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Cosmic microwave background bispectrum from active models of structure formation
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We propose a method for a numerical computation of the angular bispectrum of the cosmic microwave
background CMB) anisotropies arising from active models such as cosmic topological defects, using a modi-
fied Boltzmann code based @wmBrasT. The method does not use CMB sky maps and requires moderate
computational power. As a first implementation, we apply our method to a recently proposed model of simu-
lated cosmic strings and estimate the observability of the non-Gaussian bispectrum signal. A comparison with
the cosmic variance of the bispectrum estimator shows that the bispectrum for the simulated string model we
used is not observable.
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Anisotropies of the cosmic microwave backgroundGaussian distribution, while second-order effects may add a
(CMB) radiation are directly related to the origin of structure weak non-Gaussian signid].
in the Universe. Galaxies and clusters of galaxies eventually On the other hand, active models of structure formation
formed by gravitational instability from primordial density are motivated by cosmic topological defects. If our ideas
fluctuations, and these same fluctuations left their imprint orabout grand unification are correct, then some cosmic de-
the CMB. Recent balloofi,2] and ground-based interferom- fects, such as domain walls, strings, monopoles or textures,
eter[3] experiments produced reliable estimates of the poweshould have formed during phase transitions in the early uni-
spectrum of the CMB temperature anisotropies. While theywerse[6]. Once formed, cosmic strings could survive long
helped to eliminate certain candidate theories for the primargnough to seed density perturbations. Defect models possess
source of cosmic perturbations, the power spectrum data athe attractive feature that they have no parameter freedom, as
still compatible with the theoretical estimates of a relativelyall the necessary information is in principle contained in the
large variety of models, such as the cold dark matter modelinderlying particle physics model. Generically, perturbations
with a cosmological constantA(CDM), quintessence mod- produced by active models are not expected to be Gaussian
els, or some hybrid models including cosmic defects. Thesdistributed.
models, however, differ in their predictions for the statistical  The narrow main peak and the presence of the second and
distribution of the anisotropies beyond the power spectrumthe third peaks in the CMB angular power spectrum, as mea-
Future microwave anisotropy probe and Planck satellite missured by BOOMERANG, MAXIMA, and DASI[1-3], is
sions(scheduled for launch in 2001 and 2007, respectively evidence of coherent oscillations of the photon-baryon fluid
will provide high-precision data allowing definite estimatesat the beginning of the decoupling epoff]. While such
of non-Gaussian signals in the CMB. It is therefore impor-coherence is a property of all passive models, realistic cos-
tant to know precisely which predictions of all candidate mic string models produce highly incoherent perturbations
models for the statistical quantities will be extracted from thethat result in a much broader main peak. This excludes cos-
new data, and to identify their specific signatures. mic strings as the primary source of density fluctuations un-

There are two main classes of models of structurdess new physics is postulated, e.g., a varying speed of light
formation—passiveand active models. In passive models, [8]. In addition to purely active or passive models, it was
density inhomogeneities are set as initial conditions at someecently suggested that perturbations could be seeded by
early time. While they subsequently evolve as described bgome combination of the two mechanisms. For example, cos-
Einstein-Boltzmann equations, no additional perturbationsnic strings could have formed just before the end of infla-
are seeded. On the other hand, in active models the sourcgéen, and partially contributed to seeding density fluctuations.
of density perturbations are time dependeht It was shown 9] that such hybrid models can be rather suc-

All specific realizations of passive models are based omessful in fitting the CMB power spectrum data. Therefore,
the idea of inflation. In most inflationary models, density statistics beyond the power spectrum are required to dis-
fluctuations arise from quantum fluctuations of a scalar fielccriminate between active and passive models.
placed in the vacuum and hence are well described by a Of the available non-Gaussian statistics, the CMB bispec-

trum, or the three-point function of Fourier components of
the temperature anisotropy, has been perhaps the one best

