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Tensor to scalar ratio of phantom dark energy models
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We investigate the anisotropies in the cosmic microwave background in a class of models which possesses
a positive cosmic energy density but negative pressure, with a constant equation of-stgtép) < —1. We
calculate the temperature and polarization anisotropy spectra for both scalar and tensor perturbations by
modifying the publicly available codemBrAsT. For a constant initial curvature perturbation or tensor normal-
ization, we have calculated the final anisotropy spectra as a function of the dark energy density and equation
of statew and of the scalar and tensor spectral indices. This allows us to calculate the dependence of the
tensor-to-scalar ratio ow in a model with phantom dark energy, which may be important for interpreting any
future detection of long-wavelength gravitational waves.
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[. INTRODUCTION =—1 without the additional complications inherent in modi-
fications of the gravitational sector of the theofywe shall
For many year$1], arguments have been made in favordiscuss how our results depend on this detail la@bserva-
of the cold dark matter model with a cosmological constantional constraints are often maximally likely at the value
(ACDM) because of its desirable property of having spatial= —1 and for the purposes of maximum likelihood analysis
flatness while accommodating a low matter density, condiit is better not to have the region of maximum likelihood
tions which seem to be favored by current astrophysical obbumping against the edge of the parameter space. Thus it is
servations. A few years ago, however, an old alterngtale ~@dvantageous to extend the domain of the parameterven
resurfaced and has been receiving considerable attdigjon if one is primarily interested, on theoretical grounds, in val-
This alternative, which we will refer to as the CDM with a UeSW=—1. _ o
scalar field (/CDM), borrows from the literature on infla- ~ One aspect which was not studied #] was the effect of
tion and postulates a slowly rolling scalar field whose energygravitational wave perturbations in the cosmic microwave
density has only recently become cosmologically relevantt@ckgroundCMB), and in particular the dependence of the
This slowly rolling scalar field provides a constituent of the tensor-to-scalar ratio on the equation of statén this paper
universe which is smooth below the horizon séatmd We study the tensor anisotropy spectrum in the phantom
whose evolution can be made arbitrarily slow. This is usuallynodel. We show that the normalization of the tensor pertur-
parametrized by the equation of state=p/p, with the b_atlons in the CMB is on!y weakly dependent on the equa-
model becoming indistinguishable from the cosmologicalt'on of state. _The behavior of the tensor-to-scalar ratio is
constant in the limiv— — 1. Generically w>—1 andw therefore dominated by the dependence of the scalar per-

is typically a function of time. turbations._ . I :
Of particular interest to us was a paper by Caldvdll We are interested in the tensor contribution to the anisot-

which introduced abCDM model withw< — 1. This form  OPY spectrum because it is, in principle, observable and di-
of dark energy, dubbephantom energyalso has the remark- rectly connected to the energy s_cale of inﬂ.at[@'ﬂ] a funda-
able property of satisfying;+p,<0, just as in the standard me.ntal_ parameter _of considerable importance. Our
®dCDM case. It was shown that this model is consistent with¢@libration of the relation between the amplitude of the an-
both recent observations and classical tests of cosmology, #i°trOPY in the CMB and this fundamental energy scale is
some cases providing a better fit than the more familiar modC!€arly necessary to interpret any future observations of this
els withw>—1. signal.
There are several known ways to achievez—1, e.g.
Ref.[5], but Caldwell’s model makes use of a non-canonical

kinetic term, a method introduced ﬂﬁ] There is no obvious Phenomenobgica”y, the property of negative pressure

motivation from particle physics for considering such a radi-and positive energy density can be achieved by considering
cal extension to the theory, and indeed the model has be&Re (unorthodox Lagrangian density

criticized on these ground§]. However we regard this as a
useful toy model because it allows us to simply extend the 1
equation of state parameter space continuously below L_Egﬂ Iupdv=V() @)

