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Trajectories for the wave function of the universe from a simple detector model
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Inspired by Mott's analysis of particle tracks in a cloud chamber, we consider a simple model for quantum
cosmology which includes, in the total Hamiltonian, model detectors registering whether or not the system, at
any stage in its entire history, passes through a series of regions in configuration space. We thus derive a variety
of well-defined formulas for the probabilities for trajectories associated with the solutions to the Wheeler-
DeWitt equation. The probability distribution is peaked about classical trajectories in configuration space. The
“measured” wave functions still satisfy the Wheeler-DeWitt equation, except for small corrections due to the
disturbance of the measuring device. With modified boundary conditions, the measurement amplitudes essen-
tially agree with an earlier result of Hartle derived on rather different grounds. In the special case where the
system is a collection of harmonic oscillators, the interpretation of the results is aided by the introduction of
“timeless” coherent states—eigenstates of the Hamiltonian which are concentrated about entire classical tra-

jectories.
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I. INTRODUCTION J=i(WVU* —P*V). (1.3
The focus of attention in quantum cosmology is theLike the Klein-Gordon equation, however, this does not pro-
Wheeler-DeWitt equation duce a positive probability density except in very special
casegnamely when there is a Killing vector associated with
HW¥=0. (1.1) H). It also vanishes for real wave functions. One might also

Here, the wave functio is a functional of the gravitational consider the Schrbnger inner product

and matter fields on a three surface, and it describes the
quantum state of a closed cosmological mddél The most (V4| W)= f dNX () WE (X)W 5(X), (1.4
striking and conceptually problematic aspect of this equation ¢
is that it does not involve time explicitly, severely complicat- . .
ing efforts to extract predictions from 2,3]. Among the —Whereu(x) is an appropriate measure, but the ndninw)
many attempts to understand this feature, one is to claim thdypically diverges. In practice, most uses of the Wheeler-
“time” and indeed entire histories of the universe are alreadyP€Witt equation rely on something like the “WKB interpre-
contained among the arguments of the wave function; henc@tion,” in which in the oscillatory regime the wave function
no time label is requiref,5]. While these claims seem to be 1S Written in the form¥ =Ce'®, whereSis a solution to the
true at some level in Simp|e models of guantum Cosmo|ogy!‘.|ami|t0n'JaC0bi equation. It is argued that this -Wave- func-
it presents us with the interesting challenge of reformulatingion corresponds to an ensemble of classical trajectories sat-
standard quantum theory without the explicit use of time,sfying the first integrap=V'S, with |C|? giving a measure
and then demonstrating the emergence of time and of classp the ensemble. Although probably correct it is somewhat
cal trajectories. Although the Wheeler-DeWitt equation in theheuristic and can only be used in the oscillatory regi(Bee
form Eq. (1.1 is unlikely to be the last word in quantum Ref.[7], for example, for a discussion of these isspes.
gravity, it does seem likely that whatever replaces it will still  Recent more successful work with the Wheeler-DeWitt or
be of a timeless nature. The loop variables program of Ashsimilar equations involves the induced inner prod(aiso
tekar and others, for example, certainly preserves this featutg1own as Rieffel induction or refined algebraic quantization
[6]. It is therefore of interest to investigate this feature in[8,9]. Here, one considers eigenvalues of the Wheeler-
simple models. DeWitt operator

Many attempts to use and make sense of @dl) have
been made. These attempts focus on sinipli@isuperspacde
models, in which one has aN-dimensional configuration
spaceC with coordinatex, and the Hamiltonian operator has
the form

H|We)=E|Ver), (1.5

wherek is the degeneracy label for eaEh The spectrum is
typically continuous inE in which case the states are nor-
malized via Eq.(1.4) according to

H=—3V2+V(x). (1.2

(Ve Ve )=8(E—E') S (1.9

The signature of the metric is typically hyperbolic so the
Wheeler-DeWitt equation is like a Klein-Gordon equation inand one can now see whi’|¥) diverges. The induced
curved space with a spacetime dependent mass term. Assoner product is then, loosely speaking, to drop the factor
ciated with it is a Klein-Gordon current O(E—E') asE andE’ are set to zero. This procedure can be
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defined rigorously and induces an inner product on the zero The decoherent histories approach offers an approach to
energy eigenstate§This procedure is not of course neces- answering this question and it does indeed use some of the
sary when the spectrum is discrete. above elementgl5]. It is particularly adapted to this sort of
Related to these issues is the prevalent idea that any ogituation since it directly addresses the issue of defining a
erations performed on the wave function in the computatiorquantum notion of “trajectory” and this approach is cur-
of physically interesting probabilities should commute withrently being investigated in this context6] (see also Ref.
H [3,10,11. Mathematically, this is to respect the symmetry[1]). Other approaches involving observables—operators
of the theory, reparametrization invariance, expressed by theommuting with the constraint—have also been considered
constraint equatioiil.1). Physically, it is connected with the [9,17,18,19. Most importantly, Kiefer and Zef20] and Bar-
fact that the universe is a genuinely closed system, anBour[4,21,23 have devoted much effort to elucidating the
all realistic measurements are carried out from the insidegemergence of trajectories and of time from the timeless
so cannot displace the system from a zero energy eigenstaféheeler-DeWitt equation.
of H. The approach we adopt here stems from Barbour’s obser-
Given these preliminaries, turn now to the questions onevation[22] that a substantial insight into the Wheeler-DeWitt
would like to ask of the wave function of the system in orderequation may be found in Mott’'s 1929 analysisaparticle
to extract useful cosmological predictions from it. We aretracks in a Wilson cloud chambég3]. Mott’s paper con-
interested in the notion that the wave function corresponds igerned the question of how theparticle’s outgoing spheri-
some way to a set of trajectories. Let us therefore ask theal wave stateg'*R/R, could lead to straight line tracks in a
question: “What is the probability that the system is found incloud chamber. His explanation was to model the cloud
a series of regions in configuration spaade,,A,,...A,?” chamber as a collection of atoms that may be ionized by the
Note that the question is stated in such a way that does nqassage of thex particle. They therefore act as measuring
involve time. There is no requirement that the system entedevices that measure tlagparticle’s trajectory. The probabil-
one of the regions at a particular “time,” or that the regionsity that certain atoms are ionized is indeed found to be
are entered in a particular order. We cannot ask this becaust¢rongly peaked when the atoms lie along a straight line
the Wheeler-DeWitt equation does not know about such athrough the point of origin of ther particle.
ordering parameter. In the classical case the corresponding Although Mott seems to have had in mind a time-
situation consists of a statistical ensemble of classical trajeevolving process, he actually solved the time-independent
tories with the same fixed energy. The trajectories are simplgquation
curves in configuration space and it is straightforward to de-
termine the probability that a given curve passes through a (Ho+Hg+AHin) | W)Y=E|W¥). 1.8
given region at any stage in its entire history. The question is

