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Relic dark energy from the trans-Planckian regime
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As yet, there is no underlying fundamental theory for the trans-Planckian regime. There is a need to address
the issue of how the observables in our present Universe are affected by processes that may have occurred at
super-Planckian energiéeferred to as thé&rans-Planckian regime Specifically, we focus on the impact the
trans-Planckian regime has on two observables: namely, dark energy and the cosmic microwave background
radiation (CMBR) spectrum. We model the trans-Planckian regime by introducing a 1-parameter family of
smooth non-linear dispersion relations which modify the frequencies at very short distances. A particular
feature of the family of dispersion functions chosen is the production of ultralow frequencies at very high
momentak (for k>Mp). We name the range of the ultralow energy mog@#ssery short distanceshat have
frequencies equal to or less than the current Hubble Hgtas thetail modes. These modes are still frozen
today due to the expansion of the Universe. We calculate their energy today and show thétgiwvides a
strong candidate for théark energyof the Universe. During inflation, their energy is about 122 to 123 orders
of magnitude smaller than the total energy, for any random value of the free parameter in the family of
dispersion relations. For this family of dispersions, we present the exact solutions and show that the CMBR
spectrum is that of dnearly blackbody, and that the adiabatic vacuum is the only choice for the initial

conditions.
DOI: 10.1103/PhysRevD.64.043508 PACS nunifer98.80.Cq, 98.70.Vc
[. INTRODUCTION predictions do not conflict with the observables. Specifically,

in this paper we address two questiofa) can the trans-
There is still no fundamental physical theory of the veryPlanckian regime contribute to the dark energy of the Uni-
early Universe which addresses issues that arise from theerse, andb) how sensitive is the CMBR spectrum to ener-
regime of trans-Planckian physics. One of these issues regjies higher than the Planck scalép, where our current
lates to the origin of the cosmological perturbation spectrumphysics theory is known to break down?
In an expanding universe, the physical momentum gets blue- We choose a family of dispersion relations for the fre-
shifted back in time, therefore the observed low values of thejuency of the wave functions that modifies the behavior of
momentum today that contribute to the cosmic microwavethe field at the ultrahigh energies of the trans-Planckian re-
background radiatiofCMBR) spectrum may have origi- gime. The dispersion relation has the following features: it is
nated from values larger than the Planck mbks in the  smooth, nearly linear for energies less than the Planck scale,
early Universe. This is similar to the problems that arise inreaches a maximum, and attenuates to zero at ultrahigh mo-
trying to explain the origin of Hawking radiation in black menta thereby producing ultralow frequencies at very short
hole physics. In a series of papéts-5], it was demonstrated distances. We name thail that part of the dispersion graph
that the Hawking radiation remains unaffected by modifica-of very short distances that contains the range of ultralow
tions of the ultrahigh energy regime, expressed through th&equencies less than or equal to the current Hubble constant
modification of the usual linear dispersion relation at enerH,. It follows that thetail modes are still currently frozen.
gies larger than a certain ultraviolet sc&lg. Following a  We calculate the energy of thiail modes in order to address
similar procedure, in the case of an expanding Friedmannthe former questioria) and show that although theil does
Lemaitre-Robertson-WalkgiFLRW) spacetime, Martin and not contribute significantly to the CMBR spectrum, it has a
Brandenberger in Refl6] (see also[7—-10) showed that dominant contribution to the dark energy of the Universe
standard predictions of inflation are indeed sensitive to trang-11]. The energy density of th&il modes is of the same
Planckian physics: different dispersion relations lead to dif-order today as the matter energy density.
ferent results for the CMBR spectrum. The second questiof) is motivated by the problem that
It is the lack of a fundamental theory, valid at all energies,in most inflationary models the present large scale structure

that makes the model building of the trans-Planckian regimef the Universe is extrapolated from a regime of ultrahigh
very interesting. The main issue is how much the knownrenergies(known as the trans-Planckian regimariginating
observables are affected by the unknown theory. The appafrom before the last 6@-foldings of the exponential expan-
ently ad hocmodification of the dispersion relation at high sion. In Refs.[6,7] the authors have demonstrated that the
energies is constrained by the criterion that its low energyroblem of calculating the spectrum of perturbations with a

time-dependent dispersive frequency can be reduced to the

familiar topic of particle creation on a time-dependent back-

*Email address: mersini@cibs.sns.it ground[12]. We will use their observation in what follows.
"Email address: bastero@cibs.sns.it They also conjecture that the observed power spectrum can
*Email address: kanti@cibs.sns.it always be recovered only by using a smooth dispersion rela-

0556-2821/2001/64)/0435089)/$20.00 64 043508-1 ©2001 The American Physical Society



