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Scalar hair on the black hole in asymptotically anti–de Sitter spacetime
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We examine the no-hair conjecture in asymptotically anti–de Sitter~AdS! spacetime. First, we consider a
real scalar field as the matter field and assume static spherically symmetric spacetime. Analysis of the asymp-
totics shows that the scalar field must approach the extremum of its potential. Using this fact, it is proved that
there is no regular black hole solution when the scalar field is massless or has a ‘‘convex’’ potential. Surpris-
ingly, while the scalar field has a growing mode around the local minimum of the potential, there is no growing
mode around the local maximum. This implies that the local maximum is a kind of ‘‘attractor’’ of the
asymptotic scalar field. We give two examples of the new black hole solutions with a nontrivial scalar field
configuration numerically in the symmetric or asymmetric double well potential models. We study the stability
of these solutions by using the linear perturbation method in order to examine whether or not the scalar hair is
physical. In the symmetric double well potential model, we find that the potential function of the perturbation
equation is positive semidefinite in some wide parameter range and that the new solution is stable. This implies
that the black hole no-hair conjecture is violated in asymptotically AdS spacetime.
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I. INTRODUCTION

The exterior gravitational field of a stationary source m
have a large number of independent multipole moments.
when the source lies within a black hole event horiz
~BEH!, a radical simplification occurs as proposed by Ruffi
and Wheeler@1#: after the gravitational collapse of the matt
field, the resultant black hole approaches stationary sp
time, with all the multipole moments being uniquely dete
mined by two parameters,M and a, which are physically
interpreted as the mass and angular momentum of the b
hole. When the source has a net chargeQ, then of course its
~electric and gravitational! multipole moments depend onQ
as well. This statement is called the black hole no-hair c
jecture.

In order to examine whether or not the black hole no-h
conjecture is true, some people tried to prove this conjec
and some tried to construct a counterexample after the
posal. In the former approach, several no-hair theorems w
established. For example, the black hole uniqueness t
rems in electrovacuum theories@2# strongly support the con
jecture. The works of Chase@3#, Bekenstein@4#, Hartle @5#
and Teitelboim@6# show that stationary black hole solution
are hairless in a variety of theories coupling classical field
Einstein gravity.

In proving these theorems, one usually assumes partic
matter fields, symmetries of spacetime and asymptotic c
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ditions. In the latter approach, some of these assumpt
were relaxed. Considering different matter fields yields s
eral kinds of black hole solutions. One of the most impre
sive solutions is the colored black hole solution of t
Einstein-Yang-Mills~EYM! system@7#. Although this solu-
tion was found to be unstable both in the gravitational sec
@8# and in the sphaleron sector@9#, non-Abelian hair is ge-
neric, and many other non-Abelian black holes were disc
ered after the colored black hole@10#. Ridgway and Wein-
berg derived the static but non-spherically symmetric bla
hole solution@11#. This solution is regarded as a magne
monopole which has a black hole inside its core. When
monopole has more than one winding number, spher
symmetry is violated. Making use of this property@11#, they
calculate the deviation from the spherical symmetry pert
batively.

Most of the proofs of the no-hair theorems impose fl
ness as the asymptotic condition. Hence the following na
ral question arises:Can we extend no-hair theorems
spacetimes with different asymptotic structures?The authors
first studied the scalar hair in the asymptotically de Sit
spacetime@12#. It is worth first commenting on the scala
hair in the asymptotically flat case here. Bekenstein@4,13#
and Sudarsky@14# provided simple proofs of the no-scala
hair theorem in spherically symmetric spacetime in the c
where the matter consists of a single scalar field with a c
vex potential, and in the extended case where the ma
consists of multiple scalar fields with an arbitrary positi
semidefinite potential. Heusler also proved the no-scalar
theorem by using a scaling technique@15#.