more involved in quantum theory, since quantum theory iSjereH is thea particle HamiltonianH is the Hamiltonian
somewhat resistant to the notion of a traject@rythe non- o1 the jonizing atoms, anH,,, describes the Coulomb inter-
relativistic case, it involves specifying positions at different 5.tion petween the particle and the ionizing atorrsvhere
time, which do no commujelt is, nevertheless, important to  is 5 small coupling constantNow the interesting point, as
develop this notion, since the timeless nature of the Wheelegarhour notes, is that Mott derived all the physics from this
DeWitt equation cries out for an interpretation in terms ofequation with little reference to time. Mott's calculation is
entire histories of the universe. The aim of this paper is tQnegrefore an excellent model for many aspects of the
offer one possible way of giving meaning to the above quesyneeler-Dewitt equation. Barbour has elucidated this very
tion in the quantum theory of simple cosmological models. eloquently, showing how it sheds light on a number of dif-
Intuitively, one would expect that the question can be for-fgrent aspectf4,21,22,23.
mulated and answered using a simple toolbox of parts: the Barpour's discussion is largely qualitative. The point of
quantum stateéW¥) satisfying the constraint, projection op- the present paper, by contrast, is to extract quantitative infor-
erators onto the regions,, or maybe projections onto some mation from the comparison between the Mott calculation
class of operators which commute with the constréinOne  ang the Wheeler-DeWitt equation. Mott derived the straight
might also expect to find the Green function associated withie tracks by looking at the wave function associated with

the Wheeler-DeWitt equation, which has the form two atoms being in the ionized state, for the special case of
an outgoing wave initial state. But since this is elementary

G(xy)=i | drxle H-i97yy=(x _ qua}ntum.m.echamcs, it is a simple matter to generalize it to
() f 0 (x| v) (H=ie) y arbitrary initial states and other types of detector models, and

(1.7)  to derive a detailed expression for the probability distribu-
tion. Therefore Mott's calculation points the way toward a

(this is the analogue of the Feynman propagattirmight  general expression for the probability distribution for the
possibly also involve one of the other types of propagatorsystem passing through a series of regions in configuration
obtained by integrating over an infinite range in this ex- space without reference to tim&his is what we will work
pression[12-14. The question is then exactly how one out in detail in this paper.
stitches all these components together to make a plausible We consider a system in & dimensional configuration
probability distribution describing trajectories passingspaceRN with coordinates described by a Hamiltonad, .
through a series of regions. Although we are ultimately interested in quantum cosmol-
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ogy, most of the results apply to both simple quantum-of the universe at early times. Hence, through measurements
mechanical models and to gquantum-cosmological modelsf these quantities in the present we can make deductions
with Hamiltonian given by Eq(1.2). The precise form of the about the behavior of the universe around the time of the big
Hamiltonian, including the signature of the metric, will pang.

therefore be left general, except where explicitly stated oth- The detector model above is a crude model of this pro-
erwise. The system is coupled to a set of detectors via agess. In the case of a classical system coupled to the quantum
interactionH; and the state of the whole system is given bydetector, a trajectory passing through the detector region
the solution to Eq(1.8). Mott used the electronic degrees of causes the detector to register and, to within certain limits of
freedom of atoms as detectors. However, the essence of thgtector accuracgwhich may be estimatedthe detector re-
calculation is maintained with a much Simpler detectormains in the “registered” state a|ong the rest of the trajec_
model. The detector we use consists of a two state systefary. An observer in the late universe may then determine the

with Hy=0 and detector stat¢d) and|1), where detector state and from this deduce that the trajectory entered
. : the region at some stage in the past. The fully quantum pic-
al0)=0, al1)=[0), a'l0)=|1), a'l1)=0. ture of this scenario is more subtle, in that the absence of a

1.9 time parameter makes it difficult to speak about the detector
registering “after” it passes through the region. Neverthe-
less, on the basis of the corresponding classical picture, it
seems reasonable to interpret the part of the system wave

Hin= > fi(X)(ag+ay). (1.109  function, which is correlated with the “registered” state of
X the detector, to be the amplitude for the system passing
through the region. This is exactly what we will do hére.

Here, f (x) is spatially localized in the regiod,. One It is perhaps worth noting that the question considered
could, for example, také, to be a window function which is here bears a close resemblance to the arrival time and tun-
1 in A, and O outside it, but we will not restrict to this neling time questions in nonrelativistic quantum mechanics
choice. If the detector i is “initially” in the ground state  [28,29. There also, time enters in a nontrivial way, and
|0y, it will be displaced into the excited stalg) if the par-  equivalent classical approaches to the problem are inequiva-
ticle’s trajectoryx(t) entersA, and remains in the ground lent at the quantum level. A variety of approaches have been
state otherwise. Of course, in the timeless context of thérought to bear on these problems including, as here, explicit
Wheeler-DeWitt equation, “initially” has no meaning. We detector models.
will impose the condition that the detector is in the ground In Sec. Il, we solve the system E(@..8) using the simple
state in the absence of coupling to the system. This does ndiyo state detector model.
however, fix the solution completely, as we shall see, so fur- Using the results, we then ask, in Sec. lll, some simple
ther boundary conditions are required. We will not, in fact,questions of the detected wave function. Does the detected
commit to a particular set of boundary conditions in thiswave function still obey the Wheeler-DeWitt equation? We
paper, but will explore the general properties of the solutionsfind that it does exactly outside the detector region, and that

Ultimately, it would be desirable to use this scheme in ant does approximatelyfor small \) inside the detector re-
interesting cosmological model and to apply some of thegion. We compute the probabilities for detection and see, as
well-known boundary condition proposals, such as the noMott essentially saw, that they are strongly peaked when the
boundary proposal of Hartle and Hawkif@p]. This particu-  detectors lie along a classical trajectory. We also observe that
lar proposal involves taking the wave function given by athe resulting amplitude for detection bears a very close re-
path integral over metrics and matter fields on a compacgemblance to a formula written down by HaiftB9] (without
four geometry. With a detector coupled in as here, this patlising an explicit detector modednd we discuss the connec-
integral would also include a sum over detector states on #ons with his result. We discuss the implementation of
compact four geometry, and it would generate a solution tdoundary conditiongthis is the only point at which the in-
the Wheeler-DeWitt analogue of E(L.9). definite signature of the minisuperspace metric is signifi-

The detector described here is far from realistic, not leas¢any. We also discuss various other aspects of the solution in
of all because it can return to its ground state if the particlgelation to detection and the timelessness of the solutions.
spends too much time in the detector region. We will discuss The results of Sec. Il indicate that the wave function of
its problems and possible improvements. We note, howevethe system may, in some sense, be regarded as a superposi-
that similarly simple detector models have been profitablytion of states each of which is peaked about an entire classi-
used elsewhere, e.g., in the Coleman-Hepp mp2l (See
also Ref.[27]).