LAURA MERSINI, MAR BASTERO-GIL, AND PANAGIOTA KANTI PHYSICAL REVIEW D 64 043508

tion, which ensures an adiabatic time-evolution of the
modes. By taking the frequency dispersion relations to be the Mnt
general class of Epstein functioh$3], we check and lend

strp hg support to their conjgzcture. We present the.exact SQihere the prime denotes derivative with respect to conformal
!‘u_uons to the mode ecjuatlon for the_scalar fleldith a time. Therefore, studying perturbations in a FLRW back-
time-dependent mass,” and f[he resu!tmg_ CMBR SpeCtrumground is equivalent to solving the mode equations for a
below. We show that the major contribution to the CMBR scalar fieldu related(through Bardeen variablg¢&0]) to the

spectrum comes from the long wavelength modes when the erturbation field in the expanding background. The above

re-enter the horizon. The spectrum is nearly insensitive to th : : : : :
L . uation represents a linear dispersion relation for the fre-
very short wavelength modes inside the Hubble horizon. 9 P P

al!

n?-— = |#n=0, 2

The paper is organized as follows. In Sec. II, we presenguencyw’
the setup and formalism of our analysis. The family of dis- 2
persion functions, exact solutions to the mode equations of w2=k2=n—. 3)
motion and the resulting CMBR spectrufftom the Bogo- a2

liubov method are reported in Sec. Ill. In Sec. IV, we cal-

culate the contribution of thiail modes to the dark energy of The dispersion relation of Eq3) holds for values of mo-

the Universe today. In this work, we have neglected thementum smaller than the Planck scale. There is no reason to
backreaction effects of particle production. This assumptiomelieve that it remains linear at ultrahigh energies larger than
is fully justified from the calculation of the energy for the M. Yet, nonlinear dispersion relations are quite likely to
trans-Planckian modes, in Sec. IV. Due to tlispersedul-  occur from the Lagrangian of some effective theory obtained
tralow frequency of these modes, the energy contained iRy the yet unknown fundamental theory. Nonlinear disper-
that trans-Planckian regime is very small (£&po1a), thus  sion relations, similar to the ones we consider in this work,
the backreaction effect is reasonably negligifil®,6]. We  are known to arise in effective theories of nonlocal con-

present our conclusions in Sec. V. densed matter or particle physics models arising from non-
canonical kinetic term§21,27; from the dissipative behav-
Il. THE SETUP AND FORMALISM ior of a quantum system immersed into an environment after

coarse-graining23]; or from effective theories with phase
Let us start with the generalized Friedmann-Lemaitretransitions, time-dependent mass squared terms or effective
Robertson-WalkefFLRW) line-element which, in the pres- potentials[24—26. Perhaps, trans-Planckian models moti-
ence of scalar and tensor perturbations, takes the forfated by superstring theof27,2§ or a two-stage inflation-
(16,17 ary model[29] are plausible. In the latter case, one could
easily envision for example a scenario with the first stage of
inflation occurring at energy scales above the Planck tnass
iy +h(7,n)Qé; followed by a nonthermal phase transiti80]. The preheat-
ing [30,3] from the nonthermal phase transition then leads
o to the second stage of inflation below Planck energies. In the
dx'dx'] , (1) former case, the motivation comes from the common belief
that the superstring theory is the one that describes or at least
) ) is valid at energies of the trans-Planckian period. Taking this
wherez is the conformal time and(7) the scale factor. The jgea one step further, we incorporate the concept of super-
dimensionless quantity is the comoving wave vector, re- string duality (which applies at trans-Planckian regimés
lated to the physical vectdt by k=n/a(7) as usual. The oy analysis by choosing a particular family of dispersion
functionsh andh, represent the scalar sector of perturbationse|ations that exhibitsiual behavior* i.e. appearance of ul-
while hy, represents the gravitational wave®(x') and  tralow mode frequencies both at low and high momehta
Qij(x') are the eigenfunction and eigentensor, respectively, pespite the above comments and possible approaches, we
of the Laplace operator on the flat spacelike hypersurfaceghould stress that any modeling of Planck scale physics by
For simplicity, we will take a scale facta(#) given by a  analogy with the already familiar systems is pure specula-
power law? a(7n)=|7./7|?, where =1 and |z
=pB/H(7,). The initial power spectrum of the perturbations
can be computed once we solve the time-dependent equas ) L
tions in the scalar and tensor sector. The mode equations for | "e"€ iS no reason why inflation must only occur below Planck
both sectors redudii8—2( to a Klein-Gordon equation of energies. In principle, inflation at ultrahigh energies is equally pos-

ible.
the form S E o . .
For example, when compactifying superstring theory in a torus

topology, of large radiufk and winding radius, the frequency
mode spectrum is dual in the sense tRaandr are related as
These functions are known for having exact solutions to second=1/R. This means that each normal mode with a frequemy,
order differential equations in terms of hypergeometric functions. wheren is an integer, has its dual winding mode with decreasing
2lt has been argued if6] that the analysis extends to other laws energy that goes like 1+ R [28].
for the scale factor. SWe would like to thank A. Riotto for pointing this out to us.

