIG. 12. The correlato€(A) with T=64 and
N3;=32000. Dots are the measured valgesor
bars less than dotsand the curve is fitted from
the sphere solution described in the text.

-30 -20 -10 10 20 30

configurations. From the typical shape of the space-time cory*P of the spatial slices lyingnside the spherical universe,
figurations we expedE(A) to be on the order of the spatial using the geodesic distance inherited from the 3D geometry,
cutoff if A>2T,. Figure 12 illustrates the result of our mea- and employing techniques developed in the context of 2D
surements o€(A), with the dots representing the measureddynamically triangulated Euclidean quantum gray2g,27.
values. The theoretical curve to which we are fitting corre-Unfortunately, the quality of our measurements is not very
sponds to the “fake sphere” described above, with the radiusatisfactory, since the spatial volumb(t) of the indi-
of the S® and the spatial radius of the thin cylinder attachedvidual slices are rather smalypically on the order of k).
to it as free parameters. For this “spherical” geometry we One can obtain better data by using simulations with
then perform the integrgthe sum in Eq. (16), without the  small T (so thatT<T, and no universe can fopmbut it is
averagg-). As is evident from Fig. 12, the volume distribu- not entirely clear whether this will leave the spatial Haus-
tion associated with this fixed geometry gives a rather goodlorff dimension unchanged. Our measurements for siall
fit to our data. This provides some evidence that we carpoint to a value around;= 3.4+ 0.4 (the measurements for
ignore the quantum average implied by, and that our uni- larger T are compatible with this value, but their error bars
verses behave semiclassicaliy,least as far as their macro- are considerably largerif our experience with the 2D Eu-
scopic geometric properties are concern®de should men-  clidean gravity simulations is anything to go by, this prob-
tion that our “S® solution” is not singled out uniquely, since ably impliesdi=4, but so far this has to remain merely a
the choice of a Gaussian shape in thiirection gives a fit of ~ conjecture. At any rate, these somewhat preliminary results
comparable quality. highlight the fact that the detailed, microscopic geometry of
For various space-time volumés; (typically 8, 16, 32, the universe may be rather complicated, although its macro-
and 64&) we have determined the radifss of S° from the ~ Scopic properties resemble that of a semiclassical object.
fits to the measure@(A). From this, we have finally found ~ Attempts to measure the Hausdorff dimensin of the

a=0.34+0.02 as the best exponent in the scaling relation entire space-time¢as opposed to that of individual spatial
sliceg have not yet led to unambiguous results. One wants to

Rs3(N3)=Nj3. (170  confine the measurement to the spherical universe, where
again one runs into difficulties because of its relatively small
The same value is obtained using other ways to exifaet  radius. In addition, one needs a dynamical definition of
lending additional support to the three-dimensional nature ohere the universe begins and er(diong thet direction,
our universes. and must make sure that the result is independent of the
We will now take a closer look at the geometry of the particular prescription adopted. From the limited data col-
two-dimensional spatial slices. If they could be described atected (using the geodesic link or dual link distance, in the
typical triangulated surfaces in 2D Euclidean quantum gravsense in which this notion is usually defined in dynamical
ity, they would not behave like smooth 2D geometii@gen  triangulationy we conclude that the Hausdorff dimension is
described in terms of geodesic distancdsut rather like —most likely larger than three.
fractal spaces with Hausdorff dimensidif’=4 [24,25. By Another important result concerns the relation between
contrast, typicabpace-timesurfaces contributing to the path the geometries of differerkt, in the phase whergy<kg . In
integral of 2D Lorentzian quantum gravity can be viewed aghe numerical simulations we have observed the following:
two-dimensional, as shown [4,8,9]. (i) The distributions as functions df can be made to
The spatial slices at constant intedeare obviously Eu-  coincide for differenk, by rescaling the timet— f;(ko)t or
clidean in nature, but it is not immediately clear how theyalternatively a,— f(ko)a;, wherea, is the link length in
will behave, since they appear as part of a larger foliatedime direction. This is illustrated by thsi{s* 12— N{S*1/2)
space-time geometry, and are coupled to each other in a nooerrelatorC(A), Fig. 13, where we show both the actual and
trivial way. We have tried to extract the Hausdorff dimensionthe rescaled distributions.
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50

C(A)

FIG. 13. The correlato€(A), Eqg. (16) with
T=32 and N3=16 000 measured fok,= 3.0,
4.0, 5.0, and 6.@lowest to highest peaksThe
upper part shows the actual distribution, the
lower one the rescaled distributions for positive
(it is symmetric inA). The variablex is a rescaled
version of the time distanca.