Il. THE MODEL

for the phantom componenrt. We are adopting the metric
'The speed of sound for a scalar field is the speed of light. ~ conventiong,,,=diag(—a? a? a? a?) wherea(t) is the cos-
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mological scale factor. To lowest order the non-canonical To calculate the anisotropy in the CMB we must include
negative kinetic term in the Lagrangian produces the follow-the perturbations o to first order(for an alternative treat-
ing expressions for the pressure and energy density of thisient, see[9]). We work throughout in the synchronous
dark energy: gauge. Since we are solving linearized equations it is useful
to Fourier transform the perturbations so that we can solve

1. the differential equations for eackkmode independently.
— 42 .
Po=" 5g2¢ T V($) @ The equation of motion for a particul&rmode is
L, B N -y 1.
Py=" 529 V() () Spxt2 o dta’ k- prs Sp=—3n¢ (10

where over-dots represent derivatives with respect to confomwhereh is the trace of the metric perturbation in the synchro-
mal time %, and dt=ad#. Negating the kinetic term also nous gauge. The scalar field perturbation, being of spin-0,
alters the equation of motion of the field from that of a field does not depend on the other metric perturbation directly.
with a canonical Lagrangian by switching the sign of theThe §¢,’s produce the fluctuations in the energy density and

oNVId¢ term, pressure of thep field:

. a. 1V 2 )&V

Ch— s —— — Spyp=|7——|==96 11

d+22¢ Ery (4) [ (1—w 90 Py (13)
Clearly the evolution of the scalar field is coupled into the 2w |\ dV
evolution of the background Friedmann equations: Spy= 1—w %5‘% ' (12

5 a 2_87-rG 33 These stress-energy perturbations must be included in the

Ho= al 3 a i Pi- ) evolution of the metric perturbations for a self-consistent so-

lution. The®CDM component contributes a source term to
Here H=aH=a(a 'da/dt), taking into account that our the right hand side of the Einstein equations. To make these
derivatives are with respect to conformal time The effect ~ calculations, we have modifiedvBFAST by including the
of 4) on the evolution of the background Cosm0|ogy can be‘DCDM contribution to the evolution of the background COSs-
implemented with only a slight modification to tioaisFast ~ Mology in the Friedmann equations. We have also added the
integration cod¢8] to include the new component’s pressure contribution of density and pressure perturbations of ¢he
and energy density. field to the total curvature perturbation, using the results de-

Once the expressions fgr, and p,, are obtained, it is rjved above. Even_ though the backgroun_d pressure is nega-

simple to invert them to obtain the potentiain terms of the  tive, we are certain that these perturbations are stable, be-
constantw and derivatives of the scalar field. In order to caused’V/d$® is a negative definite quantity in this case.
prevent tachyonic modes of the scalar field from developingExamining Eq.(10) we see that the square of the effective
we address only models with constam{4]: mass will never become negative, and exponentially growing

tachyonic modes will not occur.

Note thaté¢ cannot source gravitational wave modes be-
. (6) cause¢ is a scalar field, while a source of gravitational
waves must have spin 2. Therefore, the only effectpadn

Following [4], by treating the dark energy as a perfect fluid, the gravitational wave anisotropies is through the change in
. S L the evolution of the scale factptQ].
we can obtain an explicit expression for

== (TF W) poitga (1302 ) Ill. CMB ANISOTROPY SPECTRA

Figures 1 and 2 display the scalar and tensor components
of the temperature anisotropy for several values of the equa-
tion of state parametewr. In each case we assumed that the
cosmological parameters wefe=.67, ,=0.3=1-0Q,,

