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We examine the no-hair conjecture in asymptotically anti—de Si&d6) spacetime. First, we consider a
real scalar field as the matter field and assume static spherically symmetric spacetime. Analysis of the asymp-
totics shows that the scalar field must approach the extremum of its potential. Using this fact, it is proved that
there is no regular black hole solution when the scalar field is massless or has a “convex” potential. Surpris-
ingly, while the scalar field has a growing mode around the local minimum of the potential, there is no growing
mode around the local maximum. This implies that the local maximum is a kind of “attractor” of the
asymptotic scalar field. We give two examples of the new black hole solutions with a nontrivial scalar field
configuration numerically in the symmetric or asymmetric double well potential models. We study the stability
of these solutions by using the linear perturbation method in order to examine whether or not the scalar hair is
physical. In the symmetric double well potential model, we find that the potential function of the perturbation
equation is positive semidefinite in some wide parameter range and that the new solution is stable. This implies
that the black hole no-hair conjecture is violated in asymptotically AdS spacetime.
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[. INTRODUCTION ditions. In the latter approach, some of these assumptions
The exterior gravitational field of a stationary source maywere relaxed. Considering different matter fields yields sev-
have a large number of independent multipole moments. Bugral kinds of black hole solutions. One of the most impres-
when the source lies within a black hole event horizonsive solutions is the colored black hole solution of the
(BEH), a radical simplification occurs as proposed by RuffiniEinstein-Yang-Mills(EYM) system[7]. Although this solu-
and Wheelef1]: after the gravitational collapse of the matter tion was found to be unstable both in the gravitational sector
field, the resultant black hole approaches stationary spacg8] and in the sphaleron sectf®], non-Abelian hair is ge-
time, with all the multipole moments being uniquely deter-neric, and many other non-Abelian black holes were discov-
mined by two parametersvl and a, which are physically ered after the colored black hoJ&0]. Ridgway and Wein-
interpreted as the mass and angular momentum of the bladlerg derived the static but non-spherically symmetric black
hole. When the source has a net cha@ehen of course its  hole solution[11]. This solution is regarded as a magnetic
(electric and gravitationgimultipole moments depend dp monopole which has a black hole inside its core. When the
as well. This statement is called the black hole no-hair conmonopole has more than one winding number, spherical
jecture. symmetry is violated. Making use of this propeffyi], they
In order to examine whether or not the black hole no-haircalculate the deviation from the spherical symmetry pertur-
conjecture is true, some people tried to prove this conjecturbatively.
and some tried to construct a counterexample after the pro- Most of the proofs of the no-hair theorems impose flat-
posal. In the former approach, several no-hair theorems wengess as the asymptotic condition. Hence the following natu-
established. For example, the black hole uniqueness theoal question arisesCan we extend no-hair theorems to
rems in electrovacuum theori€®] strongly support the con- spacetimes with different asymptotic structur@$e authors
jecture. The works of Chad@], Bekensteif 4], Hartle [5] first studied the scalar hair in the asymptotically de Sitter
and Teitelboim 6] show that stationary black hole solutions spacetime/12]. It is worth first commenting on the scalar
are hairless in a variety of theories coupling classical fields tdair in the asymptotically flat case here. Bekens{diri3|
Einstein gravity. and Sudarsky14] provided simple proofs of the no-scalar
In proving these theorems, one usually assumes particuldrair theorem in spherically symmetric spacetime in the case
matter fields, symmetries of spacetime and asymptotic convhere the matter consists of a single scalar field with a con-
vex potential, and in the extended case where the matter
consists of multiple scalar fields with an arbitrary positive