dsZ:aZ(n)[ —d7?+

+h|(nan)%+hgw(771n)Qij
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tion. We lack the fundamental theory that may naturally mo-staté is given by the solution to Eq5) as clarified below.
tivate or reproduce such dispersion behavior. Nevertheless, But if the stage of inflation is very long, and the Hubble
would be instructive to derive these dispersion relations fronparameter H is not changing considerably, then a
particle physics and string theory, as a step towards undeMinkowski-like vacuum is a good first order approximation
standing the physical nature of the model. for the initial vacuum state— — ), with

In what follows, we replace the linear relation?(k)
=k?=n?/a(#)? with a nonlinear dispersion relation (k) i
=F(k). The family of dispersion function& (k) for our M ”)Zﬁe ”. (10
model is introduced in Sec. lll. These functions have the
fO”OWing features: they are linear for low momenta up to thEHowever, ifH were greater at the ear|y stages of inflation,
Planck scal&kc=Mp, taken to be the cuttoff scale, but be- pefore the last 6@-foldings, and/or the inflationary stage is
yond the cutoff they smoothly turn down and asymptoticallyshort, then one must solve the wave equation and find the
approach zero whereby producing ultralow frequencies aolution that minimizes the enerd2,33,26. This is the
very short distances. Therefore, in E8), n® should be re-  correct vacuum state of the system. Otherwise, if @peiori

placed by chooses the Minkowski vacuum to be the initial vacuum
state describing the system, the resulting valug of) is
nﬁff=a( 7)2F(K)2=a( 7)?F[n/a(7)]2. (4) Z?ZTI([j??At]ably underestimated as shown rigorously by Felder

As already shown in Ref6], Eq. (5) represents particle
production in a time-dependent background. We will follow
the method of Bogoliubov transformation to determine the
égectrum. The correct initial condition for the vacuum state
Is the solution to the equation that minimizes the energy.

We will also consider the general case of non-minimal or
conformal coupling to gravity by keeping some arbitrary,
unspecified, coupling constagt Then, the equation for the

scalar and tensor perturbations, that we need to solve, tak

the form ! . ’
Hence, if the “time-dependent” background goes asymptoti-
cally flat at late times, then in that limit the wave function
, a” should behave as a plane wave:
pnt | NGg— (1= 6¢) E}ano- (5)
—iaihy
For future reference, we define the generalized comoving Hn™ e anne ' 1D

frequency as

As it is well known on this scenario, in general at late times
a” one has a squeezed state due to the curved background that
Q2=n3—(1-6&) —. (6)  mixes positive and negative frequencies. The evolution of
a the mode functioru,, at late times fixes the Bogoliubov co-

. . . fficient dB,,
The dynamics of the scale factor is determined by the evo(—e icientsa, and A,

lution of the background inflaton fieldb, with potential o ot B ot
V(¢), and the Friedmann equation. In conformal time, these Y — " R R A )
equations are T 2001 V2094
, with the normalization condition
a’ a 87G_ . , 2 2
3 =t 3l avigl=0, ) |an] =1 Bal*=1. (13

In the above expressions()" and Q%' denote the

N($) asymptotic values of),, when »— ¥ . The spectrum of
=0. (8)  particles per mode is then calculated with the conventional

d¢ Bogoliubov method 33]. The number of particles created

S . and their energy density are calculated by the following
Most of the contribution in the perturbation spectrum expressions:

comes from long-wavelength modes, since at late times they

!
" a_/ 2
¢+2a¢>+a

are nonrelativistic and act like a classical homogeneous field 1 s
with an amplitudex given by (n)= 2772a3j dnre|Bl%, (14
1 12
p=(p)=|— J dnr?|w,|? 9
2m°a %In [6] the authors argue that there are two vacuum states. The

argument extends to the criteria for choosing the right vacuum out
These are produced at early stages of inflation, thus they at# the two. Here we show there is only one true vacuum state which
very sensitive to the initial conditions. The correct vacuumreduces to the Minkowski vacuum only at a certain limit.
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1 the curvature given by the time derivatives of the scale factor
(p)= TJ' ndnj NerfdNets | Bnl? a(#n). The basic argument is the observation that the modu-
2m a lated frequenc;ﬂﬁ in the wave equation contains the contri-
1 bution of these two terms, as given in E®). Therefore,
= _2f kdkf w(K)do| B2 (15) Whilg keeping thg generali_zed frequency ipvariant, changing
2w the first term in(};, can be viewed as or attributed to changes
in the second term, such that

