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Quantum noise in second generation, signal-recycled laser interferometric
gravitational-wave detectors
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~Received 6 February 2001; published 30 July 2001!

It has long been thought that the sensitivity of laser interferometric gravitational-wave detectors is limited by
the free-mass standard quantum limit, unless radical redesigns of the interferometers or modifications of their
input or output optics are introduced. Within a fully quantum-mechanical approach we show that in a second-
generation interferometer composed of arm cavities and a signal recycling cavity, e.g., the LIGO-II configu-
ration,~i! quantum shot noise and quantum radiation-pressure-fluctuation noise are dynamically correlated,~ii !
the noise curve exhibits two resonant dips,~iii ! the standard quantum limit can be beaten by a factor of 2, over
a frequency rangeD f / f ;1, but at the price of increasing noise at lower frequencies.

DOI: 10.1103/PhysRevD.64.042006 PACS number~s!: 04.80.Nn, 03.65.Ta, 42.50.Dv, 95.55.Ym
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I. INTRODUCTION

Several laser interferometric gravitational-wave~GW! de-
tectors@1# ~interferometers for short!, sensitive to the high-
frequency band 10– 103 Hz, will become operative within
about one year. In the first generation of these interfero
eters the Laser Interferometer Gravitational Wave Obse
tory ~LIGO!, TAMA and Virgo configurations1 are character-
ized by kilometer-scale arm cavities with four mirro
endowed test masses, suspended from seismic-isola
stacks. Laser interferometry is used to monitor the rela
change in the positions of the mirrors induced by the gra
tational waves. The Heisenberg uncertainty principle, app
to the test masses of GW interferometers states that, if
relative positions are measured with high precision, then
test-mass momenta will be perturbed. As time passes,
momentum perturbations will produce position uncertainti
which might mask the tiny displacements produced by gra
tational waves. If the momentum perturbations and meas
ment errors are not correlated, a detailed analysis of
above process gives rise to the standard quantum limit~SQL!
for interferometers: a limiting~single-sided! noise spectral
density Sh

SQL58\/(mV2L2) for the dimensionless
gravitational-wave signalh(t)5DL/L @2#. Here m is the
mass of each identical test mass,L is the length of the inter-
ferometer’s arms,DL is the time evolving difference in the
arm lengths,V is the GW angular frequency, and\ is
Planck’s constant.

The concept of SQL’s for high-precision measureme
was first formulated by Braginsky@3#. He also demonstrate
that it is possible to circumvent SQL’s by changing the d
signs of the instruments, so they measure quantities w

1GEO’s optical configuration differs from that of LIGO/TAMA
Virgo—it does not have Fabry-Perot cavities in its two Michels
arms, and the analysis made in this paper does not directly app
it. However, we note that GEO, already in its first implementati
does use the ‘‘signal recycling’’ optical configuration with whic
this paper deals.
0556-2821/2001/64~4!/042006~21!/$20.00 64 0420
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are not affected by the uncertainty principle by virtue
commuting with themselves at different times@3,4#—as for
example in speed-meter interferometers@5#, which measure
test-mass momenta instead of positions. Interferometers
circumvent the SQL are called quantum-nondemoliti
~QND! interferometers. Since the early 1970s, it has be
thought that to beat the SQL for GW interferometers t
redesign must be major. Examples are~i! speed-meter de
signs @5# with their radically modified optical topology,~ii !
the proposal to inject squeezed vacuum into an interfero
eter’s dark port@6#, and ~iii ! the proposal to introduce two
kilometer-scale filter cavities into the interferometer’s outp
port @7# so as to implement frequency-dependent homod
detection@8#. Both ~ii ! and ~iii ! intend to take advantage o
the nonclassical correlations of the optical fields. These ra
cal redesigns require high laser power circulating in the a
cavities~*1 MW! and/or are strongly susceptible to optic
losses which tend to destroy quantum correlations. In or
to tackle these two important issues, Braginsky, Kha
and colleagues have recently proposed the GW ‘‘optical b
scheme@9#, where the test mass is effectively an oscillat
whose restoring force is provided by in-cavity optic
fields. For ‘‘optical bar’’ detectors the free-mass SQL is
more relevant and one can beat the SQL using classical t
niques of position monitoring. Moreover, this scheme h
two major advantages: It requires much lower laser pow
circulating in the cavities@9#, and is less susceptible to opt
cal losses.