*Electronic address: torii@resceu.s.u-tokyo.ac.jp semidefinite potential. Heusler also proved the no-scalar hair
"Electronic address: g_maeda@gravity.phys.waseda.ac.jp theorem by using a scaling techniqjueb].
*Electronic address: narita@se.rikkyo.ac.jp In the asymptotically de Sitter case, we assume static
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spherically symmetric spacetime. If the scalar field is massis physical or not. In the symmetric double well potential
less or has a “convex” potential such as a mass term, it wasnodel, we find that the potential function of the perturbation
proved that there is no regular black hole solution. By “con-equation is positive semidefinite in some wide parameter
vex” we meand?V/d¢?>0 for any ¢ wheredV/d¢=0, range and that the new solution is stable. This implies that
which implies that the potential has only one extremum for &he black hole no-hair conjecture is violated in asymptoti-
finite value of¢ and it is not maximum but minimum. For a cally AdS spacetime. We give conclusions and remarks in the
general positive semidefinite potential, we searched for blackinal section.

hole solutions which support the scalar field with a double

well potential, and found them by numerical calculations. Il. MODEL AND BASIC EQUATIONS

When we take the zero horizon radius limit, the solution
becomes a boson-star-like solutiph6]. These black hole
solutions are, however, unstable against the linear perturba- 1 1
tions. As a result, we can conclude that the no-scalar hair <_ 4y [ _ _ = 2_

conjecture holds in the case of scalar fields with a “convex” S=) dx/=g 167G (R=24) 2(V¢) MS2

or a double well potential. We expect that this no-scalar hair (1)
theorem extends to general positive semidefinite potential. ) ] o )

What happens, then, if we consider the system with gvhere¢ is the real scalar flelpl and( ¢) is its potential. We
negative cosmological constant, especially the asymptotishall assume the cosmological constantto be negative.
cally anti-de Sitter(AdS) spacetime? Recently, a tremen- 1he metric of a spherically symmetric spacetime can be ex-
dous amount of interest has focused on several issues relatBfssed in the Schwarzschild type form
to the AdS spacetime. One of them is the AdS/GEdnfor- 5D 142 24D
mal field theory correspondencgl7]. It states that confor- ds’=—fe 2’dt*+f 'dr’+r?dQ? @
mal field theories ird dimensionsR, are described in terms
of supergravity or string theory on the product space of aswWhere
ymptotically AdS,,; and a compact manifold. There are in-
timate relations between data on the bound&yyf AdSy, 1 f=1— @_ érz 3)
and data in the bulk AdS ;. The negative cosmological r 3
constant plays an important role also in the brane world sce-
narios[18,19], which were first proposed to solve the gaugeandd()? is the metric of the unit 2-sphere.
hierarchy problem, i.e., the vast disparity between the weak The mass functiom and the lapse functioa depend on
scale and the Planck scale. In these scenarios we live in lzoth the time coordinateé and the radial coordinate The
four dimensional hypersurface embedded in five dimensionahass function is the quasilocal mass defined in R22],
bulk AdS spacetime. which is the gravitational energy minus the energy due to the

It should also be noted that the colored black hole solutiorfosmological constant, i.e., the energy of the matter field. In
in the EYM system is stabilized both in the gravitational anda spherically symmetric spacetime, the mass function is non-
sphaleron sectors by putting the negative cosmological cordecreasing in the outgoing null or spacelike direction in the
stant into the systeri20]. Moreover, it was shown that there timelike region §>0), if the matter fields satisfy the domi-
is a black hole solution with dyonic hair in AdS which nev- nant energy condition.
ertheless cannot exist in asymptotically flat spacetigig. Varying the action(1) and substituting ansat2), we de-
Hence we expect that the negative cosmological constaritve the field equations
will affect the existence and stability of black hole solutions.

We will consider the model given by the action

In this paper, we examine scalar hair on the black hole in R T S
AdS spacetime. In Sec. Il we introduce the model and the m'=4mrs 51 e+ 51"+ V(g) |, 4
basic equations. In Sec. Ill we give a definition of the as-
ymptotically AdS spacetime and examine the asymptotic be- 5= —Amr[f 22042+ ¢'2], )

havior of the scalar field. By analyzing the asymptotic be-
havior of the scalar field, we find that the scalar field must ) .
approach the extremum of its potential. Using this fact, it is m=4mr’f g, (6)
proved that there is no regular black hole solution when the

scalar field is massless or has a “convex” potential. While . 1 - ~dV(¢)