If the resulting Bogoliubov coefficienB, of the particles a”

produced has #nearly thermal distribution, we can con- QﬁZazwﬁonnneank—(l—%)g

clude that the CMBR in our problem is that of(aearly

black body spectrum. We introduce the class of Epstein func- » 2 A"

tions as the family of dispersion relations in Sec. Ill, and =A% 0iineark = (1768 —, (16)
derive the CMBR spectrum from the exact solutions to the

evolution equations. whereA is the new scale factor at very short distances. Even

Meanwhile, for the special features of our choice of dis-in the conformal casé=1/6, when the terna”/a drops out
persion relation, the modes at very high momenta but obf Eq. (5), the time-dependent frequenay?,,jineark CaN
ultralow frequenciesw(k) are frozen for as long as the mimic a term proportional t@”/a at \( 7)kc<1. Thus, any
Hubble expansion ratél of the Universe dominates over modulation of the dispersion relation is equivalent to a
their frequency. We refer to that as ttel of the dispersion  change in the behavior of the time-dependence of the back-
graph. In Fig. 2, for the disperseaf'(k) vs k, the tail corre-  ground(a.k.a., the scale factor/curvatirén other words, we
sponds to all the modes beyond the pdipt, whereky is  could have introduced a different curvature at very shart
defined by the conditiorw?(ky)=Hj, where Hy is the large distances from the start instead of a dispersed
Hubble rate today. It then follows that the tail modes are stillfrequency?
frozen at present. We calculate the total energy of the par-
ticles by using Eq(15), as well as the frozen energy of the ;. ExacT SOLUTION AND THE CMBR SPECTRUM
tail. Thus the energy of the tail is a contribution to the dark
energy of the Universe: up to the present it has the equation We Wwill consider the class of inflationary scenarios that
of state of a cosmological constant term. However, througfihrough Egs.(7) and (8) has a power law solution for the
the Friedmann equatiom is a decreasing function of time scale factora(#) in conformal time,a(7)=|7./#|?, with
because until now it has been dominated by the energy def3=1, and the following Epstein functidri3] for the disper-
sity of matter and radiation. Therefore, whenevemrops  Sion relation:
below the frequency of an ultralow frequency mode, this

mode becomes dynamic by picking a kinetic term and red- 2= E2(k) = k2| — L+ €2€" N €3e” an
shifts away very quickly. Hence, when the dominant contri- ™ ( 1+e¢ 1+e* (1+e92?)’
bution to the evolution equation fdd comes from thdail

energy, the behavior of those modes with equations of mo- n2.=a%(7)F3(n,7)

tion coupled to the Friedmann equation becomes very com-

plex. It is hard to calculate at which raté¢ drops in this 2( @, €6 N €e" 5
situation. If eventuallyH drops all the way to zero, all the " e 1o 1+’ (18)

modes in the tail must have decayed. Their equation of state,
whenH becomes zero, is that of radiation. The reason can bﬁ/herex=(k/kc)1’5=A| 7l, with A= (1/ 7.]) (n/ke) Y8, This
) C .

traced back to their origin in the t_rans—PIanckian reg.ime.. tiSg the most general expression for this family of functions.
v_veII known that _scalar perturbations produced dunng '.nﬂa'For our purposes, we will constrain some of the parameters
tion do not co_ntr_lbute to the total energy. Thus the_ongln _Of f the Epstein family in order to satisfy the features required
these modes is in the tensor perturbations. In their physm%r the dispersion relation as follows. First, imposing the
nature they correspond to gravitational waves of very ShorFequirement of superstring duality, in order to have ultralow
distance but ultralow enerdyWe calculate their energy to- frequencies for very high momenta, we demand that the dis-

day in Sec. IV. ; ; ; :

: ... persion functions go asymptotically to zero. That fixes
We would like to elaborate on yet another pOSS|b|I|ty,p g ymp y
which has not been mentioned before in the literature, that €,=0. (19

can give rise to a similar dispersion relation: very short or
very large distance physics may have a curvature different——
from the FLRW element of Eq(l), e.g. a different scale

factor. This becomes clearer when recognizing the stron
relation between the time-dependent dispersion relation an

8We are using this equivalence in a sequential pdB&] to
monstrate that a different large scale curvature of the Universe is
not possible as it conflicts with the observed CMBR data. There-
fore, trying to reinterpret the SN1a data in the light of a possible
different curvature for the large scale regions of the Universe may
"We thank S. Carroll for pointing this out. be ruled out.

