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Hawking radiation from AdS black holes
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We investigate Hawking radiation from black holes in (d11)-dimensional anti–de Sitter space. We focus on
s waves, make use of the geometrical optics approximation, and follow three approaches to analyze the
radiation. First, we compute a Bogoliubov transformation between Kruskal and asymptotic coordinates and
compare the different vacua. Second, following a method due to Kraus, Parikh, and Wilczek, we view Hawking
radiation as a tunneling process across the horizon and compute the tunneling probability. This approach uses
an anti–de Sitter version of a metric originally introduced by Painleve´ for Schwarzschild black holes. From the
tunneling probability one also finds a leading correction to the semiclassical emission rate arising from back
reaction to the background geometry. Finally, we consider a spherically symmetric collapse geometry and the
Bogoliubov transformation between the initial vacuum state and the vacuum of an asymptotic observer.
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I. INTRODUCTION

Anti–de Sitter black holes play a major role in the Ad
conformal field theory~CFT! conjecture@1# ~see @2# for a
review!, and they have also received interest in the contex
brane-world scenarios based on the setup of Randall
Sundrum@3,4#. The purpose of this paper is to briefly inve
tigate the basic property of black holes, Hawking radiati
in anti–de Sitter spacetimes.

In the (211)-dimensional special case, the Ban˜ados-
Teitelboim-Zanelli~BTZ! black holes@5#, Hawking radiation
of a massles conformally coupled scalar field was inve
gated in detail by Hyunet al. @6#. Here we will instead take
a more generic approach~while sacrificing detail!, and ex-
tend some standard ways to analyze Hawking radiation f
Schwarzschild black holes to the anti–de Sitter case i
generic dimension. The standard methods in question ar
investigate eternal black holes and the role of different va
based on different boundary conditions at the horizons,
to investigate radiation in a spherical collapse geome
while the quantum field is in a natural initial vacuum. Cu
tomarily, the focus is on finding the leading thermal char
teristics of the radiation. For this purpose it is sufficient
invoke a geometric optics approximation which neglects
backscattering of outgoing waves from the spacetime cu
ture and essentially reduces the problem to two dimensi
The neglected effects would give rise to a graybody facto
the thermal emission spectrum. The graybody factors ca
found by investigating the absorption by AdS black holes

We will also investigate the back reaction to the geome
by taking into account the self-interaction effect analyzed
Kraus, Parikh, and Wilczek@9–11# ~see also@12#!. This ap-
proach views Hawking radiation as a tunneling proc
across the horizon. Here we extend the approach of@9–11# to
the anti–de Sitter case and find similar results.

*Email address: samuli.hemming@hip.fi
†Email address: esko.keski-vakkuri@hip.fi
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II. HAWKING RADIATION FROM ETERNAL
BLACK HOLES

One standard method to derive the Hawking radiation
to use a Bogoliubov transformation between two basis
annihilation and creation operators corresponding to m
expansions of the field operator in two preferred coordin
systems used to describe a black hole: the asymptotic c
dinates and the Kruskal coordinates. In the asymptotic co
dinates, the AdSd11 black hole metric is~see, e.g.,@7#!

ds252F~r !dt21
dr2

F~r !
1r 2 dVd21

2 , ~1!

where

F~r !512
m

r d22
1r 2, ~2!

and we work in units where the AdS radiusl 51. The param-
eterm is proportional to the Arnowitt-Deser-Misner~ADM !
massM of the black hole:

M5
~d21!Ad21

16pGd11
m, ~3!

whereGd11 is Newton’s constant ind11 dimensions and
Ad2152pd/2/G(d/2) is the volume of a unit (d21)-sphere.
The coordinates~1! are the anti–de Sitter analogue of th
Schwarzschild coordinates, relevant for external observer
a fixed radial distance from the black hole. One can sh
that the flux of outgoing radiation observed by asympto
fiducial observers atr 5const is in agreement with the rate
which the black hole emits its mass. We postpone this ca
lation to the end of Sec. IV, where we discuss the decay
AdS black holes in more detail.

There is a coordinate singularity at the radius of the ho
zon. The explicit formula for the horizon radiusr H can be
found by solving the polynomial equationF(r H)50. For
example, in 411 dimensions,
©2001 The American Physical Society06-1
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r H5A1

2
~A114m21!. ~4!