*Email address: gangui@iafe.uba.ar studied in the literatur¢10,11. Although there are a few
"Email address: levon@theory6.phys.cwru.edu cases where the bispectrum may be estimated analytically
*Email address: winitzki@erebus.phys.cwru.edu from the underlying model, a precise numerical code to com-
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pute it, similar to thecMBFAST code[12] for the power spec- R R

trum, is presently lacking. The bispectrum can be estimated AT/T(”)=|2 AmYim(Nn), (4)

from simulated CMB sky maps; however, computing a large "

number of full-sky maps resulting from defects is a much R

more demanding task. wheren is a unit vector. The coefficients,, can be decom-
In this paper we introduce a method for obtaining theposed into Fourier modes,

CMB bispectrum directly from numerically simulated defect

models, without building CMB sky maps. Given a suitable Vo

model, one can generate a statistical ensemble of realizations Am=_-3

of defect matter perturbations. We use a modified Boltzmann (27)

code based orMBFAST to compute the effect of these per-

turbations on the CMB and to find the bispectrum estimatofGiven the source® ,,(k, ), the quantities\(k) are found

for a given realization of sources. We then perform statisticaPy solving linearized Einstein-Boltzmann equations and in-

averaging over the ensemble of realizations to compute thi€grating along the line of sight, using a code similar to

expected CMB bispectrum(The CMB power spectrum is CMBFAST [12]. This standard procedure can be written sym-

also obtained as a byproducOur method is specifically bolically as the action of a linear operatBf*’(k) on the

tailored for computations of the bispectrum; extending it togoyrce energy-momentum tensAr,,(k)=I§|‘”(k)®w(k,r),

higher-order correlation functions would require prohibi- ¢4 the third moment ok, (k) is linearly related to the three-

tively longer calculations. As a first application, we COM- noint correlator 0f® ,,(k, 7). Below we consider the quan-
puted the expected CMB bispectrum from a model of Simusjsieg A (k), corresponding to a set of realizations of active

lated string networks first introduced by Albreattal. [13] sources, as given. The numerical procedure for computing

and furt_her (_Jlev_eloped in Re[l_4] and in this vyork. Our _A,(k) was developed in Ref§13] and[14].
calculations indicate that the bispectrum resulting from this The third moment ofy,, namely(a,  a_m.a._m.), can
m> 1My =My smg/

model is negligible when compared with the cosmic vari-
ance. We discuss the implications of this result for detectabil
ity of cosmic strings through the bispectrum statistic.

(—i>'4wf kA (YR, (5)

be expressed as

3

V
—iylatlat! 3_0 3k, Bk d3k.Y* (K
|. CMB BISPECTRUM FROM ACTIVE MODELS (=i)yrrzrs(4m) W)gf dkydkod kY m, (ko)
We assume that, given a model of active perturbations, XY} (ko) Yf: 1 (Ka)(Af (KA (ko)A (Ka)). (6)

such as a string simulation, we can calculate the energy-
momentum tensor ,,(x, 7) for a particular realization of the

sources in a finite spatial volum¥,. Here x is a three-
dimensional coordinate and is the cosmic time. Many

A straightforward numerical evaluation of E¢) from
given sources\(k) is prohibitively difficult, because it in-
._ volves too many integrations of oscillating functions. How-

. . S . . aéver, we shall be able to reduce the computation to integra-
tions of sources with statistical properties appropriate for th?ions over scalaréa similar method was employed fa5))

glven.trrodel. The spatial Fourier decompositionTof, can Because of homogeneity, the three-point function vanishes
€ written as unless the triangle constraint is satisfied:

Tw(x,r)=§ 0,k 1e*x, 1) Ky + Ko+ ks=0. @)

wherek are discrete. 1V, is sufficiently large we can ap- We may write
proximate the summation by the integral

y (A1, (kA (ko)A (ko))
ik-x 0 ik-x
2 Owlinet ”@Tﬁf KO (ke (@) = 0 (kyt kot ko) Py (ki Kz k), (8

and the corresponding inverse Fourier transform will be  \yhere the three-point functioﬁlllzl3(kl,k2,k3) is defined
1 ' only for values ofk; that satisfy Eq.7). Given the scalar