Research has also been carried out using successive
pendent monitors of free-mass positions. Yuen, Caves
Ozawa discussed and disputed about the applicability and
beating of the SQL within such models@10#. Specifically,
Yuen and Ozawa conceived ways to beat the SQL by tak
advantage of the so-called contractive states@10#. However,
the class of interaction Hamiltonians given by Ozawa are
likely to be applicable to GW interferometers~for further
details see Ref.@11#!.

Recently, we showed@12# that it is possible to circumven
the SQL for LIGO-II-type signal-recycling~SR! interferom-
eters@13,14#. With their currently planned design, LIGO-I

to
,
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interferometers can beat the SQL by modest amou
roughly a factor two over a bandwidthD f ; f .2 It is quite
interesting to notice that the beating of the SQL in SR int
ferometers has a similar origin as in ‘‘optical bar’’ GW d
tectors mentioned above@9#.

Braginsky and colleagues@16#, building on earlier work
of Braginsky and Khalili@4#, have shown that for LIGO-type
GW interferometers, the test-mass initial quantum state o
affects frequencies&1 Hz, the dependence on the initi
quantum state can be removed filtering the output data at
frequency. Therefore, the SQL in GW interferometers is
forced only by the light’s quantum noise,not directlyby the
test mass. As we discussed in Ref.@12#, and we shall explic-
itly show below, we can decompose the optical noise of a
interferometer into shot noise and radiation-pressure no
using the fact that they transform differently under rescal
of the mirror massm and the light powerI 0. As long as there
are no correlations between the light’s shot noise and
radiation-pressure-fluctuation noise, the light firmly enforc
the SQL. This is the case for conventional interferomete
i.e. for interferometers that have no SR mirror at the out
dark port and a simple homodyne detection is performed~the
type of interferometer used in LIGO-I/TAMA/Virgo!. How-
ever, the SR mirror@13,14# ~which is being planned for
LIGO-II as a tool to reshape the noise curve,3 and thereby
improve the sensitivity to specific GW sources@17#! pro-
ducesdynamicalshot-noise—back-action-noise correlation
and these correlations break the light’s ability to enforce t
SQL. These dynamical correlations come naturally from
nontrivial coupling between the test mass and the sig
recycled optical fields, which makes the dynamical prop
ties of the entire optical-mechanical system rather differ
from the naive picture of a free mass buffeted by Poisson
radiation pressure. As a result, the SQL for a free test m
has no relevance for a SR interferometer. Its only remain
role is as a reminder of the regime where back-action nois
comparable to the shot noise. The remainder of this pap
devoted to explaining these claims in great detail. To fac
tate the reading we have put our discussion of the dynam
system formed by the optical fields and the mirrors into
separate, companion paper@11#.

The outline of this paper is as follows. In Sec. II w
derive the input-output relations for the whole optical syst
composed of arm cavities and a SR cavity, pointing out
existence of dynamical instabilities, and briefly comment
on the possibility and consequences of introducing a con
system to suppress them. In Sec. III we evaluate the spe
density of the quantum noise. More specifically, in Sec. II
we discuss the general case, showing that LIGO-II can b

2If all sources of thermal noise can also be pushed below the S
The thermal noise is a tough problem and for current LIGO-II d
signs with 30 kg sapphire mirrors, estimates place its domin
thermoelastic component slightly above the SQL@15#.

3The LIGO-II configuration will also use a power-recycling cavi
to increase the light power at the beamsplitter. The presence of
extra cavity will not affect the quantum noise in the dark-port o
put. For this reason we do not take it into account.
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the SQL when dynamical correlations between shot no
and radiation-pressure noise are produced by the SR mi
In Sec. III B, making links to previous investigations, w
decompose our expression for the optical noise into s
noise and radiation-pressure noise and express the dynam
correlations between the two noises in terms of physical
rameters characterizing the SR interferometer; in Sec. I
we specialize to two cases, the extreme signal-recyc
~ESR! and extreme resonant-sideband-extraction~ERSE!
configurations, where dynamical correlations are absent
a semiclassical approach can be applied@13,14#. In Sec. IV
we investigate the structure of resonances of the opti
mechanical system and discuss their link to the mini
present in the noise curves. Finally, Sec. V deals with
effects of optical losses, while Sec. VI summarizes our m
conclusions. The Appendix discusses the validity of the tw
photon formalism in our context.

