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Relic dark energy from the trans-Planckian regime

Laura Mersini,* Mar Bastero-Gil,† and Panagiota Kanti‡

Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
~Received 23 January 2001; published 24 July 2001!

As yet, there is no underlying fundamental theory for the trans-Planckian regime. There is a need to address
the issue of how the observables in our present Universe are affected by processes that may have occurred at
super-Planckian energies~referred to as thetrans-Planckian regime!. Specifically, we focus on the impact the
trans-Planckian regime has on two observables: namely, dark energy and the cosmic microwave background
radiation ~CMBR! spectrum. We model the trans-Planckian regime by introducing a 1-parameter family of
smooth non-linear dispersion relations which modify the frequencies at very short distances. A particular
feature of the family of dispersion functions chosen is the production of ultralow frequencies at very high
momentak ~for k.M P). We name the range of the ultralow energy modes~of very short distances! that have
frequencies equal to or less than the current Hubble rateH0 as thetail modes. These modes are still frozen
today due to the expansion of the Universe. We calculate their energy today and show that thetail provides a
strong candidate for thedark energyof the Universe. During inflation, their energy is about 122 to 123 orders
of magnitude smaller than the total energy, for any random value of the free parameter in the family of
dispersion relations. For this family of dispersions, we present the exact solutions and show that the CMBR
spectrum is that of a~nearly! blackbody, and that the adiabatic vacuum is the only choice for the initial
conditions.

DOI: 10.1103/PhysRevD.64.043508 PACS number~s!: 98.80.Cq, 98.70.Vc
ry
t
r
m

lu
th
v

-

i
k

ca
th
e

n

n
dif

es
im
w
pa
h
rg

lly,

ni-
r-

e-
of
re-

t is
ale,
mo-
ort

h
low
tant
.
s

a
se

t
ture
gh

-
he

a
the

ck-
.
can

ela-
I. INTRODUCTION

There is still no fundamental physical theory of the ve
early Universe which addresses issues that arise from
regime of trans-Planckian physics. One of these issues
lates to the origin of the cosmological perturbation spectru
In an expanding universe, the physical momentum gets b
shifted back in time, therefore the observed low values of
momentum today that contribute to the cosmic microwa
background radiation~CMBR! spectrum may have origi
nated from values larger than the Planck massM P in the
early Universe. This is similar to the problems that arise
trying to explain the origin of Hawking radiation in blac
hole physics. In a series of papers@1–5#, it was demonstrated
that the Hawking radiation remains unaffected by modifi
tions of the ultrahigh energy regime, expressed through
modification of the usual linear dispersion relation at en
gies larger than a certain ultraviolet scalekC . Following a
similar procedure, in the case of an expanding Friedma
Lemaitre-Robertson-Walker~FLRW! spacetime, Martin and
Brandenberger in Ref.@6# ~see also@7–10#! showed that
standard predictions of inflation are indeed sensitive to tra
Planckian physics: different dispersion relations lead to
ferent results for the CMBR spectrum.

It is the lack of a fundamental theory, valid at all energi
that makes the model building of the trans-Planckian reg
very interesting. The main issue is how much the kno
observables are affected by the unknown theory. The ap
ently ad hocmodification of the dispersion relation at hig
energies is constrained by the criterion that its low ene
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predictions do not conflict with the observables. Specifica
in this paper we address two questions:~a! can the trans-
Planckian regime contribute to the dark energy of the U
verse, and~b! how sensitive is the CMBR spectrum to ene
gies higher than the Planck scaleM P , where our current
physics theory is known to break down?

We choose a family of dispersion relations for the fr
quency of the wave functions that modifies the behavior
the field at the ultrahigh energies of the trans-Planckian
gime. The dispersion relation has the following features: i
smooth, nearly linear for energies less than the Planck sc
reaches a maximum, and attenuates to zero at ultrahigh
menta thereby producing ultralow frequencies at very sh
distances. We name thetail that part of the dispersion grap
of very short distances that contains the range of ultra
frequencies less than or equal to the current Hubble cons
H0. It follows that thetail modes are still currently frozen
We calculate the energy of thetail modes in order to addres
the former question~a! and show that although thetail does
not contribute significantly to the CMBR spectrum, it has
dominant contribution to the dark energy of the Univer
@11#. The energy density of thetail modes is of the same
order today as the matter energy density.