the scalar field has a growing mode around the local mini- —[ef gl + S [rPe ’fp']' =’ a6 (7
mum of the potential, there is no growing mode around the r

local maximum. It implies that the local maximum is a kind . . ,
of “attractor” of the asymptotic scalar field. In Sec. IV we Here, we have used the dimensionless variables|t—t,

give two numerical examples of the new black hole solutionsVIAlr =T, VIA[Gm—m, JG¢— ¢ and GV/|A|—V. By
with nontrivial configuration of scalar field in the symmetric USing these variablesis expressed as

or asymmteric double well potential models. In Sec. V we )

study the stability of these solutions by using the linear per- f=1— 2_m+ r ®
turbation method in order to examine whether the scalar hair r 3°
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We will use these dimensionless variables below. A dot and & the static case. Hencey' <O(r 1) and V(¢)=<const.
prime in the field equations denote derivatives with respec8ince Eq.(5) is integrated as
to the dimensionless variablésandr, respectively.

For the boundary conditions of the metric functions, we

;
o . . =—4 "2dr+ 1
first impose the existence of a regular BEHratrg; i.e., 0 Trfr r¢"dr+ g, (15

B

1, the scalar field must satisfp’ <O(r 1) by condition (ii).
2m(rg)=rg 1+ 35|, (9 As a result, the scalar field behaves @s<O(r 1) in the
asymptotically AdS spacetime. The contribution from the
S(rg) <. (10) gradient term to the mass function becomes subdominant
whenV(¢.,)>0.
Second, we impose the non-existence of singularity outside e Study the asymptotic behavior of the scalar field by
of the BEH, i.e., for>rg, usmg_lts 'fleld equatior7) in detail under thg static gnsatz.
Substituting the asymptotic form of the metric functions, we
1 obtain
2m<r| 1+ §r2>. (11)

dv
Ar¢"+4Ar¢’ — i
As for the asymptotic behavior, we can expect roughly four ¢
pos_sibilities depending on the form of the potent%(l@. This is easily integrated as
Definehgtii=Naqq— 1:=87V(¢..) — 1 whereg.,,:= p(). (i)
If Ness<<0, the spacetime approaches AdB.If A.¢>0, the 4., ,dV
spacetime approaches de Sitter spacetime. In this case, there Ar'g :J’ r %dr. (17)
should appear a cosmological event horiz&®EH) at r
=r¢. By imposing its regularity, the metric functions must Since the left hand side of this equation behaves @5r3),
satisfy dV/d¢p=0(r~¢) anddV/d¢—0 asr— . This implies that
¢., takes the extremum value of the potentialVif¢..)>0,
the mass function behavesn~47V(¢.)r3/3. Hence
V(¢.)<1/8w. Otherwise the spacetime will approach de
Sitter or another exotic one.
S(re)<e. (13 By this asymptotic behavior, we can prove the no-hair
theorem for the “convex” potential case. The case when the
(i) If Ao;s=0, we expect that the asymptotically flat space-extremum is realized at=cc is also included. There are two
time is realized. However, some fine tuning mechamdm types of the “convex” potential. One is the case in which the
namical or just by handshould be needed for this caga;) ~ Potential has a minimum and the other is one in which it
Finally there is a possibility of the other behavior. We will does not, i.e., the scalar field approaches its asymptotic value
briefly comment on this solution in Sec. VI. Later we will infgV(#) in the —oo (or —o) limit as V(¢)=e~*. The
investigate the cas@) i.e., asymptotically AdS solution. As latter case is important since it appears in effective theory of

for the scalar field, we impose smoothness except=a®  Superstring theories. _
where a singularity exists. First we examine the former case where the potential has

a minimum. We can set the minimum &t=0. If ¢(rg)
Il ASYMPOTIC BEHAVIOR AND THE NO =0, the scalar field becomes trivial. Hence, we assume

SCALAR-HAIR THEOREM IN THE “CONVEX" ¢(rg) >0 without loss of generality. By Ed7),
POTENTIAL CASE dv

