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Nonperturbative 3D Lorentzian quantum gravity
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We have recently introduced a discrete model of Lorentzian quantum gravity, given as a regularized non-
perturbative state sum over simplicial Lorentzian space-times, each possessing a unique Wick rotation to the
Euclidean signature. We investigate here the phase structure of the Wick-rotated path integral in three dimen-
sions with the aid of computer simulations. After fine tuning the cosmological constant to its critical value, we
find a whole range of the gravitational coupling constantk0 for which the functional integral is dominated by
nondegenerate three-dimensional space-times. We therefore have a situation in which a well-defined ground
state of extended geometry is generated dynamically from a nonperturbative state sum of fluctuating geom-
etries. Remarkably, its macroscopic scaling properties resemble those of a semiclassical spherical universe.
Measurements so far indicate thatk0 defines an overall scale in this extended phase, without affecting the
physics of the continuum limit. These findings provide further evidence that discreteLorentziangravity is a
promising candidate for a nontrivial theory of quantum gravity.
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I. INTRODUCTION

The aim of discrete approaches to quantum gravity is
nonperturbative construction of a quantum theory of grav
as the continuum limit of a discretized state sum, analog
to Feynman’s construction of the quantum-mechan
propagator of a particle@1#. Among quantizers of gravity
path-integral formulations have fallen into disrepute, bo
because of the nonrenormalizability of the perturbation se
and because of the unboundedness of the action, w
seems to render Euclidean approaches~at least formal con-
tinuum path integrals and covariantly formulated cosmolo
cal models! ill defined. Although this does not necessar
constitute an obstacle to the existence of anonperturbative
path integral, it raises the question of how such a quantit
to be constructed.

There is little hope of evaluating the continuum path
tegral directly, because of the complicated functional form
the gravitational action and because of quantum-field th
retic divergences, with the ensuing need to regularize i
way compatible with the symmetries of the theory. This lea
to additional complications, since the invariance group
general relativity is the group of space-time diffeomo
phisms, and not the Poincare´ group of quantum field theory
on a fixed, flat background, so that standard regulariza
methods cannot be applied.

There are alternative regularization schemes, much in
spirit of Feynman’s treatment of the nonrelativistic partic
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formulated on discretized versions of the space of all spa
time geometries~that is, of space-time metrics modulo di
feomorphisms!. One popular class of models is based
applying Regge’s idea@2# of approximating smooth space
times (M ,gmn) by piecewise linear, simplicial manifolds in
quantized context. Unfortunately such models have to d
produced little convincing evidence of interesting continuu
physics, for reasons that are ultimately not well understo
@see@3# for a recent review of discrete models in four dime
sions~4D!#.

A serious criticism one can level at these models is t
they are all formulated for positive-definite Euclidean~Rie-
mannian! metricsgmn

Eu , and not for physical metricsgmn
Lor of

indefinite, Lorentzian signature. This is done for techni
reasons, since in a concrete regularized formulation one m
make sure that the state sum/integralZ converges. However,
it is important to realize that, in a nonperturbative contex

ZLor5E
Lor~M !/Diff ~M !

@Dgmn
Lor#eiS@gLor#

°ZEu5E
Eu~M !/Diff ~M !

@Dgmn
Eu#e2S@gEu# ~1!

is an ad hoc substitution: away from a handful of metric
with special symmetries~for example, flat Minkowski
space!, there is no straightforward ‘‘Wick rotation’
gmn

Lor°gmn
Eu ~or, equivalently,t°2 i t !.

It may well be that the absence of an interesting co
tinuum limit in these statistical models of dynamical geo
etries is related to the absence of any Lorentzian structur
their partition functions. This observation has motivated
to construct a well-defined discrete quantum gravity mo
©2001 The American Physical Society11-1
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in terms ofLorentziangeometries. A suitable starting point
the method ofdynamical triangulations, a variant of the
quantum Regge calculus program, which has the advan
of being amenable to both numerical simulations and a
lytic treatments. Following Regge’s original concept of d
scribing ‘‘geometry without coordinates,’’ the ‘‘sum over a
paths’’ is performed directly over physically inequivalent g
ometries. Unlike in continuum path-integral approach
there is no need to introduce coordinates and to subsequ
gauge-fix them.~In this sense, diffeomorphism invariance
manifest.! In our model, instead of using equilateral Eucli
ean triangulations, we take the state sum over a certain c
of Lorentzian Regge manifolds, obtained by gluing toget
a number of simple simplicial Lorentzian building blocks.

The model has been constructed explicitly in two, thr
and four space-time dimensions@4–6#, and been solved ex
actly in d52 @4,7#. Each Lorentzian geometry~or ‘‘history’’ !
has a foliated structure, with a~discrete! proper timet label-
ing successive spatial slices.~Note that this proper time is
simply one of the parameters characterizing the discrete
ometries, and not a ‘‘gauge choice,’’ since the formalism
completely coordinate invariant from the outset.! In addition,
each history has a causal structure, induced from the pi
wise linear Lorentzian metric structure. Each spatial slice
(d21)-dimensional equilateral triangulation of Euclide
simplices, with squared edge lengthsl space

2 5a2, and spatial
topology changes are not allowed~in line with the continuum
notion of causality!.

A unique Wick rotation is defined on every Lorentzia
history. It maps a given triangulation with certain assig
ments of edge lengths into the same topological triang
tion, but with the~squared! edge lengths of itstime-likelinks
~which interpolate between the spatial slices! redefined from
l time
2 52aa2 to l time

2 51aa2, wherea.0. This leads to an
analytic continuation from Lorentzian to Euclidean signatu
of the Regge action in the complexa plane and gives a
precisemeaning to the map Eq.~1!.

For finite ~discrete! volume, the Lorentzian gravity mod
els thus obtained are well defined in the sense of being
tistical systems whose transfer matrix is bounded and p
tive. One is then interested in whether they exhibit a
critical behavior as functions of the bare coupling consta
leading to continuum theories of quantum gravity. Seco
one wants to compare their properties with those of the c
responding Euclidean dynamically triangulated models
should perhaps be emphasized at this point that our non
turbative path-integral method is in principle exact~and not
formal!. It does involve a specific choice of a ‘‘measure,’’ b
one would expect from universality arguments that the fi
details of any choices made at the discretized level will
alter the continuum theory.

As already mentioned above, ind52 the Lorentzian
model is exactly soluble and lies in a different universal
class from its Euclidean counterpart~which can also be
solved exactly and is better known as 2D Liouville quantu
gravity!. Its geometric properties are different, which al
affects its behavior when matter is coupled to the grav
tional degrees of freedom@8,9#. Quite remarkably, and unlike
Liouville gravity, the coupled system remains well behav
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beyond the so-called ‘‘c51 barrier’’ ~in our case, this is
equivalent to the number of coupled Ising models exceed
2!.

These are very interesting results from the point of vi
of systems of two-dimensional random geometries, but
ultimate interest lies in the physical, four-dimensional ca
and the physics of ‘‘general relativity’’ in two, three, and fou
dimensions is very different. Where dynamically triangulat
Euclideanmodels seem to go wrong ind.2 is in the domi-
nance of highly degenerate geometries over their statis
ensembles. It is encouraging that one can show the abs
of the same type of geometries from the Lorentzian ensem
@5,6#, but one could still be worried about the occurrence
~less extreme! pathologies. The only way to determin
whether Lorentzian gravity does indeed solve the proble
of the Euclidean approach, is to investigate its phase st
ture in the continuum limit, either by numerical simulation
or by solving it explicitly.

Before embarking on the physically relevant case ofd
54, we will in this paper investigate Lorentzian quantu
gravity in three dimensions.~Some of the results presente
here have been announced recently in@10,11#.! Apart from
being a new statistical model of three-dimensional fluctu
ing geometries, there is also some interest from the poin
view of quantum gravity proper. Although largely an u
physical theory, 3D quantum gravity is an extensively stu
ied system@12,13#. It is often invoked as a model system fo
the full theory, since its classical equations resemble in m
ways those of general relativity. The big difference fromd
54 is the fact that there are no propagating physical fi
degrees of freedom. After solving the constraints of t
theory, only a finite-dimensional phase space remains.
though one has not yet been able to make full use of
observation in a configuration space path-integral formu
tion, it suggests that one may still be able to solve 3D gra
tational modelsanalytically.