Furthermore, although this model is very simple, it does 1t js of course of interest to calculate the extent to which the
possess at least some key features that are cosmologicaliygistered” state of the detector is correlated with the particle
relevant. In the real universe, we make measurements at thyssing through the region. To answer this question fully requires
present time of, for example, the microwave background anghe calculation of a probability distribution for both the detectors
the distribution of galaxies. These physical features of theind the histories of the system. This involves the more elaborate
present universe constitute “records”—physical states whichmachinery of the decoherent histories approfdhbut will not be
persist for a long time and which are correlated with the stat@ursued here.

We take
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cal history. To demonstrate this explicitly, we specialize, inWe require that in the absence of coupling to the detectors,

Sec. IV, to the case of a collection of harmonic oscillatorsthe detectors are in the state of no detectjoh, This means

(hence the Hamiltonian in this case is thedimensional that

harmonic oscillator Hamiltonign We introduce a new type

of coherent states, the “timeless coherent states.” These |®@)=]4)[0)[0) (2.9

states are eigenstates of the Hamiltonian, and are therefore . . .

time independent, but are peaked about classical trajectorie%ndw> Is the stgte we are trying to measure. Inserting in Eq.
.2) and equating powers of, we get

Any eigenstate may be expanded in terms of theses states,

and we show that a series of detections along a classical path (Ho—E)| ¥ @) =0 (2.6)

essentially projects the state down onto a timeless coherent '

state. _ _ _ _ (Ho=B)[ W)= —Hiw ¥(?), 2.7
Since the detector is so simple, its dynamics may be

solved exactly and this is carried out in Sec. V. This calcu- (Ho— E)|[W®)= —H | ¥ D), (2.9

lation confirms that the detector model is only physically

realistic in the perturbative regim@hen the particle spends and similarly to higher orders. The first relation shows that

only a short time in each detector regioAlthough the so- |¢) must obey the unperturbed eigenvalue equation, as ex-

lution is exact and leaves the boundary conditions general, fpected. Inserting Eq2.5) into Eq. (2.7), we get

turns out that it is not very useful for the Mott solution, since

the boundary conditions lead to a rather inelegant solution. (Ho—E)|[¥™®)=—f1(x)[¢)[1)|0)—f2(x)|)|0)|1).

On the other hand, it is by no means clear that one is re- (2.9

quired to take the Mott boundary conditions for the analo-T

gous situation in quantum cosmology, and given the freedom

to choose different conditions, an elegant alternative solution | WDy = | wDY[0)]0)+ WD) 1)|0)+ | ¥ LY 0)[1)

for the detector amplitude is obtained. It is in fact almost the

same as the amplitude Hartle propo$ad]. +| Wiy 1)|1) (2.10
In Sec. VI, we briefly describe a more elaborate detector

model, in which the detector is a simple harmonic oscillatorand we discover that

coupled to the particle with the same coupling E{.10.

his is readily solved by writing

The solution has a nice path integral representation and suf- (Ho— E)|\P5%J):0' (2.13
fers fewer shortcomings than the two-state detector. It also (1)

clearly illustrates the peak about classical paths. (Ho—B)[Wig)=—Tf1(0[4), (212
We summarize and conclude in Sec. VILI. (1)

(Ho—B)[Wg1)=—T2()[4), (213

Il. DETECTION AMPLITUDE FROM THE TWO-STATE (Ho—E)|¢®)=o0. (2.14

DETECTOR

Equations(2.12 and (2.13 may be solved with the assis-
tance of the Green’s functio@, defined by Eq(1.7) (with H
replaced byH,—E). It obeys the equation

We now solve the eigenvalue equation

H|W)=E|V) (2.1

(Ho—E)G=1. (2.15

with H given by Eq.(1.8), and the detector is the simple two
state detector described in Sec. |, withy=0. We will for

convenience refer to this equation as the Wheeler-DeWi
equation(and it is convenient to retain a nonzero valudpf

[For convenience we use an operator notation in widds
t}he operator with coordinate representatio®(Xx,y)
=(x|Gly) and the right-hand side of E¢R.15 would be the
é function §(x,y) in the coordinate representatipiVe then

It now reads obtain
(H=E)|¥)=(Ho+\Hjy— E)|[¥)=0. (2.2 W Y= — G (x)| )+ 1), (2.16
We initially use only two detectors, so |WHYy=—Gfy(x)| ) +| bs), (2.17

where| ¢, ,) are solutions to the homogeneous equation

2
Hint:gl fir() (2t af) 2.3 (Ho—E)|¢p1 2 =0. (2.18

o ) To fix some of these solutions more precisely, we need to

straightforward. We solve perturbatively by writing depends very much on the precise context. Mott was con-
cerned with the particular case of an outgoing spherical wave
[ W)= | WO N WDy N2 P @) ... (2.4  and imposed boundary conditions appropriate to this case.
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This led him to set¢, ) and|¥{})) to zero(since otherwise of the detectors registers, reflecting the genuinely timeless
it represents a stream of incoming particles fired at an alnature of the underlying dynamics. Equati¢h25 is the
ready excited detectpf23]. We are not obviously compelled main result of this section.

to make the same choice of boundary conditions in quantum

cosmology, and we will return to a discussion of this impor- IIl. PROPERTIES OF THE SOLUTION
tant issue in Sec. Ill C. But for the moment, we work with _
the Mott solution. We have shown that the wave function for the whole sys-

At first order only one detector is stimulated into the ex-tem when there are, for example, two detectors takes the
cited state. The system wave function correlated with detedorm

tor state|1) now is
[W)=110)|0)[0) +|1)(|1)|0) +[0)[ 1)) + [ 42)[ 1) 1).
|1)=—NGTa|4h) (2.19 3.1

and the probability that the detector registers is therefore We can now ask various questions of the detected wave func-

tion , or more generally, Eq2.25.
P1= {1l ) =N (Y F,GTGfy|y). (2.20 |4h2) g y, Eq