1-w
1+w

¢2

T 242

wherep=3H?/87Ga? andQ 4= p4/p. Taking its de-
rivatives we observe

ﬂ=(1— )3H¢ (8) 0,=0.04 and that the scalar spectral index=1, and the
d 2a? tensor spectral inder;=0. It is standard practicgll] to
write the temperature field on the sky as a sum of spherical
9V L[5 3w harmonics with coefficients,,,. The multipole moments,
PP (1-w)5z|H-H (5_7) C,, are then defined &8,=|a,,|? and the power spectrum,
(9) I(1+21)C,/(2), is approximately the power per logarithmic
interval inl.
Thus V and its derivatives will be functions i and the Since we are working to linear order in perturbation
parametersy, {14, andpq only. theory both the scalar and tensor spectra have one free over-
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FIG. 1. The scalar CMB temperature anisotropy spedith, FIG. 2. The tensor CMB temperature anisotropy spectra as a
+1)C,/2(7) vs| for several values ofv. The solid lines arav= function ofw. As in Fig. 1, the solid lines ar= —1.1, dashed are
—1.1, dashed arev=—3, dot-dashed ar&v=—10, and dashed- w=—3, dot-dashed arav=—10, and dashed-dashed ane=
dashed arev=—0.4. The spectra have been normalize@ gfto fit —0.4. Notice that the curves are almost degenerate for the first 40
the COBE data. multipoles. There appears to be negligible dependence of the tensor

normalization on the equation of staie

all normalization(ignoring for a moment any constraints im- o
posed by, e.g., inflation In our calculations we fixed the Ues ofw, there has been almost no acceleration in the recent

scalar normalization by requiring that the initial spatial cur-history, so the potential wells have not decayed as dramati-
vature in the total matter gaudd2] {=1. For the tensor Cally as they do inACDM models. As a result, the late
normalizatiod we have chosem=1 initially. This choice integrated Sachs-Wolf@SW) effect has been almost entirely
makes it easy to interpret the dependencewnd also to  turned off[4]. _
calculate the cosmology dependent fitting function presented When normalized tg=1, the effect on the spectrum is to

in Sec. IV. However with such a normalization the curves are2nhance the amplitude at low multipolesvaslecreases. Re-
very similar beyond ~ 100 for all values ofv so for plotting ~ normalizing to fit the COBE data & 10, the enhanced low-
purposes we have normalized the curves=at0 in Figs. 1 | tail .translates into a change in the peak height. For energy
and 2. In Fig. 3, the E-E and B-Bensors only polarization ~ density perturbations, the dependence of the spectrum nor-
spectra are presented with=1 or h=1 normalization, malization on the equation of state is principally due to the
which illustrates clearly that the height of the features islack of late ISW effect asv decreases.

uniform with w.

Consider first the anisotropy spectrum in Fig. 1. There are
three features exhibitingg dependence: the height of the first
peak, the height of the tail at low multipoles, and the location |,
of the peaks. The change in the height of the first peak trace,©
back to our decision to re-normalize the spectra to fit the &
Cosmic Background ExplordiCOBE) data. In fact the first
two effects are manifestations of the same physical property
the suppression of the late integrated Sachs-Wo8&V) ef-
fect for lowerw. In models such aCDM, a period of
accelerated expansion begins in the universe when the scal
field ¢ becomes the dominant form of energy density. For a
fixed matter density),, (measured relative to the critical
density the value of the parameter determines how early
matter¢ equality occurs, and therefore how long the uni-
verse has been experiencing the current period of accelerates
expansion. When an accelerated expansion is occurring, pa.
tential wells which had formed earlier as a result of gravita-
tional collapse begin to decay. If the well is decaying, pho- ,
tons which fall into the well gain more energy than they lose Cvwednl ol 0 i
climbing out, which generates an anisotropy. This is the 100 1000
dominant effect at low. For w<—1 models, equality hap- Multipole ¢
pens even later than in the case of the cosmological constant,
while for w>—1, it happens earlier. For very negative val-
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FIG. 3. The polarization anisotropy spectra. For the scalar
modes, the E-E polarization anisotropies are sh¢wp), and for

the tensor modes the E-E and B-B polarization anisotropies are
presentedmiddle and bottorh The scale is arbitrary, depending on
2The tensor perturbation is gauge independent. our particular choice of normalization.
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The normalization of the tensor spectrum appears not to e A I L B I B
be affected byw in any significant wayFig. 2). This can be Q 0.5 a ]
seen by noting that the peaks are all roughly at the same wS - e