In this paper, we focus on the static solution whose e ~d¢ (18)
asymptotic structure is AdS spacetime with no CEH. First of .
all, we have to give the definition of the asymptotically AdS on the BEH. Sincé’>0 anddV/d¢>0 around the BEH,
spacetime. In our metric ansatz, it is reasonable to define it a8’ (T'g) >0. At the extrema of the scalar field, i.e5/ =0,
(i) f~Ar? whereA>0 and(ii) 6— &... From the condition dv
(i), the mass function behavem<Br® [B<1/6 (or B fop!=—.
<|A|/6 in the dimensional variablgsn the m~Br?3 casg. d¢

By using Eq.(4), f must be positive outside of the BEH unless the CEH ap-
pears. Hencep”>0 for ¢>0. These imply that the scalar
dr+mg field must increase monotonically. Since we assume that the
scalar field does not diverge, there are three cases for the
asymptotic behavior of the scalar fielth) At finite radius
dr+mg, (14) r=ry, the scalar field becomes> ¢, whereV(¢q) = 1/8m.
It should be noted that since the effective cosmological con-

0. (16)

re
1+ =], (12

2m(ro)=ro| 1+ 3

(19

m=477fr rz[%f¢’2+V(¢)
's

~4wfr [%Ar4¢'2+V(¢)r2
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stant\ . becomes positive\(>1/8w) for r>r,, there may the scalar field approaches it. We assugne ¢, asr—x.
appear the CEH.(b) The scalar field approaches its Defining ¢:=¢— ¢, and expanding Eq(7), we obtain the
asymptotic valueg,.<¢g. (C) ¢d..=¢po. We will examine linear equation

these cases individuallfCase (a):As we mentioned above,

f’ becomes negative by the positixgs;. Then the CEH ¢"+2ue' + w?e=0, (22)
appears at a finite radius. Although we are interested in the
solution without the CEH, we will check the possibility of Where
this solution. Equation(18) also holds at the CEH. Since

f’<0 around the CEH¢ must decrease at the CEH. This ,U«==E+ f_ (23)
contradicts the monotonicity of the scalar field. Hence there ro 2f

is no such solutionCase (b):In this case, the spacetime

eventually approaches AdS spacetime and the left hand side ) 1 d?v

of Eq. (7) becomes zero at infinity. HowevetV/d ¢ is posi- W=7 df& : (24)
tive for ¢,.,>0. This is a contradictiorCase (c):In this case, ¢= .,

the spacetime becomes asymptotically flat singg;=0. . .

Hence, while the left hand side of E€f) becomes zero, the | he metric functiorf behaves as

right hand side is non-zero &t= ¢,. This is a contradiction. N

One may consider the potential which approaches some con- f,_—effio (25)

stant valueV,;<1/8x for large ¢. ThendV/d¢ becomes 3
zero at¢=~. However this potential is not included in the
definition of the “convex” potential. Furthermore, the scalar
field must diverge in this case.

Hence the friction coefficien. and the frequency? are
expressed as

Next we examine the latter case, i.e., the potential having >
no minimum. It is easy to show that the potential is a mono- -, (26)
tonic function of ¢, and we can prove the nonexistence of r
the relevant solution in a similar way as above. As a result,
there is no solution for the “convex” potential except for the , @ 3 d?v 1
trivial one. Note that we did not assume the asymptotically w _’r_z’:)\eff@ 2 (27)
AdS condition in the proof. So the scalar hair cannot be put ¢=ds,

on the black hole in any reasonable asymptotic condition if o ) )
the cosmological constant is negative and the potential has2ubstituting these into E¢22), we obtain
“convex” shape in general.