In the asymptotically de Sitter case, we assume st
©2001 The American Physical Society07-1
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spherically symmetric spacetime. If the scalar field is ma
less or has a ‘‘convex’’ potential such as a mass term, it w
proved that there is no regular black hole solution. By ‘‘co
vex’’ we meand2V/df2.0 for any f where dV/df50,
which implies that the potential has only one extremum fo
finite value off and it is not maximum but minimum. For
general positive semidefinite potential, we searched for bl
hole solutions which support the scalar field with a dou
well potential, and found them by numerical calculation
When we take the zero horizon radius limit, the soluti
becomes a boson-star-like solution@16#. These black hole
solutions are, however, unstable against the linear pertu
tions. As a result, we can conclude that the no-scalar
conjecture holds in the case of scalar fields with a ‘‘conve
or a double well potential. We expect that this no-scalar h
theorem extends to general positive semidefinite potentia

What happens, then, if we consider the system with
negative cosmological constant, especially the asymp
cally anti–de Sitter~AdS! spacetime? Recently, a treme
dous amount of interest has focused on several issues re
to the AdS spacetime. One of them is the AdS/CFT~confor-
mal field theory! correspondence@17#. It states that confor-
mal field theories ind dimensionsRd are described in term
of supergravity or string theory on the product space of
ymptotically AdSd11 and a compact manifold. There are i
timate relations between data on the boundaryRd of AdSd11
and data in the bulk AdSd11. The negative cosmologica
constant plays an important role also in the brane world s
narios@18,19#, which were first proposed to solve the gau
hierarchy problem, i.e., the vast disparity between the w
scale and the Planck scale. In these scenarios we live
four dimensional hypersurface embedded in five dimensio
bulk AdS spacetime.

It should also be noted that the colored black hole solut
in the EYM system is stabilized both in the gravitational a
sphaleron sectors by putting the negative cosmological c
stant into the system@20#. Moreover, it was shown that ther
is a black hole solution with dyonic hair in AdS which ne
ertheless cannot exist in asymptotically flat spacetime@21#.
Hence we expect that the negative cosmological cons
will affect the existence and stability of black hole solution

In this paper, we examine scalar hair on the black hole
AdS spacetime. In Sec. II we introduce the model and
basic equations. In Sec. III we give a definition of the a
ymptotically AdS spacetime and examine the asymptotic
havior of the scalar field. By analyzing the asymptotic b
havior of the scalar field, we find that the scalar field m
approach the extremum of its potential. Using this fact, i
proved that there is no regular black hole solution when
scalar field is massless or has a ‘‘convex’’ potential. Wh
the scalar field has a growing mode around the local m
mum of the potential, there is no growing mode around
local maximum. It implies that the local maximum is a kin
of ‘‘attractor’’ of the asymptotic scalar field. In Sec. IV w
give two numerical examples of the new black hole solutio
with nontrivial configuration of scalar field in the symmetr
or asymmteric double well potential models. In Sec. V
study the stability of these solutions by using the linear p
turbation method in order to examine whether the scalar
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is physical or not. In the symmetric double well potent
model, we find that the potential function of the perturbati
equation is positive semidefinite in some wide parame
range and that the new solution is stable. This implies t
the black hole no-hair conjecture is violated in asympto
cally AdS spacetime. We give conclusions and remarks in
final section.

II. MODEL AND BASIC EQUATIONS

We will consider the model given by the action

S5E d4xA2gF 1

16pG
~R22L!2

1

2
~¹f!22V~f!G ,

~1!

wheref is the real scalar field andV(f) is its potential. We
shall assume the cosmological constantL to be negative.
The metric of a spherically symmetric spacetime can be
pressed in the Schwarzschild type form

ds252 f e22ddt21 f 21dr21r 2dV2, ~2!

where

f 512
2Gm

r
2

L

3
r 2, ~3!

anddV2 is the metric of the unit 2-sphere.
The mass functionm and the lapse functiond depend on

both the time coordinatet and the radial coordinater. The
mass function is the quasilocal mass defined in Ref.@22#,
which is the gravitational energy minus the energy due to
cosmological constant, i.e., the energy of the matter field
a spherically symmetric spacetime, the mass function is n
decreasing in the outgoing null or spacelike direction in
timelike region (f .0), if the matter fields satisfy the domi
nant energy condition.