The derivation of the partition function and the explic
construction of 3D Lorentzian simplicial space-times w
given in @5#. In order to make this paper self contained, w
will summarize the main results below and at the beginn
of Sec. III. The Einstein action of a given~smooth! Lorent-
zian geometry in three dimensions is

S@gmn#5
1

16pG E d3xA2detg~R22L!, ~2!

where G and L denote the gravitational and cosmologic
constants. For the continuous, piecewise linear geome
employed in our simplicial discretization, we use the Reg
form of the action@2,14#, expressed purely in terms of geo
metric ~coordinate-independent! data, namely, the geodes
edge lengths of the simplicial complexes.

In order to make the state sum well defined, we anal
cally continue the Regge action associated with each
Lorentzian triangulation to Euclidean form by changing t
length assignments of all time-like edges froml time

2 52a2 to
l time
2 51a2. The main aim of this paper is to analyze th

phase structure of the model defined by the path inte
obtained after this ‘‘Wick rotation’’:
1-2
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(
TT~S13S2!

1

C~T!
eiS~N0 ,N3 ,T!

°

l time
2 →2 l time

2

(
TT~S13S2!

1

C~T!
e2SE~N0 ,N3 ,T!, ~3!

whereC(T) is the order of the symmetry group of the tria
gulation T. The ‘‘measure factor’’ 1/C(T) appears naturally
in the counting of unlabeled triangulations@15#. As usual in
the theory of critical phenomena, we do not expect the
tailed choice of the measure to affect the continuum limit
the theory, a behavior that has already been corroborate
the 2D models of Euclidean and Lorentzian quantum grav
In Eq. ~3!, the Euclidean three-dimensional Regge actionSE
is expressed in terms of the total numbers of vertices
tetrahedra,N0 andN3 , according to

SE~N0 ,N3 ,T!52k0N01k3N3 , ~4!

with the associated dimensionless bare coupling constan

k05
a

4G
, k35

a3L

48&pG
1

a

4G
~3k21! ~5!

~see Appendix A for a derivation!. This form of the action is
familiar from former work in Euclidean dynamical triangu
lations @16#. The parameterk0 is proportional to the bare
inverse gravitational coupling constant, whilek3 is a combi-
nation of the bare gravitational and cosmological consta
@often referred to—somewhat imprecisely—simply as
~bare! cosmological constant#. The geodesic ‘‘lattice spac
ing’’ ~edge length! is given bya.0 andkp5arccos(1/3) is
the dihedral angle of an equilateral tetrahedron.

To keep things simple, we are assuming that the spa
slices have the topology of two-dimensional spheres. In
dition, for the convenience of the numerical simulations,
are using periodic boundary conditions in the~Euclidean!
time direction, unless specified otherwise. The sum in Eq.~3!
is taken over the set of all causal triangulationsTT(S13S2)
compatible with this topology, and constructed according
the rules described in Sec. II below. The integer parametT
denotes the total extent in~discrete! proper time, i.e., the
number of spatial slices of constanttP@0,T#.1

In this paper we explore the phase diagram of thr
dimensional discrete Lorentzian gravity. We are particula
interested in identifying those regions of coupling-const
space where a continuum limit may exist. This is done w
the help of Monte Carlo simulations of the statistical e
semble defined by Eq.~3!, combined with qualitative analyti
cal arguments.

The rest of this paper is organized as follows. Section
contains some general considerations on the behavior of
crete quantum gravity models under renormalization. In S
III we describe the implementation of the Monte Carlo alg

1We have slightly changed our notation with respect to@5#, where
the total proper time was calledt.
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rithm on the ensembleTT(S13S2) of causal 3D geometries
as well as a characterization of the triangulations and
Monte Carlo moves in terms of dual graphs. Our numeri
results are presented in Sec. IV. We characterize the diffe
phases by measuring various geometric observables,
give a detailed description of the geometric properties of
physically interesting ‘‘extended’’ phase. Finally, Sec. V co
tains a summary and discussion of our results. There
three appendices. In Appendix A, various identities and d
vations for 3D simplicial geometries are collected, Append
B contains more details on dual graphs, and Appendix
some technical specifications of the Monte Carlo simulati

II. RENORMALIZATION IN DISCRETE QUANTUM
GRAVITY

As we know from the study of Euclidean simplicial qua
tum gravity@16#, there is a well-defined strategy to search f
possible continuum limits for the type of discretized grav
model we are considering. For each valuek0 of the bare
inverse gravitational coupling there is a critical valuek3

c(k0)
of the bare cosmological constant such that the model is w
defined fork3.k3

c(k0) and diverges fork3,k3
c(k0). One can

hope to obtain a continuum limit fork3→k3
c(k0) because in

this limit the expectation valuêN3
n& may diverge for suitable

powersn.
This program has been carried out successfully in b

Euclidean and Lorentzian quantum gravity ind52 ~see@17#
for a recent review!. It offers a nonperturbative field
theoretical definition of 2D quantum gravity where the ba
cosmological constantk2 is additively renormalized accord
ing to

k25k2
c1La2, ~6!

with L denoting the 2D continuum cosmological consta
and where the criticalk2

c comes entirely from the entropy o
the two-dimensional triangulations. We expect an analog
additive renormalization of the bare cosmological coupli
constantk3 in 3D quantum gravity, but in this casek3

c de-
pends not only on the entropy of the three-dimensional
angulations but also on the gravitational couplingk0 , since
the Einstein action gives a nontrivial weight to each triang
lation ~contrary to two dimensions, where the curvature te
is topological!.

Taking the infinite-volume limit of a regularized quantu
field theory does not necessarily lead to a continuum qu
tum field theory. For example, the Ising model on a infin
two-dimensional lattice will only represent ac51/2 confor-
mal field theory if at the same time the temperature~which
plays the role of a coupling constant in the theory! is fine
tuned to the critical temperature of the Ising model. On
when approaching the critical temperature will the lon
range spin fluctuations become important and allow us
forget about the details of the lattice regularization, there
making contact with continuum physics.

By contrast, 2D quantum gravity is an example where
infinite-volume limit of the regularized theory automatical
leads to the continuum theory. This was to be expected as
1-3
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cosmological coupling is the only coupling constant of t
theory, and at the same time conjugate to the space-
volume.

It is not immediately clear what to expect in thre
dimensional quantum gravity. The classical theory~after
gauge fixing! has no propagatingfield degrees of freedom
but is described by a finite number of~Teichmüller! param-
eters, whose number depends on the topology of the sp
slices. Since in the theory of critical phenomena a diverg
correlation length and the associated fine tuning of a c
pling constant are usually associated with afield degree of
freedom, it is tempting to conjecture that the situation will
as in two dimensions, namely, that the infinite-volume lim
of 3D Lorentzian quantum gravity~obtained by fine tuning
the cosmological constant! coincides with the continuum
limit, without the need for further fine tuning.

In three dimensions, we must in addition understa
which role the gravitational coupling constant plays in o
formulation. In the exponentiated action, it multiplies t
curvature term*d3xA detg(x)R(x) of the classical Einstein
action, from which the classical dynamics is derived. Mo
over, it is exactly this term that gives rise to the nonren
malizability of three-dimensional quantum gravity, when o
considers perturbation theory around a classical solut
This means that it does not make much sense to exp
around a given flat background in a conventional way.
though the underlying quantum theory may not have a
divergences~since there may not be any propagating fie
degrees of freedom!, we are likely to end up with a infinite
set of divergent counterterms,2 unless there is some as y
undiscovered cancellation mechanism.

There are well-known ways to circumvent this deadlo
in the case of three-dimensional gravity, for example,
quantizing in the reduced, finite-dimensional phase sp
either in a geometric formulation usinggmn or using gauge-
theoretic ~Chern-Simons! variables @12,13#. ~However, it
should be remembered that even classically, the relation
tween these two ‘‘time-full’’ and ‘‘time-less’’ formulations is
only partially understood@18#.! How this is reflected in a
path-integral quantization in terms of geometries is mu
less clear~we mean here aconfigurationspace path integral
rather than a phase space path integral!. As far as we know,
there is not even a generally accepted answer to whethe
not the gravitational coupling constant should be renorm
ized.