(ii) The distributions measured in the spatial slices fromlink distancel. Note that this spherical shell is precisely what
insidethe universe can be made to coincide for differept is measured to determine the Hausdorff dimensigfiof the
by rescaling the spatial link distaneg— fq(ko)as, where  spatial slices.
as is the length of the spatial links. This is illustrated in Fig.  (iii) Within the numerical accuracy we find th&§(ko)
14 for the distributions of 2D volumeS(l) of spatialspheri-  =fg(kp). In fact, the rescaling of the correlat@(A) (Fig.
cal shells of(link) radiusl, measured for various values of 13) was obtained by simply using the valuég(ko) (see
Ko. (The shell volumes(l) is obtained by counting the num- Table |) determined from the fi§(l) [rather than by finding
ber of vertices separated from a given vertelly a minimal  the best value fof (ko) ].

0.125

FIG. 14. The 2d volumeS(x) of spatial
spherical shells, measured only on slices inside
the spherical universe, for various values kgf
and rescaled. The variabkeis a rescaled version
of the radiudl.

0.075

0.025 | \
y X
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TABLE I. The spatial scaling factofg(ko), extracted from the k3 A

distributionsS(I) for various values okg. kgﬂt(ko)
Ko fsi(ko)
3.0 0.84+.02
4.0 0.9k .02
5.0 1.00
6.0 1.23-.03

On the basis of these correlator measurements we conjec | -
ture thatthe value of the bare inverse gravitational coupling kg™ ko

ko €1kS,kS[ merely sets the overall length scale of the uni- _ _ _ _
verse, and otherwise does not affect the physics of the model F!G: 16. The phase diagram of Euclidean dynamical triangula-

We should point out that the average total integrated curtions in three dimensions.
vature is not independent &f,. Subtracting the cosmologi-

cal term from the action EQA11), one finds

intermediate valug&g, the quantum geometries of the phases
on either side of the transition are very different in both
T cases, as indicated in the drawings.
f d3x+/detgR— aN; T(k0)+(12K_5)—8N— In the Euclidean casgl6], one finds a “crumpled” phase
3 at smallk,, dominated by configurations of very large Haus-
T dorff dimensiond=~« (these are simplicial manifolds where
~7'(|<o)—0-298—8,\1—, (18)  roughly speaking any two vertices are a minimal distance
3 apar}. Above the first-order transition &f, the system is in

where the parameter [defined in Eq.(10)] now depends @ branched-polymer phase of highly branched geometries
dynamically ork, through the ensemble average. ComparingWith a fractal dimensiordy; =2). Unfortunately, neither of

it with our measured curve for in Fig. 7, one can read off these phases seems to have a ground state that resembles an
that the total curvature vanishes arouqe-5.0. For smaller extended geometry of dimensial® 3.

ko, it becomes negative and for lardey positive. Neverthe- Another approach té&uclideangravity was advocated in

less, in line with our conjecture above we expect thel28] within the quantum Regge calculus program. The phase
curvature-curvature correlators to follow the pattern of thestructure found in the numerical simulations of this model
a|ready measured correlatofse., to observe a Simp|e resembles those of FlgS 15 and 16 at least Superficially in

ko-dependent scaling behavipbut this remains to be veri- exhibiting a “rough phase” for small and a “smooth phase”
fied. for large Newton's constant. However, this model is in-

equivalent to the dynamically triangulated models we have
V. SUMMARY AND DISCUSSION been discussing, since in the Regge approach these two.
phases seem to be separated by a second-order phase transi-
In this paper, we have analyzed the phase structure of thigon and associated divergent curvature fluctuations, indicat-
discretized model of three-dimensional Lorentzian gravitying the presence of propagating field degrees of free@dm
defined in[5] with the help of computer simulations. The our general discussion in Sec).IHow this can be related to
phase diagram, Fig. 15, should be compared with that of théhe topological character of 3D quantum gravity manifest in
Euclidean theory, depicted in Fig. 16. Although the overallcanonical treatments of the theory is unclear.
phase structure is similar, with a first-order transition at some The situation in Lorentzian dynamically triangulated
gravity is completely different. Although we find a weak
ks A “remnant” of the Euclidean degeneracy fép>kS, where
kgﬂ't(ko) space-time decouples into a sequence of uncorrelated two-
dimensional slices, there is a whole phase bekgwvhere
the geometry is extended, with macroscopic scaling proper-
ties characteric of a three-dimensional universe. Quite re-
markably, this is an example in three dimensions of the emer-
gence of a well-defined ground state of geometry in a
\' K_/ nonperturbative state sum for gravity. In a continuum lan-
guage, this is the ground state of affectiveaction, where
entropy contributiongin other words, themeasurg play a
| - crucial role. Apparently in our model these contributions are
k(c)ﬂ't ko such that they outbalance potential conformal divergences
coming from the Wick-rotated actiorfotherwise a well-
FIG. 15. The phase diagram of Lorentzian dynamical triangula-defined ground state could not exisErom the evidence
tions in three dimensions. gathered so far, the physics in this extended phasedis-
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pendentof the precise value of the bare gravitational cou-tion to a combinatorial problerf22]. Expanding the matrix
pling ky. In the correlation functions we have measuregl, elements according to
merely serves to set an effective overall length scale. . . )

