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Cosmic microwave background bispectrum from active models of structure formation
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We propose a method for a numerical computation of the angular bispectrum of the cosmic microwave
background~CMB! anisotropies arising from active models such as cosmic topological defects, using a modi-
fied Boltzmann code based onCMBFAST. The method does not use CMB sky maps and requires moderate
computational power. As a first implementation, we apply our method to a recently proposed model of simu-
lated cosmic strings and estimate the observability of the non-Gaussian bispectrum signal. A comparison with
the cosmic variance of the bispectrum estimator shows that the bispectrum for the simulated string model we
used is not observable.
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Anisotropies of the cosmic microwave backgrou
~CMB! radiation are directly related to the origin of structu
in the Universe. Galaxies and clusters of galaxies eventu
formed by gravitational instability from primordial densit
fluctuations, and these same fluctuations left their imprint
the CMB. Recent balloon@1,2# and ground-based interferom
eter@3# experiments produced reliable estimates of the po
spectrum of the CMB temperature anisotropies. While th
helped to eliminate certain candidate theories for the prim
source of cosmic perturbations, the power spectrum data
still compatible with the theoretical estimates of a relative
large variety of models, such as the cold dark matter mo
with a cosmological constant (LCDM!, quintessence mod
els, or some hybrid models including cosmic defects. Th
models, however, differ in their predictions for the statistic
distribution of the anisotropies beyond the power spectru
Future microwave anisotropy probe and Planck satellite m
sions~scheduled for launch in 2001 and 2007, respective!
will provide high-precision data allowing definite estimat
of non-Gaussian signals in the CMB. It is therefore imp
tant to know precisely which predictions of all candida
models for the statistical quantities will be extracted from
new data, and to identify their specific signatures.

There are two main classes of models of struct
formation—passiveand active models. In passive models
density inhomogeneities are set as initial conditions at so
early time. While they subsequently evolve as described
Einstein-Boltzmann equations, no additional perturbatio
are seeded. On the other hand, in active models the sou
of density perturbations are time dependent@4#.

All specific realizations of passive models are based
the idea of inflation. In most inflationary models, dens
fluctuations arise from quantum fluctuations of a scalar fi
placed in the vacuum and hence are well described b
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Gaussian distribution, while second-order effects may ad
weak non-Gaussian signal@5#.

On the other hand, active models of structure format
are motivated by cosmic topological defects. If our ide
about grand unification are correct, then some cosmic
fects, such as domain walls, strings, monopoles or textu
should have formed during phase transitions in the early u
verse@6#. Once formed, cosmic strings could survive lon
enough to seed density perturbations. Defect models pos
the attractive feature that they have no parameter freedom
all the necessary information is in principle contained in t
underlying particle physics model. Generically, perturbatio
produced by active models are not expected to be Gaus
distributed.

The narrow main peak and the presence of the second
the third peaks in the CMB angular power spectrum, as m
sured by BOOMERANG, MAXIMA, and DASI@1–3#, is
evidence of coherent oscillations of the photon-baryon fl
at the beginning of the decoupling epoch@7#. While such
coherence is a property of all passive models, realistic c
mic string models produce highly incoherent perturbatio
that result in a much broader main peak. This excludes c
mic strings as the primary source of density fluctuations
less new physics is postulated, e.g., a varying speed of l
@8#. In addition to purely active or passive models, it w
recently suggested that perturbations could be seeded
some combination of the two mechanisms. For example, c
mic strings could have formed just before the end of infl
tion, and partially contributed to seeding density fluctuatio
It was shown@9# that such hybrid models can be rather su
cessful in fitting the CMB power spectrum data. Therefo
statistics beyond the power spectrum are required to
criminate between active and passive models.

Of the available non-Gaussian statistics, the CMB bisp
trum, or the three-point function of Fourier components
the temperature anisotropy, has been perhaps the one
studied in the literature@10,11#. Although there are a few
cases where the bispectrum may be estimated analytic
from the underlying model, a precise numerical code to co
©2001 The American Physical Society01-1
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pute it, similar to theCMBFAST code@12# for the power spec-
trum, is presently lacking. The bispectrum can be estima
from simulated CMB sky maps; however, computing a la
number of full-sky maps resulting from defects is a mu
more demanding task.