Then, the Hawking temperatureTH can be found by looking
at the periodicity of the Euclidean section of the metric n
r H . The generic result is

TH5
1

4p
F8~r H!, ~5!

where 85d/dr. E.g., in 411 dimensions,

TH5
A114m

2pr H
. ~6!

To investigate mode solutions of a field equation, it is use
to introduce the tortoise coordinater * :

r * 5E
r H

r dr̂

F~ r̂ !
. ~7!

Again, in 411 dimensions the explicit formula is

r * 5
1

A114m
F r 0 arctanS r

r 0
D1

1

2
r H lnS r 2r H

r 1r H
D G , ~8!

wherer H is the horizon radius andr 0 is a shorthand notation
denoting a radius:

r 05A1

2
~A114m11!. ~9!

@In 411 dimensions, the equationF(r )50 has four com-
plex zeros: two real zeros at6r H and two imaginary zeros a
6 ir 0.# It is also convenient to introduce the null coordinat

u5t2r * ,

v5t1r * , ~10!

wherer * is the tortoise coordinate. Then the metric takes
form

ds252F~r !du dv1r 2 dVd21
2 ~11!

and the solutions to the wave equation are infalling and o
going partial waves.

In the region outside the past and future horizons,
Kruskal coordinatesU, V are defined as follows:

U52exp~22pTHu!,

V5exp~2pTHv !. ~12!

In U, V coodinates, the metric takes the form
04400
r

l

e

t-

e

ds252
F~r !e24pTHr

*

~2pTH!2
dU dV1r 2 dVd21

2 . ~13!

In 411 dimensions, the explicit form is

ds252
r H

2

114m S 11
r 0

2

r 2D ~r H1r !2

3expF2
2r 0

r H
arctanS r

r 0
D GdUdV1r 2 dV3

2 . ~14!

In Kruskal coordinates, the metric can be extended over
whole spacetime, except for the originr 50, which corre-
sponds to the true curvature singularity of the black hole

Next, we will focus ons waves, adopt the geometri
optics approximation, and truncate to two dimensio
following the classic paper by Unruh@8#. The discussion also
overlaps with@13#.1

For a quantum field in the black hole background, the
are two canonical choices for a natural vacuum state. If
wants to mimic a situation where the black hole is created
collapsing matter, one requires the field to be in a vacu
corresponding absence of positive energy modes in thU
andv coordinates near the past horizonV50. This boundary
condition refers only to the past of the asymptotic region
spacetime and is known as the Unruh vacuum. Anot
vacuum choice, the Hartle-Hawking vacuum, refers to a m
ture of boundary conditions in the past and future horizo
Now one requires the absence of positive energyU modes
nearV50 and the absence of positive energyV modes near
U50. Physically, this mimics a black hole in thermal equ
librium with an external heat bath. The task is to compa
these two vacuua with the Boulware vacuum which is a na
ral vacuum for a fiducial observer in the asymptotic regio
The Boulware vacuum corresponds to absence of pos
energyu andv modes. To complete the discussion of vacu
we will also need to take into account the reflective bound
condition at the boundary of the anti–de Sitter space.
will do that at the end of this section.

To compute the Bogoliubov transformations between
different natural modes, we use the standard trick@8#. Let us
focus on the outgoing modes first. To begin with, we defi
the modes

f1,v5exp~2 ivu!5u~2U !~2U ! iv/2pTH ~U,0!,
~15!

f2,v5exp~ ivu!5u~U !U2 iv/2pTH ~U.0!. ~16!

Then, to find a complete basis for positive energyU modes
we consider the linear combinations which extend over
whole V50 line:

1We thank D. Klemm for bringing this reference to our attentio
6-2
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f1,v5f1,v1C1f2,v*

5u~2U !~2U ! iv/2pTH1C1u~U !Uiv/2pTH,
~17!

f2,v5f2,v1C2f1,v*

5u~U !U2 iv/2pTH1C2u~2U !

3~2U !2 iv/2pTH. ~18!

We then demand thatf1,v be a positive energy Kruska
mode: that forv.0 it must be analytic in the lower hal
complexU plane. This condition is satisfied if the coefficie
C1 is

C15expS 2
v

2TH
D . ~19!

