PHYSICAL REVIEW D, VOLUME 64, 044006

Hawking radiation from AdS black holes

Samuli Hemming and Esko Keski-Vakkufi
Helsinki Institute of Physics, P.O. Box 9, University of Helsinki, FIN-00014 Helsinki, Finland
(Received 11 August 2000; revised manuscript received 10 April 2001; published 23 July 2001

We investigate Hawking radiation from black holes @h{1)-dimensional anti—de Sitter space. We focus on
s waves, make use of the geometrical optics approximation, and follow three approaches to analyze the
radiation. First, we compute a Bogoliubov transformation between Kruskal and asymptotic coordinates and
compare the different vacua. Second, following a method due to Kraus, Parikh, and Wilczek, we view Hawking
radiation as a tunneling process across the horizon and compute the tunneling probability. This approach uses
an anti—de Sitter version of a metric originally introduced by Painfev&chwarzschild black holes. From the
tunneling probability one also finds a leading correction to the semiclassical emission rate arising from back
reaction to the background geometry. Finally, we consider a spherically symmetric collapse geometry and the
Bogoliubov transformation between the initial vacuum state and the vacuum of an asymptotic observer.
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I. INTRODUCTION II. HAWKING RADIATION FROM ETERNAL
BLACK HOLES

Anti—de Sitter black holes play a major role in the AdS One standard method to derive the Hawking radiation is
conformal field theory(CFT) conjecture[1] (see[2] for a  to use a Bogoliubov transformation between two basis of
review), and they have also received interest in the context ofnnihilation and creation operators corresponding to mode
brane-world scenarios based on the setup of Randall arkpansions of the field operator in two preferred coordinate
Sundrum[3,4]. The purpose of this paper is to briefly inves- Systems used to describe a black hole: the asymptotic coor-

tigate the basic property of black holes, Hawking radiation dinates and the Kruskal coordinates. In the asymptotic coor-
in anti—-de Sitter spacetimes. dinates, the Adg,., black hole metric igsee, e.9.[7])

In the (2+1)-dimensional special case, the Bdos- ar2
Teitelboim-ZanelliBTZ) black holeq 5], Hawking radiation d?=—F(r)dt?+ r +r2 ngil, 1)
of a massles conformally coupled scalar field was investi- F(r)

gated in detail by Hyuret al. [6]. Here we will instead take

a more generic approadiwhile sacrificing deta)] and ex- Where
tend some standard ways to analyze Hawking radiation from
Schwarzschild black holes to the anti—de Sitter case in a
generic dimension. The standard methods in question are to
investigate eternal black holes and the role of different vacua

based on different boundary conditions at the horizons, angnd we work in units where the AdS radius 1. The param-

to investigate radiation in a spherical collapse geometr)éterlu is proportional to the Arnowitt-Deser-MisnéADM)
while the quantum field is in a natural initial vacuum. Cus- ,2<sM of the black hole:

tomarily, the focus is on finding the leading thermal charac-

teristics of the radiation. For this purpose it is sufficient to (d—1)Aq_;
invoke a geometric optics approximation which neglects the = 16nG.. . M
backscattering of outgoing waves from the spacetime curva- d+1
ture and essentially reduces the problem to two dimensions.

Where Gy, ; is Newton’s constant ird+1 dimensions and

The neglected effects would give rise to a graybody factor iny _,=2792/T(d/2) is the volume of a unitd— 1)-sphere.

the therm_a l emi.ssiqn spectrum. The graybody factors can bﬁdwe coordinate41) are the anti—de Sitter analogue of the
found by investigating the absorption by AdS black holes. g ar7schild coordinates, relevant for external observers at
We will also investigate the back reaction to the geometry, fiyaq radial distance from the black hole. One can show
by taking ir_lto account_ the self-interaction effect anglyzed PYhat the flux of outgoing radiation observed by asymptotic
Kraus, Parikh, and Wilczef9—-11] (see alsd12]). This ap-  figucial observers at=const is in agreement with the rate at
proach views Hawking radiation as a tunneling processyhich the black hole emits its mass. We postpone this calcu-
across the horizon. Here we extend the approa¢B-e11]to  |ation to the end of Sec. IV, where we discuss the decay of
the anti—de Sitter case and find similar results. AdS black holes in more detail.
There is a coordinate singularity at the radius of the hori-
zon. The explicit formula for the horizon radiug, can be
*Email address: samuli.hemming@hip.fi found by solving the polynomial equatioR(ry)=0. For
TEmail address: esko.keski-vakkuri@hip.fi example, in 41 dimensions,