0,.(k 1= V—f d3xTMV(x,r)e""‘X. (3)  valuesk;, k,, andks, there is a uniqudup to an overall

07V rotation triplet of directionsk; for which the right-hand side

Of course, the final results, such as the CMB power spectrufRHS) of Eg. (8) does not vanish. The quantity
or bispectrum, do not depend on the choice/gf To ensure  Pi,1,1,(K1.K2,Ks3) is invariant under an overall rotation of all
this independence, we shall ke¥pin all expressions where three vectorsk; and therefore may be equivalently repre-

it appears throughout the following sections. sented by a function décalar valuesk,, k,, andks, while
It is conventional to expand the temperature fluctuationgpreserving all angular information. Hence we can rewrite Eq.
over the basis of spherical harmonics, (8) as
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(A (kA (k2) Ay (Ka))
=5 (kytkotka)Py (K ko kg).  (9)

1'2'3

Then, using the simulation volumé&, explicitly, we have

(2m)°
P (klakz,kg):V—0<A|1(k1)A|2(k2)A|3(k3)>-

(10

Given an arbitrary directiorﬁl and the magnitudek,, k»,

.. PHYSICAL REVIEW B4 043001

integration because of the large volume of data: for each set
{141,135} the grid must contain-10° points for eachk;. In-
stead, we precomputk, (k) from one realization of sources
and evaluate the RHS of E(LO) on that data as a@stimator

of Py 1,,(ki,kz,ks), averaging over allowed directions of

K; . It can be shown that knowledge of real partsAgfk) is
sufficient for this evaluation. The result is used for integra-
tion in Eq. (13).

Because of isotropy and since the allowed sets of direc-
tions Ri are planar, it is enough to restrict the numerical

andks, the directionsk, andk, are specified up to overall calculation to directions; within a fixed two-dimensional
rotations by the triangle constraint. Therefore, both sides oPlane. This significantly reduces the amount of computations
Eq. (10) are functions of scalak; only. The expression on and data storage, sincg(k) only needs to be stored on a
the RHS of Eq.(10) is evaluated numerically by averaging two-dimensional grid ok.

over different realizations of the sourcasd over permis-

In estimatingP,l,2|3(kl,kz,k3) from Eq. (10), averaging

sible directionsk; ; below we shall give more details of the over directions of; plays a similar role to ensemble aver-

procedure.
Substituting Eqs(9) and (10) into Eq. (6), Fourier trans-

aging over source realizations. Therefore if the number of
directions is large enougtwe used 720 for cosmic strings

forming the Dirac delta and using the Rayleigh identity, weonly a moderate number of different source realizations is
can perform all angular integrations analytically and obtain aneeded. The main numerical difficulty is the highly oscillat-

compact form for the third moment,

<a|1mla|2mza|3m3>szlmzmsJ’ redrby i, (r), (1D

I1l5l3

where, denoting the Wignerj3symbol by (;:fn';ms), we
have

HMM2Ms_ \/(2|1+1)(2|2+ 1)(213+1)
B A

I1l5l3
PT PR P
X 1
m; m; m3

and where we have defined the auxiliary quantities,,
using spherical Bessel functiong:

0O 0 O

ERNP! |3>

(12

8 Vi
b1 (r)E——:J k2dk, k3dk, k3dks

1'2'3 7_[_3 (277_)

XJ1, (ki) (Kar) i, (Kar) Py 1 (Kg Kz K3).
(13

The volume factol3 contained in this expression is correct:

as shown in Sec. Il, each terry includes a factoV, %3,

while the average quantit?|l|2|3(kl,k2,k3)0<V53 [cf. Eq.
(10)], so that the arbitrary volum¥, of the simulation can-
cels.

ing nature of the functioﬂn|1,2|3(r). The calculation of the

bispectrum for cosmic strings presented in Sec. Il requires
about 20 days of a single-CPU workstation time per realiza-
tion.