043508-4



RELIC DARK ENERGY FROM THE TRANS-PLANCKIAN REGIME PHYSICAL REVIEW D64 043508

On the other hand, the condition of a nearly linear dispersion [
relation fork<k. requires that

€ € )
5+, =1 20 T | |
g ... S
Still we will have a whole family of functions parametrized ':‘QB'
by the constant,, as can be seen in Fig. 1. ©
With the change of variables— u=exp(A|7|), the scalar <
wave equatior(s) for the modeu, becomes ‘B .
o Epstein class
o
2
, 1 a
gt aau+V(u) =0, (21
with . .
i i ~ k
€1 €3 (1_ 65) a”
V(u)= 5 2T T2 A (22 FIG. 1. Shown is our family of dispersion relations, 6k 1
u(l+u) u(u+1l) u“A and representative values ef (solid lines. We have also included
Unruh'’s dispersion relatiofdashed lingand the linear onédotted
where line) for comparison.

n \2(1-1p) B 1 .
) €. (23) d=id= /7 +&s. (27)

€= (K| ml)z(g

In the case of conformal coupling to gravity=1/6, Eq. At late times the solution becomes a squeezed state by mix-
(21) is exactly solvable in terms of hypergeometric functionsing of positive and negative frequencies:
[13]. This is a well studied case in the context of particle
creation in a curved background2]. Even if we are not in

the case of conformal coupling, the contribution - %n e 100"y Bn eti0ny (28)
a _ B(B+1) (24) Wit | Bn|? being the Bogoliubov coefficient equal to the par-
a 7? ticle creation number per modg and Q%"= \/e;n. Using

the linear transformation properties of hypergeometric func-
is going to be negligible at early times;{~—); at late  tions[36], we find thal
times, it can be absorbed in the dispersion relation (E8).
redefining the constants .

As explained in Sec. II, the correct initial condition is the Bn| _ 5.5 Coshm(d+Db) (30)
vacuum state solution that minimizes the energy. In the case an coshm(d—b)|
wheree,#0, this vacuum state behaves as a plane wave in
the asymptotic limity— —o, with Q{™— \/e,n. However, If dis a real number}>—1/4), then we obtain
whene,=0 as in our case, the correct behavior of the mode
function in the remote past is given by the solution of Ej. ok
in the limit »— —o°. The exact solution which matches this 18,|2= (31)
asymptotic behavior is then given by " osinh27b
iy i 1HULE (L 1
p(m)=C u 2F1 §+d+b‘ 2 %In the most general case, wherg# 0 in Eq.(18), it is obtained
[13] that
1+u ~ o~
+d—b,1+2d,—], (25) Bn| _|coshmd+b—a) 29
u @ |coshm(d—b—a)|
in o
whereC™ is a normalization constant, and with a= \/Z Also in this case the spectrum of the fluctuations is
nearly thermal, with the parametercontrolling the deviation from
b=ib=i 21, (26) thermality.
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It is clear from Eqgs(30) and(31) that the spectrum of cre- '
ated particles is nearly thermal to high accurdty,

|Bo| 2=, (32

Thus, we can immediately conclude that the CMBR spec-
trum is that of a(nearly black body spectrum. That means
the spectrum ignearly scale invariant, i.e., the spectral in-
dex isng=1. This is consistent with previous results ob- 8
tained in the literatur¢6—9|, when using a smooth disper-
sion relation and the correct choice of the initial vacuum
state, as discussed above. In Ré¢f. and[7], dispersion
relations, that were originally applied to black hole physics ~ f-----------------X e
[1,2], were used in the context of cosmology. New models of
dispersion relations were proposed by the authors of Refs
[8] and[9]. Our proposal for a 1-parameter class of models
has a significantly different feature from the above, namely K ey k
the appearence of ultralow frequency modes in the trans- . i ,
Plancﬁi%m regime. The implicat%ns 0¥ such a behavior for_ 'S 2 The range of modes in the tekl <k=<co, defined by
. . . Eq. (33). Hy is the present value of the Hubble constant.
high momenta on the production of dark energy are dis-
cussed in the next section.