The second question~b! is motivated by the problem tha
in most inflationary models the present large scale struc
of the Universe is extrapolated from a regime of ultrahi
energies~known as the trans-Planckian regime! originating
from before the last 60e-foldings of the exponential expan
sion. In Refs.@6,7# the authors have demonstrated that t
problem of calculating the spectrum of perturbations with
time-dependent dispersive frequency can be reduced to
familiar topic of particle creation on a time-dependent ba
ground@12#. We will use their observation in what follows
They also conjecture that the observed power spectrum
always be recovered only by using a smooth dispersion r
©2001 The American Physical Society08-1
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tion, which ensures an adiabatic time-evolution of t
modes. By taking the frequency dispersion relations to be
general class of Epstein functions@13#, we check and lend
strong support to their conjecture. We present the exact
lutions to the mode equation for the scalar field1 with a
‘‘time-dependent mass,’’ and the resulting CMBR spectru
below. We show that the major contribution to the CMB
spectrum comes from the long wavelength modes when
re-enter the horizon. The spectrum is nearly insensitive to
very short wavelength modes inside the Hubble horizon.

The paper is organized as follows. In Sec. II, we pres
the setup and formalism of our analysis. The family of d
persion functions, exact solutions to the mode equation
motion and the resulting CMBR spectrum~from the Bogo-
liubov method! are reported in Sec. III. In Sec. IV, we ca
culate the contribution of thetail modes to the dark energy o
the Universe today. In this work, we have neglected
backreaction effects of particle production. This assumpt
is fully justified from the calculation of the energy for th
trans-Planckian modes, in Sec. IV. Due to thedispersedul-
tralow frequency of these modes, the energy contained
that trans-Planckian regime is very small (102122r total), thus
the backreaction effect is reasonably negligible@14,6#. We
present our conclusions in Sec. V.

II. THE SETUP AND FORMALISM

Let us start with the generalized Friedmann-Lemait
Robertson-Walker~FLRW! line-element which, in the pres
ence of scalar and tensor perturbations, takes the f
@16,17#

ds25a2~h!H 2dh21Fd i j 1h~h,n!Qd i j

1hl~h,n!
Qi j

n2
1hgw~h,n!Qi j GdxidxjJ , ~1!

whereh is the conformal time anda(h) the scale factor. The
dimensionless quantityn is the comoving wave vector, re
lated to the physical vectork by k5n/a(h) as usual. The
functionsh andhl represent the scalar sector of perturbatio
while hgw represents the gravitational waves.Q(xi) and
Qi j (x

i) are the eigenfunction and eigentensor, respectiv
of the Laplace operator on the flat spacelike hypersurfa
For simplicity, we will take a scale factora(h) given by a
power law,2 a(h)5uhc /hub, where b>1 and uhcu
5b/H(hc). The initial power spectrum of the perturbation
can be computed once we solve the time-dependent e
tions in the scalar and tensor sector. The mode equation
both sectors reduce@18–20# to a Klein-Gordon equation o
the form

1These functions are known for having exact solutions to sec
order differential equations in terms of hypergeometric function

2It has been argued in@6# that the analysis extends to other law
for the scale factor.
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mn91Fn22
a9

a Gmn50, ~2!

where the prime denotes derivative with respect to confor
time. Therefore, studying perturbations in a FLRW bac
ground is equivalent to solving the mode equations fo
scalar fieldm related~through Bardeen variables@20#! to the
perturbation field in the expanding background. The abo
equation represents a linear dispersion relation for the
quencyv,

v25k25
n2

a2
. ~3!

The dispersion relation of Eq.~3! holds for values of mo-
mentum smaller than the Planck scale. There is no reaso
believe that it remains linear at ultrahigh energies larger t
M P . Yet, nonlinear dispersion relations are quite likely
occur from the Lagrangian of some effective theory obtain
by the yet unknown fundamental theory. Nonlinear disp
sion relations, similar to the ones we consider in this wo
are known to arise in effective theories of nonlocal co
densed matter or particle physics models arising from n
canonical kinetic terms@21,22#; from the dissipative behav
ior of a quantum system immersed into an environment a
coarse-graining@23#; or from effective theories with phas
transitions, time-dependent mass squared terms or effec
potentials@24–26#. Perhaps, trans-Planckian models mo
vated by superstring theory@27,28# or a two-stage inflation-
ary model@29# are plausible. In the latter case, one cou
easily envision for example a scenario with the first stage
inflation occurring at energy scales above the Planck m3

followed by a nonthermal phase transition@30#. The preheat-
ing @30,31# from the nonthermal phase transition then lea
to the second stage of inflation below Planck energies. In
former case, the motivation comes from the common be
that the superstring theory is the one that describes or at
is valid at energies of the trans-Planckian period. Taking t
idea one step further, we incorporate the concept of su
string duality ~which applies at trans-Planckian regimes! in
our analysis by choosing a particular family of dispersi
relations that exhibitsdual behavior,4 i.e. appearance of ul
tralow mode frequencies both at low and high momenta5 k.

Despite the above comments and possible approaches
should stress that any modeling of Planck scale physics
analogy with the already familiar systems is pure specu

d

3There is no reason why inflation must only occur below Plan
energies. In principle, inflation at ultrahigh energies is equally p
sible.