Varying the action~1! and substituting ansatz~2!, we de-
rive the field equations

m854pr 2F1

2
f 21e2dḟ21

1

2
f f821V~f!G , ~4!

d8524pr @ f 22e2dḟ21f82#, ~5!

ṁ54pr 2f ḟf8, ~6!

2@ed f 21ḟ#•1
1

r 2
@r 2e2d f f8#85e2d

dV~f!

df
. ~7!

Here, we have used the dimensionless variables,AuLut→t,
AuLur→r , AuLuGm→m, AGf→f and GV/uLu→V. By
using these variables,f is expressed as

f 512
2m

r
1

r 2

3
. ~8!
7-2
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SCALAR HAIR ON THE BLACK HOLE IN . . . PHYSICAL REVIEW D64 044007
We will use these dimensionless variables below. A dot an
prime in the field equations denote derivatives with resp
to the dimensionless variablest and r, respectively.

For the boundary conditions of the metric functions, w
first impose the existence of a regular BEH atr 5r B ; i.e.,

2m~r B!5r BS 11
1

3
r B

2 D , ~9!

d~r B!,`. ~10!

Second, we impose the non-existence of singularity outs
of the BEH, i.e., forr .r B ,

2m,r S 11
1

3
r 2D . ~11!

As for the asymptotic behavior, we can expect roughly fo
possibilities depending on the form of the potentialV(f).
Definele f fªladd21ª8pV(f`)21 wheref`ªf(`). ~i!
If le f f,0, the spacetime approaches AdS.~ii ! If le f f.0, the
spacetime approaches de Sitter spacetime. In this case,
should appear a cosmological event horizon~CEH! at r
5r C . By imposing its regularity, the metric functions mu
satisfy

2m~r C!5r CS 11
r C

2

3 D , ~12!

d~r C!,`. ~13!

~iii ! If le f f50, we expect that the asymptotically flat spac
time is realized. However, some fine tuning mechanism~dy-
namical or just by hand! should be needed for this case.~iv!
Finally there is a possibility of the other behavior. We w
briefly comment on this solution in Sec. VI. Later we w
investigate the case~i! i.e., asymptotically AdS solution. As
for the scalar field, we impose smoothness except atr 50
where a singularity exists.

III. ASYMPOTIC BEHAVIOR AND THE NO
SCALAR-HAIR THEOREM IN THE ‘‘CONVEX’’

POTENTIAL CASE

In this paper, we focus on the static solution who
asymptotic structure is AdS spacetime with no CEH. First
all, we have to give the definition of the asymptotically Ad
spacetime. In our metric ansatz, it is reasonable to define
~i! f ;Ar2 whereA.0 and~ii ! d→d` . From the condition
~i!, the mass function behavesm&Br3 @B,1/6 ~or B
,uLu/6 in the dimensional variables! in the m;Br3 case#.
By using Eq.~4!,

m54pE
r B

r

r 2F1

2
f f821V~f!Gdr1mB

;4pE
r B

r F1

2
Ar4f821V~f!r 2Gdr1mB , ~14!
04400
a
ct

e

r

ere

-

e
f

as

in the static case. Hence,f8&O(r 21) and V(f)&const.
Since Eq.~5! is integrated as

d524pE
r B

r

rf82dr1dB , ~15!

the scalar field must satisfyf8,O(r 21) by condition ~ii !.
As a result, the scalar field behaves asf8,O(r 21) in the
asymptotically AdS spacetime. The contribution from t
gradient term to the mass function becomes subdomin
whenV(f`).0.

We study the asymptotic behavior of the scalar field
using its field equation~7! in detail under the static ansatz
Substituting the asymptotic form of the metric functions, w
obtain

Ar2f914Arf82
dV

df
50. ~16!

This is easily integrated as

Ar4f85E r 2
dV

df
dr. ~17!