" Tail Modes "

However we can calculate their contribution to the dark
energy today, when they are still frozen, thereby mimicking a
IV. DARK ENERGY FROM THE “TAIL® cosmological constant. We calculate numericallysing
In Sec. II, we defined theail as the range of those modes MATHEMATICA) the range of the modes in the tail from Eq.
in the frequency dispersion clagsriginating from the trans- (33) and use this value for the limit of integration in the tail
Planckian regime whose frequency is less than or at mostEN€rdy given by Eq(15). Below we report these results for
equal to the present Hubble ratd, (see Fig. 2 It then the case of a s_cale factor W_ma:l but other values of8
follows that they have not decayed and redshifted away buf/€"€ also considered numerically and they produce an even
are still frozentoday. SinceH has been a decreasing function Smaller dark energy due to the extra suppression in the inte-
of time, many modes, even those in the ultralow frequencyg"@ coming from the Bogoliubov coefficier . Equation
range, have become dynamic and redshifted away one g3 is a messy tran_scendental equation b_ut the solution to
one, every time the above condition is broken, i.e. when théhat equation is crucial to the dark energy since the vijue
expansion ratéi dropped below their frequency. Clearly, the iS the limit of the energy integral. That is why we solved Eqg.
other modes have long decayed into radiation and the tafl33 numerically and replaced it in E415) for the energy,
modes are the only modes still frozen. They contain vacuuriiSing different representative values of the parameter
energy of very short distance, hence of very low energy. The The energy for the tail is given by
last mode in the tail would decay when andHf=0. When

the tail modes become dynamic by acquiring a kinetic term I 5
[when w(k)>H], they decay away as gravitational waves (Prait) = 22 kadk o(k)do| B, (34)
(explained in Sec. )l The tail starts from some valu&y
which must be found by solving the equation while the expression for the total energy is
?(ky) =H3. (33

1 o0
N (o= | kok[ wiodo 182 @9
The range of the modes defining thegl is then forky <<k 2mJo

<o, Their time-dependent behavior when they decay de-
pends on the evolution ¢ and is complicated because they The numerical calculation of the tail energy produced the
contribute to the expansion rate fiir Thus, their equations following result: for random different values of the free pa-
of motion are coupled to the Friedmann equation. rameters, the dark energy of the tail is & (¢;) times less
than the total energyduring inflation i.e. piaii/piotal
=10 '?%(¢,) at Planck time. The prefactdi(e;), which
19 remind the reader that we have neglected the backreactici€Pends weakly on the parameter of the dispersion fagily
effects during the calculation, based on the result of a small particiéS & Small number between 1 and 9, which clearly can con-
number per mode, in the high momentum regirke>-(p) and a  tribute at the most by 1 order of magnitude.
very small energy contained in these modes. Clearly, the particle This is an amazing resulit can readily be checked by
number per mode being small is consistent with the result of theplugging in the dispersion expression fog, Eq.(17), in the
exponentially suppressed, near-thermal Bogoliubov coefficient. Sefitegral expression of E¢34) for the tail energy, then using
Sec. IV for the energy. as the limit of integration the valule, found by the condi-
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tion in Eq. (33). This result can be understood qualitatively ing problem of dark energy, for at least two reasons. First,
by noticing that the behavior of the frequency for the “tail” inspired by superstring duality, it is very plausible to speak
modes is nearly an exponential dedage Eq.(17)], and as of scenarios with ultralow frequencies and very high mo-
such dominates over the other terms in the energy integrangienta. The tail modes, which are frozen at present, provide a
of Eq. (34): good candidate for the dark energy as our calculations show.
w2(k>ke)~exp —k/ke). (36)  Secondly, although smooth dispersion functions that model
the trans-Planckian regime do not affect the CMBR spec-
Hence, due to the decaying exponential, the main contributrum, this regime still leaves its imprints in the contribution
tion to the energy integral in EG34) comes from the highest to the energy of the Universe. This is a rich and currently
value of this exponentially decaying frequency, which is theunderexplored area to consider with respect to the cosmo-
value of the integrand at the tail starting poirk,  logical constant mystery.

~0O(Mp), i.e.,
Prail k|2_| H(Z) V. CONCLUSIONS
< >%_4w2(kH)~_2”10122' 37 In this work we investigated two phenomenological as-
Ptotal Mp Mp g p [o]

pects of trans-Planckian physics: the issue of dark energy

Due to the physical requirement that the tail modes musPreduction, and the sensitivity of the observed CMBR spec-
have always been frozen, the tail starting frequeng¢ly,) is ~ rum to the trans-Planckian regime. For this purpose, a fam-

then proportional to the current value of Hubble refte[Eq. ily of dispersion relations is introduced that modulate the
(33)]. high frequencies of the inflationary perturbation modes at
We suspect this result is generic for any scenario thalerge values of the momentafor the trans-Planckian re-

featuresultralow frequencieswhich exponentially decay to 9ime- The smooth dispersion relations are cho;en such that
zero at very high momenta for two reasons. First, all then€ frequency graph attenuates to zero at very kjghereby

modes with an ultralow frequenay<H, will be frozen and p_roducing ultra}lqw frequencies corresponding to very short
thus produce dark energy. Secondly, their contribution to th&liStances, but it is nearly linear for low valuestofip to the

energy may be small because of the following. Due to thiCuttoff scalekc=Mp. , ,
kind of dispersion in the high momentum regime, the phase We present the exact solutions to the mode equations and

space available for the ultralow frequency modes vatk calcu_la}te the spectrum' through the method' of Bogoliubov
oefficients. The resulting CMBR spectrum is shown to be