In this paper we introduce a method for obtaining t
CMB bispectrum directly from numerically simulated defe
models, without building CMB sky maps. Given a suitab
model, one can generate a statistical ensemble of realiza
of defect matter perturbations. We use a modified Boltzm
code based onCMBFAST to compute the effect of these pe
turbations on the CMB and to find the bispectrum estima
for a given realization of sources. We then perform statist
averaging over the ensemble of realizations to compute
expected CMB bispectrum.~The CMB power spectrum is
also obtained as a byproduct.! Our method is specifically
tailored for computations of the bispectrum; extending it
higher-order correlation functions would require prohib
tively longer calculations. As a first application, we com
puted the expected CMB bispectrum from a model of sim
lated string networks first introduced by Albrechtet al. @13#
and further developed in Ref.@14# and in this work. Our
calculations indicate that the bispectrum resulting from t
model is negligible when compared with the cosmic va
ance. We discuss the implications of this result for detecta
ity of cosmic strings through the bispectrum statistic.

I. CMB BISPECTRUM FROM ACTIVE MODELS

We assume that, given a model of active perturbatio
such as a string simulation, we can calculate the ene
momentum tensorTmn(x,t) for a particular realization of the
sources in a finite spatial volumeV0. Here x is a three-
dimensional coordinate andt is the cosmic time. Many
simulations are run to obtain an ensemble of random rea
tions of sources with statistical properties appropriate for
given model. The spatial Fourier decomposition ofTmn can
be written as

Tmn~x,t!5(
k

Qmn~k,t!eik•x, ~1!

wherek are discrete. IfV0 is sufficiently large we can ap
proximate the summation by the integral

(
k

Qmn~k,t!eik•x'
V0

~2p!3E d3kQmn~k,t!eik•x, ~2!

and the corresponding inverse Fourier transform will be

Qmn~k,t!5
1

V0
E

V0

d3xTmn~x,t!e2 ik•x. ~3!

Of course, the final results, such as the CMB power spect
or bispectrum, do not depend on the choice ofV0. To ensure
this independence, we shall keepV0 in all expressions where
it appears throughout the following sections.

It is conventional to expand the temperature fluctuatio
over the basis of spherical harmonics,
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DT/T~ n̂!5(
lm

almYlm~ n̂!, ~4!

wheren̂ is a unit vector. The coefficientsalm can be decom-
posed into Fourier modes,

alm5
V0

~2p!3
~2 i ! l4pE d3kD l~k!Ylm* ~ k̂!. ~5!

Given the sourcesQmn(k,t), the quantitiesD l(k) are found
by solving linearized Einstein-Boltzmann equations and
tegrating along the line of sight, using a code similar
CMBFAST @12#. This standard procedure can be written sy
bolically as the action of a linear operatorB̂l

mn(k) on the

source energy-momentum tensor,D l(k)5B̂l
mn(k)Qmn(k,t),

so the third moment ofD l(k) is linearly related to the three
point correlator ofQmn(k,t). Below we consider the quan
tities D l(k), corresponding to a set of realizations of acti
sources, as given. The numerical procedure for compu
D l(k) was developed in Refs.@13# and @14#.

The third moment ofalm , namely^al 1m1
al 2m2

al 3m3
&, can

be expressed as

~2 i ! l 11 l 21 l 3~4p!3
V0

3

~2p!9E d3k1d3k2d3k3Yl 1m1
* ~ k̂1!

3Yl 2m2
* ~ k̂2!Yl 3m3

* ~ k̂3!^D l 1
~k1!D l 2

~k2!D l 3
~k3!&. ~6!

A straightforward numerical evaluation of Eq.~6! from
given sourcesD l(k) is prohibitively difficult, because it in-
volves too many integrations of oscillating functions. How
ever, we shall be able to reduce the computation to integ
tions over scalars~a similar method was employed in@15#!.
Because of homogeneity, the three-point function vanis
unless the triangle constraint is satisfied:

k11k21k350. ~7!