If our discretized nonperturbative model possesses a
tinuum limit, it should provide an answer to this questio
For example, the presence of a nontrivial second-order ph

2One could try to view such a theory as an effective low-ene
theory with limited predictive power, much in the same way as
nonlinear sigma model is used as an effective field theory for p
physics, describing some aspects of low-energy QCD. Howe
this is not what we are after in a nonperturbative definition of
quantum gravity. We want a theory whose predictions in the c
tinuum limit are all independent of the cutoff of the regularize
theory, although they may in principle depend on a nonpertur
tively induced mass scale.
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transition at a specific value ofk0 would strongly sugges
taking the continuum limit by fine tuningk0 to this point,
defining in the process the renormalization of the grav
tional constant. The issue of nonrenormalizability could
circumvented if the fixed point was nontrivial, not allowin
for a simple expansion in geometry. To some extent this
realized in 21«-dimensional quantum gravity, which pos
sesses a nontrivial fixed point@19–21#. Of course the chal-
lenge in such a scenario would be to understand how
excitations are related to the degrees of freedom, or ra
the lack of degrees of freedom, of the classical 3D grav
theory. Conversely, if no second- or higher-order transition
present and one can still define a continuum limit, it is like
that no renormalization of the gravitational constant is n
essary.

In order to find answers to these questions, we will in t
paper analyze data coming from numerical studies of thr
dimensional Lorentzian gravity. Attempts to solve the mod
analytically are underway and will be reported elsewh
@22#. As will be described in the following, our investigatio
provides evidence that~i! a continuum limit exists,~ii ! there
is a well-defined ground state which dominates the fu
tional integral and thus represents a ‘‘background geomet
and~iii ! the bare gravitational coupling constant sets a len
scale for the geometry, but is not renormalized.

III. NUMERICAL IMPLEMENTATION OF THE MODEL

Which are the three-dimensional Lorentzian geometr
contributing to the state sum of Eq.~1!? Starting from a
sequence of two-dimensional equilateral triangulations
three-dimensional Lorentzian triangulation is obtained
filling the spaces between pairs of such spatial slices by th
types of tetrahedral building blocks, in such a way as to fo
a simplicial manifold. They are:~i! the so-called~3,1! tetra-
hedra with a triangle in the spatialt plane and a vertex in the
spatialt11 plane; their number in any given sandwich@ t,t
11# is denoted byN31(t), and their total number byN31;
~ii ! the ~1,3! tetrahedra with a vertex in thet plane and a
triangle in thet11 plane; their number in any given san
wich @ t,t11# is denoted byN13(t), and their total number
by N13; and ~iii ! the ~2,2! tetrahedra with one link in thet
plane and another one in thet11 plane; their number in any
given sandwich@ t,t11# is denoted byN22(t), and their total
number byN22 ~see Fig. 1!.

Several of our numerical measurements involve the tw
dimensional volume of the spatial slices. In our model th
are two natural ways of defining the spatial volume at timet.

y
e
n
r,

-

-

FIG. 1. The three types of tetrahedral building blocks used
discrete 3D Lorentzian quantum gravity, and their location w
respect to the spatial slices of constant integert.
1-4
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One can define it simply as the number of triangles in
spatial slice of constant integert

N2
~s!~ t ![N31~ t ![N13~ t21! ~7!

or measure it at half-integert and define3

N2
~s11/2!~ t !ªN13~ t !1N31~ t !1N22~ t !. ~8!

In a phase of extended geometry~such thatN13;N31;N22!,
both definitions should lead to equivalent results. For m
purposes, we have found it convenient to work with the t
volumesN2

(s11/2)(t).
We will explore the infinite-volume limit of the ensemb

of discrete Lorentzian geometries by performing a Mo
Carlo simulation where each suggested local change of
angulation~a ‘‘move’’ ! is accepted or rejected according
certain probabilities depending on the change in the ac
and the local geometry.

Our local updating algorithm consists of five basic mov
They change one Lorentzian triangulation into another, wh
preserving the constant-time slice structure, as well as
total proper timeT. We are confident that this set of moves
ergodic in the space of all allowed Lorentzian triangulatio
at fixedT, although we do not as yet have complete form
proof. Note that all of the moves described below will
rejected in the updates if they lead to triangulations wh
pairs of vertices are connected by more than one link
where triplets of vertices belong to more than one triang
since this violates thesimplicial manifoldproperty. Let us
now describe each of the moves in turn.

~1! Consider two neighboring triangles in the spatiat
plane. Each of them belongs to a tetrahedron above and
low that plane. Assume now that both the two~3,1! tetrahe-
dra above and the two~1,3! tetrahedra below share a triangl
Together, the four tetrahedra form a diamond whose tips
in the t21 and in thet11 plane, and whose intersectio
with the t plane is a square. The move consists of flipping
link that forms the diagonal of this square to the oppos

3This definition is the simplest one in that it counts the numbe
building blocks att51/2. We could put in individual weights re
flecting the actual areas of the cross sections of the tetrahedra,
would not affect our results below.

FIG. 2. In a flip move, the four tetrahedra inside a diamo
configuration are reassigned by flipping the diagonal of the cen
square.
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diagonal, accompanied by the corresponding reassignme
the tetrahedra constituting the diamond~Fig. 2!.

~2! ~3! Consider a triangle in thet plane together with its
two neighboring tetrahedra, whose two tipsv t11 andv t21 lie
in the t11 and thet21 planes. We can always insert
vertex v t at the center of the triangle and connect it to t
exterior vertices of this configuration by adding five intern
links, thus replacing the original two tetrahedra by six~Fig.
3!. The correspondinginverse movecan only be performed if
we can identify a vertexv t of order six~i.e., belonging to six
tetrahedra!, together with two links (v t ,v t21) and (v t ,v t11)
which are both of order three. In this case one can just
move v t and both links (v t ,v t61), replacing in an obvious
way the six tetrahedra by two.

~4! ~5! The fourth move can be performed on any config
ration consisting of a pair of a~2,2! and a~3,1! @or a ~1,3!#
tetrahedron having a triangle in common. We can remove
triangle~but not its links and vertices! and insert a link dual
to it, connecting the two vertices which did not belong to t
triangle ~see Fig. 4!. In this way the original~3,1! and ~2,2!
tetrahedra are replaced by one~3,1! and two~2,2! tetrahedra,
without introducing any changes in the two-dimensional s
tial slices. The fifth move is the inverse of the fourth mov
replacing a suitable configuration of one~3,1! @or ~1,3!# tet-
rahedron and two adjacent~2,2! tetrahedra by a pair of a
~3,1! @or ~1,3!# and a~2,2! tetrahedron.

Note that not all of the local moves preserve the th
volume. We will use a standard way of dealing with th
situation, developed for dynamically triangulated models
dimensions three and four@16#. This method ensures that th
volume of the system fluctuates around a prescribed va
N3 , with a well-defined range of fluctuations.

In the implementation of the numerical code it is conv
nient to work not with the triangulations and their constit
ents but with the dual graphs, which are given by spec

f

t it

al
FIG. 3. Insertion or removal of a vertex in the central triang

transforms two into six tetrahedra and vice versa.

FIG. 4. A neighboring pair of a~3,1! and a~2,2! tetrahedron is
replaced by another~3,1! tetrahedron~whose tip lies now in the top
right-hand corner! and a~2,2! tetrahedron on either of its flanks.
1-5
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classes off4 graphs. Like the triangulations, all of th
graphs have a foliated structure. This is most naturally as
ciated with half-integer times, because the vertices of
dual graph are located at the centers of the tetrahedra o
original triangulation. To visualize the geometry of the gl
ings and the moves in this dual language, we adopt a co
ing for the dual graphs. A link dual to a triangle of a~3,1!
tetrahedron is ‘‘black,’’ and one dual to a triangle of a~1,3!
tetrahedron is ‘‘gray.’’ This results in a unique coloring fo
all links dual to ‘‘time-like’’ triangles~lying inbetweenspa-
tial slices!, since it is not possible to directly glue a gray to
black triangle. This can only be done if the triangles a
space-like~i.e., if they are both contained in the same sli
t5const!. The links dual to such triangles are therefo
double colored~Fig. 5, left!. We can now construct for eac
‘‘sandwich,’’ i.e., each triangulated space-time slice@ t,t
11#, a bicolored graph~with topologyS2! by projecting all
unicolored dual links associated with the sandwich to t
plane att11/2.