We note that this method is specific for the bispectrum
and cannot be applied to compute higher-order correlations.
The reason is that higher-order correlations involve configu-
rations of vectorg; that are not described by scalar valles
and not restricted to a plane. For instance, a computation of
a four-point function would involve integration of highly os-
cillating functions over four vectolls; which is computation-
ally infeasible.

From Eq.(11) we derive the CMB angular bispectrum
Ciyi,1, defined ag16]

R PR
(@, m,a,m,a1,m,) = ( ) Ciye (19

m; my; m3

The presence of thej3symbol guarantees that the third mo-
ment vanishes unless; + m,+m;=0 and thd; indices sat-
isfy the triangle rulell;—I;|<I,=<I;+I;. Invariance under
spatial inversions of the three-point correlation function im-
plies the additional “selection rule’;, +1,+ 15 even, in order
for the third moment not to vanish. Finally, from this last
relation and using standard properties of thjesgmbols, it
follows that the angular bispectruci,1l|2|3 is left unchanged

under any arbitrary permutation of the indides
In this paper we restrict our calculations to the angular

Our proposed numerical procedure therefore consists %ispectrumC|l|2|3 in the “diagonal” case, i.e.l;=1,=I,

computing the RHS of Eq.11) by evaluating the necessary
integrals. For fixed{l,l,l3}, computation of the quantities

b,l|2|3(r) is a triple integral over scald; defined by Eq.

(13); it is followed by a fourth scalar integral over[Eq.

=|. This is a representative case and, in fact, the one most
frequently considered in the literature. Plots of the power
spectrum are usually done in termsl ¢if+ 1)C, which, apart
from constant factors, is the contribution to the mean-

(11)]. We also need to average over many realizations o§quared anisotropy of temperature fluctuations per unit loga-
sources to obtaiR |, (ki ,kz,k3). It was not feasible for us  rithmic interval ofl. In full analogy with this, the relevant

to precompute the valueB|l|2|3(k1,k2,k3) on a grid before

quantity to work with in the case of the bispectrum is
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Il. BISPECTRUM FROM STRINGS

I
G||| :|(2| + 1)3/2

0 0 OC”" (15

A. String model
To calculate the sources of perturbations we use an up-
Details of this derivation are presented in the Appendix. Fodated version of the cosmic string model first introduced by
large values of the multipole indéxGy, =1%%C,, . Also note  Albrechtet al.[13] and further developed in RefL4], where
what happens with the j3symbols appearing in the defini- the wiggly nature of strings was taken into account. In these

tion of the coefficient§i|m|1r?2m3: the symbol knl'rfq'fn ) is ab-  previous works the model was tailored to the computation of
1'2'3 171727113
sent from the definition 0¢3|1,2|3, while in Eq.(15) the sym-

the two-point statistic¥matter and CMB power specjra
o s . When dealing with higher-order statistics, such as the bispec-
bol (4 o) is squared. Hence there are no remnant oscnlauonﬁum a different strategy needs to be employed.
due to the alternating sign of'¢ ). In the model, the string network is represented by a col-
However, even more important than the valu&qf itself  |ection of uncorrelated straight string segments produced at
is the relation between the bispectrum and the cosmic varisome early epoch and moving with random uncorrelated ve-
ance associated with it. In fact, it is their comparison thafocities. At every subsequent epoch, a certain fraction of the
tells us about the observability “in principle” of the non- number of segments decays in a way that maintains network
Gaussian signal. The cosmic variance constitutes a theoreticaling. The length of each segment at any time is taken to
cal uncertainty for all observable quantities and comes abouie equal to the correlation length of the network. This and
due to the fact of having just one realization of the stochasti¢ghe root-mean-square velocity of segments are computed
process, in our case, the CMB skj/7]. from the velocity-dependent one-scale model of Martins and
The way to proceed is to employ an estima&f?{p{,z,3 for  Shellard[18]. The positions of segments are drawn from a

the bispectrum and compute the variance from it. By choosuniform distribution in space, and their orientations are cho-

ing an unbiased estimator we ensure it satisi@s sen from a uniform distribution on a two-sphere.
r2ls The total energy of the string network in a volurdeat