We may write

^D l 1
~k1!D l 2

~k2!D l 3
~k3!&

5d (3)~k11k21k3!Pl 1l 2l 3
~k1 ,k2 ,k3!, ~8!

where the three-point functionPl 1l 2l 3
(k1 ,k2 ,k3) is defined

only for values ofk i that satisfy Eq.~7!. Given the scalar
valuesk1 , k2, and k3, there is a unique~up to an overall
rotation! triplet of directionsk̂ i for which the right-hand side
~RHS! of Eq. ~8! does not vanish. The quantit
Pl 1l 2l 3

(k1 ,k2 ,k3) is invariant under an overall rotation of a

three vectorsk i and therefore may be equivalently repr
sented by a function ofscalar valuesk1 , k2, andk3, while
preserving all angular information. Hence we can rewrite E
~8! as
1-2
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^D l 1
~k1!D l 2

~k2!D l 3
~k3!&

5d (3)~k11k21k3!Pl 1l 2l 3
~k1 ,k2 ,k3!. ~9!

Then, using the simulation volumeV0 explicitly, we have

Pl 1l 2l 3
~k1 ,k2 ,k3!5

~2p!3

V0
^D l 1

~k1!D l 2
~k2!D l 3

~k3!&.

~10!

Given an arbitrary directionk̂1 and the magnitudesk1 , k2,
and k3, the directionsk̂2 and k̂3 are specified up to overa
rotations by the triangle constraint. Therefore, both sides
Eq. ~10! are functions of scalarki only. The expression on
the RHS of Eq.~10! is evaluated numerically by averagin
over different realizations of the sourcesand over permis-
sible directionsk̂ i ; below we shall give more details of th
procedure.

Substituting Eqs.~9! and ~10! into Eq. ~6!, Fourier trans-
forming the Dirac delta and using the Rayleigh identity, w
can perform all angular integrations analytically and obtai
compact form for the third moment,

^al 1m1
al 2m2

al 3m3
&5Hl 1l 2l 3

m1m2m3E r 2drbl 1l 2l 3
~r !, ~11!

where, denoting the Wigner 3j symbol by (m1 m2 m3

l 1 l 2 l 3 ), we

have

Hl 1l 2l 3

m1m2m3[A~2l 111!~2l 211!~2l 311!

4p S l 1 l 2 l 3

0 0 0D
3S l 1 l 2 l 3

m1 m2 m3
D , ~12!

and where we have defined the auxiliary quantitiesbl 1l 2l 3
using spherical Bessel functionsj l :

bl 1l 2l 3
~r ![

8

p3

V0
3

~2p!3E k1
2dk1 k2

2dk2 k3
2dk3

3 j l 1
~k1r ! j l 2

~k2r ! j l 3
~k3r !Pl 1l 2l 3

~k1 ,k2 ,k3!.

~13!

The volume factorV0
3 contained in this expression is correc

as shown in Sec. II, each termD l includes a factorV0
22/3,

while the average quantityPl 1l 2l 3
(k1 ,k2 ,k3)}V0

23 @cf. Eq.

~10!#, so that the arbitrary volumeV0 of the simulation can-
cels.

Our proposed numerical procedure therefore consist
computing the RHS of Eq.~11! by evaluating the necessar
integrals. For fixed$ l 1l 2l 3%, computation of the quantitie
bl 1l 2l 3

(r ) is a triple integral over scalarki defined by Eq.
~13!; it is followed by a fourth scalar integral overr @Eq.
~11!#. We also need to average over many realizations
sources to obtainPl 1l 2l 3

(k1 ,k2 ,k3). It was not feasible for us

to precompute the valuesPl 1l 2l 3
(k1 ,k2 ,k3) on a grid before
04300
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integration because of the large volume of data: for each
$ l 1l 2l 3% the grid must contain;103 points for eachki . In-
stead, we precomputeD l(k) from one realization of source
and evaluate the RHS of Eq.~10! on that data as anestimator
of Pl 1l 2l 3

(k1 ,k2 ,k3), averaging over allowed directions o

k̂ i . It can be shown that knowledge of real parts ofD l(k) is
sufficient for this evaluation. The result is used for integ
tion in Eq. ~13!.

Because of isotropy and since the allowed sets of dir
tions k̂ i are planar, it is enough to restrict the numeric
calculation to directionsk̂ i within a fixed two-dimensional
plane. This significantly reduces the amount of computati
and data storage, sinceD l(k) only needs to be stored on
two-dimensional grid ofk.