4For example, when compactifying superstring theory in a to
topology, of large radiusR and winding radiusr, the frequency
mode spectrum is dual in the sense thatR and r are related asr
51/R. This means that each normal mode with a frequencyn/R,
wheren is an integer, has its dual winding mode with decreas
energy that goes like 1/r 5R @28#.

5We would like to thank A. Riotto for pointing this out to us.
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RELIC DARK ENERGY FROM THE TRANS-PLANCKIAN REGIME PHYSICAL REVIEW D64 043508
tion. We lack the fundamental theory that may naturally m
tivate or reproduce such dispersion behavior. Nevertheles
would be instructive to derive these dispersion relations fr
particle physics and string theory, as a step towards un
standing the physical nature of the model.

In what follows, we replace the linear relationv2(k)
5k25n2/a(h)2 with a nonlinear dispersion relationv(k)
5F(k). The family of dispersion functionsF(k) for our
model is introduced in Sec. III. These functions have
following features: they are linear for low momenta up to t
Planck scalekC5M P , taken to be the cuttoff scale, but b
yond the cutoff they smoothly turn down and asymptotica
approach zero whereby producing ultralow frequencies
very short distances. Therefore, in Eq.~2!, n2 should be re-
placed by

ne f f
2 5a~h!2F~k!25a~h!2F@n/a~h!#2. ~4!

We will also consider the general case of non-minimal
conformal coupling to gravity by keeping some arbitra
unspecified, coupling constantj. Then, the equation for the
scalar and tensor perturbations, that we need to solve, t
the form

mn91Fne f f
2 2~126j!

a9

a Gmn50. ~5!

For future reference, we define the generalized comov
frequency as

Vn
25ne f f

2 2~126j!
a9

a
. ~6!

The dynamics of the scale factor is determined by the e
lution of the background inflaton fieldf, with potential
V(f), and the Friedmann equation. In conformal time, the
equations are

a9

a
2

a82

a2
1

8pG

3
@f82

2a2V~f!#50, ~7!

f912
a8

a
f81a2

]V~f!

]f
50. ~8!

Most of the contribution in the perturbation spectru
comes from long-wavelength modes, since at late times t
are nonrelativistic and act like a classical homogeneous fi
with an amplitudem̄ given by

m̄5A^m2&5S 1

2p2a3E dnn2umnu2D 1/2

. ~9!

These are produced at early stages of inflation, thus they
very sensitive to the initial conditions. The correct vacuu
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state6 is given by the solution to Eq.~5! as clarified below.
But if the stage of inflation is very long, and the Hubb
parameter H is not changing considerably, then
Minkowski-like vacuum is a good first order approximatio
for the initial vacuum state (h→2`), with

mn~h!.
1

A2n
e2 inh. ~10!

However, if H were greater at the early stages of inflatio
before the last 60e-foldings, and/or the inflationary stage
short, then one must solve the wave equation and find
solution that minimizes the energy@32,33,26#. This is the
correct vacuum state of the system. Otherwise, if onea priori
chooses the Minkowski vacuum to be the initial vacuu
state describing the system, the resulting value of^m2& is
considerably underestimated as shown rigorously by Fe
et al. @34#.

As already shown in Ref.@6#, Eq. ~5! represents particle
production in a time-dependent background. We will follo
the method of Bogoliubov transformation to determine t
spectrum. The correct initial condition for the vacuum sta
is the solution to the equation that minimizes the ener
Hence, if the ‘‘time-dependent’’ background goes asympto
cally flat at late times, then in that limit the wave functio
should behave as a plane wave:

mn→h→2`

1

AVn
in

e2 iVn
inh. ~11!

As it is well known on this scenario, in general at late tim
one has a squeezed state due to the curved background
mixes positive and negative frequencies. The evolution
the mode functionmn at late times fixes the Bogoliubov co
efficientsan andbn ,

mn→h→1`

an

A2Vn
out

e2 iVn
outh1

bn

A2Vn
out

e1 iVn
outh ~12!

with the normalization condition

uanu22ubnu251. ~13!

In the above expressions,Vn
in and Vn

out denote the
asymptotic values ofVn when h→7`. The spectrum of
particles per mode is then calculated with the conventio
Bogoliubov method@33#. The number of particles createdn
and their energy densityr are calculated by the following
expressions:

^n&5
1

2p2a3E dnn2ubnu2, ~14!

6In @6# the authors argue that there are two vacuum states.
argument extends to the criteria for choosing the right vacuum
of the two. Here we show there is only one true vacuum state wh
reduces to the Minkowski vacuum only at a certain limit.
8-3
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LAURA MERSINI, MAR BASTERO-GIL, AND PANAGIOTA KANTI PHYSICAL REVIEW D 64 043508
^r&5
1

2p2a4E ndnE ne f fdne f f ubnu2

5
1

2p2E kdkE v~k!dvubku2. ~15!