. O 04 .
height, and the spectra between<P<10 agree closely = c ]
(compare with Fig. L The smallw dependence that can be L osk 3
seen occurs for the lowest multipoles, corresponding to larg- = T TN
est angular scales, and is again due to the ISW effect on the -10 -8 -8 -4 -2 0
tensor spectrum at late times. Equation of State w

For all the anisotropy specti@oth temperature and po-
larization anisotropigsthere is a universal shift to the right 0.34
for lower values ofw. The reason for the shift is the same in & 0339 E . . 3
all cases. Thé position of any feature in a spectrum depends H\e 0338 E =
upon the(comoving angular diameter distance to the last R gs3v b E
scattering surface. This distance dependsvaas follows: z O>386 £ i

T S N N I BN
! da -10 -8 -6 -4 -2 0
dis—= — (13) Equation of State w
aIssa H

FIG. 4. The normalization of the tensor and scalar spectra at the
10th multipole for an initial perturbatioi=1 andh=1.

where
fs(w,n7,Q4)=—1.341+6.0310°n°(—w)°+ 1.936)°

H%(a)=0Q,a "+ Qa3+ Q4 a 30w, (14 +3.311P+4.584 —w)°—5.148)2nP

—9.373)3(—w)°—1.946°(—w)°
One notes that ifv is more negative, this integral is larger, Y e
which implies that the last scattering surface is further away. +5.172}(~w)"~2.69N(~w)
A feature of a given physical size thus subtends a smaller —.071Pw—.211(n—-1)? (15)
angle, shifting the anisotropy spectra to higher valuds lof
the case of the polarlzatlon anisotropies, this is the only de- fr(W,ny,Q 5)=0.358+ 0.004w+0.822— 0.048)
pendence onv (Fig. 3.

+0.33M+0.0295-0.48MQ 4.

IV. DEPENDENCE OF T/S ON wAND ng (16

For 1,=.04 and assuming a flat universe, we have ex-The tensor to scalar ratio is given by
plicitly calculated the evolution of the normalization of the

spectrum from an initial curvature perturbatign=1 and T 2

from h=1. The normalization at the tenth multipole is equal @:M A% (17)

to the value just after primordial inflation, multiplied by a Cfo fs(w,nr.Qy) Ag

cosmology dependent “transfer function,” which we will

call fgandf;. Using the method described [i23] we have Figure 4 shows the dependence of both the scalar and

numerically determined this function for the range.5 tensor normalizations &, on the equation of state for an
<w<-0.5, 0.6<Q4<0.8, and—0.3<n;<0.3 and provide even broader domain than was used in the fitting formulas
fitting functions below. The tensor spectral index is re-  above. Observe that even over this huge range in the equa-
lated to the scalar spectral index=ng—1 for power law tion of state, the tensor normalization changes by less than
models of primordial inflation. We have deliberately lefiva 1%.
term in the evolution of the tensor normalization to illustrate
how insignificant it is compared to the terms proportional to

the spectral index anf ,. A fit is presented below, where
a=0.6156,b=1.6, andc= —.2. The scalar transfer function We have extended the work p] on thed® CDM model

has a mean accuracy of 2% over the range indicated abovby calculating the tensor component of the CMB anisotro-
and at worst is off by 10% near the edges of the parametgries. We have shown that the normalization of the tensor
domains. This would correspond to a worst case 5% error itomponent is essentially independent of the equation of state
the temperature. Since the fit begins to go bad near the edgesin this model. For a fixed value of the initial curvature
of the parameter space, we do not recommend extrapolatingerturbation after inflatior=1 and a fixed initial gravity-
these functions further. The tensor function has a mean awave amplitude, we have quantified the ), andny de-
curacy of .8%, with a worst case of 6% for a few points atpendence of both the tensor and scalar anisotropy normaliza-
the very edge of the fit: tions at C,, for a broad domain ofwv. We displayed the