[When the spectrum dfl, is continuous, expressions of this A. Does the detected wave function obey the Wheeler-DeWitt

type need to be regularized along the lines of Bg6), but equation?
we will carry out this explicitly only when we need to cal-  As stated in Sec. |, a prevalent idea in quantum gravity is
culate it in more detai]. that all observables should commute with the total Hamil-

To get two detectors to register, we need to go to secongbnian[3,10,1]. Related to this is the notion that “measure-
order. We now have, from Ed2.8), and the solution Eq. ments” of the wave functiofwhatever this may mean in

(2.10 general should not displace the system from its eigenstate of
@O\ N N ) the Hamiltonian. Given that we have presented here an ex-
(Ho—B)[W'®)=—(fy(a;+ay) +fa(az+ay)|[ V) plicit model of detection, it is perhaps of interest to ask to
what extent this idea holds up.
=1,G T )|1)|1)+ .G 15 )[1)[1) We have, using Eq2.15), and taking the simple case
+. [ (22]) _21

Ho—E =\%(f,Gfy+f,Gf : 2
where the omitted terms on the right-hand side are propor- (Ho=B)|y2) =\ (F2GTa + 11612 y) 3.2

Zon?rl]t\cl)\/'())r'nm’ |O>I|v1>’tﬁng1| 1t2|0>,xangd\il¥1l” not ibne nei%ed. In configuration space, the right-hand side is zero, except in
9a € may solve them Dy expa g as in EZ10. the detector regiond,, A,, because the functiorfg andf,

Here we write do_vvn only the term required, which descnbesare localized there. In these regions, it is of orNér which
two detectors being excited

we regard as small in comparison to the terms on the left.
2\ [y (2 Hence the measured wave function approximately obeys the

v )>_|q}(11)>|l>|1>+m 2.22 Wheeler-DeWitt equation. This is nopgurprise. Ir¥ stanydard
quantum mechanics, a physically measured system does not

obey the Schidinger equation but has corrections due to the
|q’(121)>=(szGf1+Gflez)llﬁ)- (2.23 measuring devic;e. Tha’g it obgys thg Wh_eeler—DeWitt equa-

tion only approximately is not in conflict with exact reparam-

Again, following the spirit of the Mott solution, possible etrization invariance, since the wave fun_ction for_ the entire
homogeneous solutions are set to zero. We now have thyStem always obeys the Wheeler-DeWitt equation exactly.

system wave function correlated with two detectors register®n the other hand, one wonders whether it might not be

and it is readily seen that the solution is

ing: it is possible to devise a detection scheme in which the detected
amplitude obeys the Wheeler-DeWitt equation exactly. For
| ) =NAGF,Gf+GFGf,)| ) (2.24 example, given the simple toolbox of parts outlined in Sec. |
[such as the Green’s function E¢L.7)], it would not be
and the probability i .| ¥,). unreasonable to guess that the detection amplitude might be

The analysis is readily extended to an arbitrary number obf the form Eq.(2.29 but with the G given by Eq.(1.7)
detectors, but it is easy to anticipate the result from Eqreplaced by the one obtained by integratingver an infinite
(2.24): for n detectors, the amplitude is range. This gives a solution to the Wheeler-DeWitt equation,

and as a consequence, the modified detection amplitude
| ) =N"(Gf,Gf,_1---Gf,Gfy)| )+ symmetrizations, would also obey the Wheeler-DeWitt equation exactly.
(2.25

where “symmetrizations” means add all possible permuta- B. Amplitudes for classical paths

tions of 1,2,3,--n. It is clear that these terms are there to  Of greater interest is the question of the configurations
ensure that there is no preference in the order in which eacabout which the amplitude E¢R.25 (or the associated prob-
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ability) is peaked. The amplitude may be written in an ex-from x, to x;. The approximate value of the integral is the

plicit coordinate representation as integrand of Eq(3.6) with the stationary phase point values
inserted.

<Xf|l/fn>:)\nf AN, - dN%, AN G(X¢ ,X0) Fr(X,) Now consider what happens when the restricting func-
tionsf, are present. If the regions, (about which thef, are

concentratedinclude the stationary phase poiriend if the
X G(n Xn-1)Tn-1(n-1)+ GO X)) Ta(X0) Yx) regions are larger than the fluctuations about these points
(3.3 then, since the integral takes its dominant contribution from
these points, the presence of themakes little difference
and the integral is given once again by its stationary phase
value. On the other hand, if one or more of thelie far
away from the stationary phase points then, since the integral
is prevented from taking a contribution from these points, its
alue must be much smaller than the stationary phase value.
e thus see that the amplitude Eg.3) will be largest when
the regionsA, are chosen to include the stationary phase
ﬁoints of the integral. As we have shown, the stationary
phase points lie along the classical path framto x;. It
follows that the amplitude Eq3.2) will be largest when the
regionsA, are chosen to lie along a classical path.
Mott's argument for straight line paths in an expression
G(x”,x’)=C(x”,x’)eis(x"'x'>, (3.4 analqgoqs to Eq2.295 r_elied on the explicit from_ th_e _G_reen
function in the free particle case, and on a special initial state
whereC is a slowly varying prefactor ang(x”,x’) is the  [23]. Here we see that the peaking about classical paths can
fixed energy Hamilton-Jacobi function, i.e., the action of theb® Seen, at least heuristically, from elementary properties of
classical solution fromx’ to x” with fixed energyE [33]. The ~ Path integrals, for a broad class of Hamiltonians and initial

(plus symmetrizations It has the form of approximate pro-
jections onto the regiond, (exact projections if thd, are
window function$ with evolution between regions described
by the fixed energy propagat@(x,.1,Xy). It is analogous
to the amplitude for a history of positions at a sequence o
times in nonrelativistic quantum mechanics, which is know
to be peaked about classical trajectorid&]. But note that
here the evolution is at fixed values of the energy, and ther
is no reference to time.

We can estimate the form of E¢.3) using a WKB ap-
proximation for the fixed energy propagaf@2]. It is given
by an expression of the form

initial and final momenta of this classical solution are states. Bell has also discussed the Mott calculation at some
length[34]. He notes that the first projectdy spatially lo-
p"=VuS(X",X"), p'=—=VuS(X"X"). (3.5  calizes Mott’s initial wave function, but in a realistic ionizing

) ) event, the resultant uncertainty in momentum can still be
In terms of £q.(3.4), the amplitude Eq(3.3) may be written  extremely small. As a consequence the angular spread of the
n wave packet in its subsequent evolution can be extremely

<Xf|¢n>=7\nf dNXn"'dNXZdelkljl C (X150 F(%0) small, hence the appearance of a straight line track.