II. SIGNAL-RECYCLING INTERFEROMETER: INPUT-
OUTPUT RELATIONS

In Fig. 1 we sketch the SR configuration of LIGO-II in
terferometers. The optical topology inside the dashed bo
that of conventional interferometers such as LIGO-I/TAM
Virgo, which are Michelson interferometers with Fabry-Pe
~FP! arm cavities. The principal noise input and the sign
and noise output for the conventional topology areci anddi
in Fig. 1. In a recent paper, Kimble, Levin, Matsko, Thorn
and Vyatchanin~KLMTV ! @7# have derived the input-outpu

L.
-
t,

is
-

FIG. 1. Schematic view of a LIGO-II signal-recycling interfe
ometer. The interior of the dashed box refers to the conventio
interferometer;ci anddi are the input and output fields at the bea
splitter’s dark port;ai andbi are the vacuum input and signal outp
of the whole optical system. The laser light enters the bright por
the beam splitter. The arrows close to arm cavities’ extremities
dicate gravitational-wave-induced mirror displacements.
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TABLE I. Summary of LIGO-II parameters@21#.

Quantity Symbol & value for LIGO-II Quantity Symbol & value for LIGO-I

Light power at beam splitter I 0 Light power to reach SQL I SQL51.03104 W
SQL for GW detection hSQL

2 [Sh
SQL54310248/Hz Arm-cavity half bandwidth g5Tc/4L52p3100 sec21

Laser angular frequency v051.831015 sec21 GW angular frequency V

End-mirror mass m530 kg Arm-cavity length L54 km
SR cavity length l'10 m Internal arm-cavity mirror transmissivity T50.033~power!
SR mirror transmissivity t ~amplitude! SR cavity detuning f
Arm-cavity power loss e50.01 SR power loss lSR50.02
Photodetector loss lPD50.1
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and
(ci2di) relations for a conventional interferometer at t
output dark port, immediately after the beam splitter, with
a full quantum mechanical approach. In this section we s
derive the input-output (ai2bi) relations for the whole op-
tical system at the output port, i.e. immediately after the
mirror, and shall evaluate the corresponding noise spec
density.

As we shall see, a naive application of the Fourier-ba
formalism developed in Ref.@7# gives ill-defined input-
output relations, due to the presence of optical-mechan
instabilities. These instabilities have an origin similar to t
dynamical instability of a detuned FP cavity induced by t
radiation-pressure force acting on the mirrors, which h
long been investigated in the literature@18–20#. To suppress
the growing modes and make the KLMTV’s formalism val
for SR interferometers, an appropriate control system sho
be introduced. The analysis of the resulting interferome
plus controller requires a detailed description of the dyna
ics of the whole system and for this we have found Brag
sky and Khalili’s theory of linear quantum measurement@4#
very powerful and intuitive. We analyzed the details of t
dynamics in an accompanying paper@11#, showing in par-
ticular that the results derived in this section by Fourier te
niques, notably the noise spectral density curves, are co
and rigorously justified.

A. Naive extension of KLMTV’s results to SR interferometers

As in Ref. @7# we shall describe the interferometer’s lig
by the electric field evaluated on the optic axis~center of
light beam! and at specific, fixed locations along the op
axis. Correspondingly, the electric fields that we write do
will be functions of time only: all dependence on spat
position will be suppressed from our formulas.

The input field at the bright port of the beam splitte
which is assumed to be infinitesimally thin, is a carrier fie
described by a coherent state with powerI 0 and angular fre-
quencyv0. We assume@7# that the arm-cavity end mirror
oscillate around an equilibrium position that is on resona
with the carrier light. This means that there is no zero
order arm-cavity detuning~see the paper of Paiet al. @20# for
a critical discussion of this assumption!. Our most used in-
terferometer parameters are given in Table I together with
values anticipated for LIGO-II.

