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Trajectories for the wave function of the universe from a simple detector model

J. J. Halliwell
Theory Group Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom

~Received 23 August 2000; published 23 July 2001!

Inspired by Mott’s analysis of particle tracks in a cloud chamber, we consider a simple model for quantum
cosmology which includes, in the total Hamiltonian, model detectors registering whether or not the system, at
any stage in its entire history, passes through a series of regions in configuration space. We thus derive a variety
of well-defined formulas for the probabilities for trajectories associated with the solutions to the Wheeler-
DeWitt equation. The probability distribution is peaked about classical trajectories in configuration space. The
‘‘measured’’ wave functions still satisfy the Wheeler-DeWitt equation, except for small corrections due to the
disturbance of the measuring device. With modified boundary conditions, the measurement amplitudes essen-
tially agree with an earlier result of Hartle derived on rather different grounds. In the special case where the
system is a collection of harmonic oscillators, the interpretation of the results is aided by the introduction of
‘‘timeless’’ coherent states—eigenstates of the Hamiltonian which are concentrated about entire classical tra-
jectories.
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I. INTRODUCTION

The focus of attention in quantum cosmology is t
Wheeler-DeWitt equation

HC50. ~1.1!

Here, the wave functionC is a functional of the gravitationa
and matter fields on a three surface, and it describes
quantum state of a closed cosmological model@1#. The most
striking and conceptually problematic aspect of this equa
is that it does not involve time explicitly, severely complica
ing efforts to extract predictions from it@2,3#. Among the
many attempts to understand this feature, one is to claim
‘‘time’’ and indeed entire histories of the universe are alrea
contained among the arguments of the wave function; he
no time label is required@4,5#. While these claims seem to b
true at some level in simple models of quantum cosmolo
it presents us with the interesting challenge of reformulat
standard quantum theory without the explicit use of tim
and then demonstrating the emergence of time and of cla
cal trajectories. Although the Wheeler-DeWitt equation in t
form Eq. ~1.1! is unlikely to be the last word in quantum
gravity, it does seem likely that whatever replaces it will s
be of a timeless nature. The loop variables program of A
tekar and others, for example, certainly preserves this fea
@6#. It is therefore of interest to investigate this feature
simple models.

Many attempts to use and make sense of Eq.~1.1! have
been made. These attempts focus on simple~minisuperspace!
models, in which one has anN-dimensional configuration
spaceC with coordinatesx, and the Hamiltonian operator ha
the form

H52 1
2 ¹21V~x!. ~1.2!

The signature of the metric is typically hyperbolic so t
Wheeler-DeWitt equation is like a Klein-Gordon equation
curved space with a spacetime dependent mass term. A
ciated with it is a Klein-Gordon current
0556-2821/2001/64~4!/044008~13!/$20.00 64 0440
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J5 i ~C¹C* 2C* ¹C!. ~1.3!

Like the Klein-Gordon equation, however, this does not p
duce a positive probability density except in very spec
cases~namely when there is a Killing vector associated w
H!. It also vanishes for real wave functions. One might a
consider the Schro¨dinger inner product

^C1uC2&5E
C
dNx m~x!C1* ~x!C2~x!, ~1.4!

wherem(x) is an appropriate measure, but the norm^CuC&
typically diverges. In practice, most uses of the Wheel
DeWitt equation rely on something like the ‘‘WKB interpre
tation,’’ in which in the oscillatory regime the wave functio
is written in the formC5CeiS, whereS is a solution to the
Hamilton-Jacobi equation. It is argued that this wave fun
tion corresponds to an ensemble of classical trajectories
isfying the first integralp5¹S, with uCu2 giving a measure
on the ensemble. Although probably correct it is somew
heuristic and can only be used in the oscillatory regime.~See
Ref. @7#, for example, for a discussion of these issues.!

Recent more successful work with the Wheeler-DeWitt
similar equations involves the induced inner product~also
known as Rieffel induction or refined algebraic quantizatio!
@8,9#. Here, one considers eigenvalues of the Whee
DeWitt operator

HuCEk&5EuCE8k8&, ~1.5!

wherek is the degeneracy label for eachE. The spectrum is
typically continuous inE in which case the states are no
malized via Eq.~1.4! according to

^CEkuCE8k8&5d~E2E8!dkk8 ~1.6!

and one can now see whŷCuC& diverges. The induced
inner product is then, loosely speaking, to drop the fac
d(E2E8) asE andE8 are set to zero. This procedure can
©2001 The American Physical Society08-1
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J. J. HALLIWELL PHYSICAL REVIEW D 64 044008
defined rigorously and induces an inner product on the z
energy eigenstates.~This procedure is not of course nece
sary when the spectrum is discrete.!

Related to these issues is the prevalent idea that any
erations performed on the wave function in the computat
of physically interesting probabilities should commute w
H @3,10,11#. Mathematically, this is to respect the symme
of the theory, reparametrization invariance, expressed by
constraint equation~1.1!. Physically, it is connected with th
fact that the universe is a genuinely closed system,
all realistic measurements are carried out from the ins
so cannot displace the system from a zero energy eigen
of H.

Given these preliminaries, turn now to the questions o
would like to ask of the wave function of the system in ord
to extract useful cosmological predictions from it. We a
interested in the notion that the wave function correspond
some way to a set of trajectories. Let us therefore ask
question: ‘‘What is the probability that the system is found
a series of regions in configuration space,D1 ,D2 ,...Dn?’’
Note that the question is stated in such a way that does
involve time. There is no requirement that the system en
one of the regions at a particular ‘‘time,’’ or that the regio
are entered in a particular order. We cannot ask this bec
the Wheeler-DeWitt equation does not know about such
ordering parameter. In the classical case the correspon
situation consists of a statistical ensemble of classical tra
tories with the same fixed energy. The trajectories are sim
curves in configuration space and it is straightforward to
termine the probability that a given curve passes throug
given region at any stage in its entire history. The questio
more involved in quantum theory, since quantum theory
somewhat resistant to the notion of a trajectory~in the non-
relativistic case, it involves specifying positions at differe
time, which do no commute!. It is, nevertheless, important t
develop this notion, since the timeless nature of the Whee
DeWitt equation cries out for an interpretation in terms
entire histories of the universe. The aim of this paper is
offer one possible way of giving meaning to the above qu
tion in the quantum theory of simple cosmological mode

Intuitively, one would expect that the question can be f
mulated and answered using a simple toolbox of parts:
quantum stateuC& satisfying the constraint, projection op
erators onto the regionsDk , or maybe projections onto som
class of operators which commute with the constraintH. One
might also expect to find the Green function associated w
the Wheeler-DeWitt equation, which has the form

G~x,y!5 i E
0

`

dt^xue2 i ~H2 i e!tuy&5 K xU 1

~H2 i e!
UyL

~1.7!