It is interesting to compare the asymptotic behavior with "y ‘_1 4 a -0 28)
that of the EYM system with negative cosmological constant ¢rre r2 LA
[20],
The solution of this equation is
1 1
— 4 P _ _ 2
SEYM_f d*x+ 9[477G(R 2A) 167TgtrF . QD:C_,.I’}‘*'FC_I‘)‘*, (29)
20
20 whereC.. are constants and
In the EYM system, the magnetic part of the Yang-Mills
potential can take any value, asymptotically while the )\+=:_3i V9~ 4a (30)
scalar field must approach the extremum of the potential. The - 2

equation of the Yang-Mills potential is expressed as
The behavior of the scalar field depends on the value. of

1 oo a<0, A, becomes positive and the growing mode is domi-

~[re7’ftw'] =—[2rfw'2—2w(1-w?)]. (21) nant Since negativer implies thatd?v/d¢? 4_, >0 by

r r definition, the scalar field leaves the local minimum of the
potential unless one ensures the fine tuning with which the

The right hand side of this equation corresponds to the congrowing mode disappears. 1f<0x<9/4, both of A, are

tribution from the potential in our systeppompare with Eq.  negative and the scalar field approaches the local maximum

(7)]. Note that this term vanishes as-c independently of with the power), in general. Ifa=9/4, the scalar field
the value ofw due to the factor ~2. This is the key feature pehaves as

of the EYM system. On the other hand, our system does not
have such a factor. Hence the scalar field must approach its ©=Cyr 32+ Cor *Anr, (32
extremum at infinity.

Let us examine the asymptotic behavior of the scalar fieldand approaches the local maximum. This corresponds to the
further. Since we know that the asymptotic value of the scaeritical damping. Ifa>9/4, there is no growing mode and
lar field is the extremum of the potential, we next study howthe scalar field behaves as
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ap [ VAa—9 0.8 .
(o{0] Tlnr

. (32

o~Tr

Namely the scalar field oscillate around the local maximum
with the frequencyr=exp(—4m/\J4a—9) and with its en-
velope decreasing with the power3/2. As a result, the local
maximum of the potential is a kind of attractor of the scalar »

field. <
0.2

0.4

IV. BLACK HOLE SOLUTION WITH SCALAR HAIR

In this section we verify the expectations of the previous
section by using concrete models and derive nontrivial black 0
hole solutions with scalar hair. Here we will adopt the system

with a symmetric double well potential ' ' '
1 102 10* 108 108

V(g)= 3 (#2-0?)? (33 "
FIG. 1. The configuration of the scalar fiedlin the symmetric
as a first example of a positive semidefinite potential. If wedouble well potential model. We set the parametkrs50, v
normalize the constants agG|A|—\ and JGv—v, they =0.1,rg=0.1 and¢(rg)=0.%. The scalar field decays with the
become dimensionless variables. Here we assw(@) POWerh.=—0.663.
<1/8m. Since the top of the potential barriér=0 becomes

the attractor of the asymptotic scalar field, the parameter ~ ration of another solution with the different parameter
calculated to be =500, v=0.1, rg=0.1 and¢(rg)=0.% in Fig. 2. In this

case,a=21.9>9/4. The scalar field oscillates with damping.
3\v2 We show the In plot of the same solution in FigbhR It
(34) shows that the envelope of the oscillation decays with power
r~%2 and that the wavelength is proportional tarlBy Eq.

There are two trivial solutionsp==v and $=0. Both (34), we find that the condition for oscillation with damping
" o is

of them are Schwarzschild-AdS solutions. For the latter so-
lution, the potential of the scalar field plays the role of the
additional cosmological constantgq=27\v?. As is easily 3
. . . g . . . )\>)\O::—_
imagined, this solution is unstable against perturbations. 203702+ 2)
Now we search for non-trivial static solutions by using
numerical analysis. We drop the time derivative terms of the
field equationg4), (5), and(7), and integrate them from the
BEH with the boundary condition§9) and (10). We can
restrict ¢(rg)>0 without loss of generality because the po-

tential has reflection symmetry. Furthermore, we restricta symptotically flat spacetime.
: A ’ In the above example, the scalar field approaches the to
¢(rg)<v; otherwise the situation is exactly the same as the b PP P

. ! . . o - of the potential barrier asymptotically. This is because the
convex” potential case and there is no nontrivial solution. local maximum is an “attractor” and there is a growing
Since the equation of the Sca'a'f field becom.es singular on mode around the bottom of the potential well. We may, how-
the BEH, we expand all terms in power series of-{g) to '

. ! .ever, make this growing mode vanish by tuning the value of
guargntee the regularlty on t.he BEH’ and use their analyt"ﬁwe scalar field at the BEH. We will give another example.
solutions for the first step of integration.