In this way each~3,1! tetrahedron gives rise to three blac
links, sharing a trivalent intersection. Each of the links c
end at the center of either another~3,1! tetrahedron or a~2,2!
tetrahedron, but never at the center of a~1,3! tetrahedron.
@An analogous statement holds for the triplet of gray lin
associated with a~1,3! tetrahedron.# Consequently, each~2,2!
tetrahedron in the sandwich corresponds to a four-valent
tex of the dual graph, with alternate colors black-gray-bla
gray for the incoming links~Fig. 5, right!. The end result is a
combined gray-and-black graph in thet11/2 plane. More-
over, each such graph occurs in the large-n limit of the per-
turbative expansion of the two-matrix model defined by
partition function

Z~aG ,aB ,b!5E dfG dfB expn trF2
1

2
~fG

2 1fB
2 !

1
aG

3
fG

3 1
aB

3
fB

31
b

2
fGfBfGfBG ,

~9!

where, as usual, the quadratic terms give rise to propaga
or links, and the cubic and quartic interaction terms cor
spond exactly to the tri- and four-valent intersections illu
trated in Fig. 5. Note that not all graphs generated by Eq.~9!

FIG. 5. How the tetrahedral building blocks give rise to du
bicolored graphs~drawn as gray and black horizontal lines! at half-
integert.
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correspond to allowed Lorentzian triangulations, since th
duals may violate the 3D simplicial manifold constrain
This matrix model~with some additional assumptions abo
universality! can be taken as the starting point for an analy
cal solution of the transfer matrix of simplicial 3D quantu
gravity @22#.

The time evolution in the dual picture can be thought
as follows. A bicolored graph at timet11/2 consists of two
components: a blackf3 graph dual to the triangulation a
time t, and a grayf3 graph dual to the triangulation att
11. The way in which the two original spatial triangulation
are glued together is encoded in the intersection patter
the ‘‘superposition’’ of the two graphs at timet11/2. If we
view the black and gray trivalent graphs as representing
and out states, their transition amplitude is a function of
number of topologically inequivalent ways of superposi
the two graphs ~subject to some ‘‘dual’’ manifold
constraints—see Appendix B for details!.

The five Monte Carlo moves described earlier can also
rephrased in the language of intersecting coloredf3 graphs,
as illustrated in Fig. 6. The diagrams appearing in Fig
contain all dual links affected by a given move. Since t
moves 1, 2, and 3 are symmetric with respect to the pl
t5const, a change in one of the trivalent graphs is alw
accompanied by an equivalent change of its mirror image
the opposite color. Moves 4 and 5 assume a particula
simple form: one link of a given color is ‘‘dragged across’’
vertex of the opposite color.@Note that in the graphical rep
resentation of this particular move, the cubic vertices rep
sent ~3,1! or ~1,3! tetrahedra and the black-gray crossin
~2,2! tetrahedra.# Details about the numerical implementatio
in terms of this dual picture~including lattice sizes, update
efficiency, number of sweeps, etc.! can be found in Appen-
dices B and C.

l

FIG. 6. Graphical illustration of the Monte Carlo moves in term
of dual bicolored graphs. In moves 1 and 2 and 3, dual links fr
two adjacent sandwiches are affected. Moves 4 and 5 take p
within a given@ t,t11# sandwich.
1-6



-

NONPERTURBATIVE 3D LORENTZIAN QUANTUM GRAVITY PHYSICAL REVIEW D64 044011
FIG. 7. The order parametert5N22/N3 for
configurations withT564, andN3516 000~long
dark curve! and 64 000~short light curve!, plotted
as a function ofk0 . The curve is a linear interpo
lation between data points.~Error bars smaller
than width of curve.!
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IV. NUMERICAL RESULTS

Having presented our numerical setup, we are now i
position to extract a number of physical properties of
Lorentzian model. We will first investigate the phase diagr
of the regularized theory, and try to understand which of
continuum-limit scenarios outlined in Sec. II is realized. W
will then analyze the geometry characterizing the differ
phases. Since we have a distinguished~and coordinate-
invariant! notion of proper timet, we can extract invarian
information of the system by studying correlation functio
in t. This will be done by measuring distributions of spat
slice volumesN2

(s11/2) as a function of the total proper timeT
and correlators^N2

(s11/2)(t1)N2
(s11/2)(t2)& between spatia

volumes, as well as the intrinsic Hausdorff dimensiondH
sp of

a typical spatial slice.

A. The phase diagram

In order to explore the phase diagram of the regulari
Lorentzian model we must find an order parameter, and
plore how it changes with the coupling constant, in this c
k0 . We have found that the ratio between the total num
N22 of ~2,2! tetrahedra and the total space-time volumeN3

t5
N22

N3
[

N22

N221N311N13
~10!

serves as an efficient order parameter. We shall not be
cerned with a continuum interpretation of this parame
~which is not obvious! since we will go on to show that no
continuum physics is associated with the transition we
serve as a function oft. In Figs. 7 and 8 we show the ratiot
as a function ofk0 for two different types of space-tim
configurations. In Fig. 7 all geometries have 64 spatial sli
(T564), with total space-time volumesN3516 000 and
N3564 000. One observes a rapid drop to zero oft(k0)
aroundk0'6.64. IncreasingN3 , the drop becomes a jump
characteristic for a first-order phase transition. A detai
study of the neighborhood ofk056.64 reveals a~weak! hys-
teresis as one performs a cycle, moving above and below
critical valuek0

c , again as expected in a first-order transitio
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The location of the phase transition depends weakly on
total lengthT in time direction, and the jump int becomes
more pronounced for larger volumes. Figure 8 is an illust
tion of the extreme caseT51, where we have chosenfree
instead of periodic boundary conditions~the triangulations at
the initial time t51 and the final timet52 are allowed to
fluctuate freely!, so that the topology of space-time
changed toS23@0,1#.4

As can be read off from Fig. 7, fork0.k0
c'6.64 only a

minimal number of~2,2! tetrahedra is present. This can b
understood by rewriting the action Eq.~4! to make the de-
pendence onN22 explicit. In Appendix A we derive

SE5
k0

4
N221S k32

k0

4 DN322k0T, ~11!

which shows that for fixedN3 and T ~and positive gravita-
tional couplingk0! a minimalN22 corresponds to a minimum
of the Euclidean action.

The entropy of configurations withN22 different from its
minimal value will in general ensure that the ratiot is dif-
ferent from zero, even whenN3→`. However, since the
number of such configurations for fixedN3 grows at most
exponentially withN3 , this leaves the possibility that fo
sufficiently largek0 the terme2k0N22/4 will dominate over the
entropy contribution and trigger a phase transition to a ph
with only a minimal number of~2,2! tetrahedra, such thatt
50 in the continuum limit.

The physics of this phase can be readily understood
terms of the matrix model, a situation with no~2,2! tetrahe-
dra corresponds to choosing the coupling constantb50 in
Eq. ~9!, thus reducing the model to a product of two ind
pendentf3 matrix models. Since af3 matrix model at its
critical point describes two-dimensional Euclidean quant
gravity, the matrix model analogy strongly suggests that
Lorentzian 3D model fork0.k0

c can be viewed as a produc
of uncoupled 2D gravity models. This conclusion seems

4In this situation the critical point is changed fromk0
c56.64 to

k0
c56.42.
1-7
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FIG. 8. The order parametert5N22/N3 for
configurations withT51 and N3516 000, but
with free boundary conditions, plotted as a func
tion of k0 . The curve is a linear interpolation
between data points.~Error bars smaller than the
width of the curve.!
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be corroborated by our numerical results. Figure 9 is a ty
cal ‘‘snapshot’’ of a space-time geometry, taken during
computer simulations. The spatial volumeN2

(s11/2)(t) is
shown as a function of the timet. Apparently it can change
from essentially zero to a ‘‘macroscopic’’ size in a sing
time step, which implies that there cannot be any correlati
between slices separated by a few time steps. A diffe
measurement of the correlation between successive sp
volumes is depicted in Fig. 10. We have again chosenT
51 and free boundary conditions, in order to have spa
slices of a reasonably large size, but a qualitatively sim
behavior is expected forT.1 too. We show the distribution
of the ~normalized! difference

t̃~1→2!5
uN2

~s!~ t52!2N2
~s!~ t51!u

N3

[
uN2

~s!~2!2N2
~s!~1!u

N31~1!1N13~1!1N22~1!
~12!

of the spatial volumes of the initial and final slice. Fork0 less
than the criticalk0

c'6.42,t̃ is peaked around zero. The pea
04401
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becomes flatter ask0 approaches its critical value and imm
diately beyondk0

c , the distribution approximates ad function
aroundt̃51.