In estimatingPl 1l 2l 3
(k1 ,k2 ,k3) from Eq. ~10!, averaging

over directions ofk̂ i plays a similar role to ensemble ave
aging over source realizations. Therefore if the number
directions is large enough~we used 720 for cosmic strings!,
only a moderate number of different source realizations
needed. The main numerical difficulty is the highly oscilla
ing nature of the functionbl 1l 2l 3

(r ). The calculation of the
bispectrum for cosmic strings presented in Sec. II requ
about 20 days of a single-CPU workstation time per reali
tion.

We note that this method is specific for the bispectru
and cannot be applied to compute higher-order correlatio
The reason is that higher-order correlations involve confi
rations of vectorsk i that are not described by scalar valueski
and not restricted to a plane. For instance, a computatio
a four-point function would involve integration of highly os
cillating functions over four vectorsk i which is computation-
ally infeasible.

From Eq. ~11! we derive the CMB angular bispectrum
Cl 1l 2l 3

, defined as@16#

^al 1m1
al 2m2

al 3m3
&5S l 1 l 2 l 3

m1 m2 m3
D Cl 1l 2l 3

. ~14!

The presence of the 3j symbol guarantees that the third m
ment vanishes unlessm11m21m350 and thel i indices sat-
isfy the triangle ruleu l i2 l j u< l k< l i1 l j . Invariance under
spatial inversions of the three-point correlation function i
plies the additional ‘‘selection rule’’l 11 l 21 l 3 even, in order
for the third moment not to vanish. Finally, from this la
relation and using standard properties of the 3j symbols, it
follows that the angular bispectrumCl 1l 2l 3

is left unchanged

under any arbitrary permutation of the indicesl i .
In this paper we restrict our calculations to the angu

bispectrumCl 1l 2l 3
in the ‘‘diagonal’’ case, i.e.,l 15 l 25 l 3

5 l . This is a representative case and, in fact, the one m
frequently considered in the literature. Plots of the pow
spectrum are usually done in terms ofl ( l 11)Cl which, apart
from constant factors, is the contribution to the mea
squared anisotropy of temperature fluctuations per unit lo
rithmic interval of l. In full analogy with this, the relevan
quantity to work with in the case of the bispectrum is
1-3
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Glll 5 l ~2l 11!3/2S l l l

0 0 0DClll . ~15!

Details of this derivation are presented in the Appendix. F
large values of the multipole indexl, Glll } l 3/2Clll . Also note
what happens with the 3j -symbols appearing in the defin
tion of the coefficientsHl 1l 2l 3

m1m2m3: the symbol (m1m2m3

l 1 l 2 l 3 ) is ab-

sent from the definition ofCl 1l 2l 3
, while in Eq.~15! the sym-

bol (0 0 0
l l l ) is squared. Hence there are no remnant oscillati

due to the alternating sign of (0 0 0
l l l ).

However, even more important than the value ofClll itself
is the relation between the bispectrum and the cosmic v
ance associated with it. In fact, it is their comparison t
tells us about the observability ‘‘in principle’’ of the non
Gaussian signal. The cosmic variance constitutes a theo
cal uncertainty for all observable quantities and comes ab
due to the fact of having just one realization of the stocha
process, in our case, the CMB sky@17#.

The way to proceed is to employ an estimatorĈl 1l 2l 3
for

the bispectrum and compute the variance from it. By cho
ing an unbiased estimator we ensure it satisfiesCl 1l 2l 3

5^Ĉl 1l 2l 3
&. However, this condition does not isolate a uniq

estimator. The proper way to select thebest unbiasedestima-
tor is to compute the variances of all candidates and cho
the one with the smallest value. The estimator with this pr
erty was computed in Ref.@16# and is

Ĉl 1l 2l 3
5 (

m1 ,m2 ,m3
S l 1 l 2 l 3

m1 m2 m3
D al 1m1

al 2m2
al 3m3

.

~16!

The variance of this estimator, assuming a mildly no
Gaussian distribution, can be expressed in terms of the
gular power spectrumCl as follows@11#:

s Ĉl 1l 2l 3

2
5Cl 1

Cl 2
Cl 3

~11d l 1l 2
1d l 2l 3

1d l 3l 1
12d l 1l 2

d l 2l 3
!.