) . L in here is n h solution in th mmetri le well
We found the black hole solutions with nontrivial scalarS ce there Is no such solutio the sy etric double we

field configuration for any boundary value of the scalar fieldggim:g:.case’ we adopt the following artificial asymmetric
in the range 8 ¢(rg)<v. This is one of the different prop- ’

erties from the positive cosmological constant cf%g],

where we have to choose the suitable boundary value at the \,_ 5 E¢4_ v1tUo FEms vib2 b2+ ivs(v —20,)

BEH by the shooting method in order to satisfy the boundary 4 3 2 127871 Zp
condition at the CEH. In the present case we do not need a (36)
shooting parameter.

We show the configuration of the scalar field in Fig. 1. WewhereA, v, andv, are constant. We show the form of this
choose the value of the parametersixas50, v=0.1, rg potential with the parameter&a=1000, v,=0.1 andv,=
=0.1 and¢(rg) =0.%. In this casea=1.55<9/4. As dis- —0.01 in Fig. 3.¢=0, ¢=v, and¢p=v, correspond to the
cussed in the previous section, we find that the scalar fieltbp of the potential barrier, the global minimum and the local
decays with the powex , = —0.663. We show the configu- minimum, respectively. If we choos#(rg)>0 too large, the

a=———"—"-">0
1-2m\?

(35

It should be noted that there are actually black hole solu-
tions with the non-trivial scalar field in the asymptotically
AdS spacetime in spite of there being no counterparts in
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0.6

0.4

olv

0.2

108
r/rB

|
10*

10™M

(b)

1 102 10° 108

r/rB

FIG. 2. The configuration of the scalar fiedelin the symmetric
double well potential model. We set the parameters500, v
=0.1,rg=0.1 and¢(rg)=0.%. (a) is the linear plot. The scalar
field oscillates with damping(b) is the In plot. We find that the
envelope of the oscillation decays with powei3/2 and that the
wavelength is proportional to in

scalar field passes the local minimurp as we integrate the
field equations outward, and it diverges to minus infinity. If
we choosep(rg) too small, the scalar field cannot reach

but oscillates around the top of the potential barrier and de-

cays to¢p=0. Hence if we choose a suitable valuedfr )

between these values, we will obtain the desirable solution.

In this senseg(rg) is a shooting parameter. By numerical

calculation we find such non-trivial solution. Figure 4 shows

the configuration of the scalar field with the potential de-
picted in Fig. 3. We setg=0.1. The scalar field approaches
the local minimumuv, of the potential. This solution is dif-

ferent from those in the symmetric double well potential
model. Although the existence of this type of solution is

PHYSICAL REVIEW D 64 044007

0.1

0.08

0.04

0.02

0.1 0.2

FIG. 3. The form of the asymmetric double well potential with
the parameter&=1000, v,=0.1, andv,=—0.01. =0, ¢=v,
and ¢=v, correspond to the top of the potential barrier, the local
minimum and the global minimum, respectively.

V. STABILITY ANALYSIS BY LINEAR PERTURBATION
METHOD

In the previous section we found new black hole solu-
tions. This means that the no-hair conjecture may not hold in
asymptotically AdS spacetime. In this section we investigate
the stability of the new solutions by using a linear perturba-
tion method in order to check whether or not the scalar hair
is really physical.

First we expand the field functions around the static solu-
tion ¢, My and &, as follows:

da(t,r)
d(t,r)=o(r)+ €, (37
0.8
0.6 - .
0.4 -
&
<
0.2 -
0 \
02 | | |
1 10 102 10° 10*

I/IB

FIG. 4. The configuration of the scalar fiefdin the asymmetric

interesting, it seems unstable against the time dependent pefouble well potential model. We set the parametrs1000, v,
turbations as discussed later and cannot be used as a contem.1,v,=—0.01 andrg=0.1. The scalar field approaches the lo-

example of the no-hair conjecture.