~this is the analogue of the Feynman propagator!. It might
possibly also involve one of the other types of propagat
obtained by integratingt over an infinite range in this ex
pression@12–14#. The question is then exactly how on
stitches all these components together to make a plau
probability distribution describing trajectories passi
through a series of regions.
04400
ro

p-
n

he

d
e,
ate

e
r

in
e

ot
er

se
n
ng
c-
ly
-
a

is
s

t

r-
f
o
-

-
e

h

s

le

The decoherent histories approach offers an approac
answering this question and it does indeed use some of
above elements@15#. It is particularly adapted to this sort o
situation since it directly addresses the issue of definin
quantum notion of ‘‘trajectory’’ and this approach is cu
rently being investigated in this context@16# ~see also Ref.
@1#!. Other approaches involving observables—operat
commuting with the constraint—have also been conside
@9,17,18,19#. Most importantly, Kiefer and Zeh@20# and Bar-
bour @4,21,22# have devoted much effort to elucidating th
emergence of trajectories and of time from the timele
Wheeler-DeWitt equation.

The approach we adopt here stems from Barbour’s ob
vation@22# that a substantial insight into the Wheeler-DeW
equation may be found in Mott’s 1929 analysis ofa particle
tracks in a Wilson cloud chamber@23#. Mott’s paper con-
cerned the question of how thea particle’s outgoing spheri-
cal wave state,eikR/R, could lead to straight line tracks in
cloud chamber. His explanation was to model the clo
chamber as a collection of atoms that may be ionized by
passage of thea particle. They therefore act as measuri
devices that measure thea particle’s trajectory. The probabil
ity that certain atoms are ionized is indeed found to
strongly peaked when the atoms lie along a straight l
through the point of origin of thea particle.

Although Mott seems to have had in mind a tim
evolving process, he actually solved the time-independ
equation

~H01Hd1lH int!uC&5EuC&. ~1.8!

HereH0 is thea particle Hamiltonian,Hd is the Hamiltonian
for the ionizing atoms, andH int describes the Coulomb inter
action between thea particle and the ionizing atoms~where
l is a small coupling constant!. Now the interesting point, as
Barbour notes, is that Mott derived all the physics from th
equation with little reference to time. Mott’s calculation
therefore an excellent model for many aspects of
Wheeler-DeWitt equation. Barbour has elucidated this v
eloquently, showing how it sheds light on a number of d
ferent aspects@4,21,22,24#.

Barbour’s discussion is largely qualitative. The point
the present paper, by contrast, is to extract quantitative in
mation from the comparison between the Mott calculat
and the Wheeler-DeWitt equation. Mott derived the straig
line tracks by looking at the wave function associated w
two atoms being in the ionized state, for the special case
an outgoing wave initial state. But since this is element
quantum mechanics, it is a simple matter to generalize i
arbitrary initial states and other types of detector models,
to derive a detailed expression for the probability distrib
tion. Therefore,Mott’s calculation points the way toward a
general expression for the probability distribution for th
system passing through a series of regions in configura
space without reference to time. This is what we will work
out in detail in this paper.

We consider a system in anN dimensional configuration
spaceRN with coordinatesx described by a HamiltonanH0 .
Although we are ultimately interested in quantum cosm
8-2
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TRAJECTORIES FOR THE WAVE FUNCTION OF THE . . . PHYSICAL REVIEW D 64 044008
ogy, most of the results apply to both simple quantu
mechanical models and to quantum-cosmological mod
with Hamiltonian given by Eq.~1.2!. The precise form of the
Hamiltonian, including the signature of the metric, w
therefore be left general, except where explicitly stated o
erwise. The system is coupled to a set of detectors via
interactionH int and the state of the whole system is given
the solution to Eq.~1.8!. Mott used the electronic degrees
freedom of atoms as detectors. However, the essence o
calculation is maintained with a much simpler detec
model. The detector we use consists of a two state sys
with Hd50 and detector statesu0& and u1&, where

au0&50, au1&5u0&, a†u0&5u1&, a†u1&50.
~1.9!

We take

H int5(
x

f k~x!~ak1ak
†!. ~1.10!

Here, f k(x) is spatially localized in the regionDk . One
could, for example, takef k to be a window function which is
1 in Dk and 0 outside it, but we will not restrict to thi
choice. If the detector inDk is ‘‘initially’’ in the ground state
u0&, it will be displaced into the excited stateu1& if the par-
ticle’s trajectoryx(t) entersDk and remains in the groun
state otherwise. Of course, in the timeless context of
Wheeler-DeWitt equation, ‘‘initially’’ has no meaning. W
will impose the condition that the detector is in the grou
state in the absence of coupling to the system. This does
however, fix the solution completely, as we shall see, so
ther boundary conditions are required. We will not, in fa
commit to a particular set of boundary conditions in th
paper, but will explore the general properties of the solutio

Ultimately, it would be desirable to use this scheme in
interesting cosmological model and to apply some of
well-known boundary condition proposals, such as the
boundary proposal of Hartle and Hawking@25#. This particu-
lar proposal involves taking the wave function given by
path integral over metrics and matter fields on a comp
four geometry. With a detector coupled in as here, this p
integral would also include a sum over detector states o
compact four geometry, and it would generate a solution
the Wheeler-DeWitt analogue of Eq.~1.8!.

The detector described here is far from realistic, not le
of all because it can return to its ground state if the part
spends too much time in the detector region. We will disc
its problems and possible improvements. We note, howe
that similarly simple detector models have been profita
used elsewhere, e.g., in the Coleman-Hepp model@26#. ~See
also Ref.@27#!.

Furthermore, although this model is very simple, it do
possess at least some key features that are cosmolog
relevant. In the real universe, we make measurements a
present time of, for example, the microwave background
the distribution of galaxies. These physical features of
present universe constitute ‘‘records’’—physical states wh
persist for a long time and which are correlated with the s
04400
-
ls

-
n

the
r
m

e

ot,
r-
,

s.
n
e
-

ct
th
a
o

st
e
s
r,

y

s
lly
he
d
e
h
te

of the universe at early times. Hence, through measurem
of these quantities in the present we can make deduct
about the behavior of the universe around the time of the
bang.

The detector model above is a crude model of this p
cess. In the case of a classical system coupled to the qua
detector, a trajectory passing through the detector reg
causes the detector to register and, to within certain limits
detector accuracy~which may be estimated!, the detector re-
mains in the ‘‘registered’’ state along the rest of the traje
tory. An observer in the late universe may then determine
detector state and from this deduce that the trajectory ent
the region at some stage in the past. The fully quantum
ture of this scenario is more subtle, in that the absence
time parameter makes it difficult to speak about the dete
registering ‘‘after’’ it passes through the region. Neverth
less, on the basis of the corresponding classical picture
seems reasonable to interpret the part of the system w
function, which is correlated with the ‘‘registered’’ state o
the detector, to be the amplitude for the system pass
through the region. This is exactly what we will do here.1

It is perhaps worth noting that the question conside
here bears a close resemblance to the arrival time and
neling time questions in nonrelativistic quantum mechan
@28,29#. There also, time enters in a nontrivial way, an
equivalent classical approaches to the problem are inequ
lent at the quantum level. A variety of approaches have b
brought to bear on these problems including, as here, exp
detector models.