If the resulting Bogoliubov coefficientbk of the particles
produced has a~nearly! thermal distribution, we can con
clude that the CMBR in our problem is that of a~nearly!
black body spectrum. We introduce the class of Epstein fu
tions as the family of dispersion relations in Sec. III, a
derive the CMBR spectrum from the exact solutions to
evolution equations.

Meanwhile, for the special features of our choice of d
persion relation, the modes at very high momenta but
ultralow frequenciesv(k) are frozen for as long as th
Hubble expansion rateH of the Universe dominates ove
their frequency. We refer to that as thetail of the dispersion
graph. In Fig. 2, for the dispersedv2(k) vs k, the tail corre-
sponds to all the modes beyond the pointkH , wherekH is
defined by the conditionv2(kH)5H0

2, where H0 is the
Hubble rate today. It then follows that the tail modes are s
frozen at present. We calculate the total energy of the
ticles by using Eq.~15!, as well as the frozen energy of th
tail. Thus the energy of the tail is a contribution to the da
energy of the Universe: up to the present it has the equa
of state of a cosmological constant term. However, throu
the Friedmann equation,H is a decreasing function of tim
because until now it has been dominated by the energy
sity of matter and radiation. Therefore, wheneverH drops
below the frequencyv of an ultralow frequency mode, thi
mode becomes dynamic by picking a kinetic term and r
shifts away very quickly. Hence, when the dominant con
bution to the evolution equation forH comes from thetail
energy, the behavior of those modes with equations of m
tion coupled to the Friedmann equation becomes very c
plex. It is hard to calculate at which rateH drops in this
situation. If eventually,H drops all the way to zero, all the
modes in the tail must have decayed. Their equation of s
whenH becomes zero, is that of radiation. The reason can
traced back to their origin in the trans-Planckian regime. I
well known that scalar perturbations produced during in
tion do not contribute to the total energy. Thus the origin
these modes is in the tensor perturbations. In their phys
nature they correspond to gravitational waves of very sh
distance but ultralow energy.7 We calculate their energy to
day in Sec. IV.

We would like to elaborate on yet another possibili
which has not been mentioned before in the literature,
can give rise to a similar dispersion relation: very short
very large distance physics may have a curvature diffe
from the FLRW element of Eq.~1!, e.g. a different scale
factor. This becomes clearer when recognizing the str
relation between the time-dependent dispersion relation

7We thank S. Carroll for pointing this out.
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the curvature given by the time derivatives of the scale fac
a(h). The basic argument is the observation that the mo
lated frequencyVn

2 in the wave equation contains the cont
bution of these two terms, as given in Eq.~6!. Therefore,
while keeping the generalized frequency invariant, chang
the first term inVn

2 can be viewed as or attributed to chang
in the second term, such that

Vn
25a2vnonlinear,k

2 2~126j!
a9

a

5A2v l inear,k
2 2~126j!

A 9

A , ~16!

whereA is the new scale factor at very short distances. Ev
in the conformal casej51/6, when the terma9/a drops out
of Eq. ~5!, the time-dependent frequencyvnonlinear,k

2 can
mimic a term proportional toa9/a at l(h)kC!1. Thus, any
modulation of the dispersion relation is equivalent to
change in the behavior of the time-dependence of the ba
ground~a.k.a., the scale factor/curvature!. In other words, we
could have introduced a different curvature at very short~or
large! distances from the start instead of a dispers
frequency.8

III. EXACT SOLUTION AND THE CMBR SPECTRUM

We will consider the class of inflationary scenarios th
through Eqs.~7! and ~8! has a power law solution for the
scale factora(h) in conformal time,a(h)5uhc /hub, with
b>1, and the following Epstein function@13# for the disper-
sion relation:

v2~k!5F2~k!5k2S e1

11ex
1

e2ex

11ex
1

e3ex

~11ex!2D , ~17!

ne f f
2 5a2~h!F2~n,h!

5n2S e1

11ex
1

e2ex

11ex
1

e3ex

~11ex!2D , ~18!

wherex5(k/kC)1/b5Auhu, with A5(1/uhcu)(n/kC)1/b. This
is the most general expression for this family of function
For our purposes, we will constrain some of the parame
of the Epstein family in order to satisfy the features requir
for the dispersion relation as follows. First, imposing t
requirement of superstring duality, in order to have ultralo
frequencies for very high momenta, we demand that the
persion functions go asymptotically to zero. That fixes

e250. ~19!