We denote byf GW5V/2p the GW frequency, which lies
in the range 10–1000 Hz. Then the interaction of a grav
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tional wave with the optical system produces side-band
quenciesv06V in the electromagnetic field at the outp
dark port. For this reason, similarly to KLMTV@7#, we find
it convenient to describe the quantum optics inside the in
ferometer using the two-photon formalism developed
Caves and Schumaker@22,23#. In this formalism, instead of
using the usual annihilation and creation operators for p
tons at frequencyv, we expand the field operators in term
of quadrature operators which can simultaneously annihi
a photon at frequencyv5v01V while creating a photon a
frequencyv5v02V ~or vice versa!.

More specifically, the quantized electromagnetic field
the Heisenberg picture evaluated at some fixed point on
optic axis, and restricted to the component propagating
one of the two directions along the axis is

Ê~ t !5A2p\

Ac E
0

1`
Av@ âve2 ivt1âv

† e1 ivt#
dv

2p
.

~2.1!

HereA is the effective cross sectional area of the laser be
and c is the speed of light. The annihilation and creati
operatorsâv , âv

† in Eq. ~2.1!, which in the Heisenberg pic
ture are fixed in time, satisfy the usual commutation relatio

@ âv ,âv8#50, @ âv
† ,âv8

†
#50, @ âv ,âv8

†
#52p d~v2v8!.

~2.2!

Henceforth, to ease the notation we shall omit the hats
quantum operators. Defining the new operators~see Sec. IV
of Ref. @22#4!

a1[av01VAv01V

v0
, a2[av02VAv02V

v0
,

~2.3!

and using the commutation relations~2.2!, we find

4Our notations are not exactly the same as those of Caves
Schumaker@22,23#, the correspondence is the following~ours →
Caves-Schumaker!: v0→V, V→e, av06V→a6 , a6→l6a6 ,
a1,2→a1,2. We refer to Sec. IV B of Ref.@22# for further details.
6-3
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@a1 ,a18
†

#52p d~V2V8!S 11
V

vo
D ,

~2.4!

@a2 ,a28
†

#52p d~V2V8!S 12
V

vo
D ,

@a1 ,a18#505@a2 ,a28#, @a1
† ,a18

†
#505@a2

† ,a28
†

#,

@a1 ,a28#505@a1 ,a28
†

#, ~2.5!

wherea68 stands fora6(V8). Because the carrier frequenc
is v0.1015 s21 and we are interested in frequenciesV/2p
in the range 10– 103 Hz, we shall disregard in Eq.~2.5! the
term proportional toV/v0. ~In the Appendix we shall give a
more complete justification of this by evaluating the effe
the term proportional toV/v0 would have on the final noise
spectral density.! We can then rewrite the electric field, E
~2.1!, as

E~ t !5A2p\ v0

Ac
e2 ivo tE

0

1`

@a1~V!e2 iVt1a2~V!eiVt#

3
dV

2p
1H.c., ~2.6!

where ‘‘H.c.’’ means Hermitian conjugate. Following th
Caves-Schumaker two-photon formalism@22,23#, we intro-
duce the amplitudes of the two-photon modes as

a15
a11a2

†

A2
, a25

a12a2
†

A2i
; ~2.7!

a1 and a2 are called quadrature fields and they satisfy
commutation relations

@a1 ,a28
†

#52@a2 ,a18
†

#52p id~V2V8!,

@a1 ,a18
†

#505@a1 ,a18#, @a2 ,a28
†

#505@a2 ,a28#.
~2.8!

Expressing the electric field~2.6! in terms of the quadrature
we finally get

E~ai ;t !5cos~v0t !E1~a1 ;t !1sin~v0t !E2~a2 ;t !,
~2.9!

with

Ej~aj ;t !5A4p\v0

Ac E
0

1`

~aje
2 iVt1aj

†eiVt!
dV

2p
, j 51,2.

~2.10!