In Sec. II, we solve the system Eq.~1.8! using the simple
two state detector model.

Using the results, we then ask, in Sec. III, some sim
questions of the detected wave function. Does the dete
wave function still obey the Wheeler-DeWitt equation? W
find that it does exactly outside the detector region, and
it does approximately~for small l! inside the detector re
gion. We compute the probabilities for detection and see
Mott essentially saw, that they are strongly peaked when
detectors lie along a classical trajectory. We also observe
the resulting amplitude for detection bears a very close
semblance to a formula written down by Hartle@30# ~without
using an explicit detector model! and we discuss the connec
tions with his result. We discuss the implementation
boundary conditions~this is the only point at which the in
definite signature of the minisuperspace metric is sign
cant!. We also discuss various other aspects of the solutio
relation to detection and the timelessness of the solution

The results of Sec. III indicate that the wave function
the system may, in some sense, be regarded as a supe
tion of states each of which is peaked about an entire cla

1It is of course of interest to calculate the extent to which t
‘‘registered’’ state of the detector is correlated with the partic
passing through the region. To answer this question fully requ
the calculation of a probability distribution for both the detecto
and the histories of the system. This involves the more elabo
machinery of the decoherent histories approach@1#, but will not be
pursued here.
8-3
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J. J. HALLIWELL PHYSICAL REVIEW D 64 044008
cal history. To demonstrate this explicitly, we specialize,
Sec. IV, to the case of a collection of harmonic oscillato
~hence the Hamiltonian in this case is theN-dimensional
harmonic oscillator Hamiltonian!. We introduce a new type
of coherent states, the ‘‘timeless coherent states.’’ Th
states are eigenstates of the Hamiltonian, and are there
time independent, but are peaked about classical trajecto
Any eigenstate may be expanded in terms of theses st
and we show that a series of detections along a classical
essentially projects the state down onto a timeless cohe
state.

Since the detector is so simple, its dynamics may
solved exactly and this is carried out in Sec. V. This cal
lation confirms that the detector model is only physica
realistic in the perturbative regime~when the particle spend
only a short time in each detector region!. Although the so-
lution is exact and leaves the boundary conditions genera
turns out that it is not very useful for the Mott solution, sin
the boundary conditions lead to a rather inelegant solut
On the other hand, it is by no means clear that one is
quired to take the Mott boundary conditions for the ana
gous situation in quantum cosmology, and given the freed
to choose different conditions, an elegant alternative solu
for the detector amplitude is obtained. It is in fact almost
same as the amplitude Hartle proposed@30#.

In Sec. VI, we briefly describe a more elaborate detec
model, in which the detector is a simple harmonic oscilla
coupled to the particle with the same coupling Eq.~1.10!.
The solution has a nice path integral representation and
fers fewer shortcomings than the two-state detector. It a
clearly illustrates the peak about classical paths.

We summarize and conclude in Sec. VII.

II. DETECTION AMPLITUDE FROM THE TWO-STATE
DETECTOR

We now solve the eigenvalue equation

HuC&5EuC& ~2.1!

with H given by Eq.~1.8!, and the detector is the simple tw
state detector described in Sec. I, withHd50. We will for
convenience refer to this equation as the Wheeler-DeW
equation~and it is convenient to retain a nonzero value ofE!.
It now reads

~H2E!uC&5~H01lH int2E!uC&50. ~2.2!

We initially use only two detectors, so

H int5 (
k51

2

f k~x!~ak1ak
†! ~2.3!

but the generalization to a arbitrary number of detector
straightforward. We solve perturbatively by writing

uC&5uC~0!&1luC~1!&1l2uC~2!&1¯ . ~2.4!
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We require that in the absence of coupling to the detect
the detectors are in the state of no detection,u0&. This means
that

uC~0!&5uc&u0&u0& ~2.5!

anduc& is the state we are trying to measure. Inserting in E
~2.2! and equating powers ofl, we get

~H02E!uC~0!&50, ~2.6!

~H02E!uC~1!&52H intuC~0!&, ~2.7!

~H02E!uC~2!&52H intuC~1!&, ~2.8!

and similarly to higher orders. The first relation shows th
uc& must obey the unperturbed eigenvalue equation, as
pected. Inserting Eq.~2.5! into Eq. ~2.7!, we get

~H02E!uC~1!&52 f 1~x!uc&u1&u0&2 f 2~x!uc&u0&u1&.
~2.9!

This is readily solved by writing

uC~1!&5uC00
~1!&u0&u0&1uC10

~1!&u1&u0&1uC01
~1!&u0&u1&

1uC11
~1!&u1&u1& ~2.10!

and we discover that

~H02E!uC00
~1!50, ~2.11!

~H02E!uC10
~1!&52 f 1~x!uc&, ~2.12!

~H02E!uC01
~1!&52 f 2~x!uc&, ~2.13!

~H02E!uc11
~1!&50. ~2.14!

Equations~2.12! and ~2.13! may be solved with the assis
tance of the Green’s functionG, defined by Eq.~1.7! ~with H
replaced byH02E!. It obeys the equation

~H02E!G51. ~2.15!

@For convenience we use an operator notation in whichG is
the operator with coordinate representationG(x,y)
5^xuGuy& and the right-hand side of Eq.~2.15! would be the
d function d(x,y) in the coordinate representation.# We then
obtain

uC10
~1!&52G f1~x!uc&1uf1&, ~2.16!

uC01
~1!&52G f2~x!uc&1uf2&, ~2.17!

whereuf1,2& are solutions to the homogeneous equation

~H02E!uf1,2&50. ~2.18!

To fix some of these solutions more precisely, we need
appeal to boundary conditions. This is a subtle issue
depends very much on the precise context. Mott was c
cerned with the particular case of an outgoing spherical w
and imposed boundary conditions appropriate to this ca
8-4



a
d
tu
or
th

x
te

is

l-

on
.

o
.

e

e
t

te

r o
Eq

ta
to
a

ess

ys-
the

nc-

is
il-

e-

of
ex-
to

t in

eft.
the

ard
not

he
ua-
-

ire
tly.
be

cted
or

c. I

t be

on,
tude

ns
-

TRAJECTORIES FOR THE WAVE FUNCTION OF THE . . . PHYSICAL REVIEW D 64 044008
This led him to setuf1,2& anduC11
(1)& to zero~since otherwise

it represents a stream of incoming particles fired at an
ready excited detector! @23#. We are not obviously compelle
to make the same choice of boundary conditions in quan
cosmology, and we will return to a discussion of this imp
tant issue in Sec. III C. But for the moment, we work wi
the Mott solution.