~17!

The theoretical signal-to-noise ratio for the bispectrum
then given by

~S/N! l 1l 2l 3
5uCl 1l 2l 3

/s Ĉl 1l 2l 3
u. ~18!

In turn, for the diagonal casel 15 l 25 l 35 l we have

~S/N! l5uClll /s Ĉll l
u. ~19!

Incorporating all the specifics of the particular expe
ment, such as sky coverage, angular resolution, etc.,
allow us to give an estimate of the particular non-Gauss
signature associated with a given active source and, if
servable, indicate the appropriate range of multipolel ’s
where it is best to look for it.
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II. BISPECTRUM FROM STRINGS

A. String model

To calculate the sources of perturbations we use an
dated version of the cosmic string model first introduced
Albrechtet al. @13# and further developed in Ref.@14#, where
the wiggly nature of strings was taken into account. In the
previous works the model was tailored to the computation
the two-point statistics~matter and CMB power spectra!.
When dealing with higher-order statistics, such as the bisp
trum, a different strategy needs to be employed.

In the model, the string network is represented by a c
lection of uncorrelated straight string segments produce
some early epoch and moving with random uncorrelated
locities. At every subsequent epoch, a certain fraction of
number of segments decays in a way that maintains netw
scaling. The length of each segment at any time is take
be equal to the correlation length of the network. This a
the root-mean-square velocity of segments are compu
from the velocity-dependent one-scale model of Martins a
Shellard@18#. The positions of segments are drawn from
uniform distribution in space, and their orientations are ch
sen from a uniform distribution on a two-sphere.

The total energy of the string network in a volumeV at
any time isE5NmL, whereN is the total number of string
segments at that time,m is the mass per unit length, andL is
the length of one segment. IfL is the correlation length of the
string network then, according to the one-scale model,
energy density isr5E/V5m/L2, whereV5V0a3, the ex-
pansion factora is normalized so thata51 today, andV0 is
a constant simulation volume. It follows thatN5V/L3

5V0 / l 3, where l 5L/a is the comoving correlation length
In the scaling regimel is approximately proportional to the
conformal timet and so the number of stringsN(t) within
the simulation volumeV0 falls ast23.

To calculate the CMB anisotropy one needs to evolve
string network over at least four orders of magnitude in c
mic expansion. Hence one would have to start withN
*1012 string segments in order to have one segment lef
the present time. Keeping track of such a huge numbe
segments is numerically infeasible. A way around this di
culty was suggested in Ref.@13#, where the idea was to con
solidate all string segments that decay at the same ep
The number of segments that decay by the~discretized! con-
formal timet i is

Nd~t i !5V0@n~t i 21!2n~t i !#, ~20!

where n(t)5@ l (t)#23 is the number density of strings a
time t. The energy-momentum tensor in Fourier space,Qmn

i ,
of theseNd(t i) segments is a sum

Qmn
i 5 (

m51

Nd(t i )

Qmn
im , ~21!

whereQmn
im is the Fourier transform of the energy-momentu

of the mth segment. If segments are uncorrelated, then

^Qmn
im Qsr

im8&5dmm8^Qmn
im Qsr

im& ~22!
1-4
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and

^Qmn
im Qsr

im8Qgd
im9&5dmm8dmm9^Qmn

im Qsr
imQgd

im&. ~23!

Here the angular brackets^•••& denote the ensemble ave
age, which in our case means averaging over many rea
tions of the string network. If we are calculating power spe
tra, then the relevant quantities are the two-point function
Qmn

i , namely,

^Qmn
i Qsr

i &5K (
m51

Nd(t i )

(
m851

Nd(t i )

Qmn
im Qsr

im8L . ~24!

Equation~22! allows us to write

^Qmn
i Qsr

i &5 (
m51

Nd(t i )

^Qmn
im Qsr

im&5Nd~t i !^Qmn
i1 Qsr

i1 &,

~25!

whereQmn
i1 is of the energy-momentum of one of the se

ments that decay by the timet i . The last step in Eq.~25! is
possible because the segments are statistically equiva
Thus, if we only want to reproduce the correct power spec
in the limit of a large number of realizations, we can repla
the sum in Eq.~21! by

Qmn
i 5ANd~t i !Qmn

i1 . ~26!