I
F(r)=1—rd—72—l—r2, (2)

()
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F(r)e—477THr*
rm=1\5(1+4u—1). 4 d?=— —————dudv+r2dQi_,. (13

(27Ty)?

N| =

Then, the Hawking temperatuiig; can be found by looking
at the periodicity of the Euclidean section of the metric nea
ry. The generic result is

IJn 4+1 dimensions, the explicit form is

ra ra
1 d’=— 7o, =| 1+ | (ru+1)?
Tu=g-F'(ru), (5) pA T
2rg r ) )
where ' =d/dr. E.g., in 4+1 dimensions, X exg — n arcta o dudv+rdQs. (14
:_M‘L (6) In Kruskal coordinates, the metric can be extended over the
H . . .. .
27y whole spacetime, except for the origir=0, which corre-

. . ) ] ) o sponds to the true curvature singularity of the black hole.
To investigate mode solutions of a field equation, it is useful * Next we will focus ons waves, adopt the geometric

to introduce the tortoise coordinatg : optics approximation, and truncate to two dimensions,
following the classic paper by UnryB]. The discussion also
rodr overlaps with[13].2
M= JrH % () For a quantum field in the black hole background, there

are two canonical choices for a natural vacuum state. If one
wants to mimic a situation where the black hole is created by
collapsing matter, one requires the field to be in a vacuum
corresponding absence of positive energy modes inlthe

Again, in 4+1 dimensions the explicit formula is

ro= 1 [ arcta I +lr n =TIy ®) andv coordinates near the past horizés 0. This boundary
* Vit+du 0 ro) 2 "% \r+ry/| condition refers only to the past of the asymptotic region of

spacetime and is known as the Unruh vacuum. Another
wherer, is the horizon radius and, is a shorthand notation vacuum choice, the Hartle-Hawking vacuum, refers to a mix-

denoting a radius: ture of boundary conditions in the past and future horizons.
Now one requires the absence of positive enddgynodes
1 nearV=0 and the absence of positive enelgynodes near
ro= \/E( Vi+4u+1). (99  U=0. Physically, this mimics a black hole in thermal equi-

librium with an external heat bath. The task is to compare
these two vacuua with the Boulware vacuum which is a natu-
ral vacuum for a fiducial observer in the asymptotic region.
The Boulware vacuum corresponds to absence of positive
energyu andv modes. To complete the discussion of vacua,
we will also need to take into account the reflective boundary

[In 4+1 dimensions, the equatidf(r)=0 has four com-
plex zeros: two real zeros &tr and two imaginary zeros at
*+irg.] It is also convenient to introduce the null coordinates

u=t—ry, condition at the boundary of the anti—de Sitter space. We
will do that at the end of this section.
v=t+r,, (10 To compute the Bogoliubov transformations between the

different natural modes, we use the standard fr@jk Let us
wherer, is the tortoise coordinate. Then the metric takes thdocus on the outgoing modes first. To begin with, we define

form the modes
ds’=—F(r)dudv+r2dQ3_, (1) b y=exp(—iwu)=0(—U)(—U)“2 v (U<0),
(15
and the solutions to the wave equation are infalling and out-
i tial . »
going parial waves b ,=expliou)=6(U)U"T“2TTH  (U>0). (16)

In the region outside the past and future horizons, the
Kruskal coordinated), V are defined as follows:
Then, to find a complete basis for positive enetgiynodes
U=—exp —27Tyu), we consider the linear combinations which extend over the
whole V=0 line:

V=exp27Tyv). (12
In U, V coodinates, the metric takes the form IWe thank D. Klemm for bringing this reference to our attention.
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$10= ¢+ 0T C10" ,