04400
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m(t,r)=mg(r)+my(t,re, (38) 0.2 '
S(t,r)=8u(r)+ 84(t,r)e. (39

Here € is an infinitesimal parameter. Substituting them into
the field equationg4)—(7) and dropping the second and
higher order terms ire, we find the following perturbation
equation of the scalar field:

2

+U(r)é=0?, (40)

dr*2

where we setp;=&(r)e't andm, = 5(r)e'’t. If o2 is posi-
tive, ¢ oscillates around the static solution and the solution 45 ! !
is stable. On the other hand, if it is negative, the perturbation Y 50 r 100 150
¢, and m; diverge exponentially with time and then the B

solution is unstabler™ is the tortoise coordinate defined by £ 5 The profile of the potential functiob of the linear

N 5 perturbation equation for the double well potential model. We set
dar* e the parameters =500, v=0.1, rg=0.1 and¢(rg) =0.5. We find

dr fo’ (43 that the potential is positive semidefinite, which means that there is
no unstable mode.
wherefqy:=1—2mq/r + 1/3. The potential function is
no unstable mode and that the black hole solution is stable.
05 5 o0 This is a very important result because it violates the no-
U(r)=e "%fo| (1-87"¢o )T scalar hair conjecture in the asymptotically AdS spacetime.
Numerical calculation shows that the criterion of the stability
—4m(1+8mr2pL?) fopy2 is exactlya<2 in the symmetric double well model as ob-
tained by the asymptotic analysis. This condition is described
+ 1671 ¢ av + v (42 *
ard —| 4+ ——
Od¢ 0 dd)z o ,
First we discuss the general properties by using the 7‘<)‘S‘ab'e’=vz(4m2+3)' (44)

asymptotic behavior of the potential functibhwithout con-

crete potential form. To leading order, it behaves as ) o ) _
Comparing this with Eq(35), we find A g> \gapie- Figure 6

2—a
U(r)=—g—Aege “or?. (43 100 , | ,
t stable/unstable

Hence, whem>2, the potential diverges to minus infinity. - P PPPPPPP damping/oscillating
This means that there exists an infinite number of unstable ~ °[ i |
modes and the black hole solution is unstable. On the othe

hand, where<2, the potential diverges to plus infinity. Al- 60 : ]

R (unstable)

though there seems to be no unstable modes in this cast !
U(r) may have a well in the central region which is deep «< b (oscillating)
enough to produce negative eigenmodes. The previous ex 4| i
ample of the asymmetric double well potential cagae<(Q)
is such a case. It is expected that the solution has exactly on (stable)
unstable mode. The number of unstable modes equals th
number of times the scalar field goes over the potential bar-
rier [12]. Hence the stability in the<2 case depends on the
potential of the scalar fiel?/(¢) we employ. 0 '
Next we examine the concrete model. We plot the poten-
tial function U(r) of the symmetric double well potential
model in Fig. 5. The values of the parameters Jare50, v FIG. 6. The boundaries of the damping/oscillating behavior of
=0.1,rg=0.1 and¢(rg) =0.% (a=1.55). We find that the the scalar fieldsolid line) and stability/instability of the new solu-
potential diverges to plus infinity asr? as we analyzed. tion (dashed lingin the symmetric double well potential model. We
Note that it is positive semidefinite. This means that there igind that\ ;,p<\ for all v.

20 - (damping)
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shows the boundaries of the stablility/instablility and of the
damping/oscillating behavior in the parameter space.

VI. CONCLUSION

We have examined the no-hair conjecture under the as
ymptotically AdS condition. As the first step, we consider the
real scalar field as the matter field and assume the statini
spherically symmetric spacetime. By analyzing the = o
asymptotic behavior of the scalar field, we find that the scalar
field must approach the extremum of its potential. With this
fact, it can be proved that there is no regular black hole
solution when the scalar field is massless or has a “convex”
potential-like mass term. While the scalar field has a growing
mode around the local minimum of the potential, there is no P
growing mode around the local maximum. This implies that
the local maximum is a kind of “attractor” of the scalar field FIG. 7. The schematic figure of the double well potential. At the
asymptotically. When the variable defined in Sec. Ill sat- top of the potential barriei .¢; becomes positive.
isfiesa>9/4, the scalar field oscillates with damping around