The total energy-momentum tensor of the network in Fou
space is a sum over the consolidated segments:

Qmn5(
i 51

K

Qmn
i 5(

i 51

K

ANd~t i !Qmn
i1 . ~27!

So, instead of summing over( i 51
K Nd(t i)*1012 segments we

now sum over onlyK segments, makingK a parameter.
For the three-point functions we extend the above pro

dure. Instead of Eqs.~24! and ~25! we now write

^Qmn
i Qsr

i Qgd
i &5K (

m51

Nd(t i )

(
m851

Nd(t i )

(
m951

Nd(t i )

Qmn
im Qsr

im8Qgd
im9L

5 (
m51

Nd(t i )

^Qmn
im Qsr

imQgd
im&

5Nd~t i !^Qmn
i1 Qsr

i1 Qgd
i1 &. ~28!

Therefore, for the purpose of calculation of three-point fun
tions, the sum in Eq.~21! should now be replaced by

Qmn
i 5@Nd~t i !#

1/3Qmn
i1 . ~29!

Both expressions in Eqs.~26! and ~29! depend on the
simulation volumeV0, contained in the definition ofNd(t i)
given in Eq. ~20!. This is to be expected and is consiste
with our calculations, since this volume cancels in expr
sions for observable quantities.

Note also that the simulation model in its present fo
does not allow computation of CMB sky maps. This is b
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cause the method of finding the two- and three-point fu
tions as we described involves ‘‘consolidated’’ quantiti
Qmn

i which do not correspond to the energy-momentum t
sor of a real string network. These quantities are auxili
and specially prepared to give the correct two- or three-po
functions after ensemble averaging.

B. Results and discussion

In Fig. 1 we show the results forGlll
1/3 @cf. Eq.~15!#. It was

calculated using a string model with 800 consolidated s
ments in a flat universe with cold dark matter and a cosm
logical constant. Only the scalar contribution to the anis
ropy has been included. Vector and tensor contributions
known to be relatively insignificant for local cosmic string
and can safely be ignored in this model@13,14#.1 The plots
are produced using a single realization of the string netw
by averaging over 720 directions ofk i . The comparison of
Glll

1/3 ~or equivalentlyClll
1/3) with its cosmic variance@cf. Eq.

~17!# clearly shows that the bispectrum~as computed from
our cosmic string model! lies hidden in the theoretical nois
and is therefore undetectable for any given value ofl.

Let us note, however, that in its present stage our str
code describes Brownian, wiggly long strings in spite of t
fact that long strings are very likely not Brownian on th
smallest scales@22#. In addition, the presence of small strin
loops @23# and gravitational radiation into which they deca
were not yet included in our model. These are import
effects that could, in principle, change our predictions for
string-generated CMB bispectrum on very small angu
scales.

1The contribution of vector and tensor modes is large in the c
of global strings@19,20#.

FIG. 1. The CMB angular bispectrum in the ‘‘diagonal’’ cas
(Glll

1/3) from wiggly cosmic strings in a spatially flat model wit
cosmological parametersVCDM50.3, Vbaryon50.05, VL50.65,
and Hubble constantH50.65 kms21 Mpc21 ~upper panel!. In the
lower panel we show the ratio of the signal to theoretical no
uClll /s Ĉll l

u1/3 for different multipole indices. Normalization follows
from fitting the power spectrum to the BOOMERANG an
MAXIMA data.
1-5
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The imprint of cosmic strings on the CMB is a combin
tion of different effects. Prior to the time of recombinatio
strings induce density and velocity fluctuations on the s
rounding matter. During the period of last scattering the
fluctuations are imprinted on the CMB through the Sac
Wolfe effect: that is, temperature fluctuations arise beca
relic photons encounter a gravitational potential with s
tially dependent depth. In addition to the Sachs-Wolfe effe
moving long strings drag the surrounding plasma and p
duce velocity fields that cause temperature anisotropies
to Doppler shifts. While a string segment by itself is a high
non-Gaussian object, fluctuations induced by string segm
before recombination are a superposition of effects of m
random strings stirring the primordial plasma. These fluct
tions are thus expected to be Gaussian as a result of
central limit theorem.