— 0(_U)(_U)iw/ZvTTH+Cla(U)in/Zﬂ'TH,

a7
b20= -t Cad% ,
=0(U)U 17T+ C,0(—U)
X(—U)~emn, (18
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mann, and Robin boundary conditions. What is the preferred
boundary condition? Let us leave the geometric optics ap-
proximation for the moment and consider mode solutions to
the exact wave equation for a free scalar field in the AdS
black hole space time. In Minkowski signature, the mode
solutions can fall into two categories, non-normalizable so-

lutions ¢E,:|Z) and normalizable solutiongbfjg, with the

asymptotic behavior

UL Q) -1 B (1,0)  (row),  (26)

We then demand thap,, be a positive energy Kruskal \yhereh, are parameters related to the mass and the
mode: that foro>0 it must be analytic in the lower half §imension of the space by

complexU plane. This condition is satisfied if the coefficient

C,is
C,= “ 19
1=exp — 2T,/ (19
A similar condition for ¢, , fixes the coefficienC,:
C,= “ 20
2=exp — 2T,/ (20

HenceC,=C,=C.
From this we can compute tHennormalizedd « and g

Zhizé(dt Vd2+4u2). (27)

The quantized field) is expanded as a linear combination of
the normalizable modes. Their decay behavior at the bound-
ary corresponds to reflection. The exact mode solutiphis

are easy to find in 21 dimensions in terms of hypergeo-
metric functions[14,15. Near the black hole horizon, the
normalizable modes reduce to a form

¢(+)~(e7iwu+efiwv+i200)efin¢, (28)

Bogoliubov coefficients which denote the overlap of a posi-whered, is a phase shift factor; its exact form can be found

tive energyU mode with positive and negative energy
modes:
a:(¢l,wl¢+,w):(¢2,w!¢—,w):x11 (21)

ﬂ:(d)l,w!¢t,w):(¢2,w!¢t,w)uc

(for i=1,2). The ratio of the two coefficients is thus

B> ., w
—|C|2—exp( _ﬁ)

(22)

(23

o

in [14]. Thus, in the geometric optics approximation, the
modes which take into account the reflection from the
boundary and are appropriate to a fiducial observer are a
linear combination of the positive energyandv modes:
¢m:e7iwu+e7iwv+i200. (29)
For Kruskal modes, one must consider the corresponding
linear combination of the positive enerdy and V modes.
Thus, in the eternal black hole geometry, the appropriate
vacuum is the Hartle-Hawking vacuum. Then, a fiducial ob-
server sees a thermal spectrum for both infalling and outgo-

Using the normalization condition of the Bogoliubov coeffi- ing modes. In the eternal AdS geometry, the Unruh vacuum

cients,

|?=1BI7=1, (24

we find that the average occupation humber for positive eng
ergy u modes, seen by a fiducial observer when the quantu

field is in a vacuum with respect to positive enetdgynodes,

simplifies to the expected form of a Bose-Einstein distribu-

tion:

1

- _ o1
ol
ex ﬁ

(29

whereTy is the Hawking temperature of the AglS black
hole.
A similar relation holds between thé andv modes also.

is not well defined with respect to the boundary condition at
infinity. However, in the “realistic” geometry of a black hole

created by a collapsing shell of matter, the Unruh vacuum
would be the natural vacuum. We will return to this issue in
Sec. IV, where we discuss Hawking radiation in the collapse

Meometry.