V. DISCUSSION
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anisotropy spectra for several valuesvofind discussed the tions in the “phantom” component through their impact on

features. the evolution of the metric perturbations. Finally, the angular
Most of the results we present fav<<—1 are only shift with w of features in the spectrum is robust.
weakly sensitive to the particular model choddmn While We have quantified the dependence of the tensor to scalar

truly general statements are not possible, we can make sexatio CIOICfO onw, Q 4, andny. For the model of Refl4],
eral points about model dependence. The fact that our accekq. (17) allows us to relate th&potentiall) observable
eration is driven by a field of spin zero implies there is noCJ/C%, to the energy scale of inflation, in the event that a

source of gravitational waves @sbegins to dominate. This gravitational wave signal is actually observed from the
would remain true for other scalér vecto) driven theories, CMB.

while more complicated assumptior(g.g., higher order
gravity theorieg may have explicit source terms. However,
we would expect only the longest wavelength gravitational
waves to differ due to this in any significant way. This is  Many thanks to J. D. Cohn for countless useful discus-
because the acceleration takes place very late in the histogjons on this work. We thank Douglas Scott for comments on
of the universe foww<—1, so only the longest modes are the manuscript, Mattias Zaldarriaga for providing a hitherto
affected. The longest wavelength modes contribute primarilynreleased version of thevBFAST code, and also Max Teg-

to the very lowt moments of the spectrum. A similar argu- mark for his advice on resolving various gauge confusions.
ment can be made for the scalar modes, where the overallhis work was supported in part by the Alfred P. Sloan Foun-
growth rate should be independent of the detailed model, budation and the National Science Foundation, through grant
the longest wavelength modes will depend on any fluctuaPHY-0096151.

ACKNOWLEDGMENTS

[1] L.M. Krauss and M.S. Turner, Gen. Relativ. Grawdf, 1137 [6] C. Armendariz-Picon, T. Damour, and V. Mukhanov, Phys.

(1999; A.R. Liddle, D.H. Lyth, P.T.P. Viana, and M. White, Lett. B 458 209(1999.
Mon. Not. R. Astron. Soc282, 281 (1996; J.P. Ostriker and [7] A.R. Liddle and D.H. Lyth,Cosmological Inflation and Large
P.J. Steinhardt, Natur@.ondon 377, 600 (1995. Scale StructuréCambridge University Press, Cambridge, En-
[2] H. Kodama and M. Sasaki, Prog. Theor. PHg&.1 (1984); B. gland, 2000.
Ratra and P.J.E. Peebles, Phys. Re®7)3406(1988. [8] U. Seljak and M. Zaldarriaga, Astrophys.4B9, 437 (1996.
[3] K. Coble, S. Dodelson, and J. Frieman, Phys. Reg5D1851 [9] Jaume Garriga and V.F. Mukhanov, Phys. Lett4B8 219
(1997; M.S. Turner and M. Whiteipid. 56, 4439(1997); P.G. (1999.

Ferreira and M. Joycébid. 58, 023503(1998; R.R. Caldwell,  [10] M. White, Phys. Rev. D16, 4198(1992.
R. Dave, and P.J. Steinhardt, Phys. Rev. [&Q}.1582(1998; [11] M. White, D. Scott, and J. Silk, Annu. Rev. Astron. Astrophys.

P.J.E. Peebles and B. Ratra, Astrophys. J. L8#5 L17 32, 319(1994.

(1988. [12] W. Hu, D.N. Spergel, and M. White, Phys. Rev.35, 3298
[4] R.R. Caldwell, astro-ph/9908168. (1997.
[5] L. Parker and A. Raval, Phys. Rev. &2, 083503(2000. [13] M.S. Turner and M. White, Phys. Rev. BB, 6822(1996.

043514-5