Since the left hand side of this equation behaves as,O(r 3),
dV/df&O(r 2e) anddV/df→0 asr→`. This implies that
f` takes the extremum value of the potential. IfV(f`).0,
the mass function behavesm;4pV(f`)r 3/3. Hence
V(f`),1/8p. Otherwise the spacetime will approach d
Sitter or another exotic one.

By this asymptotic behavior, we can prove the no-h
theorem for the ‘‘convex’’ potential case. The case when
extremum is realized atf5` is also included. There are tw
types of the ‘‘convex’’ potential. One is the case in which t
potential has a minimum and the other is one in which
does not, i.e., the scalar field approaches its asymptotic v
inffV(f) in the f→` ~or 2`) limit as V(f)5e2f. The
latter case is important since it appears in effective theory
superstring theories.

First we examine the former case where the potential
a minimum. We can set the minimum atf50. If f(r B)
50, the scalar field becomes trivial. Hence, we assu
f(r B).0 without loss of generality. By Eq.~7!,

f 8f85
dV

df
~18!

on the BEH. Sincef 8.0 anddV/df.0 around the BEH,
f8(r B).0. At the extrema of the scalar field, i.e.,f850,

f f95
dV

df
. ~19!

f must be positive outside of the BEH unless the CEH
pears. Hencef9.0 for f.0. These imply that the scala
field must increase monotonically. Since we assume that
scalar field does not diverge, there are three cases for
asymptotic behavior of the scalar field:~a! At finite radius
r 5r 0, the scalar field becomesf.f0 whereV(f0)51/8p.
It should be noted that since the effective cosmological c
7-3
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TAKASHI TORII, KENGO MAEDA, AND MAKOTO NARITA PHYSICAL REVIEW D 64 044007
stantle f f becomes positive (V.1/8p) for r .r 0, there may
appear the CEH.~b! The scalar field approaches i
asymptotic valuef`,f0. ~c! f`5f0. We will examine
these cases individually.Case (a):As we mentioned above
f 8 becomes negative by the positivele f f . Then the CEH
appears at a finite radius. Although we are interested in
solution without the CEH, we will check the possibility o
this solution. Equation~18! also holds at the CEH. Sinc
f 8,0 around the CEH,f must decrease at the CEH. Th
contradicts the monotonicity of the scalar field. Hence th
is no such solution.Case (b): In this case, the spacetim
eventually approaches AdS spacetime and the left hand
of Eq. ~7! becomes zero at infinity. However,dV/df is posi-
tive for f`.0. This is a contradiction.Case (c):In this case,
the spacetime becomes asymptotically flat sincele f f50.
Hence, while the left hand side of Eq.~7! becomes zero, the
right hand side is non-zero atf5f0. This is a contradiction.
One may consider the potential which approaches some
stant valueVinf,1/8p for large f. Then dV/df becomes
zero atf5`. However this potential is not included in th
definition of the ‘‘convex’’ potential. Furthermore, the scal
field must diverge in this case.

Next we examine the latter case, i.e., the potential hav
no minimum. It is easy to show that the potential is a mon
tonic function off, and we can prove the nonexistence
the relevant solution in a similar way as above. As a res
there is no solution for the ‘‘convex’’ potential except for th
trivial one. Note that we did not assume the asymptotica
AdS condition in the proof. So the scalar hair cannot be
on the black hole in any reasonable asymptotic conditio
the cosmological constant is negative and the potential h
‘‘convex’’ shape in general.

It is interesting to compare the asymptotic behavior w
that of the EYM system with negative cosmological const
@20#,

SEY M5E d4xA2gF 1

4pG
~R22L!2

1

16pg
trF2G .

~20!

In the EYM system, the magnetic part of the Yang-Mi
potential can take any valuew` asymptotically while the
scalar field must approach the extremum of the potential.
equation of the Yang-Mills potentialw is expressed as

1

r 2
@r 2e2d f w8#85

e2d

r 2
@2r f w8222w~12w2!#. ~21!