As argued in Sec. II, these findings strongly favor a situ- (92| T|g1)=(g2le"2"|g1)=(g,|(1—aH+0(a%)|g,),
ation where the gravitational coupling is not renormalized, (19
and no fine tuning ok, is needed to approach the continuum
limit. This limit coincides automatically with the infinitéat-
tice) volume limit, which we obtained by fine tuning the
cosmological coupling constant. Continuum physics is ther{

extrapted by taking the limit aN3?oo and a—0, vyhﬂe Hamiltonian agreed with the one obtained by continuum for-
k_eeplng the three \_/olum\e'com==N3a constant. In this set_— mal manipulations in the proper-time gaufg9], showing
ting, no genuine field degree of freedom is present since,,; the educated guesses made in this paper were justified.
there is no divergent correlation length associated with fine  This calculation can be generalized to our 3D Lorentzian
tuning ko to the critical point of a second-order phase tran-rayity model, but the matrix-model methods will probably
sition. only work in the case of a spherical spatial topology. A direct
As a result of our investigations, we have good reasons tgomparison with canonical quantum gravity would then re-
believe that 3D Lorentzian quantum gravity, as definedquire a canonical continuum quantization in the proper-time
through our discrete, dynamically triangulated model, existgjauge, with spatial topolog$?.
as a continuum theory. Since so far this theory is not givenin Let us conclude by pointing out an interesting conse-
an explicit analytical form, the question arises of how toquence of our arguments that would follow if the second

make contact with already existing quantizations of threecritical pointnlig (whose value we did not measirerere

dimensional gravity. negative In this case, the theory with bare coupling constant
At least in spirit, our formulation is related to canonical k,=0 would lie inside the extended phase. This implies that

approaches using the trace of the extrinsic curvature as we could start from a discretized gravity actimth the cos-

time variable, the so-called “York time,” with a conjugate mological term alongand still obtain the same continuum

Hamiltonian determining the time evolution of the systemtheory. This may seem to be a radical suggestion, because the

[29,13. However, this approach only works for gengs classical theory of the action

=1, and the only case where the canonical quantum theory

and the Hamiltonian operator are reasonably expliciy is S:Af dsxm (20)

=1, where the spatial slices have torus topology. We are not

aware of any guantum observables that have been CaICljlau?Sdtrivial (it does not contain any time derivatiyeslowever,

in the casze O].c spherical slices which we COUl_d try 10 COMParye e is no logical contradiction, since further nontrivial con-
to. (For S” slices, there are no noncontractible holonomiesyp, ions to the(effective action can be generated through
and the reduced phase space is zero dimensjofal.could  yhe nonperturbative evaluation of the path integral. In fact,
in principle rep_e_at th_e S|mulat|ons_ for toroidal spat|z_il slicesop Euclidean quantum gravity provides a good illustration
although the finite-size effects will be larger for this more of this mechanism. There the action is given by &), but
complicated topologyand for T=32,64, our spatial slices sypstitutingd®x— d?x. Nevertheless, the effective quantum
are rather small theory in conformal gauge is described by the highly non-
Similarly, it is in principle straightforward to enlarge the trivial quantum Liouville theory.
Lorentzian model to include coupling to matter fields. This What have we learned from our exploration about our
has already been done in two-dimensional Lorentzian quandltimate goal, the construction of quantum gravity in four
tum gravity, with a clear motivation in mind, namely, to un- dimensions? We invented the discrétsrentzianmodels in
derstand the status of tloe=1 barrier in general 2D gravity the hope that they may lead to a better description of physi-
models. We showed that this disease of 2D Euclidean quar¢al four-dimensional space-time, which after all has a
tum gravity can be avoided by working with Lorentzian ge- Lorentzian signature. We also conjectured j that in the
ometries[9]. continuum limit the causality constraints imposed on each
It would provide a strong incentive for considering either geometry in the state sum may lead to a suppression of the
of these generalizations if there were definite predictionglegenerate phases of highly fractal geometry found in the
from continuum formulations of 3D quantum gravity with Euclidean models fod=3. From the evidence presented in
and without matter for observables measurable in the corthis work, this is indeed what happens in three dimensions.
puter simulationgfor example, correlation functions of the Moreover, we saw the emergence of a ground state of ex-
type we have been studying tended three-dimensional geometry in the Lorentzian case.
A next important step in our analysis of 3D Lorentzian As already observed id=2, also in three dimensions the
guantum gravity will be the derivation of the explicit form of
the Hamiltonian in the continuum limit. We can in principle