A similar condition forf2,v fixes the coefficientC2:

C25expS 2
v

2TH
D . ~20!

HenceC15C2[C.
From this we can compute the~unnormalized! a and b

Bogoliubov coefficients which denote the overlap of a po
tive energyU mode with positive and negative energyu
modes:

a5~f1,v ,f1,v!5~f2,v ,f2,v!}1, ~21!

b5~f1,v ,f2,v* !5~f2,v ,f1,v* !}C ~22!

~for i 51,2). The ratio of the two coefficients is thus

UbaU
2

5uCu25expS 2
v

TH
D . ~23!

Using the normalization condition of the Bogoliubov coef
cients,

uau22ubu251, ~24!

we find that the average occupation number for positive
ergyu modes, seen by a fiducial observer when the quan
field is in a vacuum with respect to positive energyU modes,
simplifies to the expected form of a Bose-Einstein distrib
tion:

n̄v5ubu25
1

expS v

TH
D21

, ~25!

whereTH is the Hawking temperature of the AdSd11 black
hole.

A similar relation holds between theV andv modes also.
Now, we take into account the reflection from the bound
of AdS space. Reference@13# considered different possibili
ties for the boundary condition at infinity: Dirichlet, Neu
04400
-

-
m

-

y

mann, and Robin boundary conditions. What is the prefer
boundary condition? Let us leave the geometric optics
proximation for the moment and consider mode solutions
the exact wave equation for a free scalar field in the A
black hole space time. In Minkowski signature, the mo
solutions can fall into two categories, non-normalizable
lutions fv,kW

(2) and normalizable solutionsfv,kW
(1) , with the

asymptotic behavior

fv,kW
(6)

~ t,r ,V!→r 22h6f̃6~ t,V! ~r→`!, ~26!

where h6 are parameters related to the massm5 and the
dimension of the spaced by

2h65
1

2
~d6Ad214m2!. ~27!

The quantized fieldf is expanded as a linear combination
the normalizable modes. Their decay behavior at the bou
ary corresponds to reflection. The exact mode solutionsf (1)

are easy to find in 211 dimensions in terms of hypergeo
metric functions@14,15#. Near the black hole horizon, th
normalizable modes reduce to a form

f (1);~e2 ivu1e2 ivv1 i2u0!e2 inf, ~28!

whereu0 is a phase shift factor; its exact form can be fou
in @14#. Thus, in the geometric optics approximation, t
modes which take into account the reflection from t
boundary and are appropriate to a fiducial observer ar
linear combination of the positive energyu andv modes:

fv5e2 ivu1e2 ivv1 i2u0. ~29!

For Kruskal modes, one must consider the correspond
linear combination of the positive energyU and V modes.
Thus, in the eternal black hole geometry, the appropr
vacuum is the Hartle-Hawking vacuum. Then, a fiducial o
server sees a thermal spectrum for both infalling and out
ing modes. In the eternal AdS geometry, the Unruh vacu
is not well defined with respect to the boundary condition
infinity. However, in the ‘‘realistic’’ geometry of a black hole
created by a collapsing shell of matter, the Unruh vacu
would be the natural vacuum. We will return to this issue
Sec. IV, where we discuss Hawking radiation in the collap
geometry.

III. HAWKING RADIATION AS TUNNELING

Recently, a method to describe Hawking radiation a
tunneling process, where a particle moves in dynamical
ometry, was developed by Kraus and Wilczek@9,10# and
elaborated upon by Parikh and Wilczek@11#. This method
also gives a leading correction to the emission rate aris
from loss of mass of the black hole corresponding to
energy carried by the radiated quantum. This method w
also investigated in the context of black holes in stri
theory@12#, and it was demonstrated that in the string pictu
of microstates of the black hole, the correction to the em
sion rate corresponds to a difference between counting
6-3
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states in the microcanonical and canonical ensembles. H
ever, in all these investigations the black holes have
asymptotically flat spacetime geometry. We now extend
investigation to black holes in AdS spacetime. We will ba
our treatment on the presentation of@11#.