The right hand side of this equation corresponds to the c
tribution from the potential in our system@compare with Eq.
~7!#. Note that this term vanishes asr→` independently of
the value ofw due to the factorr 22. This is the key feature
of the EYM system. On the other hand, our system does
have such a factor. Hence the scalar field must approac
extremum at infinity.

Let us examine the asymptotic behavior of the scalar fi
further. Since we know that the asymptotic value of the s
lar field is the extremum of the potential, we next study h
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the scalar field approaches it. We assumef→f` as r→`.
Defining wªf2f` and expanding Eq.~7!, we obtain the
linear equation

w912mw81v2w50, ~22!

where

mª

1

r
1

f 8

2 f
, ~23!

v2
ª2

1

f

d2V

df2U
f5f`

. ~24!

The metric functionf behaves as

f→2
le f f

3
r 2. ~25!

Hence the friction coefficientm and the frequencyv2 are
expressed as

m→ 2

r
, ~26!

v2→ a

r 2
ª

3

le f f

d2V

df2U
f5f`

1

r 2
. ~27!

Substituting these into Eq.~22!, we obtain

w91
4

r
w81

a

r 2
w50. ~28!

The solution of this equation is

w5C1r l11C2r l2, ~29!

whereC6 are constants and

l6ª
236A924a

2
. ~30!

The behavior of the scalar field depends on the value ofa. If
a,0, l1 becomes positive and the growing mode is dom
nant. Since negativea implies thatd2V/df2uf5f`

.0 by
definition, the scalar field leaves the local minimum of t
potential unless one ensures the fine tuning with which
growing mode disappears. If 0,a,9/4, both of l6 are
negative and the scalar field approaches the local maxim
with the powerl1 in general. If a59/4, the scalar field
behaves as

w5C1r 23/21C2r 23/2ln r , ~31!

and approaches the local maximum. This corresponds to
critical damping. Ifa.9/4, there is no growing mode an
the scalar field behaves as
7-4
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w;r 23/2cosSA4a29

2
ln r D . ~32!

Namely the scalar field oscillate around the local maxim
with the frequencyn5exp(24p/A4a29) and with its en-
velope decreasing with the power23/2. As a result, the loca
maximum of the potential is a kind of attractor of the sca
field.

IV. BLACK HOLE SOLUTION WITH SCALAR HAIR

In this section we verify the expectations of the previo
section by using concrete models and derive nontrivial bl
hole solutions with scalar hair. Here we will adopt the syst
with a symmetric double well potential

V~f!5
l

4
~f22v2!2 ~33!

as a first example of a positive semidefinite potential. If
normalize the constants asl/GuLu→l and AGv→v, they
become dimensionless variables. Here we assumeV(0)
,1/8p. Since the top of the potential barrierf50 becomes
the attractor of the asymptotic scalar field, the parametera is
calculated to be

a5
3lv2

122plv4
.0. ~34!

There are two trivial solutions,f[6v and f[0. Both
of them are Schwarzschild-AdS solutions. For the latter
lution, the potential of the scalar field plays the role of t
additional cosmological constantladd52plv4. As is easily
imagined, this solution is unstable against perturbations.

Now we search for non-trivial static solutions by usin
numerical analysis. We drop the time derivative terms of
field equations~4!, ~5!, and~7!, and integrate them from th
BEH with the boundary conditions~9! and ~10!. We can
restrictf(r B).0 without loss of generality because the p
tential has reflection symmetry. Furthermore, we rest
f(r B),v; otherwise the situation is exactly the same as
‘‘convex’’ potential case and there is no nontrivial solutio
Since the equation of the scalar field~7! becomes singular on
the BEH, we expand all terms in power series of (r 2r B) to
guarantee the regularity on the BEH, and use their anal
solutions for the first step of integration.

We found the black hole solutions with nontrivial scal
field configuration for any boundary value of the scalar fie
in the range 0,f(r B),v. This is one of the different prop
erties from the positive cosmological constant case@12#,
where we have to choose the suitable boundary value a
BEH by the shooting method in order to satisfy the bound
condition at the CEH. In the present case we do not nee
shooting parameter.