IIl. HAWKING RADIATION AS TUNNELING

Recently, a method to describe Hawking radiation as a
tunneling process, where a particle moves in dynamical ge-
ometry, was developed by Kraus and Wilczgk10] and
elaborated upon by Parikh and Wilczgkl]. This method
also gives a leading correction to the emission rate arising
from loss of mass of the black hole corresponding to the
energy carried by the radiated quantum. This method was
also investigated in the context of black holes in string

Now, we take into account the reflection from the boundarytheory[12], and it was demonstrated that in the string picture
of AdS space. Referend&3] considered different possibili- of microstates of the black hole, the correction to the emis-
ties for the boundary condition at infinity: Dirichlet, Neu- sion rate corresponds to a difference between counting of
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states in the microcanonical and canonical ensembles. How- . Ju

ever, in all these investigations the black holes have had r=-— (d_z)/z\/1+ r2+(1+r?), (36)

asymptotically flat spacetime geometry. We now extend the r

investigation to black holes in AdS spacetime. We will base

our treatment on the presentation[af]. where the ) sign corresponds to an outgoing geodesic and
A convenient trick in the method ¢®—-11] is to write the  the (=) sign corresponds to an ingoing geodesic, respec-

black hole metric in a coordinate system where constant timéively. Next we take into account the response of the back-

slices are flat, without a singularity at the horizon. In theseground geometry to an emitted quantum of frequeacyVe

coordinates, the Schwarzschild metric takes the form keep the total masdl of the spacetime fixed, but in order to
take into account the energy carried by the quantum, we
2M 2M replaceu in Eq. (36) by u':
d32=—(1—T)dt2+2\/Tdtdr+dr2+r2dQZ. placey: in 4. (30) by 4
(30 167

These coordinates were first introduced 80 years ago by d-1
Painleve[16], but then disappeared from general knowledge, )
until they were independently rediscovered9iand used to  Note that at the horizon,

investigate black hole quantum mechanics. We will now de-

rive an analogue of the Painleveoordinates for AdS 'r|rH:o. (39)

black holes, which we shall refer to as the AdS-Painleve

coordinates. . . .
By analogue to the asymptotically flat black holes, the/S (€ particle travels across the horizon froto oy, its
actior? receives an imaginary contribution

AdS-Painlevecoordinates should have the property that con-
stant time slices of the AdS black hole met(io will have

the same geometry as constant time slices of a global Tout Tout [ dH
AdS,, ; metric: Im Szlmf P, dr=|mf jHTdr, (39
Fin Fin
2 2 dr2 2 2 . . . .
ds?’=—(1+r?)dt?+ (1—2)+r dQg_;. (31 where on the last line we switched the order of integration
+r

and used Hamilton's equatian=dH/dp, . Next, we substi-

) A tute from Eq.(36) the radial velocity along the outgoing
Thus, we perform a coordinate transformattent + f(r), so geodesic, and usgH=d(M — ») = — dw:

the metric(1) takes the form

— 32 ’ 3 !
ds’=—F(r)dt?+2f'(r)F(r)dtdr 14/ ':iz(l_{_rZ)—l
1 Tout r

—F(r)[f’(r)]2 dr2+r2d02, (32) Im S=—Imjo dw'fr| dr F(r)

in

REG) “0

and then demand that on constarglices the metric reduce ] ) o o
to The only imaginary contribution to the radial integral comes

from the pole atr . Then

ds®=(1+r?)"tdr?+r?dQ2. (33
) 2
This implies that Im S:’ﬂf dw’L. (41
o rid+(d—2)
= - \|-*
(r)= @22y V14,2 (34 On the other hand, after solving foy as a function ofu, we

can derive that
so the AdS-Painlevenetric reads as follows:

dr r
d-2-"H H
I 2 ~ r.H = 2 . (42)
dsz=—F(r)dt2+—(dfz)lzx/—l'u ~dtdr+(1+r2)~dr? e rhd+(d-2)
r +r
+r2d02. (35) Substituting this into the integral yields

Now we move on to discuss Hawking radiation. The
(s-wave quanta of a massless scalar field follow radial-light- 2Note that in the local point particle description used in this sec-
like geodesics tion, the issue of boundary conditions at infinity does not arise.
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(d—1)Aq L dr past, we are most interested in high-frequency modes. In the
Im Szw—ﬂf du’ 2rd2—2 high-frequency limit, the mode solutiof#6) reduces to a
167 Ju-p6mia-1)Ag- 1o du’ simplified form
1 1 B . dmr
= S Al M) 1AM~ 0)]= 5 ASg, B~ (cosp) (@~ DiZgont cos( np— T) . (49
(43

where we suppressed normalization factors. In other words,
where ASgy=Sen(M) —Ssn(M —w) is the difference of they take the form of a standing wave, a superposition of an
the entropies of the black hole before and after the emissiongoing and outgoing spherical wave, with a discrete spec-