C. Comparison with a result of Hartle

n
xexp( [ 2 S(xk+1,xk)> P(Xq), (3.6 The result Eq(2.249) is very closely related to a result of
k=1 Hartle [30]. He considered a simple model quantum cosmol-
ogy with a Hamiltonian quadratic in the momenta, as here,
. . . and asked for the amplitude that the system passes through
Consider the integrals ovety =X, with x; (and Xy..,) two regions of configuration spaces;,A,. Using some

fixed. Suppose for the moment that the functidpsare ab- simole arquments about bropadators and elementary brin-
sent so the integrals are unrestricted. By the stationary phase P 9 propag yp

approximation, the dominant contribution to the integral,([:r']zlT;nOfuqauaengThg‘e?ggeTﬁ Sg);\gfd that the amplitudinis
comes from the values of, --x, for which the phase is guag P P

wherex, ;1= X; .

stationary, i.e., for which (Gf,Gf+GH G| )~ (G',GTf,+GTf,GT,)|¥),
n (3.9
ijgtl S(Xi+1,%0) =0 (3.7 wherey s a solution to the Wheeler-DeWitt equation and
and f, are taken to be exact projectors onto the regions
for j=2,--n. This equation means that A;,A,. Other than the factor 0€? in Eq.(2.24) which is not
important, Hartle’s result differs from E@2.24) by the sub-
Vi S(Xj+1. %)) + Vi S(%),% 1) =0. (3.8 traction of an identical term but witlG replaced byG'

(which is generally not the same &. Hartle argues that
Using Eq.(3.5), this implies that the final momentum of the this should be there on the grounds that, in an expression like
classical path fronx;_; to x; is equal to the initial momen- Eq. (2.25 with G represented by Ed1.7), the time param-
tum of the classical path from to x; , ;. Itis not difficultto  etrization should not have a preferred direction wytlthe
see that this in turn implies that the poitmust lie on the “initial” point of the parametrization anc the “final” point,
classical path fronx; _; to X, ;. Hence, the stationary phase hence we should sum the amplitude over both possible pa-
points of the whole integral Eq3.6) lie on the classical path rametrization directions.
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To understand why this term can be there in the present In summary, therefore, a more general solution to the de-
calculation, let us first elaborate on the Green'’s funct®n. tector model is a sum of terms of the form Eg.25 involv-
as defined by Eq(1.7), may be written more explicitly as  ing bothG andG', and this more general solution includes
Hartle's result Eq(3.14). Note also that the replacement of
G by G' does not affect the discussion of the peaking of the

us (X)u
G(x,y,E)=2, n 09 Un(Y) (3.10  amplitude about classical trajectories.

n E—E,t+ie’
D. On timelessness and detection
whereu,(x) are eigenfunctions oH, with the eigenvalue
E,. G(x,y,E) is real whenE lies in the discrete part of the
spectrum and complex whe lies in the continuous part
(see, for example, Ref35]). Hence in the free particle case
considered by MottG+ G, but for the harmonic oscillator
(considered in Sec. IV G=G". Quantum cosmological
models usually have a spectrum which is at least in pa

It is perhaps worth elaborating on a feature of the detector
model which appears at first sight to be incompatible with
the timelessness of the Wheeler-DeWitt equation. We have
coupled the system to a series of detectors via the interaction
Hamiltonian Eq.(1.8). This Hamiltonian describes a situa-
tion in which, along a trajectory(t), the detector is in the
) T rbround state “before” the trajectory enters the detector re-
continuous, so we expe@#G' in general. gion and in an excited state “after” it has passed through the

Ngwhrecall the (E)omments afterbr_(;{zalg), where it was  aqion. Along aclassicaltrajectoryx(t) in which there is a
hoted that we are by no means obliged In quantum COSMOL oy of time, and of before and after, this is undeniably

ogy to take the same boundary conditions as Mott. SBte correct.(The parametet simply labels the points along the

also satisfies Eq(2.19, we may use it in place 06 0 et may be taken to be, for example, the distance
generate solutions to the detector amplitude. BecaBise 4 ng the curve from some reference poiBut how are we
—G'=i6(Ho—E), it Jlrs.easny seen that the difference be- 1, nderstand how the detector works in the genuinely time-
tween usingG and G’ is a homogeneous solution in EGS. |ess world described by the Wheeler-DeWitt equation? There
(2.16 and(2.17. Itis also true that, in higher order pertur- is g pefore and after and there is no preferred direction of
bations, we may us& or G' or some combination. There-
fore, there is a more general class of solutions for the detec- Tﬁe above results effectively imply that each solution to
tion amplitude which are sums of termsT of the form Eq.ihe \Wheeler-DeWitt equation may be regarded as a superpo-
(2.29 with some of theG's replaced byG™'s (and with a  gjtion of states, each of which is concentrated along an entire
suitable overall normalizationin particular, Hartle’s ampli-  |5ssical trajectory in configuration spatand we will see
tude falls into this enlarged class of solutions, so there is Nnis in more detail in Sec. IV What then seems to be hap-
conflict with his result. _ _ , pening in the present model including the detector, is that
Mott made a particular choice of solution appropriate ©0gach trajectory carries a label indicating whether or not it
the physical situation he was investigating. In the case ofasses through the detector region at any stage along its en-
reIat|V|_st|c field theory in Mlnkowsk_l space, one would.nor- tire length. In the(perhaps restrictijelanguage of time, at
mally impose some sort of causality requirement to fix th€gach point along the trajectory, the label allows the trajectory
SO'”“?” more precisely, and therefore to choose betvi@en , «know” whether it passed through the detector region in
andG' (sinceG is essentially the Feynman propagat@ne  the past, or will pass through it in the future. But it is only on
could require, for example, that the wave func.tlon for theadopting this temporal language that the situation seems
whole system be affected by the detector only in the futurg,aradoxical. The paradox vanishes when ones speaks the vo-
light cone of the detector region. In quantum cosmology.capulary of entire trajectories in configuration space, and one
however, although the metric has hyperbolic signature likean see this in the solution, E(B.1). The wave function of
Minkowki space, it is by no means clear that one is obligedie entire system is written as a correlated state in which the
to impose an analogous requirement, and in fact it is difficultsiate correlated with the detectors in {istate is the state
to see exactly how to do this in general since the configurazg (2.25: the detected state is indeed concentrated on tra-
tion space is usually not globally hyperboli&ee, however, jectories that pass throughy ,---A,,.
Ref.[12]). Instead, one might expect to fix the choiceGbr The issues discussed in this section may be of relevance