=(Ci,1,1,)- However, this condition does not isolate a unique,y time isE=NpuL, whereN is the total number of string
estimator. The proper way to select thest unbiase@stima-  segments at that time, is the mass per unit length, ahds
tor is to compute the variances of all candidates and choosge length of one segment.lifis the correlation length of the
the one with the smallest value. The estimator with this propstring network then, according to the one-scale model, the
erty was computed in Ref16] and is energy density i9=E/V=pu/L? whereV=Vya?, the ex-
pansion factom is normalized so thaa=1 today, andV is
a constant simulation volume. It follows thai=\V/L3
)a|lmla|2mza|3m3- =V, /13, wherel=L/a is the comoving correlation length.
(16) In the scaling regimé is approximately proportional to the
conformal timer and so the number of strind$(r) within
the simulation volume/,, falls as+ 3.
To calculate the CMB anisotropy one needs to evolve the
ing network over at least four orders of magnitude in cos-
mic expansion. Hence one would have to start wih
=10" string segments in order to have one segment left at
=C,1C,ZC|3(1+ 5|1|2+ 5|2|3+ 5,3,1+ 25|1,25,2|3). the present time. Keeping track of such a huge number of
il2ls 17) segments is numerically infeasible. A way around this diffi-
culty was suggested in Rdfl3], where the idea was to con-
solidate all string segments that decay at the same epoch.
SThe number of segments that decay by (thiscretized con-
formal time 7; is

(18 Ng(7i)=Vo[n(7i_1)—n(7)], (20)

[ P
N 3
Ci=

YE3 mympmg \ My My Mg

The variance of this estimator, assuming a mildly non-
Gaussian distribution, can be expressed in terms of the ang,
gular power spectrur€,; as follows[11]:

2
og,

The theoretical signal-to-noise ratio for the bispectrum i
then given by

(SIN)11.=1Cy 1

1lals 123/UC|1|2|3|'

_ wheren(7)=[1(7)]"2 is the number density of strings at
In turn, for the diagonal cadg=1,=I3=I we have time 7. The energy-momentum tensor in Fourier sp&, ,
of theseNy( ;) segments is a sum
(SIN);=[Cyy lo¢, |- 19

. Nd(Ti) .
0= 3 O, (21)

Incorporating all the specifics of the particular experi- m=

ment, such as sky coverage, angular resolution, etc., will im .
allow us to give an estimate of the particular non-Gaussia§'here® ., is the Fourier transform of the energy-momentum

signature associated with a given active source and, if obRf the mth segment. If segments are uncorrelated, then
servable, indicate the appropriate range of multipbie N N
where it is best to look for it. (0,955 )= 0mm(9,,0,,) (22
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and

6.F 3
H ey P . . . %: 4 E © 00 ol
im@gim’qim” _ Q) im gimoim = E o o 3
(0,505, 075)= S Smni( 0,507,055 (23 i 2.¢ o e o g
4 O o =
Here the angular brackets - -) denote the ensemble aver- 5N T2F ° ¢ ® ® 3
age, which in our case means averaging over many realiza® —4.5 ° % © E
tions of the string network. If we are calculating power spec- 0—164 - ? =
tra, then the relevant quantities are the two-point functionsof  0.12 ¢ =
0),,, namely, $ 0.10F .
6”5 0.08F E
o Na(7i) Ng(mi) S 0.06¢F 3
(0,0 )=( X X emnem). (24 S 0.04F E
py=op m=1 oy P 0.02F E
0.00
Equation(22) allows us to write 1 10 100 1000
Ng() multipole [
Co R o
<®',w®lap>— m§=:l <®':;;®I($>—Nd(7i)<®l,w®lap ) FIG. 1. The CMB angular bispectrum in the “diagonal” case