At first order only one detector is stimulated into the e
cited state. The system wave function correlated with de
tor stateu1& now is

uc1&52lG f1uc& ~2.19!

and the probability that the detector registers is therefore

p15^c1uc1&5l2^cu f 1G†G f1uc&. ~2.20!

@When the spectrum ofH0 is continuous, expressions of th
type need to be regularized along the lines of Eq.~1.6!, but
we will carry out this explicitly only when we need to ca
culate it in more detail.#

To get two detectors to register, we need to go to sec
order. We now have, from Eq.~2.8!, and the solution Eq
~2.10!

~H02E!uC~2!&52~ f 1~a11a1
†!1 f 2~a21a2

†!!uC~1!&

5 f 2G f1uc&u1&u1&1 f 1G f2uc&u1&u1&

1¯ , ~2.21!

where the omitted terms on the right-hand side are prop
tional to u0&u0&, u0&u1&, andu1&u0&, and will not be needed
Again we may solve them by expanding as in Eq.~2.10!.
Here we write down only the term required, which describ
two detectors being excited

uC~2!&5uC11
~2!&u1&u1&1¯ ~2.22!

and it is readily seen that the solution is

uC11
~2!&5~G f2G f11G f1G f2!uc&. ~2.23!

Again, following the spirit of the Mott solution, possibl
homogeneous solutions are set to zero. We now have
system wave function correlated with two detectors regis
ing: it is

uc2&5l2~G f2G f11G f1G f2!uc& ~2.24!

and the probability iŝc2uc2&.
The analysis is readily extended to an arbitrary numbe

detectors, but it is easy to anticipate the result from
~2.24!: for n detectors, the amplitude is

ucn&5ln~G fnG fn21¯G f2G f1!uc&1symmetrizations,
~2.25!

where ‘‘symmetrizations’’ means add all possible permu
tions of 1,2,3,̄ n. It is clear that these terms are there
ensure that there is no preference in the order in which e
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of the detectors registers, reflecting the genuinely timel
nature of the underlying dynamics. Equation~2.25! is the
main result of this section.

III. PROPERTIES OF THE SOLUTION

We have shown that the wave function for the whole s
tem when there are, for example, two detectors takes
form

uC&5uc0&u0&u0&1uc1&~ u1&u0&1u0&u1&)1uc2&u1&u1&.
~3.1!

We can now ask various questions of the detected wave fu
tion uc2&, or more generally, Eq.~2.25!.

A. Does the detected wave function obey the Wheeler-DeWitt
equation?

As stated in Sec. I, a prevalent idea in quantum gravity
that all observables should commute with the total Ham
tonian@3,10,11#. Related to this is the notion that ‘‘measur
ments’’ of the wave function~whatever this may mean in
general! should not displace the system from its eigenstate
the Hamiltonian. Given that we have presented here an
plicit model of detection, it is perhaps of interest to ask
what extent this idea holds up.

We have, using Eq.~2.15!, and taking the simple casen
52,

~H02E!uc2&5l2~ f 2G f11 f 1G f2!uc&. ~3.2!

In configuration space, the right-hand side is zero, excep
the detector regionsD1 , D2 , because the functionsf 1 and f 2
are localized there. In these regions, it is of orderl2, which
we regard as small in comparison to the terms on the l
Hence the measured wave function approximately obeys
Wheeler-DeWitt equation. This is no surprise. In stand
quantum mechanics, a physically measured system does
obey the Schro¨dinger equation but has corrections due to t
measuring device. That it obeys the Wheeler-DeWitt eq
tion only approximately is not in conflict with exact reparam
etrization invariance, since the wave function for the ent
system always obeys the Wheeler-DeWitt equation exac
On the other hand, one wonders whether it might not
possible to devise a detection scheme in which the dete
amplitude obeys the Wheeler-DeWitt equation exactly. F
example, given the simple toolbox of parts outlined in Se
@such as the Green’s function Eq.~1.7!#, it would not be
unreasonable to guess that the detection amplitude migh
of the form Eq.~2.25! but with the G given by Eq.~1.7!
replaced by the one obtained by integratingt over an infinite
range. This gives a solution to the Wheeler-DeWitt equati
and as a consequence, the modified detection ampli
would also obey the Wheeler-DeWitt equation exactly.

B. Amplitudes for classical paths

Of greater interest is the question of the configuratio
about which the amplitude Eq.~2.25! ~or the associated prob
8-5
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ability! is peaked. The amplitude may be written in an e
plicit coordinate representation as

^xf ucn&5lnE dNxn¯dNx2 dNx1 G~xf ,xn! f n~xn!

3G~xn ,xn21! f n21~xn21!¯ G~x2 ,x1! f 1~x1!c~x1!

~3.3!

~plus symmetrizations!. It has the form of approximate pro
jections onto the regionsDk ~exact projections if thef k are
window functions! with evolution between regions describe
by the fixed energy propagatorG(xk11 ,xk). It is analogous
to the amplitude for a history of positions at a sequence
times in nonrelativistic quantum mechanics, which is kno
to be peaked about classical trajectories@31#. But note that
here the evolution is at fixed values of the energy, and th
is no reference to time.

We can estimate the form of Eq.~3.3! using a WKB ap-
proximation for the fixed energy propagator@32#. It is given
by an expression of the form

G~x9,x8!5C~x9,x8!eiS~x9,x8!, ~3.4!

whereC is a slowly varying prefactor andS(x9,x8) is the
fixed energy Hamilton-Jacobi function, i.e., the action of t
classical solution fromx8 to x9 with fixed energyE @33#. The
initial and final momenta of this classical solution are

p95¹x9S~x9,x8!, p852¹x8S~x9,x8!. ~3.5!

In terms of Eq.~3.4!, the amplitude Eq.~3.3! may be written

^xf ucn&5lnE dNxn¯dNx2 dNx1)
k51

n

C~xk11 ,xk! f k~xk!

3expS i (
k51

n

S~xk11 ,xk!Dc~x1!, ~3.6!

wherexn115xf .
Consider the integrals overx2¯xn with x1 ~and xn11!

fixed. Suppose for the moment that the functionsf k are ab-
sent so the integrals are unrestricted. By the stationary p
approximation, the dominant contribution to the integ
comes from the values ofx2¯xn for which the phase is
stationary, i.e., for which

¹xj (k51

n

S~xk11 ,xk!50 ~3.7!

for j 52,̄ n. This equation means that

¹xj
S~xj 11,xj !1¹xj

S~xj ,xj 21!50. ~3.8!

Using Eq.~3.5!, this implies that the final momentum of th
classical path fromxj 21 to xj is equal to the initial momen
tum of the classical path fromxj to xj 11 . It is not difficult to
see that this in turn implies that the pointxj must lie on the
classical path fromxj 21 to xj 11 . Hence, the stationary phas
points of the whole integral Eq.~3.6! lie on the classical path
04400
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f
n

re

se
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from x1 to xf . The approximate value of the integral is th
integrand of Eq.~3.6! with the stationary phase point value
inserted.