This last result can be understood as follows. We kn
from the simulations that the number of~2,2! tetrahedra
drops to a minimum beyond the critical pointk0

c . To first
approximation, these tetrahedra therefore do not contrib
to the entropy in that region. Moreover, since a minimal
of ~2,2! tetrahedra can basically interpolate between any p
of ‘‘incoming’’ ~3,1! and ‘‘outgoing’’ ~1,3! configurations,
the combinatorics is governed by theseparatecountings of
those configurations, subject only to an overall volume c
straint N311N135N32N22'N35const. Individually, the
configurations att51 and t52 are simply 2D Euclidean
triangulations, whose number for a given spatial volumeN2

(s)

is known to be proportional toecN2
(s)

(N2
(s))25/2. From t̃(1

→2)5u122N13/N3u, and taking into account that the min
mal interpolatingN22 configuration can be insertedanywhere
in the incoming and outgoing configurations, one finds

#~N31→N13!;ecN31N31
2~3/2!ec~N32N31!~N32N31!

2~3/2!

;~12 t̃2!2~3/2!, ~13!
-
FIG. 9. Monte Carlo snapshot of the distribu
tion of spatial volumesN2

(s11/2)(t), for T532,
N3516 000, andk056.7 ~that is, above the criti-
cal value k0

c56.64!. The volumes are plotted
symmetrically about a central horizontalt axis.
1-8
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FIG. 10. The probability distributionP( t̃) of
t̃5uN2

(s)(2)2N2
(2)(1)u/N3 for k056.0, 6.1, 6.2,

6.3, 6.4, and 6.42~highest to lowest peak aroun
t̃50; the value k056.42 corresponds to the
phase transition point! and 6.44 ~distribution
peaked around 1!; for total volumeN358000 and
free boundary conditions.
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for the combined entropy at fixed volumeN3 . In agreement
with Fig. 10, it shows that the most likely configurations a
those where the entire 3D volume is concentrated at on
the slices, that is, eitherN31'0, N13'N3 or vice versa.

The situation is very different in the phase withk0,k0
c .

Our measurements oft̃ at T51 are an indication that also i
general in this phase the volumes of successive spatial s
will be strongly coupled, i.e., their volume difference will b
small. Since this behavior is not favored by the action,
prevalence of such configurations must have to do with
presence of the~2,2! tetrahedra and their associated entro
~i.e., the number of ways they can combine with each ot
and with other tetrahedra to form interpolating ‘‘san
wiches’’!. This observation turns out to be of great impo
tance, since it seems to lie at the heart of the emergenc
extended geometries in this phase, which will be describe
more detail in the next section. In broad terms, the phas
characterized by 0,t,1. In principle there may be anothe
phase transition at some smaller~possibly negative! value
k̃0 , such thatt51 for k0, k̃0 @with no ~3,1! or ~1,3! tetra-
hedra surviving in the continuum limit#. Indeed, for fixedN3
and negativek0 the action Eq.~11! has a minimum fort
'1. ~Configurations witht→1 for N3→` can actually be
realized.!

Whether or not the system will undergo a phase transi
for sufficiently smallk0 will depend on the balance betwee
action and entropy, which cannot be determined by sim
qualitative considerations. We have not investigated this
gion of the coupling constant space further, given the limi
importance of negative gravitational coupling constants fr
a quantum gravity viewpoint, and the fact that our compu
algorithm is not efficient at smallk0 .

In summary, we have arrived at the following tentati
description of the phase diagram of 3D Lorentzian quant
gravity: the bare inverse gravitational coupling constant
two critical values,k̃0

c and k0
c ~possibly with k̃0

c52`!. For
k0.k0

c the model describes the fluctuations of an uncor
lated set of two-dimensional spatial geometries and has n
ing to do with a three-dimensional theory of gravity. Also f
k0, k̃0

c the space-time geometry degenerates, since the
tial slices at integert completely disappear from the theor
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These two ‘‘extreme’’ regions of the phase diagram can
regarded as artifacts of our particular way of setting up
discretized theory. They may be seen as remnants of
phases of degenerate geometries observed previously in
Euclidean quantum gravity@16#. However, unlike the Euclid-
ean theory, Lorentzian gravity possesses a large regionk̃0

c

,k0,k0
c of coupling constant space where the quantum

ometry is extended and well behaved, and whose descrip
we shall turn to next.

B. The phase of extended geometry

Let us now analyze the structure of the phase of interm
diate gravitational coupling,k̃0

c,k0,k0
c , where all types of

tetrahedral building blocks contribute nontrivially. Quite r
markably, and unlike in the phase wherek0.k0

c we observe
here the emergence of well-defined three-dimensional c
figurations. Figure 11 shows a snapshot of a typical geom
at k055.0, consisting of 16 000 tetrahedra, forT532. @As in
the previous Fig. 9, we plot—symmetrically around an ar
trary axis—the spatial volumeN2

(s11/2)(t) as a function oft.#
Following the computer-time history of this extended obje
it is clear that although it does indeed fluctuate, the fluct
tions take place around a three-dimensional object of w
defined linear extension.5 The emergence of a ground state
extended quantum geometry is a highly nontrivial property
the Lorentzian model, since we have at no stage put i
preferred background geometry by hand. No structures of
this kind have ever been observed in dynamically trian
lated models ofEuclideanquantum gravity. It underscore
the fact that the Lorentzian models are genuinely differ
and affirms our conjecture@5# that in d>3 they are less
pathological than their Euclidean counterparts.

For a fixedk0 and N3 , an overall ‘‘spherical’’ shape as
shown in Fig. 11 is found only for sufficiently largeT. At

5A trivial mode of fluctuations are the translations in tim
direction. Due to the periodicity of the boundary condition t
‘‘center of volume’’ of the extended configuration performs a ra
dom walk in thet direction.
1-9
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FIG. 11. Monte Carlo snapsho
of the distributionN2

(s11/2)(t) of
spatial volumes, forT532, N3

516 000, andk055.0 ~that is, be-
low the critical valuek0

c56.64!.
The volumes are plotted sym
metrically about a central horizon
tal t axis.
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small T, one observes a uniform distribution of spatial vo
umesN2

(s11/2)(t) as a function oft. As T increases, the bulk
of the space-time volume ‘‘condenses’’ into a region with
well-defined extentTu,T in time-direction~which we will
call theuniverse!, leaving over a thin stalk of minimal spatia
radius everywhere else along thet axis. We will from now on
chooseT sufficiently large, so thatT.Tu for all volumes
under consideration. We are interested in the ‘‘cosmologic
properties of this extended universe, i.e., its geometric pr
erties at large scales. Our data for the scaling of the t
extentTu of the universe as a function of the total volume a
consistent with

Tu;N3
1/3. ~14!

~We discuss below how a quantitative measure ofTu is ob-
tained.! Similarly, by an independentmeasurement of the
volumesN2

(s11/2)(t) of spatial slices that lie within the uni
verse, we have found a scaling behavior consistent with

^N2
~s11/2!~ t !&;N3

2/3. ~15!

Relations~14! and ~15! support an interpretation of the un
verse as a genuinely three-dimensional object. There i
course noa priori reason that a ground state in a nonpert
bative theory of quantum gravity~if it exists! should bear
any resemblance to a~semi-!classical geometry. Let us ex
plain briefly how such geometries~and, more specifically
classical solutions! might still make an appearance in th
context.