(25) (G|1,13) from wiggly cosmic strings in a spatially flat model with
cosmological parameter)cpy=0.3, Qpayo=0.05, O, =0.65,
where ®'%, is of the energy-momentum of one of the seg-and Hubble constartti=0.65kms * Mpc " (upper panel In the
ments that decay by the time. The last step in E¢25) is lower panel we show the ratio of the signal to theoretical noise
possible because the segments are statistically equivalent!/ "_éu_||1/3f°r different multipole indices. Normalization follows
Thus, if we only want to reproduce the correct power spectrd©m fitting the power spectrum to the BOOMERANG and
in the limit of a large number of realizations, we can replace"AXIMA data.

the sum in Eq(21) by cause the method of finding the two- and three-point func-
i il tions as we described involves “consolidated” quantities
0= VNa(7)0,,, (26 ®},, which do not correspond to the energy-momentum ten-

The total energy-momentum tensor of the network in FourieSOr Of a real string network. These quantities are auxiliary

space is a sum over the consolidated segments: and specially prepared to give the correct two- or three-point
functions after ensemble averaging.
K K
®’“’=i21 ®l’”=i21 */Nd(Ti)®'ﬂlV- (27) B. Results and discussion

In Fig. 1 we show the results f@i° [cf. Eq.(15)]. It was
So, instead of summing ov&X" ;Ny(7;) =102 segments we calculated using a string model with 800 consolidated seg-

now sum over onlyK segments, making a parameter. ments in a flat universe with cold dark matter and a cosmo-
For the three-point functions we extend the above procelogical constant. Only the scalar contribution to the anisot-
dure. Instead of Eqg24) and (25) we now write ropy has been included. Vector and tensor contributions are

known to be relatively insignificant for local cosmic strings

Na(7i) Na(7i) Na(7i) and can safely be ignored in this modéB,14.* The plots

<®',w®'ap®'ya>: 21 2 ®'ﬂ@'§; '«Ts are produced using a single realization of the string network
TS M1 el by averaging over 720 directions kf. The comparison of
Ng(r) Gii® (or equivalentlyCii®) with its cosmic variancécf. Eq.
=> <®m®i£®i;g 7] clea_rly shows that _the k_J|specFru(as comput_ed from
m=1 our cosmic string modglies hidden in the theoretical noise
11 i and is therefore undetectable for any given valué. of
=Ng(71)(0,,0;,0%5). (28 Let us note, however, that in its present stage our string

code describes Brownian, wiggly long strings in spite of the
‘fact that long strings are very likely not Brownian on the
smallest scalef22]. In addition, the presence of small string
O =[Ny(r)]Y0L . (29) loops[23] and _gravitatio_nal radiation into which they decay
wy : wy were not yet included in our model. These are important
Both expressions in Eq$26) and (29) depend on the effgcts that could, in princjple, change our predictions for the
simulation volumeV,, contained in the definition dily(;)  String-generated CMB bispectrum on very small angular
given in Eq.(20). This is to be expected and is consistentScales.
with our calculations, since this volume cancels in expres-
sions for observable quantities.
Note also that the simulation model in its present form 1The contribution of vector and tensor modes is large in the case
does not allow computation of CMB sky maps. This is be-of global stringg19,20.

Therefore, for the purpose of calculation of three-point func
tions, the sum in Eq(21) should now be replaced by
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The imprint of cosmic strings on the CMB is a combina- hospitality in Paris, France, and CONICET and Fundacio
tion of different effects. Prior to the time of recombination Antorchas for financial support.
strings induce density and velocity fluctuations on the sur-
rounding matter. During the period of last scattering these .
fluctuations are imprinted on the CMB through the Sachs- APPENDIX: PLOTTING THE BISPECTRUM
Wolfe effect: that iS, temperature fluctuations arise because Here we exp|ain our choice for the normalization of the

relic photons encounter a gravitational potential with spazngylar bispectrum, as given in B45). The argument is an
tially dependent depth. In addition to the Sachs-Wolfe effectoytansion of the case of the angular power spectrum.