Now consider what happens when the restricting fu
tions f k are present. If the regionsDk ~about which thef k are
concentrated! include the stationary phase points~and if the
regions are larger than the fluctuations about these po!
then, since the integral takes its dominant contribution fr
these points, the presence of thef k makes little difference
and the integral is given once again by its stationary ph
value. On the other hand, if one or more of thef k lie far
away from the stationary phase points then, since the inte
is prevented from taking a contribution from these points,
value must be much smaller than the stationary phase va
We thus see that the amplitude Eq.~3.3! will be largest when
the regionsDk are chosen to include the stationary pha
points of the integral. As we have shown, the station
phase points lie along the classical path fromx1 to xf . It
follows that the amplitude Eq.~3.2! will be largest when the
regionsDk are chosen to lie along a classical path.

Mott’s argument for straight line paths in an expressi
analogous to Eq.~2.25! relied on the explicit from the Green
function in the free particle case, and on a special initial st
@23#. Here we see that the peaking about classical paths
be seen, at least heuristically, from elementary propertie
path integrals, for a broad class of Hamiltonians and ini
states. Bell has also discussed the Mott calculation at s
length @34#. He notes that the first projectorf 1 spatially lo-
calizes Mott’s initial wave function, but in a realistic ionizin
event, the resultant uncertainty in momentum can still
extremely small. As a consequence the angular spread o
wave packet in its subsequent evolution can be extrem
small, hence the appearance of a straight line track.

C. Comparison with a result of Hartle

The result Eq.~2.24! is very closely related to a result o
Hartle @30#. He considered a simple model quantum cosm
ogy with a Hamiltonian quadratic in the momenta, as he
and asked for the amplitude that the system passes thro
two regions of configuration space:D1 ,D2 . Using some
simple arguments about propagators and elementary p
ciples of quantum theory, he showed that the amplitude is~in
the language of the present paper!

~G f2G f11G f1G f2!uc&2~G†f 2G†f 11G†f 1G†f 2!uc&,
~3.9!

wherec is a solution to the Wheeler-DeWitt equation andf 1
and f 2 are taken to be exact projectors onto the regio
D1 ,D2 . Other than the factor ofl2 in Eq. ~2.24! which is not
important, Hartle’s result differs from Eq.~2.24! by the sub-
traction of an identical term but withG replaced byG†

~which is generally not the same asG!. Hartle argues that
this should be there on the grounds that, in an expression
Eq. ~2.25! with G represented by Eq.~1.7!, the time param-
etrization should not have a preferred direction withy the
‘‘initial’’ point of the parametrization andx the ‘‘final’’ point,
hence we should sum the amplitude over both possible
rametrization directions.
8-6
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To understand why this term can be there in the pres
calculation, let us first elaborate on the Green’s function.G,
as defined by Eq.~1.7!, may be written more explicitly as

G~x,y,E!5(
n

un* ~x!un~y!

E2En1 i e
, ~3.10!

where un(x) are eigenfunctions ofH0 with the eigenvalue
En . G(x,y,E) is real whenE lies in the discrete part of the
spectrum and complex whenE lies in the continuous par
~see, for example, Ref.@35#!. Hence in the free particle cas
considered by Mott,GÞG†, but for the harmonic oscillato
~considered in Sec. IV! G5G†. Quantum cosmologica
models usually have a spectrum which is at least in p
continuous, so we expectGÞG† in general.

Now recall the comments after Eq.~2.18!, where it was
noted that we are by no means obliged in quantum cosm
ogy to take the same boundary conditions as Mott. SinceG†

also satisfies Eq.~2.15!, we may use it in place ofG to
generate solutions to the detector amplitude. BecausG
2G†5 id(H02E), it is easily seen that the difference b
tween usingG and G† is a homogeneous solution in Eq
~2.16! and ~2.17!. It is also true that, in higher order pertu
bations, we may useG or G† or some combination. There
fore, there is a more general class of solutions for the de
tion amplitude which are sums of terms of the form E
~2.25! with some of theG’s replaced byG†’s ~and with a
suitable overall normalization!. In particular, Hartle’s ampli-
tude falls into this enlarged class of solutions, so there is
conflict with his result.

Mott made a particular choice of solution appropriate
the physical situation he was investigating. In the case
relativistic field theory in Minkowski space, one would no
mally impose some sort of causality requirement to fix
solution more precisely, and therefore to choose betweeG
andG† ~sinceG is essentially the Feynman propagator!. One
could require, for example, that the wave function for t
whole system be affected by the detector only in the fut
light cone of the detector region. In quantum cosmolo
however, although the metric has hyperbolic signature
Minkowki space, it is by no means clear that one is oblig
to impose an analogous requirement, and in fact it is diffic
to see exactly how to do this in general since the configu
tion space is usually not globally hyperbolic.~See, however,
Ref. @12#!. Instead, one might expect to fix the choice ofG or
G† by appealing to cosmological boundary conditions. T
no-boundary proposal of Hartle and Hawking, for examp
picks out a wave function that is real@25#. It is sometimes
claimed that this corresponds to a ‘‘time-symmetric’’ wa
function @36#. It therefore stays most closely to the timele
nature of the Wheeler-DeWitt equation and in some se
represents a complete abandonment of any fundamenta
tion of causality. It is now interesting to note that Hartle
detection wave function Eq.~3.8! is in fact real ifc is real. In
many ways this therefore seems like the most natural s
tion to take in the case of the Wheeler-DeWitt equation.
do not, however, in this paper commit to any particu
choice of boundary condition, as stated in Sec. I.
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In summary, therefore, a more general solution to the
tector model is a sum of terms of the form Eq.~2.25! involv-
ing bothG andG†, and this more general solution include
Hartle’s result Eq.~3.14!. Note also that the replacement o
G by G† does not affect the discussion of the peaking of
amplitude about classical trajectories.

D. On timelessness and detection

It is perhaps worth elaborating on a feature of the detec
model which appears at first sight to be incompatible w
the timelessness of the Wheeler-DeWitt equation. We h
coupled the system to a series of detectors via the interac
Hamiltonian Eq.~1.8!. This Hamiltonian describes a situa
tion in which, along a trajectoryx(t), the detector is in the
ground state ‘‘before’’ the trajectory enters the detector
gion and in an excited state ‘‘after’’ it has passed through
region. Along aclassicaltrajectoryx(t) in which there is a
notion of time, and of before and after, this is undeniab
correct.~The parametert simply labels the points along th
curve—it may be taken to be, for example, the distan
along the curve from some reference point.! But how are we
to understand how the detector works in the genuinely tim
less world described by the Wheeler-DeWitt equation? Th
is no before and after and there is no preferred direction
time.