>Kk¢) gets drastically reduced when compared to the phas : .
early that of ablack body This calculation lends strong

space factor in the case of a non-dispersive trans-Plancki ) . ) ;
regime, controlling in this way these modes’ contribution toSUPPOIt to the conjecture that smooth dispersion relations
hich ensure an adiabatic time-evolution of the modes pro-

the energy density. The result for the tail energy also mean ) )
that the tail energy dominates today’s expansion of the Uniduce a nearly scale invariant spectrum. Further, we elaborate
verse. Thus, at present, we cannot g&efriori the evolution  ©" the issue of thaitial conditionsto which the spectrum is

of these modes and the time when they may become d)}]ighly sensitive and show that thererie ambiguityin the

namic. Only the solution to the equation for the modescorrect choice of the initial vacuum state. The only initial

coupled (strongly at presejtto the Friedmann equation V2cUum is thead@abatic vacuunobtained by the solution to
would answer the question as to whetkewill continue to the mode equation. On the other hand, we showed that the

decrease with time. If that were the case, then these tafiSsumption of neglecting the possible backreaction effects of

modes would also eventually become dynamic and decay'® tail modes on the inflaton field is reasonable and is jus-

However, we calculated the equation of state for the limitingt!fied Dy the result of the tail energy calculation of Sec. IV.
case wherH=0. In this case, all the modes in the tail are ISO the Bogoliubov coefficient obtained, E@9), is expo-

dynamic. The calculation of the energy density of the tail innentially suppressed, so backreaction does not become sig-

the dynamic case from E@L5) confirms that the tail decays njficant. We WOU|d' also like to stre§s th{;\t due to the disper-
in the form of radiation, as expected since their physicafion class of functions chosen, defined in the whole range of

nature is that of gravity waves of very short distandest momenta from zero to infinity, the total energy contribution
ultralow energy, originating from tensor perturbations dur- ©f the modes produced fiite, without the need of applying
ing inflation. any renormalization/subtraction scheme. In a sense, the

The opposite case is also a possible outcome to thEegularization-renormalization procedure is encoded in the
coupled equations. It is possible that the frozen modes of th&'ass of dispersion we postulate. . .
tail will prevent H from dropping further below, in which "€ mOst exciting resuit of this work is the generation of
case these modes will never decay. We have not solved the ark energy in the sterved amount for th? present Universe
coupled equations yet, therefore we are just speculating 1]. This has its origin at the trans-Planckian regime, due to

the two possible outcomes of that calculation. The solution ishe presence of the disperstdl modeswith ultralow fre-
left for future work. quencies equal to or less than the current Hubble constant.

At present, these modes, originating from the trans-
Planckian regime, are behaving as dark energy of the same
magnitude as the current total energy in the Universe. This Because of these two results, we do not have the problems men-
idea is then a leap forward in this longstanding and challengtioned in Refs[14,15 when discussing trans-Planckian physics.
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The evolution of these modes is given by their equation ohically it appears difficult to predict the future evolution of
motion, and it depends on the Hubble rate through the fricthe tail modes. The technical difficulty lies in the fact that at
tionlike term 3H gz, . On the other hand, the evolution of the Présent, théail equation of motion is strongly coupled to the
Hubble rate, given by the Friedmann equation, contains co Friedmann equation fok since thetail energy dominates.

o "he Hubble rate would continue to decreasdy if these
tribution from the energy of these modes. But currently, themodes decay, but these modes can decaly whenthe