We show the configuration of the scalar field in Fig. 1. W
choose the value of the parameters asl550, v50.1, r B
50.1 andf(r B)50.5v. In this case,a51.55,9/4. As dis-
cussed in the previous section, we find that the scalar fi
decays with the powerl1520.663. We show the configu
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ration of another solution with the different parameterl
5500, v50.1, r B50.1 andf(r B)50.5v in Fig. 2. In this
case,a521.9.9/4. The scalar field oscillates with dampin
We show the ln plot of the same solution in Fig. 2~b!. It
shows that the envelope of the oscillation decays with po
r 23/2 and that the wavelength is proportional to lnr. By Eq.
~34!, we find that the condition for oscillation with dampin
is

l.l0ª
3

2v2~3pv212!
. ~35!

It should be noted that there are actually black hole so
tions with the non-trivial scalar field in the asymptotical
AdS spacetime in spite of there being no counterparts
asymptotically flat spacetime.

In the above example, the scalar field approaches the
of the potential barrier asymptotically. This is because
local maximum is an ‘‘attractor’’ and there is a growin
mode around the bottom of the potential well. We may, ho
ever, make this growing mode vanish by tuning the value
the scalar field at the BEH. We will give another examp
Since there is no such solution in the symmetric double w
potential case, we adopt the following artificial asymmet
potential:

V5AF1

4
f42

v11v2

3
f31

v1v2

2
f21

1

12
v1

3~v122v2!G ,
~36!

whereA, v1 andv2 are constant. We show the form of th
potential with the parametersA51000, v150.1 andv25
20.01 in Fig. 3.f50, f5v1 andf5v2 correspond to the
top of the potential barrier, the global minimum and the loc
minimum, respectively. If we choosef(r B).0 too large, the

FIG. 1. The configuration of the scalar fieldf in the symmetric
double well potential model. We set the parametersl550, v
50.1, r B50.1 andf(r B)50.5v. The scalar field decays with th
powerl1520.663.
7-5
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scalar field passes the local minimumv2 as we integrate the
field equations outward, and it diverges to minus infinity.
we choosef(r B) too small, the scalar field cannot reachv2
but oscillates around the top of the potential barrier and
cays tof50. Hence if we choose a suitable value off(r B)
between these values, we will obtain the desirable solut
In this sense,f(r B) is a shooting parameter. By numeric
calculation we find such non-trivial solution. Figure 4 sho
the configuration of the scalar field with the potential d
picted in Fig. 3. We setr B50.1. The scalar field approache
the local minimumv2 of the potential. This solution is dif-
ferent from those in the symmetric double well potent
model. Although the existence of this type of solution
interesting, it seems unstable against the time dependent
turbations as discussed later and cannot be used as a co
example of the no-hair conjecture.

FIG. 2. The configuration of the scalar fieldf in the symmetric
double well potential model. We set the parametersl5500, v
50.1, r B50.1 andf(r B)50.5v. ~a! is the linear plot. The scala
field oscillates with damping.~b! is the ln plot. We find that the
envelope of the oscillation decays with power23/2 and that the
wavelength is proportional to lnr.
04400
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V. STABILITY ANALYSIS BY LINEAR PERTURBATION
METHOD

In the previous section we found new black hole so
tions. This means that the no-hair conjecture may not hold
asymptotically AdS spacetime. In this section we investig
the stability of the new solutions by using a linear perturb
tion method in order to check whether or not the scalar h
is really physical.

First we expand the field functions around the static so
tion f0 , m0 andd0 as follows:

f~ t,r !5f0~r !1
f1~ t,r !

r
e, ~37!

FIG. 3. The form of the asymmetric double well potential wi
the parametersA51000, v150.1, andv2520.01. f50, f5v1

andf5v2 correspond to the top of the potential barrier, the loc
minimum and the global minimum, respectively.

FIG. 4. The configuration of the scalar fieldf in the asymmetric
double well potential model. We set the parametersA51000, v1

50.1, v2520.01 andr B50.1. The scalar field approaches the l
cal minimumv2 asymptotically.
7-6
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m~ t,r !5m0~r !1m1~ t,r !e, ~38!

d~ t,r !5d0~r !1d1~ t,r !e. ~39!