The above results effectively imply that each solution
the Wheeler-DeWitt equation may be regarded as a supe
sition of states, each of which is concentrated along an en
classical trajectory in configuration space~and we will see
this in more detail in Sec. IV!. What then seems to be hap
pening in the present model including the detector, is t
each trajectory carries a label indicating whether or no
passes through the detector region at any stage along its
tire length. In the~perhaps restrictive! language of time, at
each point along the trajectory, the label allows the traject
to ‘‘know’’ whether it passed through the detector region
the past, or will pass through it in the future. But it is only o
adopting this temporal language that the situation see
paradoxical. The paradox vanishes when ones speaks th
cabulary of entire trajectories in configuration space, and
can see this in the solution, Eq.~3.1!. The wave function of
the entire system is written as a correlated state in which
state correlated with the detectors in theu1& state is the state
Eq. ~2.25!: the detected state is indeed concentrated on
jectories that pass throughD1 ,¯Dn .

The issues discussed in this section may be of releva
to the perennial debate on the question of time asymmetr
quantum cosmology@20,37#.

IV. COHERENT STATES FOR TIMELESS DYNAMICS

Since the peaking about classical paths is the most im
tant property of the amplitude Eq.~2.25!, it is worth explor-
ing it in more detail for the special case of a collection
harmonic oscillators, where it is possible to show ve
clearly how the solutions to the Wheeler-DeWitt equati
correspond to superpositions of states peaked about clas
paths. We will introduce a class of coherent states appro
ate to the timeless theories considered here and which
8-7
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J. J. HALLIWELL PHYSICAL REVIEW D 64 044008
natural analogs of the standard coherent states of the
monic oscillator.

The Hamiltonian for a set ofN identical harmonic oscil-
lators is

H05 1
2 ~p21x2!. ~4.1!

In this case the spectrum ofH0 is discrete and we have

d~H02E!5E
0

2p dt

2p
e2 i ~H02E!t. ~4.2!

Sinced(H02E) is now in fact a true projection operator w
may writed(H02E)25d(H02E) without having to worry
about regularization through the induced inner product, a
the continuous case.~In this expressionE is allowed to take
only the discrete values corresponding to the spectrum
H0!. The Green functionG is given as before by Eq.~1.7!
with H replaced byH02E. For a one-dimensional oscillato
Eq. ~4.2! is equivalent to

d~H02E!5uE&^Eu, ~4.3!

whereuE& is the energy eigenstate. In more than one dim
sion the energy eigenstates are degenerate, so Eq.~4.2! has
the form

d~H02E!5(
d

uE,d&^E,du, ~4.4!

whereuE, d& are the energy eigenstates with degeneracy la
d.

The standard coherent states~see Ref.@38#, for example!
are denotedup, x& and they have the important property th
they are preserved in form under unitary evolution,

e2 iH 0tup,x&5upt ,xt&, ~4.5!

wherept , xt are the classical solutions matchingp, x at t
50, hence they are strongly peaked about the classical p
We are interested in finding a set of states which are ana
of these states for the timeless case. That is, they shoul
eigenstates ofH0 , and should be peaked about the classi
paths of given fixed energy in phase space. It is not diffic
to see that a set of states doing the job are

ufpx&5d~H02E!up,x&

5E
0

2p dt

2p
e2 i ~H02E!tup,x&

5E
0

2p dt

2p
eiEtupt ,xt&. ~4.6!

These states are not in fact normalized to unity but we s
see that it is useful to work with them as they are. Since
statesupt ,xt& are concentrated at a phase space point for e
t, clearly integratingt over a whole period produces a sta
that is concentrated along the entire classical trajectory. E
state is labeled by a fiducial phase space pointp, x which
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determines the classical trajectory the state is peaked ab
Under evolution of the fiducial pointp, x to another point,
ps , xs , say, along the same classical trajectory, the s
changes by a phase

ufpx&→ufpsxs
&5eiEsufpx& ~4.7!

as may be seen from Eqs.~4.5! and ~4.6!. We will refer to
these states astimeless coherent states. Their properties are
in fact very similar to the usual coherent states.

Two timeless coherent states of different energy are
actly orthogonal. The more interesting case is that in wh
they have the same energy, and then they are approxima
orthogonal if they correspond to sufficiently distinct classic
solutions. This is because we have

^fp8x8ufpx&5^p8,x8ud~H02E!up,x&

5E
0

2p dt

2p
eiEt^p8,x8upt ,xt&. ~4.8!

From the properties of the standard coherent states we k
that

u^p8,x8upt ,xt&u<1 ~4.9!

with equality if and only ifp85pt andx85xt . Moreover, the
overlap of two coherent states is exponentially small if th
are centered around phase space points that are suffici
far apart. It follows that ifp8, x8 does not lie on, or close to
the trajectorypt , xt , the overlap̂ p8,x8upt ,xt& will always
be exponentially small for allt. The integral overt in Eq.
~4.8! will then give a result that is much smaller than the ca
in which p8, x8 does lie on, or close to, the trajectorypt , xt
~because in the latter case the overlap^p8,x8upt ,xt& becomes
close to unity for some value oft!. The timeless coheren
states are therefore approximately orthogonal for sufficien
distinct classical trajectories.

Note that the coherent statesup,x& are in fact alreadyap-
proximateeigenstates ofH0 , with eigenvalue1

2 (p21x2), as
long asupu, uxu are much larger than the coherent state qu
tum fluctuations. GivenE, it therefore seems reasonable
choose the valuesp, x in the fiducial coherent state so th
E5 1

2 (p21x2), when constructing the timeless states E
~4.6!. With this choice, the timeless coherent states are
proximately normalized to unity,̂fpxufpx&'1.

The standard completeness relation for the coherent s
is

E dNpdNx

~2p!N upx&^pxu51. ~4.10!

Multiplying both sides byd(H02E) from the left and right,
and using Eq.~4.6!, we get

E dNpdNx

~2p!N ufpx&^fpxu5d~H02E!. ~4.11!

Sinced(H02E)uc&5uc& on any solution to the eigenvalu
equation (H02E)uc&50, this is as good as a completene
8-8
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TRAJECTORIES FOR THE WAVE FUNCTION OF THE . . . PHYSICAL REVIEW D 64 044008
relation on the set of solutions to the eigenvalue equa
~which is all we are interested in!. We may therefore write
any solutionuc& as a superposition of timeless coherent sta

uc&5E dNpdNx

~2p!N ufpx&^fpxuc&. ~4.12!

It is then tempting to interpret̂fpxuc& as the amplitude tha
a system in the stateuc& will be found on the classical tra
jectory corresponding to the timeless coherent stateufpx&.
Again using the fact thatd(H02E)uc&5uc& it is easy to see
that this is in fact the same as^p,xuc&, which is the ampli-
tude for finding the system at the phase space pointp, x
labeling the trajectory. The probability is then simp
u^p,xuc&u2. This is a simple and intuitively appealing resu
the classical trajectory is completely fixed by its initial va
uesx, p, hence we expect that the probability for being fou
on a certain classical trajectory is the same as the probab
for being found at the initial phase space point that labels

This interpretation is put forward with a small note
caution, however, since the sum overp, x in Eq. ~4.12! is not
only over states that are only approximately orthogonal~as
with the usual coherent states! but, because of the propert
Eq. ~4.7!, includes some redundancy in the summation.
particular, ufpx&^fpxu is invariant along the classical phas
space trajectory of its fiducial point. Since this only produc
some sort of constant factor, it may not make any differen
and indeed, the above interpretation appears to produce
sible results. Still, it would be desirable to include, if po
sible, some sort of ‘‘gauge fixing’’ which factors out th
redundancy. This will be explored elsewhere.