8We are using this equivalence in a sequential paper@35# to
demonstrate that a different large scale curvature of the Univers
not possible as it conflicts with the observed CMBR data. The
fore, trying to reinterpret the SN1a data in the light of a possi
different curvature for the large scale regions of the Universe m
be ruled out.
8-4
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On the other hand, the condition of a nearly linear dispers
relation fork,kC requires that

e1

2
1

e3

4
51. ~20!

Still we will have a whole family of functions parametrize
by the constante1, as can be seen in Fig. 1.

With the change of variablesh→u5exp(Auhu), the scalar
wave equation~5! for the modemn becomes

F]u
21

1

u
]u1V~u!Gmn50, ~21!

with

V~u!5
ê1

u2~11u!
1

ê3

u~u11!2
2

~126j!

u2A2

a9

a
, ~22!

where

ê i5~kCuhcu!2S n

kC
D 2(121/b)

e i . ~23!

In the case of conformal coupling to gravity,j51/6, Eq.
~21! is exactly solvable in terms of hypergeometric functio
@13#. This is a well studied case in the context of partic
creation in a curved background@12#. Even if we are not in
the case of conformal coupling, the contribution

a9

a
5

b~b11!

h2
, ~24!

is going to be negligible at early times (h→2`); at late
times, it can be absorbed in the dispersion relation Eq.~18!
redefining the constantse i .

As explained in Sec. II, the correct initial condition is th
vacuum state solution that minimizes the energy. In the c
wheree2Þ0, this vacuum state behaves as a plane wav
the asymptotic limith→2`, with Vn

( in)→Ae2n. However,
whene250 as in our case, the correct behavior of the mo
function in the remote past is given by the solution of Eq.~5!
in the limit h→2`. The exact solution which matches th
asymptotic behavior is then given by

m ( in)~h!5CinS 11u

u D d

2F1S 1

2
1d1b,

1

2

1d2b,112d,
11u

u D , ~25!

whereCin is a normalization constant, and

b5 i b̃5 iAê1, ~26!
04350
n

se
in

e

d5 i d̃5A1

4
1 ê3. ~27!

At late times the solution becomes a squeezed state by
ing of positive and negative frequencies:

mn→h→1`

an

A2Vn
out

e2 iVn
outh1

bn

A2Vn
out

e1 iVn
outh, ~28!

with ubnu2 being the Bogoliubov coefficient equal to the pa
ticle creation number per moden, and Vn

out.Ae1n. Using
the linear transformation properties of hypergeometric fu
tions @36#, we find that9

Ubn

an
U5e22pb̃Ucoshp~ d̃1b̃!

coshp~ d̃2b̃!
U . ~30!

If d is a real number (e38.21/4), then we obtain

ubnu25
e22pb̃

2 sinh 2pb̃
. ~31!

9In the most general case, wheree2Þ0 in Eq. ~18!, it is obtained
@13# that

Ubn

an
U5Ucoshp~d̃1b̃2ã!

coshp~d̃2b̃2ã!
U, ~29!

with ã5Aê2. Also in this case the spectrum of the fluctuations

nearly thermal, with the parameterd̃ controlling the deviation from
thermality.

FIG. 1. Shown is our family of dispersion relations, forb51
and representative values ofe1 ~solid lines!. We have also included
Unruh’s dispersion relation~dashed line! and the linear one~dotted
line! for comparison.
8-5
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LAURA MERSINI, MAR BASTERO-GIL, AND PANAGIOTA KANTI PHYSICAL REVIEW D 64 043508
It is clear from Eqs.~30! and ~31! that the spectrum of cre
ated particles is nearly thermal to high accuracy,10

ubnu2.e24pb̃. ~32!

Thus, we can immediately conclude that the CMBR sp
trum is that of a~nearly! black body spectrum. That mean
the spectrum is~nearly! scale invariant, i.e., the spectral in
dex is ns.1. This is consistent with previous results o
tained in the literature@6–9#, when using a smooth dispe
sion relation and the correct choice of the initial vacuu
state, as discussed above. In Refs.@6# and @7#, dispersion
relations, that were originally applied to black hole phys
@1,2#, were used in the context of cosmology. New models
dispersion relations were proposed by the authors of R
@8# and @9#. Our proposal for a 1-parameter class of mod
has a significantly different feature from the above, nam
the appearence of ultralow frequency modes in the tra
Planckian regime. The implications of such a behavior
high momenta on the production of dark energy are d
cussed in the next section.