For the simplest compact space-time topology, the so
tion to theclassicalEinstein equations with Euclidean sign
ture and a positive cosmological constantL is the round
three-sphere~of constant positive scalar curvature! with ra-
dius RS3;L21/2. Solving the equations with the constrai
of fixed space-time volumeV is equivalent to introducing an
effective cosmological constantLeff;V22/3. We are not
aware of a classical solution with positiveL and topology
S13S2 ~which is the topology used in our simulations!.
However, for our purposes we can ‘‘adapt’’ theS3 solution to
this topology by cutting away two small open balls at tw
04401
l’’
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e
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opposite points of anS3 configuration with radiusRS3

;Leff
21/2;V1/3 and attaching a thin cylinderI 3S2 ~with spa-

tial radius at the cutoff scale! to the holes. This will produce
a geometry of the kind shown in Fig. 11. Although it is n
strictly speaking a solution to Einstein’s equations, it is ‘‘a
most as good’’ from the point of view of the path integra
since—independent of its metric properties—the contrib
tion of the stalk to the action is negligible~because it does
not grow proportionally to the three volume!.

Suppose for the moment that the roundS3 solution corre-
sponded to a~local! minimum of the action. Then the singu
lar ‘‘solution’’ of topology S23S1 constructed above would
also represent a~local! minimum of the action, and would
therefore be as relevant as theS3 solution in the quantum
theory. Unfortunately, the argument is not quite as simp
because the classical continuum Einstein action is
bounded from below, due to the presence of a kinetic term
the ‘‘wrong’’ sign, coming from the conformal mode of th
metric. However, since the conformal mode is not a pro
gating degree of freedom in either classical general relati
or in canonical quantizations, it should not cause any pr
lems in a correct, nonperturbative path-integral quantizat
of gravity, not even in the Euclidean sector.6 In such a quan-
tum theory theeffectiveaction should be bounded from be
low and semiclassical saddle-point considerations of the k
made above may again be appropriate.

We have measured the correlation function

C~D!5
1

T2 (
t51

T

^N2
~s11/2!~ t !N2

~s11/2!~ t1D!& ~16!

as a function of the displacementD to determine the scaling
of Tu with the space-time volumeN3 . This correlator has the
advantage of being translation invariant int and allows for a
precise measurement by averaging over many indepen

6The continuum path integral in the proper-time gauge is d
cussed in@23#.
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FIG. 12. The correlatorC(D) with T564 and
N3532 000. Dots are the measured values~error
bars less than dots!, and the curve is fitted from
the sphere solution described in the text.
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configurations. From the typical shape of the space-time c
figurations we expectC(D) to be on the order of the spatia
cutoff if D.2Tu . Figure 12 illustrates the result of our me
surements ofC(D), with the dots representing the measur
values. The theoretical curve to which we are fitting cor
sponds to the ‘‘fake sphere’’ described above, with the rad
of the S3 and the spatial radius of the thin cylinder attach
to it as free parameters. For this ‘‘spherical’’ geometry w
then perform the integral~the sum! in Eq. ~16!, without the
averagê •&. As is evident from Fig. 12, the volume distribu
tion associated with this fixed geometry gives a rather g
fit to our data. This provides some evidence that we
ignore the quantum average implied by^•&, and that our uni-
verses behave semiclassically,at least as far as their macro
scopic geometric properties are concerned. We should men-
tion that our ‘‘S3 solution’’ is not singled out uniquely, sinc
the choice of a Gaussian shape in thet direction gives a fit of
comparable quality.

For various space-time volumesN3 ~typically 8, 16, 32,
and 64k! we have determined the radiusRS3 of S3 from the
fits to the measuredC(D). From this, we have finally found
a50.3460.02 as the best exponent in the scaling relatio

RS3~N3!5N3
a . ~17!

The same value is obtained using other ways to extractTu ,
lending additional support to the three-dimensional nature
our universes.

We will now take a closer look at the geometry of th
two-dimensional spatial slices. If they could be described
typical triangulated surfaces in 2D Euclidean quantum gr
ity, they would not behave like smooth 2D geometries~when
described in terms of geodesic distances!, but rather like
fractal spaces with Hausdorff dimensiondH

sp54 @24,25#. By
contrast, typicalspace-timesurfaces contributing to the pat
integral of 2D Lorentzian quantum gravity can be viewed
two-dimensional, as shown in@4,8,9#.

The spatial slices at constant integert are obviously Eu-
clidean in nature, but it is not immediately clear how th
will behave, since they appear as part of a larger folia
space-time geometry, and are coupled to each other in a
trivial way. We have tried to extract the Hausdorff dimensi
04401
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dH
sp of the spatial slices lyinginside the spherical universe

using the geodesic distance inherited from the 3D geome
and employing techniques developed in the context of
dynamically triangulated Euclidean quantum gravity@26,27#.
Unfortunately, the quality of our measurements is not ve
satisfactory, since the spatial volumesN2

(s)(t) of the indi-
vidual slices are rather small~typically on the order of 1k!.

One can obtain better data by using simulations w
small T ~so thatT,Tu and no universe can form!, but it is
not entirely clear whether this will leave the spatial Hau
dorff dimension unchanged. Our measurements for smaT
point to a value arounddH

sp53.460.4 ~the measurements fo
larger T are compatible with this value, but their error ba
are considerably larger!. If our experience with the 2D Eu
clidean gravity simulations is anything to go by, this pro
ably impliesdH

sp54, but so far this has to remain merely
conjecture. At any rate, these somewhat preliminary res
highlight the fact that the detailed, microscopic geometry
the universe may be rather complicated, although its ma
scopic properties resemble that of a semiclassical object

Attempts to measure the Hausdorff dimensiondH of the
entire space-time~as opposed to that of individual spati
slices! have not yet led to unambiguous results. One want
confine the measurement to the spherical universe, wh
again one runs into difficulties because of its relatively sm
radius. In addition, one needs a dynamical definition
where the universe begins and ends~along thet direction!,
and must make sure that the result is independent of
particular prescription adopted. From the limited data c
lected~using the geodesic link or dual link distance, in th
sense in which this notion is usually defined in dynami
triangulations! we conclude that the Hausdorff dimension
most likely larger than three.

Another important result concerns the relation betwe
the geometries of differentk0 , in the phase wherek0,k0

c . In
the numerical simulations we have observed the followin

~i! The distributions as functions oft can be made to
coincide for differentk0 by rescaling the time,t→ f ti(k0)t or
alternativelyat→ f ti(k0)at , where at is the link length in
time direction. This is illustrated by theN2

(s11/2)2N2
(s11/2)

correlatorC(D), Fig. 13, where we show both the actual a
the rescaled distributions.
1-11
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FIG. 13. The correlatorC(D), Eq. ~16! with
T532 and N3516 000 measured fork053.0,
4.0, 5.0, and 6.0~lowest to highest peaks!. The
upper part shows the actual distribution, th
lower one the rescaled distributions for positiveD
~it is symmetric inD!. The variablex is a rescaled
version of the time distanceD.
om

g.

f
-

at
~ii ! The distributions measured in the spatial slices fr
inside the universe can be made to coincide for differentk0
by rescaling the spatial link distanceas→ f sp(k0)as , where
as is the length of the spatial links. This is illustrated in Fi
14 for the distributions of 2D volumesS( l ) of spatialspheri-
cal shells of~link! radius l, measured for various values o
k0 . ~The shell volumeS( l ) is obtained by counting the num
ber of vertices separated from a given vertexv by a minimal
04401
link distancel. Note that this spherical shell is precisely wh
is measured to determine the Hausdorff dimensiondH

sp of the
spatial slices.!

~iii ! Within the numerical accuracy we find thatf ti(k0)
5 f sp(k0). In fact, the rescaling of the correlatorC(D) ~Fig.
13! was obtained by simply using the valuesf sp(k0) ~see
Table I! determined from the fitS( l ) @rather than by finding
the best value forf ti(k0)#.
ide

FIG. 14. The 2d volumeS(x) of spatial

spherical shells, measured only on slices ins
the spherical universe, for various values ofk0

and rescaled. The variablex is a rescaled version
of the radiusl.
1-12
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On the basis of these correlator measurements we con
ture thatthe value of the bare inverse gravitational couplin

k0 P] k̃0
c ,k0

c@ merely sets the overall length scale of the u
verse, and otherwise does not affect the physics of the m.