A convenient trick in the method of@9–11# is to write the
black hole metric in a coordinate system where constant t
slices are flat, without a singularity at the horizon. In the
coordinates, the Schwarzschild metric takes the form

ds252S 12
2M

r Ddt212A2M

r
dt dr1dr21r 2 dV2.

~30!

These coordinates were first introduced 80 years ago
Painlevé@16#, but then disappeared from general knowled
until they were independently rediscovered in@9# and used to
investigate black hole quantum mechanics. We will now
rive an analogue of the Painleve´ coordinates for AdS
black holes, which we shall refer to as the AdS-Painle´
coordinates.

By analogue to the asymptotically flat black holes, t
AdS-Painleve´ coordinates should have the property that co
stant time slices of the AdS black hole metric~1! will have
the same geometry as constant time slices of a glo
AdSd11 metric:

ds252~11r 2!dt21
dr2

~11r 2!
1r 2 dVd21

2 . ~31!

Thus, we perform a coordinate transformationt5 t̂1 f (r ), so
the metric~1! takes the form

ds252F~r !d t̂212 f 8~r !F~r !d t̂ dr

1S 1

F~r !
2F~r !@ f 8~r !#2Ddr21r 2 dV2, ~32!

and then demand that on constantt̂ slices the metric reduce
to

ds25~11r 2!21 dr21r 2 dV2. ~33!

This implies that

f 8~r !5
1

r (d22)/2F~r !
A m

11r 2
, ~34!

so the AdS-Painleve´ metric reads as follows:

ds252F~r !d t̂21
2

r (d22)/2
A m

11r 2
d t̂ dr1~11r 2!21 dr2

1r 2 dV2. ~35!

Now we move on to discuss Hawking radiation. T
(s-wave! quanta of a massless scalar field follow radial-lig
like geodesics
04400
w-
d
e
e
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ṙ 52
Am

r (d22)/2
A11r 26~11r 2!, ~36!

where the (1) sign corresponds to an outgoing geodesic a
the (2) sign corresponds to an ingoing geodesic, resp
tively. Next we take into account the response of the ba
ground geometry to an emitted quantum of frequencyv. We
keep the total massM of the spacetime fixed, but in order t
take into account the energy carried by the quantum,
replacem in Eq. ~36! by m8:

m8[
16p

~d21!Ad21
~M2v!. ~37!

Note that at the horizon,

ṙ ur H
50. ~38!

As the particle travels across the horizon fromr in to r out , its
action2 receives an imaginary contribution

Im S5ImE
r in

r out
pr dr5ImE

r in

r outE
H

dH

ṙ
dr, ~39!

where on the last line we switched the order of integrat
and used Hamilton’s equationṙ 5dH/dpr . Next, we substi-
tute from Eq. ~36! the radial velocity along the outgoin
geodesic, and usedH5d(M2v)52dv:

Im S52ImE
0

v

dv8E
r in

r out
dr

11A m8

r d22
~11r 2!21

F~r !
.

~40!

The only imaginary contribution to the radial integral com
from the pole atr H . Then

Im S5pE
0

v

dv8
2r H

r H
2 d1~d22!

. ~41!

On the other hand, after solving forr H as a function ofm, we
can derive that

r H
d22 drH

dm
5

r H

r H
2 d1~d22!

. ~42!

Substituting this into the integral yields

2Note that in the local point particle description used in this s
tion, the issue of boundary conditions at infinity does not arise.
6-4
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Im S5p
~d21!Ad21

16p E
m2[16p/(d21)Ad21]v

m

dm8 2r H
d22drH

dm8

5
1

8
Ad21@r d21~M !2r d21~M2v!#5

1

2
DSBH ,

~43!

where DSBH5SBH(M )2SBH(M2v) is the difference of
the entropies of the black hole before and after the emiss
Thus, the tunneling probability for the particle is

G5exp~2DSBH!. ~44!

If we Taylor expandDSBH in v, the leading term gives the
thermal Boltzmann factors exp(2v/TH) for the emanating
radiation. The second term represents corrections from
response of the background geometry to the emission
quantum. The same result holds for emission from asym
totically flat black holes@12#.