Thus, the tunneling probability for the particle is trum. Note that using the radial coordinate the overall
factor (cog)@ V2~ (1/r)(@=12 asr>1, so we recover the
I'=exp(—ASgh). (44)  expected overall decay factor for the amplitude. Now, we

will add into the picture the collapsing body and try to com-
If we Taylor expandASgy, in o, the leading term gives the pute the redshift due to the passage of the wave across it. As
thermal Boltzmann factors exp@/T,) for the emanating in [17], we will use the geometric optics approximation and
radiation. The second term represents corrections from thsuncate the analysis to two dimensions to the plane by
response of the background geometry to the emission of auppressing the overall decay factor of the waveform. For
quantum. The same result holds for emission from asympsimplicity, we assume that the collapsing body is a thin shell
totically flat black holeg12]. of radiusR, with R monotonically decreasing in time. The

truncated metric inside and outside the shell takes the form

IV. PARTICLE CREATION BY A COLLAPSING
SPHERICAL SHELL IN AdS

We will now turn to a third way to analyze Hawking WhgreF+(r)=1_—M/rd 2_+r2 zindF_(r)=1+r2. We then
radiation from black holes and investigate particle creatiorflefine the tortoise coordinateg ,
by a collapsing spherical body which forms a black hole in dr
AdS space. We will base our treatment on the discussion in r*= f - (51)
[17], which in turn follows[18] and[19]. As in [17], the * F.(r)
starting point is that we assume that in the remote past the
spherical body is distended so much that it deforms thé
anti—de Sitter space. Thus, in the beginning we can assume
that a quantum field is in a vacuum constructed with respect
to global coordinate_s in Ad_S space. Now a convenient choice U=t_—r,, V=t_+r,, (52)
for the global coordinates is given by

ds’=—F. dt2 +F.(r)dr?, (50)

nd the null coordinates

u=t,—r,, v=t,+r;,

so that the interior and exterior metrics are conformal to a
flat metric. The tortoise coordinate in the interior rig
=arctarr, so the origirr =0 corresponds to, =0. In terms
of the null coordinate®),V, the origin is then a¥—U=0.

ds?=(secp)?(—dt?>+dp?) +(tanp)2dQ3_,. (45

The (normalizablé¢ mode solutions can be found, e.g., in

20k Note also that, =p, wherep is the coordinate that appears
(+)— pa-iot 2hy fain ! in the global metriq45). The exterior and interior null coor-
i =€ my (D) (cOSp) T (sinp) dinates are related by
(I+d/2—1,2h, —d/2)
X
P, (cos 2p), (46) v=B(V),
where Y| (Q) is a spherical harmonic onS’?, U=a(u) 53

pllrd2=1:=d2) is a Jacobi polynomial, and

where a(u) and B(V) are to be determined below. In the

1 d 1 (t,r) coordinates, the passage of a wave across the shell
2h+:§+ 5 d’+4m?= Stov (47)  turns to a reflection condition at the origin:
v=RB(V)=pU)=pB(a(u)). (54)

As a result of the boundary conditions at the origin and at the

boundary of AdS space, the spectrum is discrete, with Thus, in the asymptotic regiotnear the boundajy the
waves have a phase structure
w=2h,+2n+2l, n=0,12.... (48
Es(*),ve*iwnv_e*iwnﬁ(a(u))_ (55)
Again, we will focus ons waves (=0). As in flat space, we
expect the quantum to experience a strong redshift as ifo find the functionsy, 8, we match the interior and exterior
propagates across the collapsing body. Thus, in the remoteetrics across the collapsing shellrat R(7). Here 7 de-
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notes the shell time, which is related to the time coordinates

t. in the interior and exterior of the shell through

ds?=[—F. dtZ +F 1 dr?], _gy=—d7%.  (56)
It is easiest to consider the derivatives
Lo du 3 U
a'(u)= W
V) = dv v 5