obtain the matrix elements of the transfer maffisbetween "The formula for the Hamiltonian if4] contains a typo; sefd7]
two successive triangulated two geometrigs as the solu-  for the correct expression.

one can extract the Hamiltonian operatér A similar ap-
proach was successful in 2D Lorentzian gravity, where the
egularized transfer matrix could be calculated, and its con-
inuum limit taken in a straightforward wdyThe resulting

044011-14



NONPERTURBATIVE 3D LORENTZIAN QUANTUM GRAVITY PHYSICAL REVIEW D64 044011

Euclidean and Lorentzian models correspond to completelywhere for a closed three-dimensional triangulation we have
different continuum theories, reiterating that these two “sec-used
tors” of the gravitational quantum theory are not related by a
simple analytic continuation in timjgt,31]. _ _

We are very encouraged by these results, since they also Z 1=Ny, 2| o(1)=6N. (A3)
indicate that ind=4 completely different geometries will
dominate the Wick-rotated path integral, compared with thelaking into account that the three volume of an equilateral
Euclidean theory. The physics that the four-dimensionatetrahedron is given by®/6v2, we obtain the discretized
model should describe, if it were to lead to a nonperturbativdorm of the Euclidean Einstein actid5]
theory of quantum gravity, must of course be very different
from that found in two and three dimensions. In particular, a a’A
the critical behavior of the regularized theory should reflect Se= - E(Nl_3"N3)+ m
the presence of physical, propagating field degrees of free-
dom. In the context of the statistical models we are ConSidwhere ina S||ght abuse of |anguage we continue to@&sad
ering, the SimpleSt realization would be in terms of a Second]\ to denote thebare gravitationa| and Cosmo|ogica| cou-
order phase transition. This possibility is apparently notyjings. We can substitutl; by the numbeiN, of vertices,
realized in the dynamically triangulatefuclideangravity  sing the identityN;=Ns+ N,, which can be derived from

models. However, there is by now plenty of evidence that thene vanishing of the Euler number for any closed 3D mani-
Lorentzian model for quantum gravity defined [i§,6] is  fg|q

sufficiently different to make it a new, promising candidate
for a nontrivial nonperturbative theory of quantum gravity in x=Ng—N;+N,—N3z=0, (A5)
four dimensions.

N3, (A4)

together with the relatioiN,= 2N (any triangle is shared by
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APPENDIX A
} _ _Inthe numerical investigation of Sec. Ill we discussed the
In this appendix we collect some formulas for dynami- dependence of the action on the total numbgs of (2,2)
cally triangulated three geometries, which were used in degtranedra. This can be made explicit by rewritiNg as a
riving various forms of the discrete Einstein action in the,nction of N3 andN,,. For periodic boundary conditions in

main text. We will work in the Euclidean sector of the theory, et direction, the total numbers ¢8,1) and(1.3) tetrahedra
and for simplicity choose all tetrahedra to be equilatéfedt 5o the same. and we have

is, a=—1 andlgpacélime=a>0). The curvature of a 3D

piecewise linear manifold is concentrated at its links. The N3+ N3;=2(N3—N,,). (A8)
contribution to the total curvature associated with eachllink
is given by the link lengtta times the deficit angle Next, we need some identities for the spatial slices at con-

stant integert. Because the slices are topologically two-
_ dimensional spheres, the number of vertices in a slice is
S=2m— >, 6,
" No()= Ngy(D)+2= ENyt—-1) 42, (A9)
where the sum is taken over all tetrahedrg, i ) ) ) ) _
=1,...0(l), sharing the link, and g is the dihedral angle Summing this equation over alland using Eq(A8) yields

associated with théth tetrahedron. For an equilateral three T 1
lex, all dihedral I identical
complex, all dihedral angles are identica NO:; No(t)=2T+ Z(N3_N22)’ (A10)
f=arccos; =k, (A1)

and therefore
and the curvature term of the Einstein action becomes
Ko
1 Se=—N,+
Ef d®x/detg ()R(X)— > as=2ma(N;—3xNs), A
|