G by appealing to cosmological boundary conditions. They the perennial debate on the question of time asymmetry in
no-boundary proposal of Hartle and Hawking, for example,qyantum cosmologf20,37.

picks out a wave function that is ref25]. It is sometimes
claimed that this corresponds to a “time-symmetric” wave
function[36]. It therefore stays most closely to the timeless
nature of the Wheeler-DeWitt equation and in some sense Since the peaking about classical paths is the most impor-
represents a complete abandonment of any fundamental ntant property of the amplitude E€R.25), it is worth explor-

tion of causality. It is now interesting to note that Hartle’s ing it in more detail for the special case of a collection of
detection wave function E@3.8) is in fact real ifsis real. In  harmonic oscillators, where it is possible to show very
many ways this therefore seems like the most natural soluelearly how the solutions to the Wheeler-DeWitt equation
tion to take in the case of the Wheeler-DeWitt equation. Wecorrespond to superpositions of states peaked about classical
do not, however, in this paper commit to any particularpaths. We will introduce a class of coherent states appropri-
choice of boundary condition, as stated in Sec. I. ate to the timeless theories considered here and which are

IV. COHERENT STATES FOR TIMELESS DYNAMICS
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natural analogs of the standard coherent states of the hadetermines the classical trajectory the state is peaked about.

monic oscillator. Under evolution of the fiducial poinp, x to another point,
The Hamiltonian for a set d identical harmonic oscil- ps, Xs, say, along the same classical trajectory, the state
lators is changes by a phase
Ho=3(p*+x?). (4.2) | o= bp ) =€ by 4.7)
In this case the spectrum b‘fo is discrete and we have as may be seen from Eqms) and (46) We will refer to
2m dt these states asimeless coherent stateSheir properties are
S(Ho— E):f e i(Ho=B)t. (4.2) in fact very similar to the usual coherent states.
2 Two timeless coherent states of different energy are ex-

actly orthogonal. The more interesting case is that in which
Sinced(Ho—E) is now in fact a true projection operator we they have the same energy, and then they are approximately
may write 6(Ho— E)?= 6(Ho—E) without having to worry  orthogonal if they correspond to sufficiently distinct classical
about regularization through the induced inner product, as igolutions. This is because we have
the continuous caséln this expressiork is allowed to take

only the discrete values corresponding to the spectrum of <¢prxr|¢px)=<p’,x’|5(Ho— E)|p,x)

Hg). The Green functiorG is given as before by Eq1.7) 2r

with H replaced byH,— E. For a one-dimensional oscillator, :f Tr_teiEt<p/ X' [y %) 4.9

Eq. (4.2 is equivalent to 0o 2w ’ ’
S(Ho—E)=|E)E], 4.3 From the properties of the standard coherent states we know

that
where|E) is the energy eigenstate. In more than one dimen-
sion the energy eigenstates are degenerate, s¢4Ed).has Kp' X' |pe x| <1 4.9

the form
with equality if and only ifp’ = p; andx’ =x;. Moreover, the
overlap of two coherent states is exponentially small if they
are centered around phase space points that are sufficiently
far apart. It follows that ifo’, x’ does not lie on, or close to,
where|E, d) are the energy eigenstates with degeneracy labethe trajectoryp;, x;, the overlap(p’,x’|p;,x;) will always
. be exponentially small for all. The integral ovet in Eq.

The standard coherent staisge Ref[38], for example  (4.8) will then give a result that is much smaller than the case

are denotedp, x) and they have the important property that in which p’, x’ does lie on, or close to, the trajectgy, X,

5(H0—E)=; |E,d)(E,d, (4.4)

they are preserved in form under unitary evolution, (because in the latter case the overpp,x’|p;,%;) becomes
. close to unity for some value dj. The timeless coherent
e "' p,x)=py, Xe), (4.5 states are therefore approximately orthogonal for sufficiently

. . . distinct classical trajectories.

wherep,, x, are the classical solutions matchipg x at Note that the coherent statgsx) are in fact alreadyp-
=0, hence they are strongly peaked about the classical pat roximateeigenstates ofl,, with eigenvalue; (p?+x?), as

We are interested in finding a set of states which are analo 8ng as|pl, |x| are much larger than the coherent state quan-

OT these states for the timeless case. That is, they shou!d tFm fluctuations. Giverk, it therefore seems reasonable to
eigenstates ofly, and should be peaked about the classica hoose the valueg, x in the fiducial coherent state so that

paths of given fixed energy in_ phase space. It is not difficultE: 1(p2+x?), when constructing the timeless states Eq.
to see that a set of states doing the job are (4.6). With this choice, the timeless coherent states are ap-

— 8(Hy—E)|p.x proximately normalized to unity,¢py| ¢p)~1.
|¢px> (Ho=B)[p.x) The standard completeness relation for the coherent states
:fzw dte—i<Ho‘E)‘|p,x>