(at the shell, where- =d/dr. Using the definition56), we
obtain

du F.(R[VF_(R)+R?*-R]
dU e (RVF(R+R—R]

do F_(R)[VF,(R)+R?*+R]
F+(R)[\/F_(R)+R2+R].

av (58)

As the radius of the shell approaches the horizon, we ca@me form a

approximate

Fi(R)~4nTy(R—ry),

F_(R)=F_(ry)=A. (59
Then, we can approximate
du 27T(R—r - .
a9 __2mTwRTT  ATR-RL (60
du AR

where we used/R?= — R sinceR<0 as the shell is collaps-

ing and|R|#0 as a function of shell time. In the abow,
= R|rH. Next, we relatdJ to R—ry by expanding

U=~U(ry)+

T (R=ru) (61)

dR\R 'y

and evaluating the derivativeU/dR at the horizon, using
the chain rule and Eq$51), (53), (56), and(59). We obtain

AR
(R-r)=~[U-U(r)]—=— (62
[VA+R?>—R]
We substitute this into Eq60) and obtain
du
——=~-=27Ty[U—-U(ry)]=—«U+const, (63

du

wherex is the surface gravity of the black hole. Integration

then gives

PHYSICAL REVIEW D 64 044006

a(u)=e *Y+const. (64
A similar calculation fordv/dV gives
dv _ _
FIViRe m— (=cons} (65)
By integration,
B(V)=cV+const. (66)

Thus, we find that in the asymptotic region the waves have a
phase structure
’(Z(+)~e—imnv — g ionc(e” "“+const). (67)
To obtain modes where the outgoing wave is of standard
form, we invert functionally and write
&(ﬂweiwnrl|n[(vo—u)/c]_

e_i“’nu, (68)
which is valid only forv<w, Now, we move back tal

+1 dimensions and compare with the high-frequency limit
of the global modeg49). Note that far in the asymptotic
region,r—oo, the exterlor tortoise coordinate reduces to the
r.~p, SO we can write the global mode as
¢(+)~(Cosp)(df2)/2(e7iwnv7id77/2_e*iwnU). (69)

We want to compare this with the modes that we found in the
collapsing shell geometry:

'&')(Jr)w (Cosp)(d72)/2(eiwn/<71 In[(vg—v)/c] e*ia)nU)

(v<wy), (70)
where we added the overall decay factor. The Bogoliubov
transformation follows the discussion[ih7], and as a result
we find that the outgoing modes are thermally excited, if the
field is in a global vacuum. Thus, the global vacuum re-
sembles an Unruh vacuum.

We can now easily perform a check that the coordinates
u,v are indeed the appropriate coordinates for external ob-
servers measuring the radiation. We evaluate the expectation
value of the energy-momentum tensor in the coordinate
frame. Since we have focused only on thwaves, the ex-
pectation value of thérenormalizedl stress tensor is given
by the Schwarzian derivativisee[17], Sec. 7.1

1
(Tuwren= o [P (WIYALP"(W]™2 (70)

where

p(u)=c(e ““+cons) (72
from Eq. (67). The other components of the stress tensor
vanish,

<Tvv>ren: <TUU>ren: <Tvu>ren: 0, (73
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signaling only outgoing flux. Substituting E¢72) we find holes is that the characteristic wavelength of Hawking radia-
tion N\ is smaller than the radius of the horizonNf>m,

z (74) [22]. The other mass scale

<Tuu>ren:mi

2713
which is the energy density of a thermal flux of radiation at m,= Q) (81)
temperature G

P is the Planck scale in21 dimensions. Its value depends on

TH=2—. (75  the cosmological constart. Weak coupling approximation
. for gravity applies whem>m,.
On the other hand, the decay rate for the black hole is given The total entropy is extremized$/dM =0) when

by / /
Mg\ 3/ m\ 12
—0) (—C) : (82
me Mp

(76)