moving long strings drag the surrounding plasma and pro-\yg can express the two-point correlation function at zero
duce velocity fields that cause temperature anisotropies dqgg in terms of the angular spectrum as follows:

to Doppler shifts. While a string segment by itself is a highly
non-Gaussian object, fluctuations induced by string segments
before recombination are a superposition of effects of many <(
random strings stirring the primordial plasma. These fluctua-

tions are thus expected to be Gaussian as a result of the

central limit theorem. In the small angular scale limit, the approximation tBats

As the universe becomes transparent, strings continue t9 smooth function of the multipole indexs well justified.
leave their imprint on the CMB mainly due to the Kaiser-\ye can then replace the sum by an integral and obtain
Stebbins effeck24]. This effect results in line discontinuities

AT
T

2\ 1
>:EE. (21+1)C,. (A1)

in the temperature field of photons passing on opposite sides AT\ 2 1 ¢dl
of a moving long string. However, this effect can result in <(— >~—f —1(21+1)C,. (A2)
non-Gaussian perturbations only on sufficiently small scales. T 4m) |

This is because on scales larger than the characteristic inter- ) )
string separation at the time of the radiation-matter equalityNow dI/I=d(In(l)), and thereford (2| +1)C, is the contri-
the CMB temperature perturbations result from superpositioution to the mean-squared anisotropy of temperature fluc-
of effects of many strings and are likely to be Gaussiantuations per unit logarithmic interval df In standard prac-
Avelino et al.[21] applied several non-Gaussian tests to thetice, one usually ploti(| +1)C,/2m versus, which for large
perturbations seeded by cosmic strings. They found the deh4s proportional td (21 +1)C,/47r. On small angular scales,
sity field distribution to be close to Gaussian on scales largethen, this is<I°C; .
than 1.5Qh?) "1 Mpc, whereQ,, is the fraction of cos- In the case of a three-point correlation function the situa-
mological matter density in baryons and CDM combined.tion is a bit more involved. Let us consider the skewness:
Scales this small correspond to the multipole index of order
|~10*. We have not attempted a calculation of the CMB AT\3
bispectrum on these scales because the linear approximation T :l
is almost guaranteed to fail at such small scales, and because
of increased computational cost for highenultipoles. T P P
In summary, we have developed a numerical method to (0 0 0)6'1'2'3'
compute from first principles one of the cleanest non-
Gaussian discriminators—the CMB angular bispectrum—i : . A
any active model of structure formation? such a:g cosmic d(g\-Ne_ know thatclllzls_ls smooth in all three indices. We can
fects, where the energy-momentum tensor is known or cafplit the skewness into three sums: the sum of terms where
be simulated. Our method does not use CMB sky maps, andl! li are different, the sum where only two of the thteare
requires a moderate amount of computations. We applied thidifferent, and the sum of terms where hliare equal. Omit-
method to the computation of some relevant components ding constant factors of #, we outline the same procedure as
the bispectrum produced from a model of cosmic strings an@bove for the two-point function. For the first sum we obtain
found that the non-zero non-Gaussian signal is unobservable dl rdl r
even with forthcoming satellite-based CMB missions. Fur- 1 2 3
ther computations and improvements using this method will f N Ell\/2|l+ll2\/2|2+ll3\/2|3+ 1
be reported elsewhef@6].

21,+1 J21,+1 [2l53+1
4 4ar 41

>

1l2l3

(A3)
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I I
ﬂjﬁu\/mﬁuz(zbﬂ) Lol 2)C| o
2In an extension of the Kaiser-Stebbins effect, Benabed and Ber- 1 J 1z 0 0 0] vz
nardeau25] recently considered the generation oBdype polar- (A5)
ization field out ofE-type polarization, through gravitational lens-
ing on a cosmic string. and for the third
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Ciir » (A7)

dl | I |
312 312
J Sl 0>cm. (A6) [(21+1) (0 o o

If one is interested in the diagonal teri@g, , then, follow-
ing the last equation, the relevant quantity to plot is given bywhich is «1%2C,, at largel.
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