is

o 2w dNpdNx
- f W|DX>(PX| =1 (4.10
— o AiEt

f o 278 [P (4.8 \jultiplying both sides bys(Ho— E) from the left and right,
and using Eq(4.6), we get
These states are not in fact normalized to unity but we shall
see that it is useful to work with them as they are. Since the d"pd"x — S(H—E 41
stategp,,x;) are concentrated at a phase space point for each 2mV | ppx)( Ppx| = 8(Ho—E). (4.11
t, clearly integrating over a whole period produces a state
that is concentrated along the entire classical trajectory. EacBince 5(Hy—E)|#)=|¢) on any solution to the eigenvalue
state is labeled by a fiducial phase space ppint which  equation Hy—E)|#)=0, this is as good as a completeness
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relation on the set of solutions to the eigenvalue equatioroncentrated along the same entire classical trajectory as the
(which is all we are interested inWe may therefore write original timeless coherent state. Furthermore, from the form
any solution|y) as a superposition of timeless coherent state®f the time integrals in Eq(4.15, one can see that the am-
plitude is proportional to the original timeless coherent state
. d"pd"™x Eqg. (4.6) [although the time integrations may need regulating
W‘f 2m | Lo { Pl ). (412 4iong the lines of Eq(1.6)].
The operation of , produces zero if the trajectory fails to
It is then tempting to interpreig,,| ) as the amplitude that pass througt,, and a result similar to E¢4.13) if it passes
a system in the state)) will be found on the classical tra- through. The subsequent operation ®fagain produces a
jectory corresponding to the timeless coherent sfaig). state concentrated along the entire trajectory. Proceeding in a
Again using the fact thaé(H,—E)| ) =|¢) it is easy to see similar manner to the end of the chain, we therefore find that
that this is in fact the same &p,x|¢), which is the ampli- the detector amplitude Eq2.25 with a timeless coherent
tude for finding the system at the phase space ppjmt  state as the initial state is zero unless all the detection regions
labeling the trajectory. The probability is then simply A;,A,,---A, lie along the trajectory of the timeless coherent
[(p,x|¢)|. This is a simple and intuitively appealing result: state, and in that case the amplitude is proportional to the
the classical trajectory is completely fixed by its initial val- original state Eq(4.6).
uesx, p, hence we expect that the probability for being found It follows that the detector amplitude E¢@.25 operating
on a certain classical trajectory is the same as the probabilitgyn a general stafexpanded in timeless coherent states as in
for being found at the initial phase space point that labels itEq. (4.12)] consists of a superposition of only those timeless
This interpretation is put forward with a small note of coherent states that pass through all the detector regions
caution, however, since the sum oyex in Eq.(4.12 isnot  A;,A, --A,. This could be quite a large sum of states if the
only over states that are only approximately orthogdaal regionsA, are large. However, it will consist of essentially
with the usual coherent stajelsut, because of the property just one timeless coherent state if the detector regions lie
Eg. (4.7), includes some redundancy in the summation. Inalong a classical trajectory and if their size is just bigger than
particular, | ¢px)(¢px| is invariant along the classical phase the spatial width of the wave packet. The detection amplitude
space trajectory of its fiducial point. Since this only producesalong this classical trajectory is then proportional to
some sort of constant factor, it may not make any difference(¢,,| ), in agreement with the analysis based on @dl2.
and indeed, the above interpretation appears to produce sen- Rovelli has written down a coherent state of the type con-
sible results. Still, it would be desirable to include, if pos-sidered herd17] in the context of a very similar model,
sible, some sort of “gauge fixing” which factors out this although its properties were not explored and exploited as
redundancy. This will be explored elsewhere. they are here. Klauder, in his approach to the quantization of
Given all of this background, we may now reconsider theconstrained systems using coherent states, considered the
detector amplitude Eq2.25. We expand the initial state) projection of the standard coherent states onto the constraint
in the timeless coherent states, as in Egl2, so we need subspace, hence in essence wrote down states of the form Eq.
only consider the amplitude EQ.25 operating on a time- (4.6) [39]. He did not, however, consider their use as an
less coherent statiep,). Consider the integral representa- interpretational tool. Wave packet solutions to the Wheeler-
tion of it, Eq. (4.6). Whenf, operates on the state, it gives DeWitt equation, which approximately track the classical tra-
zero if the trajectonyp;, X, never passes through the region jectories for more interesting cosmological models, have
A;. If it does pass through, it has the effect of restricting thebeen considered in Refs40], [41].
time integral to the amount of tim#t, the trajectory spends
in the regionA

V. EXACT SOLUTION TO THE DETECTOR DYNAMICS

fl|¢px>~f EeiEﬂpt X0 (4.13 _In this secti_on we discuss an alternative method of a so-
At 27 lution of the eigenvalue equatiof2.2). As we shall see, it
does not in fact give a very elegant representation of the

Next, to consider the operation &, we write it as Mott solution, which is why it was not used above. If, how-
" ever, one is permitted to use different boundary conditions,
G=i f dre i7H-ie) (4.14 ~ as may be reasonable in quantum cosmology, then it provides
0 an alternative possible solution to the detector dynamics.

_ ) ) We consider first the case of a single detector. The key
where H=H,—E. Operating with this on Eq(4.13, we  gpservation is that a solution to the eigenvalue equaga?)

obtain may be generated using either of the expressions:
Gf |¢ >%| och ﬂeiT(E+i6)+iEt|p X >
11%p,x 0 At1277 t+7 M+ 7/ |‘I’>:5(H_E)|¢)> (51)
(4.195
where we have used E¢.5). The integration over, since _ i Joc dreiHo \Hin— )| )
|p;, %) is periodic with period 2z, means that Eq4.15 is 27 ) (5.2
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Here |¢) is an arbitrary fiducial state in the joint system- Eq. (2.5) is satisfied whem\=0. So let us first explore the
detector Hilbert space. It is ambiguous up to the addition oproperties of Eqs(5.8) and (5.9) with y;=0.

a term of the form H—E)|¢’). For the moment we keep The nature of the sums over patkg) in Egs.(5.8) and
|¢) general and take (5.9 is governed by the quantity

|$)y=1x010)+[x1)[1). (5.3

To evaluate Eqs(5.1) or (5.2 we introduce the eigenstates
of a+a', which are

o= frdtfl(x(t)) (5.1
0

appearing in the sine and cosine factors. Witmormalized
1 to be dimensionless, this quantity has the dimensions of time,
|£)=—(0)%]1)). (5.4  and is essentially the time spent by the pafh) in the re-
V2 gion A, around the detectofThis is not of course a physi-
cally measurable time. The pathkét) in the path integral

The expression Eq5.1) is then readily evaluated with the have a well-defined notion of time, but after summing over

result the total time duration of each paththe final result is time
|W) =g | O) + | )| 1), (5.5  independent.Now, in the amplitude for no detection, Eqg.
(5.9), the factor cos(7y) is 1 for 74=0, and decreasing fat,
where increasing from zero. In the path integral, it therefore has the
effect of suppressing paths that pass close to the detector, and
|#hna) = 3(8(h+NF1)+8(h—Nf1))|xo)+ 2 (8(h+\fy) favors paths that stay away from it. Similarly, in the detec-
tion amplitude, Eq(5.9), the factor sin{y) is zero for paths
~8(h=Af1)lxa), (5.6 that spend no time near the detector, and nonzero for paths
) =2 (8(h+\F1) — S(h—Nf1))xo) + 2(S(h+\fy) that enter the detector region. It therefore enhances the am-
a2 ! V1X0/ " 2 ! plitude for paths entering the detector region. The sine and
+8(h—X\f1))|x1) (5.77  cosine factors therefore, in a very crude way, enforce restric-

tions on the paths corresponding to entering or not entering
(recalling thath=H—E). These expressions are perhapsthe detector region, as one would expect. We can also see,
more easily appreciated using a path integral representationowever, that these factors only do their job wellif, is
somewhat smaller than 1, indicating that the detector model
_ |- i7E ; is only physically sensible in the perturbative regime about
‘ﬁnd(xf)_fioche fDX(t)eXmS[X(t)]) \=0, as expected.
It is now important to check the agreement between the
! exact result above and the perturbative result of Sec. Il. It is
CO{AL dtfl(x(t)))XO(XO) not difficult to show that the exact solution E(.9) with
x1=0 does not in fact agree with the perturbative solution
(5.8 Eqg. (2.19. It differs by the presence of homogeneous solu-
tions in the small\ limit of Eq. (5.9. We will not go into
detail but it may be shown using E.7) and the identity