IV. PARTICLE CREATION BY A COLLAPSING
SPHERICAL SHELL IN AdS

We will now turn to a third way to analyze Hawkin
radiation from black holes and investigate particle creat
by a collapsing spherical body which forms a black hole
AdS space. We will base our treatment on the discussio
@17#, which in turn follows @18# and @19#. As in @17#, the
starting point is that we assume that in the remote past
spherical body is distended so much that it deforms
anti–de Sitter space. Thus, in the beginning we can ass
that a quantum field is in a vacuum constructed with resp
to global coordinates in AdS space. Now a convenient cho
for the global coordinates is given by

ds25~secr!2~2dt21dr2!1~ tanr!2 dVd21
2 . ~45!

The ~normalizable! mode solutions can be found, e.g.,
@20#:

fn,l
(1)5e2 ivtYl ,$m%~V!~cosr!2h1~sinr! l

3Pn
( l 1d/221,2h12d/2)

~cos 2r!, ~46!

where Yl ,$m%(V) is a spherical harmonic onSd21,

Pn
( l 1d/221,2h12d/2) is a Jacobi polynomial, and

2h15
d

2
1

1

2
Ad214m2[

d

2
1

1

2
n. ~47!

As a result of the boundary conditions at the origin and at
boundary of AdS space, the spectrum is discrete, with

v52h112n12l , n50,1,2, . . . . ~48!

Again, we will focus ons waves (l 50). As in flat space, we
expect the quantum to experience a strong redshift a
propagates across the collapsing body. Thus, in the rem
04400
n.

he
a
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n
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past, we are most interested in high-frequency modes. In
high-frequency limit, the mode solution~46! reduces to a
simplified form

fn
(1);~cosr!(d21)/2e2 ivnt cosS vnr2

dp

4 D , ~49!

where we suppressed normalization factors. In other wo
they take the form of a standing wave, a superposition of
ingoing and outgoing spherical wave, with a discrete sp
trum. Note that using the radial coordinater, the overall
factor (cosr)(d21)/2;(1/r )(d21)/2 as r @1, so we recover the
expected overall decay factor for the amplitude. Now,
will add into the picture the collapsing body and try to com
pute the redshift due to the passage of the wave across i
in @17#, we will use the geometric optics approximation a
truncate the analysis to two dimensions to thet,r plane by
suppressing the overall decay factor of the waveform.
simplicity, we assume that the collapsing body is a thin sh
of radiusR, with R monotonically decreasing in time. Th
truncated metric inside and outside the shell takes the fo

ds252F6 dt6
2 1F6

21~r !dr2, ~50!

whereF1(r )512m/r d221r 2 andF2(r )511r 2. We then
define the tortoise coordinatesr

*
6 ,

r
*
65E dr

F6~r !
, ~51!

and the null coordinates

u5t12r
*
1 , v5t11r

*
1 ,

U5t22r
*
2 , V5t21r

*
2 , ~52!

so that the interior and exterior metrics are conformal to
flat metric. The tortoise coordinate in the interior isr

*
2

5arctanr, so the originr 50 corresponds tor
*
250. In terms

of the null coordinatesU,V, the origin is then atV2U50.
Note also thatr

*
25r, wherer is the coordinate that appea

in the global metric~45!. The exterior and interior null coor
dinates are related by

v5b~V!,

U5a~u!, ~53!

where a(u) and b(V) are to be determined below. In th
(t,r ) coordinates, the passage of a wave across the s
turns to a reflection condition at the origin:

v5b~V!5b~U !5b„a~u!…. ~54!

Thus, in the asymptotic region~near the boundary!, the
waves have a phase structure

f̃ (1);e2 ivnv2e2 ivnb„a(u)…. ~55!

To find the functionsa,b, we match the interior and exterio
metrics across the collapsing shell atr 5R(t). Here t de-
6-5
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notes the shell time, which is related to the time coordina
t6 in the interior and exterior of the shell through

ds25@2F6 dt6
2 1F6

21 dr2# ur 5R(t)52dt2. ~56!

It is easiest to consider the derivatives

a8~u!5
dU

du
5

U̇

u̇
,

b8~V!5
dv
dV

5
v̇

V̇
~57!