We should point out that the average total integrated c
vature is not independent ofk0 . Subtracting the cosmologi
cal term from the action Eq.~A11!, one finds

E d3xAdetgR→paN3S t~k0!1~12k25!28
T

N3
D

;t~k0!20.29828
T

N3
, ~18!

where the parametert @defined in Eq.~10!# now depends
dynamically onk0 through the ensemble average. Compar
it with our measured curve fort in Fig. 7, one can read of
that the total curvature vanishes aroundk0'5.0. For smaller
k0 , it becomes negative and for largerk0 positive. Neverthe-
less, in line with our conjecture above we expect t
curvature-curvature correlators to follow the pattern of
already measured correlators~i.e., to observe a simple
k0-dependent scaling behavior!, but this remains to be veri
fied.

V. SUMMARY AND DISCUSSION

In this paper, we have analyzed the phase structure o
discretized model of three-dimensional Lorentzian grav
defined in @5# with the help of computer simulations. Th
phase diagram, Fig. 15, should be compared with that of
Euclidean theory, depicted in Fig. 16. Although the over
phase structure is similar, with a first-order transition at so

TABLE I. The spatial scaling factorf sp(k0), extracted from the
distributionsS( l ) for various values ofk0 .

k0 f sp(k0)

3.0 0.846.02
4.0 0.916.02
5.0 1.00
6.0 1.236.03

FIG. 15. The phase diagram of Lorentzian dynamical triangu
tions in three dimensions.
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intermediate valuek0
c , the quantum geometries of the phas

on either side of the transition are very different in bo
cases, as indicated in the drawings.

In the Euclidean case@16#, one finds a ‘‘crumpled’’ phase
at smallk0 , dominated by configurations of very large Hau
dorff dimensiond'` ~these are simplicial manifolds wher
roughly speaking any two vertices are a minimal distan
apart!. Above the first-order transition atk0

c , the system is in
a branched-polymer phase of highly branched geomet
~with a fractal dimensiondH52!. Unfortunately, neither of
these phases seems to have a ground state that resemb
extended geometry of dimensiond>3.

Another approach toEuclideangravity was advocated in
@28# within the quantum Regge calculus program. The ph
structure found in the numerical simulations of this mod
resembles those of Figs. 15 and 16 at least superficiall
exhibiting a ‘‘rough phase’’ for small and a ‘‘smooth phase
for large Newton’s constant. However, this model is i
equivalent to the dynamically triangulated models we ha
been discussing, since in the Regge approach these
phases seem to be separated by a second-order phase
tion and associated divergent curvature fluctuations, indi
ing the presence of propagating field degrees of freedom~cf.
our general discussion in Sec. II!. How this can be related to
the topological character of 3D quantum gravity manifest
canonical treatments of the theory is unclear.

The situation in Lorentzian dynamically triangulate
gravity is completely different. Although we find a wea
‘‘remnant’’ of the Euclidean degeneracy fork0.k0

c , where
space-time decouples into a sequence of uncorrelated
dimensional slices, there is a whole phase belowk0

c where
the geometry is extended, with macroscopic scaling prop
ties characteric of a three-dimensional universe. Quite
markably, this is an example in three dimensions of the em
gence of a well-defined ground state of geometry in
nonperturbative state sum for gravity. In a continuum la
guage, this is the ground state of aneffectiveaction, where
entropy contributions~in other words, themeasure! play a
crucial role. Apparently in our model these contributions a
such that they outbalance potential conformal divergen
coming from the Wick-rotated action~otherwise a well-
defined ground state could not exist!. From the evidence
gathered so far, the physics in this extended phase isinde-
-

FIG. 16. The phase diagram of Euclidean dynamical triangu
tions in three dimensions.
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pendentof the precise value of the bare gravitational co
pling k0 . In the correlation functions we have measured,k0

merely serves to set an effective overall length scale.
As argued in Sec. II, these findings strongly favor a si

ation where the gravitational coupling is not renormalize
and no fine tuning ofk0 is needed to approach the continuu
limit. This limit coincides automatically with the infinite~lat-
tice! volume limit, which we obtained by fine tuning th
cosmological coupling constant. Continuum physics is th
extracted by taking the limit asN3→` and a→0, while
keeping the three volumeVcontªN3a3 constant. In this set-
ting, no genuine field degree of freedom is present si
there is no divergent correlation length associated with
tuning k0 to the critical point of a second-order phase tra
sition.

As a result of our investigations, we have good reason
believe that 3D Lorentzian quantum gravity, as defin
through our discrete, dynamically triangulated model, ex
as a continuum theory. Since so far this theory is not give
an explicit analytical form, the question arises of how
make contact with already existing quantizations of thr
dimensional gravity.

At least in spirit, our formulation is related to canonic
approaches using the trace of the extrinsic curvature a
time variable, the so-called ‘‘York time,’’ with a conjugat
Hamiltonian determining the time evolution of the syste
@29,13#. However, this approach only works for genusg
>1, and the only case where the canonical quantum the
and the Hamiltonian operator are reasonably explicit isg
51, where the spatial slices have torus topology. We are
aware of any quantum observables that have been calcu
in the case of spherical slices which we could try to comp
to. ~For S2 slices, there are no noncontractible holonom
and the reduced phase space is zero dimensional.! We could
in principle repeat the simulations for toroidal spatial slic
although the finite-size effects will be larger for this mo
complicated topology~and for T532,64, our spatial slices
are rather small!.

Similarly, it is in principle straightforward to enlarge th
Lorentzian model to include coupling to matter fields. Th
has already been done in two-dimensional Lorentzian qu
tum gravity, with a clear motivation in mind, namely, to u
derstand the status of thec51 barrier in general 2D gravity
models. We showed that this disease of 2D Euclidean qu
tum gravity can be avoided by working with Lorentzian g
ometries@9#.

It would provide a strong incentive for considering eith
of these generalizations if there were definite predictio
from continuum formulations of 3D quantum gravity wit
and without matter for observables measurable in the c
puter simulations~for example, correlation functions of th
type we have been studying!.

A next important step in our analysis of 3D Lorentzia
quantum gravity will be the derivation of the explicit form o
the Hamiltonian in the continuum limit. We can in princip
obtain the matrix elements of the transfer matrixT̂ between
two successive triangulated two geometriesgi , as the solu-
04401
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tion to a combinatorial problem@22#. Expanding the matrix
elements according to

^g2uT̂ug1&5^g2ue2aĤug1&5^g2u„12aĤ1O~a2!…ug1&,
~19!

one can extract the Hamiltonian operatorĤ. A similar ap-
proach was successful in 2D Lorentzian gravity, where
regularized transfer matrix could be calculated, and its c
tinuum limit taken in a straightforward way.7 The resulting
Hamiltonian agreed with the one obtained by continuum f
mal manipulations in the proper-time gauge@30#, showing
that the educated guesses made in this paper were justi

This calculation can be generalized to our 3D Lorentz
gravity model, but the matrix-model methods will probab
only work in the case of a spherical spatial topology. A dire
comparison with canonical quantum gravity would then
quire a canonical continuum quantization in the proper-ti
gauge, with spatial topologyS2.

Let us conclude by pointing out an interesting cons
quence of our arguments that would follow if the seco
critical point k̃0

c ~whose value we did not measure! were
negative. In this case, the theory with bare coupling consta
k050 would lie inside the extended phase. This implies t
we could start from a discretized gravity actionwith the cos-
mological term alone, and still obtain the same continuum
theory. This may seem to be a radical suggestion, becaus
classical theory of the action

S5LE d3xAdetg~x! ~20!

is trivial ~it does not contain any time derivatives!. However,
there is no logical contradiction, since further nontrivial co
tributions to the~effective! action can be generated throug
the nonperturbative evaluation of the path integral. In fa
2D Euclidean quantum gravity provides a good illustrati
of this mechanism. There the action is given by Eq.~20!, but
substitutingd3x→d2x. Nevertheless, the effective quantu
theory in conformal gauge is described by the highly no
trivial quantum Liouville theory.