X

+i sin()\fOTdtfl(x(t)))xl(xo)

Pa(Xs) = f_xdre”Ef Dx(t)exp(iS[x(t)]) S(h+Nf)=8(h)+iN(GFG—GTfGT)+O(\?)
(5.12

isin()\J dtfl(x(t)))XO(XO) [which is proved using the exponential representation Eq.
0 (5.2)]. Recall that in the perturbative solution the homoge-
neous solutions were removed at each order in perturbation
: (5.9  theory essentially by inspection. Since no corresponding
condition has been imposed here, it is not surprising that
these spurious solutions crop up. We can, however, get
agreement if we choodg,)=iNfG'| ) in Eq. (5.9 [again
proved using Eq(5.12], although there is no obvious inde-
pendent reason for making this choice. Furthermore, the
presence of the Green’s functid®' in the fiducial state

X

+ cos( A fOTdtfl(X(t))> X1(Xo0)

Equations(5.8) and(5.9) represent the exact solution to Eq.
(2.2) with one detector in place.

Turn now to the question of the fiducial state. The condi-
tion Eq. (2.5), suggests that we should take

|)=]|x0)|0), (5.10 rather destroys the elegance of the path integral representa-
tion compared to the casg =0.
where| )= 8(Ho—E)|xo), and hence thdty,)=0. In fact, On the other hand, although the Mott solution is not

in the induced inner product scheme, we may takg) readily obtained, the removal of the homogeneous solutions
=|4), since effectivelyd(Ho,—E)?= 8(Ho—E). This there- in the perturbative solution is a subtle matter of boundary
fore yields a path integral expression for the amplitude forconditions, above and beyond the basic factoring condition
detection and has the property that the factoring conditioriEg. (5.10. As discussed in Sec. lll, in the case of quantum
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cosmology one is not obviously obliged to take the samdt is therefore easier to look at the amplitude for no detection,
conditions, and indeed one can argue that, beyond®Et0,  which is obtained by overlapping E¢6.2) with the ground
the boundary conditions are up for grabs. Indeed, one couldtateuy(q;), yielding,

effectively choose boundary conditions pgoposingthat the

solution is given by the formula Ed5.1) with the factoring

condition Eq.(5.10. As one can see from E@5.12), this Und(Xs) = fw dre‘ETf Dx(1)(0]z(7))
proposal again produces solutions with a time symmetric fla- e
vor to them(i.e., with an equal number d&'s andG'’s in X exp(iSo[X(1)]) xo(Xo)- (6.5

the solution, a feature which persists to the case of more
than one detector. Not surprisingly, this choice does in fact

produce, in essence, the Hartle amplitude Gcf). From the properties of coherent sta8s], we have
Therefore, in this section we have produced another can-
didate expression for the detection amplitude, which is argu- (0]z(7))y=exp(— %|z(7)]?). (6.6)

ably the more appropriate one for quantum cosmology. Fur-

thermore, the means of generating it, Esl), (5.2), are N o
readily generalizable to more complicated situations. The probability for no detection isynd ¢nq) and the prob-
ability for detection is simply *{ g ¢¥ng)-

The result Eq(6.5) clearly has the desired properties. For
pathsx(t) which never enter the detection regiaf,r)=0

We now briefly consider a more elaborate detector mode®nd the path integral is unaffected. Paths that enter the re-
that consists of a harmonic oscillator instead of the simplegion, on the other hand, generally ha(e) + 0, and they are

two state system. So we take, in the case of a single detectdxponentially suppressed. This is therefore a much improved
detector model in comparison to E&.8). Its validity is not

Hy=wa'a, Hp,=f(x)(a+a’). (6.1)  restricted to the perturbative regime. The generalization to
many detectors is trivial and essentially the same result con-
The energy eigenstate of the total Hamiltonian is again calcerning peaking about classical trajectories is then obtained.
culated using Eq(5.2), with the factored fiducial state Eq. Of course, this detector is still not fully satisfactory be-
(5.10, where|0) is the harmonic oscillator ground state. In cause it can happen thgtr) =0 even for paths that enter the
terms of a path integral, denoting the harmonic oscillatorregion, because of the oscillatory naturez¢t), hence we
coordinates by, again encounter the issue of detector recurrences. Again this
will be avoided if the time the trajectory spends in the detec-

VI. AN IMPROVED DETECTOR MODEL

(" Er ] tor region is shortless thanw 1).
‘I’(vaqf)_ledTe fDx(t)Dq(t)eprSo[x(t)] A more challenging detector improvement avoiding the
recurrence problem would be to construct one that, were it
+iSg[q(t)]+iASH{a(t),x(t)]) xo(Xo)Uo(do), used in standard unitary quantum mechanics, would be irre-
6.2 versible, i.e., involves an essentially infinite number of de-

grees of freedom. Such a detector was introduced in the re-
lated context of measuring arrival times in Rpf2] and it
would be interesting to incorporate it into the situation con-
sidered here.

whereugy(q) =(q|0). The integral oveq is conveniently re-
written as

f Da(t)exp(iSaa(t)]+ A Sl a(t) X(1) ) Uo(go) VIl SUMMARY
=(q¢| T exp(—in(Hyg+AHiy))|0), (6.3 The aim of this paper was to give substance to the appeal-
ing intuitive notion that solutions to the Wheeler-DeWitt
where T denotes time ordering. The right-hand side of Eqg.equation(1.1) correspond to entire histories of the universe
(6.3 is just the unitary evolution of the vacuum state for awith time emerging as a parameter along each trajectory. The
driven harmonic oscillator. Using the properties of cohereniconcrete technical results—the detection amplitude and the
states[38], Eq. (6.3 is equal to{q;|z(7)), where|z) is a introduction of a set of timeless coherent states—are com-
standard coherent state and patible with this notion. There are, however, many subtle
aspects to this notiof4], and we do not claim to have an
A P exhaustive demonstration of the emergence of trajectories
)= _')‘fo dte” ™ T x(D)). (64 from the Wheeler-DeWitt equation,
To find the amplitudes for detection and no detection we
expand the total state E(6.2) in terms of the eigenstates of
the harmonic oscillator. Since all states other than the ground | am very grateful to Julian Barbour, Jim Hartle, John
state correspond to detection, there is no single amplitud&lauder, and Dieter Zeh for their comments on the first draft
corresponding to detectiof@lthough there is a probability  of this paper.
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