IV. DARK ENERGY FROM THE ‘‘TAIL’’

In Sec. II, we defined thetail as the range of those mode
in the frequency dispersion class~originating from the trans-
Planckian regime!, whose frequency is less than or at mo
equal to the present Hubble rate,H0 ~see Fig. 2!. It then
follows that they have not decayed and redshifted away
are still frozentoday. SinceH has been a decreasing functio
of time, many modes, even those in the ultralow freque
range, have become dynamic and redshifted away one
one, every time the above condition is broken, i.e. when
expansion rateH dropped below their frequency. Clearly, th
other modes have long decayed into radiation and the
modes are the only modes still frozen. They contain vacu
energy of very short distance, hence of very low energy. T
last mode in the tail would decay when and ifH50. When
the tail modes become dynamic by acquiring a kinetic te
@when v(k).H#, they decay away as gravitational wav
~explained in Sec. II!. The tail starts from some valuekH
which must be found by solving the equation

v2~kH!5H0
2 . ~33!

The range of the modes defining thetail is then forkH,k
,`. Their time-dependent behavior when they decay
pends on the evolution ofH and is complicated because the
contribute to the expansion rate forH. Thus, their equations
of motion are coupled to the Friedmann equation.

10We remind the reader that we have neglected the backrea
effects during the calculation, based on the result of a small par
number per mode, in the high momentum regime (k@M P) and a
very small energy contained in these modes. Clearly, the par
number per mode being small is consistent with the result of
exponentially suppressed, near-thermal Bogoliubov coefficient.
Sec. IV for the energy.
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However we can calculate their contribution to the da
energy today, when they are still frozen, thereby mimickin
cosmological constant. We calculate numerically~using
MATHEMATICA ! the range of the modes in the tail from E
~33! and use this value for the limit of integration in the ta
energy given by Eq.~15!. Below we report these results fo
the case of a scale factor withb51 but other values ofb
were also considered numerically and they produce an e
smaller dark energy due to the extra suppression in the i
gral coming from the Bogoliubov coefficientbk

2 . Equation
~33! is a messy transcendental equation but the solution
that equation is crucial to the dark energy since the valuekH
is the limit of the energy integral. That is why we solved E
~33! numerically and replaced it in Eq.~15! for the energy,
using different representative values of the parametere1.

The energy for the tail is given by

^r tail&5
1

2p2EkH

`

kdkE v~k!dvubku2, ~34!

while the expression for the total energy is

^r total&5
1

2p2E0

`

kdkE v~k!dv ubku2. ~35!

The numerical calculation of the tail energy produced
following result: for random different values of the free p
rameters, the dark energy of the tail is 102122f (e1) times less
than the total energyduring inflation, i.e. r tail /r total
5102122f (e1) at Planck time. The prefactorf (e1), which
depends weakly on the parameter of the dispersion familye1,
is a small number between 1 and 9, which clearly can c
tribute at the most by 1 order of magnitude.

This is an amazing result. It can readily be checked by
plugging in the dispersion expression forvk , Eq.~17!, in the
integral expression of Eq.~34! for the tail energy, then using
as the limit of integration the valuekH found by the condi-

on
le

le
e
ee

FIG. 2. The range of modes in the tail,kH,k,`, defined by
Eq. ~33!. H0 is the present value of the Hubble constant.
8-6
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tion in Eq. ~33!. This result can be understood qualitative
by noticing that the behavior of the frequency for the ‘‘tai
modes is nearly an exponential decay@see Eq.~17!#, and as
such dominates over the other terms in the energy integ
of Eq. ~34!:

v2~k.kC!'exp~2k/kC!. ~36!

Hence, due to the decaying exponential, the main contr
tion to the energy integral in Eq.~34! comes from the highes
value of this exponentially decaying frequency, which is t
value of the integrand at the tail starting point,kH
;O(M P), i.e.,

K r tail

r total
L '

kH
2

M P
4

v2~kH!'
H0

2

M P
2

'102122. ~37!

Due to the physical requirement that the tail modes m
have always been frozen, the tail starting frequencyv(kH) is
then proportional to the current value of Hubble rateH0 @Eq.
~33!#.

We suspect this result is generic for any scenario t
featuresultralow frequencieswhich exponentially decay to
zero at very high momenta for two reasons. First, all
modes with an ultralow frequencyv,H0 will be frozen and
thus produce dark energy. Secondly, their contribution to
energy may be small because of the following. Due to t
kind of dispersion in the high momentum regime, the ph
space available for the ultralow frequency modes withv(k
.kC) gets drastically reduced when compared to the ph
space factor in the case of a non-dispersive trans-Planc
regime, controlling in this way these modes’ contribution
the energy density. The result for the tail energy also me
that the tail energy dominates today’s expansion of the U
verse. Thus, at present, we cannot tella priori the evolution
of these modes and the time when they may become
namic. Only the solution to the equation for the mod
coupled ~strongly at present! to the Friedmann equatio
would answer the question as to whetherH will continue to
decrease with time. If that were the case, then these
modes would also eventually become dynamic and de
However, we calculated the equation of state for the limit
case whenH50. In this case, all the modes in the tail a
dynamic. The calculation of the energy density of the tail
the dynamic case from Eq.~15! confirms that the tail decay
in the form of radiation, as expected since their physi
nature is that of gravity waves of very short distances~but
ultralow energy!, originating from tensor perturbations du
ing inflation.