its asymptotic valugb.. . When 0<«<9/4, it decays without ~ so|ytion is stable since the black hole counterpart can be
oscillation. We give two examples of the new black holegtaple for the model withe<2. If so and if the Universe
solutions with nontrivial scalar field configuration. The first experienced a period with negative cosmological constant at
one is the solution in the symmetric double well potentialjgast effectively, this boson star solution would affect the
model. We can find the new solution without tuning the Va|uehistory of the Universe.
of the scalar field at the BEH. The other example is the |, Sec. |V, we showed the black hole solution which sat-
solution in the asymmetric double well potential model. Weisfies the asymptotically AdS condition. This condition is
sh_oyv the sqlutlon Whose sca!ar field approaches the |0Cft};|uaranteed by imposing, ;<0 on the potential of the sca-
minimum of its potential by tuning the boundary value of the |y field, i.e., the additional cosmological constant produced
scalar field. We study stability of the new solutions by usingpy the potential at the local maximum is smaller than the
the linear perturbation method in order to examine whetheppsolyte value of the original cosmological constant. Then,
or not the scalar hair is physical. While for the potential with \yhat happens if this condition is violated? In order to exam-
a>2 the new solution is unstable, the asymptotic analysigne this question, we study the model which includes the
shows that the solution may be stable for t&2 case. In  potential depicted in Fig. 7. By examining the asymptotic
the symmetric double well potential model, we find that thepehavior of the scalar field as in Sec. Ill, we find that the
potential function of the perturbation equation is positive|ocal maximum(minimum) of the potential is the attractor
semidefinite for the damping solution with<2 and that the  \yhenf>0 (f<0). We choose a boundary value of the scalar
new solution is stable. This implies that the black hole no-ja|d at the BEH and integrate outward. The scalar field
hair conjecture is violated in asymptotically AdS spacetime.qamps 1o the local maximum first and continues to take that
In our present analysis, we show explicitly that the blacky e for some range of the radial coordinate. Since the ef-

hole can ha\{e a scalar hair only In a p?‘”'cu'af model, i.e., Mective cosmological constait,; is positive, there will ap-
the symmetric double well potential. It is expected, howeverpear the CEH at some radiug. However, the boundary

tmhgggr; rznzagewselrrgl(l)?]:cifrﬁleljélci)tr-lsF\avrl:n e‘:’fnag?er'hv?er 21: Iif:]e(:rligé:ondition of the scalar field a}t the CEH is not satisfied in
the gauge field in our system as in the positive cosmologica‘i’eneral and the scalar f_leld diverges. In order to evade that,
constant casg23]. Then the scalar hair is independent of the W& Nave to choose a suitable boundary valug@fg). Then
gauge hair unlike the dilaton hair which cannot exist withoutWe can integrate over the CEH. After that the attractor moves
the gauge field24]. In this sense our scalar hair is classified t0 the local minimum of the potential because 0 and the
into the primary hair. scalar field oscillates around one of the local minima. Then,
The new solution has a singularity &0 which is hid- ~ since the effective cosmological constant becomes negative
den by the BEH. There will be also a regular solution with-there, another event horizon will appd@5]. However, the
out the BEH, i.e., the boson star solution. In the positiveboundary condition at the event horizon again cannot be sat-
cosmological constant case, there exists such solutions bgfied in general. Since there remains no free parameter to
assuming the regular boundary condition at the origin insteadatisfy the boundary condition, the scalar field inevitably di-
of the black hole boundary condition, and they have interestverges. As a result, we cannot expect physically reasonable
ing properties[16]. Unfortunately, they were found to be asymptotic structure.
unstable against perturbations. In the negative cosmological Although our analysis is restricted in the 4-dimensional
constant case, however, it is expected that the boson stapacetime, it can be extended to the higher dimensional case.
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In particular, we are interested in the 5-dimensional brane

PHYSICAL REVIEW D 64 044007
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