Here e is an infinitesimal parameter. Substituting them in
the field equations~4!–~7! and dropping the second an
higher order terms ine, we find the following perturbation
equation of the scalar field:

2
d2j

dr* 2
1U~r !j5s2j, ~40!

where we setf15j(r )eist andm15h(r )eist. If s2 is posi-
tive, f oscillates around the static solution and the solut
is stable. On the other hand, if it is negative, the perturba
f1 and m1 diverge exponentially with time and then th
solution is unstable.r * is the tortoise coordinate defined b

dr*

dr
5

ed0

f 0
, ~41!

where f 0ª122m0 /r 11/3. The potential function is

U~r !5e22d0f 0F ~128pr 2f08
2!

f 08

r

24p~118pr 2f08
2! f 0f08

2

116prf08
dV

df U
0

1
d2V

df2U
0
G . ~42!

First we discuss the general properties by using
asymptotic behavior of the potential functionU without con-
crete potential form. To leading order, it behaves as

U~r !5
22a

9
le f f

2 e22d0r 2. ~43!

Hence, whena.2, the potential diverges to minus infinity
This means that there exists an infinite number of unsta
modes and the black hole solution is unstable. On the o
hand, whena,2, the potential diverges to plus infinity. Al
though there seems to be no unstable modes in this c
U(r ) may have a well in the central region which is de
enough to produce negative eigenmodes. The previous
ample of the asymmetric double well potential case (a,0)
is such a case. It is expected that the solution has exactly
unstable mode. The number of unstable modes equals
number of times the scalar field goes over the potential b
rier @12#. Hence the stability in thea,2 case depends on th
potential of the scalar fieldV(f) we employ.

Next we examine the concrete model. We plot the pot
tial function U(r ) of the symmetric double well potentia
model in Fig. 5. The values of the parameters arel550, v
50.1, r B50.1 andf(r B)50.5v (a51.55). We find that the
potential diverges to plus infinity as;r 2 as we analyzed
Note that it is positive semidefinite. This means that ther
04400
n
n

e
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er

se,

x-

ne
he
r-
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is

no unstable mode and that the black hole solution is sta
This is a very important result because it violates the
scalar hair conjecture in the asymptotically AdS spacetim
Numerical calculation shows that the criterion of the stabil
is exactlya,2 in the symmetric double well model as ob
tained by the asymptotic analysis. This condition is describ
as

l,lstableª
2

v2~4pv213!
. ~44!

Comparing this with Eq.~35!, we findl0.lstable. Figure 6

FIG. 5. The profile of the potential functionU of the linear
perturbation equation for the double well potential model. We
the parametersl5500, v50.1, r B50.1 andf(r B)50.5v. We find
that the potential is positive semidefinite, which means that ther
no unstable mode.

FIG. 6. The boundaries of the damping/oscillating behavior
the scalar field~solid line! and stability/instability of the new solu
tion ~dashed line! in the symmetric double well potential model. W
find thatlstable,l0 for all v.
7-7
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shows the boundaries of the stablility/instablility and of t
damping/oscillating behavior in the parameter space.