The opposite case is also a possible outcome to
coupled equations. It is possible that the frozen modes of
tail will prevent H from dropping further below, in which
case these modes will never decay. We have not solved t
coupled equations yet, therefore we are just speculating
the two possible outcomes of that calculation. The solutio
left for future work.

At present, these modes, originating from the tra
Planckian regime, are behaving as dark energy of the s
magnitude as the current total energy in the Universe. T
idea is then a leap forward in this longstanding and challe
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ing problem of dark energy, for at least two reasons. Fi
inspired by superstring duality, it is very plausible to spe
of scenarios with ultralow frequencies and very high m
menta. The tail modes, which are frozen at present, provid
good candidate for the dark energy as our calculations sh
Secondly, although smooth dispersion functions that mo
the trans-Planckian regime do not affect the CMBR sp
trum, this regime still leaves its imprints in the contributio
to the energy of the Universe. This is a rich and curren
underexplored area to consider with respect to the cos
logical constant mystery.

V. CONCLUSIONS

In this work we investigated two phenomenological a
pects of trans-Planckian physics: the issue of dark ene
production, and the sensitivity of the observed CMBR sp
trum to the trans-Planckian regime. For this purpose, a fa
ily of dispersion relations is introduced that modulate t
high frequencies of the inflationary perturbation modes
large values of the momentak for the trans-Planckian re
gime. The smooth dispersion relations are chosen such
the frequency graph attenuates to zero at very highk, thereby
producing ultralow frequencies corresponding to very sh
distances, but it is nearly linear for low values ofk up to the
cuttoff scalekC5M P .

We present the exact solutions to the mode equations
calculate the spectrum through the method of Bogoliub
coefficients. The resulting CMBR spectrum is shown to
~nearly! that of ablack body. This calculation lends strong
support to the conjecture that smooth dispersion relati
which ensure an adiabatic time-evolution of the modes p
duce a nearly scale invariant spectrum. Further, we elabo
on the issue of theinitial conditionsto which the spectrum is
highly sensitive and show that there isno ambiguityin the
correct choice of the initial vacuum state. The only initi
vacuum is theadiabatic vacuumobtained by the solution to
the mode equation. On the other hand, we showed that
assumption of neglecting the possible backreaction effect
the tail modes on the inflaton field is reasonable and is
tified by the result of the tail energy calculation of Sec. I
Also the Bogoliubov coefficient obtained, Eq.~29!, is expo-
nentially suppressed, so backreaction does not become
nificant. We would also like to stress that due to the disp
sion class of functions chosen, defined in the whole rang
momenta from zero to infinity, the total energy contributio
of the modes produced isfinite, without the need of applying
any renormalization/subtraction scheme. In a sense,
regularization-renormalization procedure is encoded in
class of dispersion we postulate.11

The most exciting result of this work is the generation
dark energy in the observed amount for the present Unive
@11#. This has its origin at the trans-Planckian regime, due
the presence of the dispersedtail modeswith ultralow fre-
quencies equal to or less than the current Hubble cons

11Because of these two results, we do not have the problems m
tioned in Refs.@14,15# when discussing trans-Planckian physics.
8-7



o
ric

e
o

th
od
to
e
a

er
gy

lue
ng
on
h
-
ss

-
y
ta

a

b

g

n
n

re
a

g
i
t

ve

ai
fu
ep
y

f
at
e
.

os-
ate
il

hift
a-

the
in

ve
n.

er-

is-
tant
e a
re-
ity

is

en-
ail

he
ts,
of
ck

ng
ve-
dis-

ivity
dif-

a
is-
and
are
of

pose
if

ain
hat
ra-
-
arts
ery
l-
,

s, in
ss

de
th

LAURA MERSINI, MAR BASTERO-GIL, AND PANAGIOTA KANTI PHYSICAL REVIEW D 64 043508
The evolution of these modes is given by their equation
motion, and it depends on the Hubble rate through the f

tionlike term 3H0ṁn . On the other hand, the evolution of th
Hubble rate, given by the Friedmann equation, contains c
tribution from the energy of these modes. But currently,
Hubble constant dominates over their frequency in the m
equation of motion. It then follows that the tail modes, up
the present, are still frozen and have been behaving lik
cosmological constant term. Therefore their energy is d
energy.12