(A2) which is the form of the action used in Sec. Ill.

k
ky— ZO) N5—2K,T, (A11)
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APPENDIX B cannot be multiply connected. Similarly the absence of
double triangles from the original simplicial configuration

As discussed in Sec. Il, one can describe the 3D Lorenty o oo yha théone-dimensionalintersection of a double

Zi?‘[]‘ georr]ne}ries infterms of drl:allfgraphs,_ruaturdally associatelﬂm of one color with a given domain inside a loop of the
with each plane of constant half-integefThey decompose . ; .

into two chl;ic graphs of different colcgvehoseytrivalentr\)/er- opposite color must be either empty or simply connected.

. o An important consequence of these constraints is that the
tices correspond to the,d and(3,1) tetrahedra of the origi- umber N,(t) of dual four-valent vertices is constrained
nal triangulation, and which may be thought of as the in anq_ fromzf)elow and above in terms M) and Nayt)
out-states of the transfer matrix. Gray and black lines cross his does not happen in the matrix mi)sdel ) vgvlheré

four-valent vertices, corresponding to t{#&2) tetrahedra of these numbers are completely independent. It is possible that

the original lattice. some of the regularity conditions discussed here can be re-

The planarity of this structuré.e., the fact that the sub- | ith fecti h X | : for th
raphs have topolog$?) is easily implemented in the pro- axed wit out affecting the universal properties, but for the
9 3D Lorentzian model this question has not yet been ex-

gram by representing the one-dimensional lines of the gra lored
and black graphs as double lines with opposite orientation, as '
one can do in the large-matrix model Eq.9). In this way
one obtains closed loops of oriented coloi@thgle lines APPENDIX C
which are dual to the vertices at timésandt+1 of the
original lattice. The 2D spherical surface may thus be The numerical simulations presented in this paper were
thought of as being covered ltgither gray or blackpatches performed for system sizes of 4k, 8k, 16k, 32k, and 64k
enclosed inside the loops. tetrahedra, and for total proper timé&s= 16, 32, and 64. As
In the numerical simulations we take care that the trianusual, the standard unit was taken to be one sweep of the
gulations are 3D simplicial manifolds to start with, and we System, interpreted d$; attemptedmoves. Since the accep-
accept only Monte Carlo moves that preserve this propertyjtance of moves is a function ¢, in order that all moves
In terms of the original triangulation, this means that we onlywere performed approximately the same number of times,
allow the creation of configurations where any two verticeswe had to tune the number of attempted moves for each of
can be shared by at most one link, any three vertices can bdbe three types of moves appropriately. This technique has
shared by at most one triangle, and any four vertices by deeen applied successfully before in three- and four-
most one tetrahedron. dimensional simulations of Euclidean dynamical triangula-
In terms of the dual graphs, this implies two types oftions. We considered gravitational couplings in the range be-
restrictions, the first of which have a transparent interpretatweenky,=2.0 andky,=7.0. In this range the acceptance of
tion in the matrix model: they constrain the individual triva- move 1 is between 13.0% and 75%, the acceptance of the
lent graphs to have neither tadpoles nor self-energy subdignoves 2 and 3 between 3% and 11%, and that of moves 4
grams. This ensures that they are regular 2D simpliciahnd 5 between 16% and 10%. For even smaljethe accep-
manifolds with spherical topology. The remaining constraintstance of the moves 2 and 3 decreases rapidly and it becomes
restrict the ways in which the two colored graphs are allowedvery difficult with the present setup to change the geometry
to intersect each other. Requiring the absence of double linksf the spatial intersections. A typical run corresponded fb 10
between pairs of vertices that are time-like separated on th&weeps at a given value &f. For all measured quantities
original lattice implies that the intersection of any pair of we found autocorrelation times below 100 sweeps, which
gray and black domains enclosed by gray and black loopwas also the typical time between successive measurements.
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