Hubbl_e constant dominates over their freque_ncy in the modgy pple rate decreases below their frequency. It may be pos-
equation of motion. It then follows that the tail modes, up tosjple that the frozen tail will sustain a constant Hubble rate
the present, are still frozen and have been behaving like @hich in turn will not allow the further decay of the tail
cosmological constant term. Therefore their energy is darknodes. It is also possible thetwill continue to decrease, in
energy*? which case the tail modes will become dynamic and redshift
We have calculated numerically the energy oftiiédur- ~ away in the future. It is only the solution to the mode equa-
ing the inflationary stage for different values of the disper-tions coupled to the Friedmann equation that will provide the
sion parametee. The calculation showed that the tail energy @nSwer on whether the Hubble constant and tail will decay in
was 10 122 [times a prefactof (e;) which weakly depends th_e future_: or remain at their current value. We do not _have
this solution yet, and the work is left for future investigation.
on €, and, for random values of the parameter, takes valueF o . a .
between 1 and Porders less than the total energy during h addition, the equation of state(t) = (p/p), is anobserv-
) ) ; . . . 2 able that will provide a test to the mod¢B9], especially
inflation. This result is true for the whole class of dispersion, ... the new data coming in the near future from the Super-

relations. We. cho_se diff(_arent random vqlues of thenova Acceleration Prob€SNAP) [40] and Sloan Digital Sky
1-parameter dispersion famiby, and the numerical calcula- Survey(SDSS [41] missions

tion shows that, influences the energy at the most by less
than an order of magnitude. Vd&d not need to do any tuning fro

of the parameters and used tRianck scale as th? funda- tance, thus their energy behaves like a cosmological constant
mental scale of the thearZlearly, at present the tail energy energy. We also know they become dynamic and acquire a
dominates in the Friedmann equation, if its ratio to the tOtalkinetic term only when the Hubble rate drops below the fre-

H 122 H
energy(as found by the calculatiomas 10 “f(ey) during  ,ancy. And, if they decay, the product is radiation of gravity

inflation. Thetail thus provides strong candidatefor €x- \aes at very short distances since their physical origin is
plaining the dark energy of the Univer$gl]. We suspect (L y b J

. rom the tensor perturbations during inflatidit is well
that the above result of producing such an extremely smajl,yn that scalar perturbations do not contribute to the en-
number for thetail energy without any fine-tuningand by g,4v) The condition for the decay of the last mode in the tail
using Mp as the only fundamental scale of the theoiy is fulfilled whenH has dropped to zero.
generic for any dispersion graph withtail. The family of

i : i hat f | di Many of our results, e.g. the dispersion family and the
Ispersion relations that feature tail, corresponding 10 ayact solutions together with the Bogoliubov coefficients,
vacuum modes of very short distances, was motivated b

, , ¥%ould be applied to the black hole physics. The issue of

superstring duality27,28. _ trans-Planckian physics was originally raised in the black
However, in Sec. Il we made the observation timto- 1o context with respect to the sensitivity of the Hawking

ducing a dispersion relation is equivalent to introducing agiation to the blueshifted, super-Planckian energy wave-
changes in _the curvature of th_e Univeyssi very short or  nackets. Following a phenomenological approach, a few dis-
very large distances while keeping the generalized frequenc&ersive models were introducft—5] in order to introduce a
Q, of Eq. (5) invariant. Itis quite possible that the dispersion g on the blueshifted energies and check the sensitivity
relation for thetail modes results from a different curvature ¢ ihe plack hole spectrum. We have introduced a new, dif-
of the Universe at very short distances. This is an importanfgrent family of dispersive models, that also gives rise to a
link and we use it in a sequential pafi85] to demonstrate  yhermal spectrum. The analytical results of our class of dis-
that the SN1a data cannot be reinterpreted away by Chang'%rsion models can be applied to the black hole physics and

However, we know that currently thegail modes are
zen vacuum modes of ultralow energy but very short dis-

the large scale curvature of the Universe. Although it Sreproduce the same thermal Hawking spectrum. There are
counterintuitive, since large distance would correspond {Qnany subtieties involved due to the different symmetries of
low energy theories, we show i85] that any changes in yhe o scenarios, but these issues are beyond the purpose
large scale curvature would disagree with the observed,y scope of this paper. It is left for future work. However, if
CMBR spectrum. _ _the Hawking radiation for this class of dispersions is again
It would be interesting to know what happens to the tailiherma) it lends strong support to Unruh’s conjecture that
and the Hubble rate in the future. After all, a model is usefuly| i hole radiation is insensitive to physics in the far ultra-
insofar as it can make future predictions. Although concepyjgjet (trans-Planckianregime, being predominantly an in-
tually it is straightforward to find out the answer, given by frareq effect. On the other hand, our class of models departs
the solution to the coupled equatio(®, (7) and (8), tech-  f4m the previous ones in the asymptotic behavior at very
high momenta, with the presence of an infinite “tail” of ul-
tralow frequency modes. Thail feature and energy results,
12For a different mechanism of generating a constant energy derapplied to a black hole case, may raise interesting issues, in
sity, through the backreaction of cosmological perturbations, thaparticular with respect to the black hole’s information loss
mimics a cosmological constant term, see RE3%,38. paradox.
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