We have calculated numerically the energy of thetail dur-
ing the inflationary stage for different values of the disp
sion parametere. The calculation showed that the tail ener
was 102122 @times a prefactorf (e1) which weakly depends
on e1 and, for random values of the parameter, takes va
between 1 and 9# orders less than the total energy duri
inflation. This result is true for the whole class of dispersi
relations. We chose different random values of t
1-parameter dispersion familye1, and the numerical calcula
tion shows thate1 influences the energy at the most by le
than an order of magnitude. Wedid not need to do any tuning
of the parameters and used thePlanck scale as the funda
mental scale of the theory. Clearly, at present the tail energ
dominates in the Friedmann equation, if its ratio to the to
energy~as found by the calculation! was 102122f (e1) during
inflation. The tail thus provides astrong candidatefor ex-
plaining the dark energy of the Universe@11#. We suspect
that the above result of producing such an extremely sm
number for thetail energy without any fine-tuning~and by
using M P as the only fundamental scale of the theory! is
generic for any dispersion graph with atail. The family of
dispersion relations that feature atail, corresponding to
vacuum modes of very short distances, was motivated
superstring duality@27,28#.

However, in Sec. II we made the observation thatintro-
ducing a dispersion relation is equivalent to introducin
changes in the curvature of the Universe, at very short or
very large distances while keeping the generalized freque
Vn of Eq. ~5! invariant. It is quite possible that the dispersio
relation for thetail modes results from a different curvatu
of the Universe at very short distances. This is an import
link and we use it in a sequential paper@35# to demonstrate
that the SN1a data cannot be reinterpreted away by chan
the large scale curvature of the Universe. Although it
counterintuitive, since large distance would correspond
low energy theories, we show in@35# that any changes in
large scale curvature would disagree with the obser
CMBR spectrum.

It would be interesting to know what happens to the t
and the Hubble rate in the future. After all, a model is use
insofar as it can make future predictions. Although conc
tually it is straightforward to find out the answer, given b
the solution to the coupled equations~5!, ~7! and ~8!, tech-

12For a different mechanism of generating a constant energy
sity, through the backreaction of cosmological perturbations,
mimics a cosmological constant term, see Refs.@37,38#.
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nically it appears difficult to predict the future evolution o
the tail modes. The technical difficulty lies in the fact that
present, thetail equation of motion is strongly coupled to th
Friedmann equation forH since thetail energy dominates
The Hubble rate would continue to decreaseonly if these
modes decay, but these modes can decayonly when the
Hubble rate decreases below their frequency. It may be p
sible that the frozen tail will sustain a constant Hubble r
which in turn will not allow the further decay of the ta
modes. It is also possible thatH will continue to decrease, in
which case the tail modes will become dynamic and reds
away in the future. It is only the solution to the mode equ
tions coupled to the Friedmann equation that will provide
answer on whether the Hubble constant and tail will decay
the future or remain at their current value. We do not ha
this solution yet, and the work is left for future investigatio
In addition, the equation of state,w(t)5^p/r&, is anobserv-
able that will provide a test to the model@39#, especially
with the new data coming in the near future from the Sup
nova Acceleration Probe~SNAP! @40# and Sloan Digital Sky
Survey~SDSS! @41# missions.

However, we know that currently thesetail modes are
frozen vacuum modes of ultralow energy but very short d
tance, thus their energy behaves like a cosmological cons
energy. We also know they become dynamic and acquir
kinetic term only when the Hubble rate drops below the f
quency. And, if they decay, the product is radiation of grav
waves at very short distances since their physical origin
from the tensor perturbations during inflation~it is well
known that scalar perturbations do not contribute to the
ergy!. The condition for the decay of the last mode in the t
is fulfilled whenH has dropped to zero.

Many of our results, e.g. the dispersion family and t
exact solutions together with the Bogoliubov coefficien
could be applied to the black hole physics. The issue
trans-Planckian physics was originally raised in the bla
hole context with respect to the sensitivity of the Hawki
radiation to the blueshifted, super-Planckian energy wa
packets. Following a phenomenological approach, a few
persive models were introduced@1–5# in order to introduce a
bound on the blueshifted energies and check the sensit
of the black hole spectrum. We have introduced a new,
ferent family of dispersive models, that also gives rise to
thermal spectrum. The analytical results of our class of d
persion models can be applied to the black hole physics
reproduce the same thermal Hawking spectrum. There
many subtleties involved due to the different symmetries
the two scenarios, but these issues are beyond the pur
and scope of this paper. It is left for future work. However,
the Hawking radiation for this class of dispersions is ag
thermal, it lends strong support to Unruh’s conjecture t
black hole radiation is insensitive to physics in the far ult
violet ~trans-Planckian! regime, being predominantly an in
frared effect. On the other hand, our class of models dep
from the previous ones in the asymptotic behavior at v
high momenta, with the presence of an infinite ‘‘tail’’ of u
tralow frequency modes. Thetail feature and energy results
applied to a black hole case, may raise interesting issue
particular with respect to the black hole’s information lo
paradox.
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