~at the shell!, where•5d/dt. Using the definition~56!, we
obtain

dU

du
5

F1~R!@AF2~R!1Ṙ22Ṙ#

F2~R!@AF1~R!1Ṙ22Ṙ#
,

dv
dV

5
F2~R!@AF1~R!1Ṙ21Ṙ#

F1~R!@AF2~R!1Ṙ21Ṙ#
. ~58!

As the radius of the shell approaches the horizon, we
approximate

F1~R!'4pTH~R2r H!,

F2~R!'F2~r H![A. ~59!

Then, we can approximate

dU

du
'2

2pTH~R2r H!

AṘ
@AA1Ṙ22Ṙ#, ~60!

where we usedAṘ252Ṙ sinceṘ,0 as the shell is collaps
ing anduṘuÞ0 as a function of shell time. In the above,Ṙ

5Ṙur H
. Next, we relateU to R2r H by expanding

U'U~r H!1
dU

dRuR5r H

~R2r H! ~61!

and evaluating the derivativedU/dR at the horizon, using
the chain rule and Eqs.~51!, ~53!, ~56!, and~59!. We obtain

~R2r H!'@U2U~r H!#
AṘ

@AA1Ṙ22Ṙ#
. ~62!

We substitute this into Eq.~60! and obtain

dU

du
'22pTH@U2U~r H!#[2kU1const, ~63!

wherek is the surface gravity of the black hole. Integratio
then gives
04400
s

n

a~u!5e2ku1const. ~64!

A similar calculation fordv/dV gives

dv
dV

'2
A

Ṙ@AA1Ṙ21Ṙ#
[c ~5const!. ~65!

By integration,

b~V!5cV1const. ~66!

Thus, we find that in the asymptotic region the waves hav
phase structure

f̃ (1);e2 ivnv2e2 ivnc(e2ku1const). ~67!

To obtain modes where the outgoing wave is of stand
form, we invert functionally and write

f̃ (1);eivnk21 ln[(v02v)/c]2e2 ivnu, ~68!

which is valid only for v,v0. Now, we move back tod
11 dimensions and compare with the high-frequency lim
of the global modes~49!. Note that far in the asymptotic
region,r→`, the exterior tortoise coordinate reduces to t
same form asr, r

*
1'r, so we can write the global mode a

f (1);~cosr!(d22)/2~e2 ivnv2 idp/22e2 ivnu!. ~69!

We want to compare this with the modes that we found in
collapsing shell geometry:

f̃ (1);~cosr!(d22)/2~eivnk21 ln[(v02v)/c]2e2 ivnu!

(v,v0), ~70!

where we added the overall decay factor. The Bogoliub
transformation follows the discussion in@17#, and as a result
we find that the outgoing modes are thermally excited, if
field is in a global vacuum. Thus, the global vacuum
sembles an Unruh vacuum.

We can now easily perform a check that the coordina
u,v are indeed the appropriate coordinates for external
servers measuring the radiation. We evaluate the expecta
value of the energy-momentum tensor in theu,v coordinate
frame. Since we have focused only on thes waves, the ex-
pectation value of the~renormalized! stress tensor is given
by the Schwarzian derivative~see@17#, Sec. 7.1!

^Tuu& ren5
1

12p
@p8~u!#1/2]u

2@p8~u!#21/2, ~71!

where

p~u![c~e2ku1const! ~72!

from Eq. ~67!. The other components of the stress ten
vanish,

^Tvv& ren5^Tuv& ren5^Tvu& ren50, ~73!
6-6
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signaling only outgoing flux. Substituting Eq.~72! we find

^Tuu& ren5
k2

48p
, ~74!

which is the energy density of a thermal flux of radiation
temperature

TH5
k

2p
. ~75!

On the other hand, the decay rate for the black hole is gi
by

dM

dt
52L52

1

2p (
l 50

` E
0

`

dv
vGv l

ev/TH21
. ~76!

When we evaluate the luminosityL in the s-wave approxi-
mation (l 50) and in the geometric optics approximatio
with no backscattering (Gv l51), we obtain the result

dM

dt
52

k2

48p
. ~77!

Thus the decay rate~with respect to the time coordinatet of
the asymptotic observer! agrees with the observed flux o
radiation~74!.