Given all of this background, we may now reconsider t
detector amplitude Eq.~2.25!. We expand the initial stateuc&
in the timeless coherent states, as in Eq.~4.12!, so we need
only consider the amplitude Eq.~2.25! operating on a time-
less coherent stateufpx&. Consider the integral represent
tion of it, Eq. ~4.6!. When f 1 operates on the state, it give
zero if the trajectorypt , xt never passes through the regio
D1 . If it does pass through, it has the effect of restricting
time integral to the amount of timeDt1 the trajectory spends
in the regionD1

f 1ufpx&'E
Dt1

dt

2p
eiEtupt ,xt&. ~4.13!

Next, to consider the operation ofG, we write it as

G5 i E
0

`

dte2 i t~H2 i e!, ~4.14!

where H5H02E. Operating with this on Eq.~4.13!, we
obtain

G f1ufp,x&' i E
0

`

dtE
Dt1

dt

2p
ei t~E1 i e!1 iEtupt1t ,xt1t&,

~4.15!

where we have used Eq.~4.5!. The integration overt, since
upt ,xt& is periodic with period 2p, means that Eq.~4.15! is
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concentrated along the same entire classical trajectory as
original timeless coherent state. Furthermore, from the fo
of the time integrals in Eq.~4.15!, one can see that the am
plitude is proportional to the original timeless coherent st
Eq. ~4.6! @although the time integrations may need regulat
along the lines of Eq.~1.6!#.

The operation off 2 produces zero if the trajectory fails t
pass throughD2 , and a result similar to Eq.~4.13! if it passes
through. The subsequent operation ofG again produces a
state concentrated along the entire trajectory. Proceeding
similar manner to the end of the chain, we therefore find t
the detector amplitude Eq.~2.25! with a timeless coheren
state as the initial state is zero unless all the detection reg
D1 ,D2 ,¯Dn lie along the trajectory of the timeless cohere
state, and in that case the amplitude is proportional to
original state Eq.~4.6!.

It follows that the detector amplitude Eq.~2.25! operating
on a general state@expanded in timeless coherent states as
Eq. ~4.12!# consists of a superposition of only those timele
coherent states that pass through all the detector reg
D1 ,D2¯Dn . This could be quite a large sum of states if t
regionsDk are large. However, it will consist of essential
just one timeless coherent state if the detector regions
along a classical trajectory and if their size is just bigger th
the spatial width of the wave packet. The detection amplitu
along this classical trajectory is then proportional
^fpxuc&, in agreement with the analysis based on Eq.~4.12!.

Rovelli has written down a coherent state of the type c
sidered here@17# in the context of a very similar model
although its properties were not explored and exploited
they are here. Klauder, in his approach to the quantizatio
constrained systems using coherent states, considered
projection of the standard coherent states onto the const
subspace, hence in essence wrote down states of the form
~4.6! @39#. He did not, however, consider their use as
interpretational tool. Wave packet solutions to the Whee
DeWitt equation, which approximately track the classical t
jectories for more interesting cosmological models, ha
been considered in Refs.@40#, @41#.

V. EXACT SOLUTION TO THE DETECTOR DYNAMICS

In this section we discuss an alternative method of a
lution of the eigenvalue equation~2.2!. As we shall see, it
does not in fact give a very elegant representation of
Mott solution, which is why it was not used above. If, how
ever, one is permitted to use different boundary conditio
as may be reasonable in quantum cosmology, then it prov
an alternative possible solution to the detector dynamics

We consider first the case of a single detector. The
observation is that a solution to the eigenvalue equation~2.2!
may be generated using either of the expressions:

uC&5d~H2E!uf& ~5.1!

5
1

2p E
2`

`

dte2 i t~H01lH int2E!uf&.
~5.2!
8-9
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J. J. HALLIWELL PHYSICAL REVIEW D 64 044008
Here uf& is an arbitrary fiducial state in the joint system
detector Hilbert space. It is ambiguous up to the addition
a term of the form (H2E)uf8&. For the moment we keep
uf& general and take

uf&5ux0&u0&1ux1&u1&. ~5.3!

To evaluate Eqs.~5.1! or ~5.2! we introduce the eigenstate
of a1a†, which are

u6&5
1

&
~ u0&6u1&). ~5.4!

The expression Eq.~5.1! is then readily evaluated with th
result

uC&5ucnd&u0&1ucd&u1&, ~5.5!

where

ucnd&5 1
2 „d~h1l f 1!1d~h2l f 1!…ux0&1 1

2 „d~h1l f 1!

2d~h2l f 1!…ux1&, ~5.6!

ucd&5 1
2 „d~h1l f 1!2d~h2l f 1!…ux0&1 1

2 „d~h1l f 1!

1d~h2l f 1!…ux1& ~5.7!

~recalling that h5H2E!. These expressions are perha
more easily appreciated using a path integral representa

cnd~xf !5E
2`

`

dtei tEE Dx~ t !exp~ iS@x~ t !# !

3FcosS lE
0

t

dt f1„x~ t !…D x0~x0!

1 i sinS lE
0

t

dt f1„x~ t !…D x1~x0!G ~5.8!

cd~xf !5E
2`

`

dtei tEE Dx~ t !exp~ iS@x~ t !# !

3F i sinS lE
0

t

dt f1„x~ t !…D x0~x0!

1cosS lE
0

t

dt f1„x~ t !…D x1~x0!G . ~5.9!

Equations~5.8! and ~5.9! represent the exact solution to E
~2.2! with one detector in place.

Turn now to the question of the fiducial state. The con
tion Eq. ~2.5!, suggests that we should take

uf&5ux0&u0&, ~5.10!

whereuc&5d(H02E)ux0&, and hence thatux1&50. In fact,
in the induced inner product scheme, we may takeux0&
5uc&, since effectivelyd(H02E)25d(H02E). This there-
fore yields a path integral expression for the amplitude
detection and has the property that the factoring condi
04400
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Eq. ~2.5! is satisfied whenl50. So let us first explore the
properties of Eqs.~5.8! and ~5.9! with x150.