What have we learned from our exploration about o
ultimate goal, the construction of quantum gravity in fo
dimensions? We invented the discreteLorentzianmodels in
the hope that they may lead to a better description of ph
cal four-dimensional space-time, which after all has
Lorentzian signature. We also conjectured in@5# that in the
continuum limit the causality constraints imposed on ea
geometry in the state sum may lead to a suppression of
degenerate phases of highly fractal geometry found in
Euclidean models ford>3. From the evidence presented
this work, this is indeed what happens in three dimensio
Moreover, we saw the emergence of a ground state of
tended three-dimensional geometry in the Lorentzian ca
As already observed ind52, also in three dimensions th

7The formula for the Hamiltonian in@4# contains a typo; see@17#
for the correct expression.
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Euclidean and Lorentzian models correspond to comple
different continuum theories, reiterating that these two ‘‘s
tors’’ of the gravitational quantum theory are not related b
simple analytic continuation in time@4,31#.

We are very encouraged by these results, since they
indicate that ind54 completely different geometries wi
dominate the Wick-rotated path integral, compared with
Euclidean theory. The physics that the four-dimensio
model should describe, if it were to lead to a nonperturba
theory of quantum gravity, must of course be very differe
from that found in two and three dimensions. In particul
the critical behavior of the regularized theory should refl
the presence of physical, propagating field degrees of f
dom. In the context of the statistical models we are cons
ering, the simplest realization would be in terms of a seco
order phase transition. This possibility is apparently n
realized in the dynamically triangulatedEuclideangravity
models. However, there is by now plenty of evidence that
Lorentzian model for quantum gravity defined in@5,6# is
sufficiently different to make it a new, promising candida
for a nontrivial nonperturbative theory of quantum gravity
four dimensions.
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APPENDIX A

In this appendix we collect some formulas for dynam
cally triangulated three geometries, which were used in
riving various forms of the discrete Einstein action in t
main text. We will work in the Euclidean sector of the theo
and for simplicity choose all tetrahedra to be equilateral~that
is, a521 and l space5 l time5a.0!. The curvature of a 3D
piecewise linear manifold is concentrated at its links. T
contribution to the total curvature associated with each linl
is given by the link lengtha times the deficit angle

d l52p2 (
s i. l

u i ,

where the sum is taken over all tetrahedras i , i
51, . . . ,o( l ), sharing the linkl, andu i is the dihedral angle
associated with thei th tetrahedron. For an equilateral thre
complex, all dihedral angles are identical

u5arccos1
3 [kp, ~A1!

and the curvature term of the Einstein action becomes

1

2 E d3xAdetg~x!R~x!→(
l

ad l52pa~N123kN3!,

~A2!
04401
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where for a closed three-dimensional triangulation we h
used

(
l

15N1 , (
l

o~ l !56N3 . ~A3!

Taking into account that the three volume of an equilate
tetrahedron is given bya3/6&, we obtain the discretized
form of the Euclidean Einstein action@5#

SE52
a

4G
~N123kN3!1

a3L

48&pG
N3 , ~A4!

where in a slight abuse of language we continue to useG and
L to denote thebare gravitational and cosmological cou
plings. We can substituteN1 by the numberN0 of vertices,
using the identityN15N31N0 , which can be derived from
the vanishing of the Euler number for any closed 3D ma
fold

x5N02N11N22N350, ~A5!

together with the relationN252N3 ~any triangle is shared by
two tetrahedra and any tetrahedron has four triangles!. Sub-
stituting this into Eq.~A4!, we obtain the action used in Se
I

SE52k0N01k3N3 , ~A6!

with the coupling constants given by

k05
a

4G
, k35

a3L

48&pG
1

a

4G
~3k21!. ~A7!

In the numerical investigation of Sec. III we discussed t
dependence of the action on the total numberN22 of ~2,2!
tetrahedra. This can be made explicit by rewritingN0 as a
function ofN3 andN22. For periodic boundary conditions in
the t direction, the total numbers of~3,1! and~1,3! tetrahedra
are the same, and we have

N131N315
1
2 ~N32N22!. ~A8!

Next, we need some identities for the spatial slices at c
stant integert. Because the slices are topologically tw
dimensional spheres, the number of vertices in a slice is

N0~ t !5 1
2 N31~ t !125 1

2 N13~ t21!12. ~A9!

Summing this equation over allt and using Eq.~A8! yields

N05(
t51

T

N0~ t !52T1
1

4
~N32N22!, ~A10!

and therefore

SE5
k0

4
N221S k32

k0

4 DN322K0T, ~A11!

which is the form of the action used in Sec. III.
1-15
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APPENDIX B

As discussed in Sec. III, one can describe the 3D Lore
zian geometries in terms of dual graphs, naturally associ
with each plane of constant half-integert. They decompose
into two cubic graphs of different color~whose trivalent ver-
tices correspond to the~1,3! and~3,1! tetrahedra of the origi-
nal triangulation, and which may be thought of as the in a
out-states of the transfer matrix. Gray and black lines cros
four-valent vertices, corresponding to the~2,2! tetrahedra of
the original lattice.

The planarity of this structure~i.e., the fact that the sub
graphs have topologyS2! is easily implemented in the pro
gram by representing the one-dimensional lines of the g
and black graphs as double lines with opposite orientation
one can do in the large-n matrix model Eq.~9!. In this way
one obtains closed loops of oriented colored~single! lines
which are dual to the vertices at timest and t11 of the
original lattice. The 2D spherical surface may thus
thought of as being covered by~either gray or black! patches
enclosed inside the loops.

In the numerical simulations we take care that the tri
gulations are 3D simplicial manifolds to start with, and w
accept only Monte Carlo moves that preserve this prope
In terms of the original triangulation, this means that we o
allow the creation of configurations where any two vertic
can be shared by at most one link, any three vertices ca
shared by at most one triangle, and any four vertices b
most one tetrahedron.

In terms of the dual graphs, this implies two types
restrictions, the first of which have a transparent interpre
tion in the matrix model: they constrain the individual triv
lent graphs to have neither tadpoles nor self-energy sub
grams. This ensures that they are regular 2D simpli
manifolds with spherical topology. The remaining constrai
restrict the ways in which the two colored graphs are allow
to intersect each other. Requiring the absence of double l
between pairs of vertices that are time-like separated on
original lattice implies that the intersection of any pair
gray and black domains enclosed by gray and black lo
-
on
n-

s
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cannot be multiply connected. Similarly the absence
double triangles from the original simplicial configuratio
means that the~one-dimensional! intersection of a double
line of one color with a given domain inside a loop of th
opposite color must be either empty or simply connected

An important consequence of these constraints is that
number N22(t) of dual four-valent vertices is constraine
both from below and above in terms ofN13(t) and N31(t).
This does not happen in the matrix model Eq.~9!, where
these numbers are completely independent. It is possible
some of the regularity conditions discussed here can be
laxed without affecting the universal properties, but for t
3D Lorentzian model this question has not yet been
plored.

APPENDIX C

The numerical simulations presented in this paper w
performed for system sizes of 4k, 8k, 16k, 32k, and 6
tetrahedra, and for total proper timesT516, 32, and 64. As
usual, the standard unit was taken to be one sweep of
system, interpreted asN3 attemptedmoves. Since the accep
tance of moves is a function ofk0 , in order that all moves
were performed approximately the same number of tim
we had to tune the number of attempted moves for each
the three types of moves appropriately. This technique
been applied successfully before in three- and fo
dimensional simulations of Euclidean dynamical triangu
tions. We considered gravitational couplings in the range
tweenk052.0 andk057.0. In this range the acceptance
move 1 is between 13.0% and 75%, the acceptance of
moves 2 and 3 between 3% and 11%, and that of move
and 5 between 16% and 10%. For even smallerk0 the accep-
tance of the moves 2 and 3 decreases rapidly and it beco
very difficult with the present setup to change the geome
of the spatial intersections. A typical run corresponded to6

sweeps at a given value ofk0 . For all measured quantitie
we found autocorrelation times below 100 sweeps, wh
was also the typical time between successive measurem
D
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