In principle, the above result only applies to the onset
Hawking radiation as the black hole has formed and does
address the issue of subsequent evolution. As a result o
reflecting boundary conditions at the boundary of the A
space@21#, one might consider the subsequent evolution o
black hole as analogous to that of a black hole in a finite b
Indeed, in the AdS3 case it has been suggested@22# that an
evaporation black hole will eventually settle in equilibriu
with the thermal radiation. Let us quickly review the ke
arguments in@22#. In order to see that equilibrium with
remnant in a thermal bath is possible, one treats the sys
as a microcanonical ensemble with total energy,

E5Erad1M , ~78!

fixed.Erad denotes the energy of the radiation, andM denotes
the mass of the remnant. Initially, there is no radiation and
energy is in the black hole,E5M0. The total entropy of the
system is

Stotal5Srad1Sremnant;S mc

mp
D S M02M

mc
D 2/3

1S mc

mp
D 3/2S M

mc
D 1/2

,

~79!

up to irrelevant numerical coefficients. The equation involv
two mass scales:

mc5
1

G
~80!

is a classical mass scale, andG is Newton’s constant in 2
11 dimensions. The physical significance ofmc for black
04400
t

n

f
ot
he

a
x.

m

ll

s

holes is that the characteristic wavelength of Hawking rad
tion l is smaller than the radius of the horizon ifM.mc
@22#. The other mass scale

mp5S \2L

G D 1/3

~81!

is the Planck scale in 211 dimensions. Its value depends o
the cosmological constantL. Weak coupling approximation
for gravity applies whenmc@mp .

The total entropy is extremized (]S/]M50) when

S M

mc
D 1/2S 12

M

M0
D 21/3

5S M0

mc
D 1/3S mc

mp
D 1/2

. ~82!

For an example, suppose that the equilibrium sets atM
5(mc)

2/mp . Then the initial mass of the black hole was

M05S 11
mc

mp
Dmc . ~83!

So only a small fraction of the initial mass was lost befo
the equilibrium was reached. However, as noted in@22#, con-
sistency requires that the evaporation time to the equilibri
must be much larger than the time that it takes for the em
ted particles to be reflected from the boundary. Only then
there sufficient time for the thermal background to build
for the reflected particles to be captured again by the bl
hole. This is a subtle point. If the emitted particles we
massive, they would follow timelike geodesics and fall ba
to the black hole3 in time of the ordert return;L21/2. Mass-
less particles would propagate to the boundary and refl
back from there. However, in the AdS black hole spacetim
it takes an infinite time for massless particles to reach
boundary.4 Thus, a thermal background can build up in fini
time only when emission of massive particles is included.
that case, let us estimate the decay time. We assume
the emitted particles are very light, and use
(211)-dimensional version of Stefan’s law,

dM

dt
;2AT3;2M2, ~84!

where the area of the black holeA;r H;AM and the Hawk-
ing temperature isTH;r H . The decay time from the initia
massM0 to the equilibrium massM is @22#

Dt;S mc

mp
D 2/3S 12

M0

M DL21/2. ~85!

For our example case~83!,

3Timelike geodesics for AdS3 black holes have been investigate
in @23#.

4Contrary to what was claimed in@22#.
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Dt;S mc

mp
D 2/3

L21/2@L21/2, ~86!

so the decay time is much larger than the time it takes for
emitted particles to fall back into the black hole.

To sum up, for black holes created by spherically colla
ing matter and for Hawking radiation of massless fields
the s-wave approximation, the Unruh vacuum is the app
priate vacuum. However, if the emission involves mass
particles, the black hole evaporation proceeds in the asy
totically AdS spacetime as if the black hole was in a fin
box. Then it has been noted@22# that at least in 211 dimen-
sions, the evaporation can stabilize, with the end point of
system being a stable remnant in equilibrium with radiati
O

04400
e

-

-
e
p-

e
.

At equilibrium, the appropriate vacuum state is the Hart
Hawking state. The equilibrium analysis in dimensionsd
.2 is more involved. In the context of AdS/CFT correspo
dence, when the asymptotic spacetime is AdSd113Sd11, it
has been investigated in@7#.

Note added. As we were finalizing this paper, the pap
@24# appeared, discussing Hawking radiation in the opti
collapse geometry for spherically symmetric black holes.
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