VI. CONCLUSION

We have examined the no-hair conjecture under the
ymptotically AdS condition. As the first step, we consider t
real scalar field as the matter field and assume the s
spherically symmetric spacetime. By analyzing t
asymptotic behavior of the scalar field, we find that the sca
field must approach the extremum of its potential. With t
fact, it can be proved that there is no regular black h
solution when the scalar field is massless or has a ‘‘conv
potential-like mass term. While the scalar field has a grow
mode around the local minimum of the potential, there is
growing mode around the local maximum. This implies th
the local maximum is a kind of ‘‘attractor’’ of the scalar fiel
asymptotically. When the variablea defined in Sec. III sat-
isfiesa.9/4, the scalar field oscillates with damping arou
its asymptotic valuef` . When 0,a,9/4, it decays without
oscillation. We give two examples of the new black ho
solutions with nontrivial scalar field configuration. The fir
one is the solution in the symmetric double well potent
model. We can find the new solution without tuning the va
of the scalar field at the BEH. The other example is
solution in the asymmetric double well potential model. W
show the solution whose scalar field approaches the l
minimum of its potential by tuning the boundary value of t
scalar field. We study stability of the new solutions by usi
the linear perturbation method in order to examine whet
or not the scalar hair is physical. While for the potential w
a.2 the new solution is unstable, the asymptotic analy
shows that the solution may be stable for thea,2 case. In
the symmetric double well potential model, we find that t
potential function of the perturbation equation is positi
semidefinite for the damping solution witha,2 and that the
new solution is stable. This implies that the black hole n
hair conjecture is violated in asymptotically AdS spacetim

In our present analysis, we show explicitly that the bla
hole can have a scalar hair only in a particular model, i.e.
the symmetric double well potential. It is expected, howev
that there are similar solutions with scalar hair in differe
models, and we confirmed it. Furthermore, we can inclu
the gauge field in our system as in the positive cosmolog
constant case@23#. Then the scalar hair is independent of t
gauge hair unlike the dilaton hair which cannot exist witho
the gauge field@24#. In this sense our scalar hair is classifi
into the primary hair.

The new solution has a singularity atr 50 which is hid-
den by the BEH. There will be also a regular solution wit
out the BEH, i.e., the boson star solution. In the posit
cosmological constant case, there exists such solution
assuming the regular boundary condition at the origin inst
of the black hole boundary condition, and they have intere
ing properties@16#. Unfortunately, they were found to b
unstable against perturbations. In the negative cosmolog
constant case, however, it is expected that the boson
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solution is stable since the black hole counterpart can
stable for the model witha,2. If so and if the Universe
experienced a period with negative cosmological constan
least effectively, this boson star solution would affect t
history of the Universe.

In Sec. IV, we showed the black hole solution which s
isfies the asymptotically AdS condition. This condition
guaranteed by imposingle f f,0 on the potential of the sca
lar field, i.e., the additional cosmological constant produc
by the potential at the local maximum is smaller than t
absolute value of the original cosmological constant. Th
what happens if this condition is violated? In order to exa
ine this question, we study the model which includes
potential depicted in Fig. 7. By examining the asympto
behavior of the scalar field as in Sec. III, we find that t
local maximum~minimum! of the potential is the attracto
when f .0 ( f ,0). We choose a boundary value of the sca
field at the BEH and integrate outward. The scalar fie
damps to the local maximum first and continues to take t
value for some range of the radial coordinate. Since the
fective cosmological constantle f f is positive, there will ap-
pear the CEH at some radiusr C . However, the boundary
condition of the scalar field at the CEH is not satisfied
general and the scalar field diverges. In order to evade t
we have to choose a suitable boundary value off(r B). Then
we can integrate over the CEH. After that the attractor mo
to the local minimum of the potential becausef ,0 and the
scalar field oscillates around one of the local minima. Th
since the effective cosmological constant becomes nega
there, another event horizon will appear@25#. However, the
boundary condition at the event horizon again cannot be
isfied in general. Since there remains no free paramete
satisfy the boundary condition, the scalar field inevitably
verges. As a result, we cannot expect physically reason
asymptotic structure.

Although our analysis is restricted in the 4-dimension
spacetime, it can be extended to the higher dimensional c

FIG. 7. The schematic figure of the double well potential. At t
top of the potential barrier,le f f becomes positive.
7-8
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In particular, we are interested in the 5-dimensional bra
world scenario, which consists of a 4-dimensional thin/th
wall where we live and the bulk spacetime with negat
cosmological constant. The static black hole solution has
been obtained yet in this context because the brane world
nontrivial S1/Z2 symmetry. However, our analysis shows t
possibility that the scalar field can be a new primary hair
the black hole on the brane world. The black hole in asym
totically AdS spacetime has more variety than in the asym
totically flat case.
.
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