As the universe becomes transparent, strings continu
leave their imprint on the CMB mainly due to the Kaise
Stebbins effect@24#. This effect results in line discontinuitie
in the temperature field of photons passing on opposite s
of a moving long string.2 However, this effect can result in
non-Gaussian perturbations only on sufficiently small sca
This is because on scales larger than the characteristic i
string separation at the time of the radiation-matter equa
the CMB temperature perturbations result from superposi
of effects of many strings and are likely to be Gaussi
Avelino et al. @21# applied several non-Gaussian tests to
perturbations seeded by cosmic strings. They found the d
sity field distribution to be close to Gaussian on scales lar
than 1.5(VMh2)21 Mpc, whereVM is the fraction of cos-
mological matter density in baryons and CDM combine
Scales this small correspond to the multipole index of or
l;104. We have not attempted a calculation of the CM
bispectrum on these scales because the linear approxim
is almost guaranteed to fail at such small scales, and bec
of increased computational cost for higherl multipoles.

In summary, we have developed a numerical method
compute from first principles one of the cleanest no
Gaussian discriminators—the CMB angular bispectrum—
any active model of structure formation, such as cosmic
fects, where the energy-momentum tensor is known or
be simulated. Our method does not use CMB sky maps,
requires a moderate amount of computations. We applied
method to the computation of some relevant component
the bispectrum produced from a model of cosmic strings
found that the non-zero non-Gaussian signal is unobserv
even with forthcoming satellite-based CMB missions. F
ther computations and improvements using this method
be reported elsewhere@26#.
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APPENDIX: PLOTTING THE BISPECTRUM

Here we explain our choice for the normalization of t
angular bispectrum, as given in Eq.~15!. The argument is an
extension of the case of the angular power spectrum.

We can express the two-point correlation function at z
lag in terms of the angular spectrum as follows:

K S DT

T D 2L 5
1

4p (
l

~2l 11!Cl . ~A1!

In the small angular scale limit, the approximation thatCl is
a smooth function of the multipole indexl is well justified.
We can then replace the sum by an integral and obtain

K S DT

T D 2L '
1

4pE dl

l
l ~2l 11!Cl . ~A2!

Now dl/ l 5d(ln(l)), and thereforel (2l 11)Cl is the contri-
bution to the mean-squared anisotropy of temperature fl
tuations per unit logarithmic interval ofl. In standard prac-
tice, one usually plotsl ( l 11)Cl /2p versusl, which for large
l is proportional tol (2l 11)Cl /4p. On small angular scales
then, this is} l 2Cl .

In the case of a three-point correlation function the situ
tion is a bit more involved. Let us consider the skewness

K S DT

T D 3L 5 (
l 1l 2l 3

A2l 111

4p
A2l 211

4p
A2l 311

4p

3S l 1 l 2 l 3

0 0 0D Cl 1l 2l 3
. ~A3!

We know thatCl 1l 2l 3
is smooth in all three indices. We ca

split the skewness into three sums: the sum of terms wh
all l i are different, the sum where only two of the threel i are
different, and the sum of terms where alll i are equal. Omit-
ting constant factors of 4p, we outline the same procedure a
above for the two-point function. For the first sum we obta

E dl1
l 1
E dl2

l 2
E dl3

l 3
l 1A2l 111l 2A2l 211l 3A2l 311

3S l 1 l 2 l 3

0 0 0DCl 1l 2l 3
, ~A4!

while for the second sum we have

E dl1
l 1
E dl2

l 2
l 1A2l 111l 2~2l 211!S l 1 l 2 l 2

0 0 0DCl 1l 2l 2
,

~A5!

and for the third

r-
1-6
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E dl

l
l ~2l 11!3/2S l l l

0 0 0DClll . ~A6!

If one is interested in the diagonal termsClll , then, follow-
ing the last equation, the relevant quantity to plot is given
ys

ro

r
,

tt

.

R.

04300
y

l ~2l 11!3/2S l l l

0 0 0DClll , ~A7!

which is } l 3/2Clll at largel.
tt.
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