The nature of the sums over pathsx(t) in Eqs.~5.8! and
~5.9! is governed by the quantity

td5E
0

t

dt f1~x~ t !! ~5.11!

appearing in the sine and cosine factors. Withf 1 normalized
to be dimensionless, this quantity has the dimensions of ti
and is essentially the time spent by the pathx(t) in the re-
gion D1 around the detector.@This is not of course a physi
cally measurable time. The pathsx(t) in the path integral
have a well-defined notion of time, but after summing ov
the total time duration of each patht the final result is time
independent.# Now, in the amplitude for no detection, Eq
~5.8!, the factor cos(ltd) is 1 for td50, and decreasing fortd
increasing from zero. In the path integral, it therefore has
effect of suppressing paths that pass close to the detector
favors paths that stay away from it. Similarly, in the dete
tion amplitude, Eq.~5.9!, the factor sin(ltd) is zero for paths
that spend no time near the detector, and nonzero for p
that enter the detector region. It therefore enhances the
plitude for paths entering the detector region. The sine
cosine factors therefore, in a very crude way, enforce res
tions on the paths corresponding to entering or not ente
the detector region, as one would expect. We can also
however, that these factors only do their job well ifltd is
somewhat smaller than 1, indicating that the detector mo
is only physically sensible in the perturbative regime ab
l50, as expected.

It is now important to check the agreement between
exact result above and the perturbative result of Sec. II. I
not difficult to show that the exact solution Eq.~5.9! with
x150 does not in fact agree with the perturbative soluti
Eq. ~2.19!. It differs by the presence of homogeneous so
tions in the smalll limit of Eq. ~5.9!. We will not go into
detail but it may be shown using Eq.~5.7! and the identity

d~h1l f !5d~h!1 il~G f G2G†f G†!1O~l2!
~5.12!

@which is proved using the exponential representation
~5.2!#. Recall that in the perturbative solution the homog
neous solutions were removed at each order in perturba
theory essentially by inspection. Since no correspond
condition has been imposed here, it is not surprising t
these spurious solutions crop up. We can, however,
agreement if we chooseux1&5 il f G†ux0& in Eq. ~5.9! @again
proved using Eq.~5.12!#, although there is no obvious inde
pendent reason for making this choice. Furthermore,
presence of the Green’s functionG† in the fiducial state
rather destroys the elegance of the path integral represe
tion compared to the casex150.

On the other hand, although the Mott solution is n
readily obtained, the removal of the homogeneous soluti
in the perturbative solution is a subtle matter of bound
conditions, above and beyond the basic factoring condit
Eq. ~5.10!. As discussed in Sec. III, in the case of quantu
8-10
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cosmology one is not obviously obliged to take the sa
conditions, and indeed one can argue that, beyond Eq.~5.10!,
the boundary conditions are up for grabs. Indeed, one co
effectively choose boundary conditions byproposingthat the
solution is given by the formula Eq.~5.1! with the factoring
condition Eq.~5.10!. As one can see from Eq.~5.12!, this
proposal again produces solutions with a time symmetric
vor to them~i.e., with an equal number ofG’s and G†’s in
the solution!, a feature which persists to the case of mo
than one detector. Not surprisingly, this choice does in f
produce, in essence, the Hartle amplitude Eq.~3.8!.

Therefore, in this section we have produced another c
didate expression for the detection amplitude, which is ar
ably the more appropriate one for quantum cosmology. F
thermore, the means of generating it, Eqs.~5.1!, ~5.2!, are
readily generalizable to more complicated situations.

VI. AN IMPROVED DETECTOR MODEL

We now briefly consider a more elaborate detector mo
that consists of a harmonic oscillator instead of the sim
two state system. So we take, in the case of a single dete

Hd5va†a, H int5 f ~x!~a1a†!. ~6.1!

The energy eigenstate of the total Hamiltonian is again
culated using Eq.~5.2!, with the factored fiducial state Eq
~5.10!, whereu0& is the harmonic oscillator ground state.
terms of a path integral, denoting the harmonic oscilla
coordinates byq,

C~xf ,qf !5E
2`

`

dteiEtE Dx~ t !Dq~ t !exp~ iS0@x~ t !#

1 iSd@q~ t !#1 ilSint@q~ t !,x~ t !# !x0~x0!u0~q0!,

~6.2!

whereu0(q)5^qu0&. The integral overq is conveniently re-
written as

E Dq~ t !exp~ iSd@q~ t !#1 ilSint@q~ t !,x~ t !# !u0~q0!

5^qf uT exp„2 i t~Hd1lH int!…u0&, ~6.3!

whereT denotes time ordering. The right-hand side of E
~6.3! is just the unitary evolution of the vacuum state for
driven harmonic oscillator. Using the properties of coher
states@38#, Eq. ~6.3! is equal to^qf uz(t)&, where uz& is a
standard coherent state and

z~t!52 ilE
0

t

dteiv~t2t ! f „x~ t !…. ~6.4!

To find the amplitudes for detection and no detection
expand the total state Eq.~6.2! in terms of the eigenstates o
the harmonic oscillator. Since all states other than the gro
state correspond to detection, there is no single amplit
corresponding to detection~although there is a probability!.
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It is therefore easier to look at the amplitude for no detecti
which is obtained by overlapping Eq.~6.2! with the ground
stateu0(qf), yielding,

cnd~xf !5E
2`

`

dteiEtE Dx~ t !^0uz~t!&

3exp~ iS0@x~ t !# !x0~x0!. ~6.5!

From the properties of coherent states@38#, we have

^0uz~t!&5exp~2 1
2 uz~t!u2!. ~6.6!

The probability for no detection iŝcnducnd& and the prob-
ability for detection is simply 12^cnducnd&.

The result Eq.~6.5! clearly has the desired properties. F
pathsx(t) which never enter the detection region,z(t)50
and the path integral is unaffected. Paths that enter the
gion, on the other hand, generally havez(t)Þ0, and they are
exponentially suppressed. This is therefore a much impro
detector model in comparison to Eq.~5.8!. Its validity is not
restricted to the perturbative regime. The generalization
many detectors is trivial and essentially the same result c
cerning peaking about classical trajectories is then obtain

Of course, this detector is still not fully satisfactory b
cause it can happen thatz(t)50 even for paths that enter th
region, because of the oscillatory nature ofz(t), hence we
again encounter the issue of detector recurrences. Again
will be avoided if the time the trajectory spends in the det
tor region is short~less thanv21!.

A more challenging detector improvement avoiding t
recurrence problem would be to construct one that, wer
used in standard unitary quantum mechanics, would be i
versible, i.e., involves an essentially infinite number of d
grees of freedom. Such a detector was introduced in the
lated context of measuring arrival times in Ref.@42# and it
would be interesting to incorporate it into the situation co
sidered here.

VII. SUMMARY

The aim of this paper was to give substance to the app
ing intuitive notion that solutions to the Wheeler-DeW
equation~1.1! correspond to entire histories of the univer
with time emerging as a parameter along each trajectory.
concrete technical results—the detection amplitude and
introduction of a set of timeless coherent states—are c
patible with this notion. There are, however, many sub
aspects to this notion@4#, and we do not claim to have a
exhaustive demonstration of the emergence of trajecto
from the Wheeler-DeWitt equation.
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