M 1/2 M —-1/3
M1 [ (m) (“m) }
dt 27 5h '

o eTh-1 I

For an example, suppose that the equilibrium setsviat
When we evaluate the luminosity in the swave approxi- =(mM¢)?/m,. Then the initial mass of the black hole was
mation (=0) and in the geometric optics approximation

with no backscatteringl{,,,=1), we obtain the result m.
Mo=| 1+ _|m,. (83)
dm B K2 7 P
dt 48’ So only a small fraction of the initial mass was lost before

the equilibrium was reached. However, as notef2, con-

. . sistency requires that the evaporation time to the equilibrium

the asymptotic observemgrees with the observed flux of o5 he much larger than the time that it takes for the emit-

rad'a“o.”(?“)- . ted particles to be reflected from the boundary. Only then is
In principle, the above result only applies to the onset ofy,q e gyfficient time for the thermal background to build up

Hawking radiation as the black hole has formed and does ngh, e reflected particles to be captured again by the black

address the issue of subsequent evolution. As a result of the .. This is a subtle point. If the emitted particles were

reflecting boundary conditions at the boundary of the AdSy5qgjve, they would follow timelike geodesics and fall back
spacd 21], one might consider the subsequent evolution of &0 the black holdin time of the ordett, oy~ A~ Y2 Mass-
black ho!e as analogous t.o that of a black hole in a finite box,ess particles would propagate to the boundary and reflect
Indeed, in the Ad$case it has been sugges{@2] that an 54 from there. However, in the AdS black hole spacetime,
evaporation black hole will eventually settle in equilibrium j v eq an infinite time for massless particles to reach the
with the thermal radiation. Let us quickly review the key boundary! Thus, a thermal background can build up in finite

arguments if22]. In order to see that equilibrium with @ e oniy when emission of massive particles is included. In

remnant in a thermal bath is possible, one treats the systefflat case. let us estimate the decay time. We assume that
as a microcanonical ensemble with total energy, the emitted particles are very light, and use a

(2+1)-dimensional version of Stefan’s law,

Thus the decay rat@vith respect to the time coordinatef

E=E 4t M, (79
fixed. E,5qdenotes the energy of the radiation, andlenotes dMm AT~ M2 84
the mass of the remnant. Initially, there is no radiation and all dt ' (84)
energy is in the black holds=Mj. The total entropy of the
system is where the area of the black hoe~r,~ M and the Hawk-

- a0 " ing temperature i§y~ry. The decay time from the initial

me)(Mo—M L[ Me M massM, to the equilibrium mas#/ is [22]
m, me m me) '
(79

Siota™ Sradt Sremnant™ (

2I3
me Mo —1/2
L LT

p

up to irrelevant numerical coefficients. The equation involves
two mass scales:
For our example cas@3),

Me= G (80)

3Timelike geodesics for AdgShlack holes have been investigated
is a classical mass scale, a@dis Newton’s constant in 2 in [23].

+1 dimensions. The physical significance raf for black 4Contrary to what was claimed i{22].

044006-7



SAMULI HEMMING AND ESKO KESKI-VAKKURI PHYSICAL REVIEW D 64 044006

m
AtN(m—C ATV A2 (86)  Hawking state. The equilibrium analysis in dimensiahs
P >2 is more involved. In the context of AdS/CFT correspon-
so the decay time is much larger than the time it takes for thelence, when the asymptotic spacetime is AdSKSI™?, it
emitted particles to fall back into the black hole. has been investigated [].

To sum up, for black holes created by spherically collaps- Note addedAs we were finalizing this paper, the paper
ing matter and for Hawking radiation of massless fields in[24] appeared, discussing Hawking radiation in the optical

the swave approximation, the Unruh vacuum is the appro-collapse geometry for spherically symmetric black holes.
priate vacuum. However, if the emission involves massive
particles, the black hole evaporation proceeds in the asymp-
totically AdS spacetime as if the black hole was in a finite
box. Then it has been not¢d?2] that at least in 21 dimen-
sions, the evaporation can stabilize, with the end point of the We would like to thank Jorma Louko for useful com-
system being a stable remnant in equilibrium with radiationments.

)2/3 At equilibrium, the appropriate vacuum state is the Hartle-
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