Note @as is discussed at length by BGKMTV@16# and was
previewed by KLMTV~footnote 1 of Ref.@7#!#, that,E1(t)
andE2(t) commute with themselves at any two timest and
t8, i.e. @Ej (t),Ej (t8)#50, while @E1(t),E2(t8)#; id(t2t8).
Hence, the quadrature fieldsEj (t) with j 51,2 are quantum-
nondemolition quantities which can be measured with ind
nite accuracy over time, i.e. measurements made at diffe
04200
t

e

-
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times can be stored as independent bits of data in a clas
storage medium without being affected by mutually induc
noise, while it is not possible to do this forE1(t) andE2(t)
simultaneously. As BGKMTV@16# emphasized~following
earlier work by Braginsky and Khalili@4#!, this means that
we can regardE1(t) and E2(t) separately as classica
variables—though in each other’s presence they behave
classically.

For GW interferometers the full input electric field at th
dark port is E(ci ;t) where c1 and c2 are the two input
quadratures, while the output field at the dark port
E(di ;t), with d1 andd2 the two output quadratures~see Fig.
1!. Assuming that the classical laser-light input field at t
beam splitter’s bright port is contained only in the fir
quadrature,5 and evaluating the back-action force acting
the arm-cavity mirrors disregarding the motion of the mirro
during the light round-trip time~quasistatic approximation!,6

KLMTV @7# derived the following input-output relations a
side-band~GW! angular frequencyV:

d15c1e2ib, d25~c22Kc1!e2ib1A2K h

hSQL
eib,

~2.11!

where 2b52 arctanV/g is the net phase gained by the sid
band frequencyV while in the arm-cavity,g5Tc/4L is the
half bandwidth of the arm-cavity (T is the power transmis-
sivity of the arm-cavity input mirrors andL is the length of
the arm cavity!, h is the Fourier transform of the
gravitational-wave field, andhSQL is the SQL for GW detec-
tion, explicitly given by

hSQL~V![ASh
SQL5A 8\

mV2L2
, ~2.12!

wherem is the mass of each arm-cavity mirror. The quant
K in Eq. ~2.11! is the effective coupling constant, whic
relates the motion of the test mass to the output signal,

K5
2~ I 0 /I SQL!g

4

V2~g21V2!
. ~2.13!

Finally, I 0 is the input light power, andI SQL is the light
power needed by a conventional interferometer to reach
SQL at a side band frequencyV5g, that is

5For the KLMTV optical configuration and for ours, only a neg
ligible fraction of the quantum noise entering the bright po
emerges from the dark port.

6The description of a SR interferometer beyond the quasist
approximation@20,19# introduces nontrivial corrections to the bac
action force, proportional to the power transmissivityT of the input
arm-cavity mirrors. SinceT.0.033~see Table I! we expect a small
modification of our results, but an explicit calculation is strong
required to quantify these effects.
6-4
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I SQL5
m L2g4

4v0
. ~2.14!

~See in Table I the values of the interferometer parame
tentatively planned for LIGO-II@21#.! We shall now derive
thenewinput-output (ai2bi) relations including the SR cav
ity. We indicate byl the length of the SR cavity and w
introduce two dimensionless variables:f[@v0l /c#mod2p ,7

the phase gained by the carrier frequencyv0 while traveling
one way in the SR cavity, andF[@V l /c#mod 2p the addi-
tional phase gained by the sideband with GW frequencyV
~see Fig. 1!. Note that we are assuming that the distan
from the beam splitter to the two arm-cavity input mirro
are identical, equal to an integer multiple of the carrier ligh
wavelength, and are negligible compared tol.

Propagating the output electric fieldE(di ;t) up to the SR
mirror, and introducing the operatorsei and f i which de-
scribe the fields that are immediately inside the SR mir
~see Fig. 1!, we get the condition

E~ f i ;t !5ES di ;t2
l

cD , ~2.15!

which, together with Eq.~2.9!, provides the following equa
tions:

f 15~d1 cosf2d2 sinf!eiF,
~2.16!

f 25~d1 sinf1d2 cosf!eiF.

Proceeding in an analogous way for the input electric fi
E(ci ;t), we derive

e15~c1 cosf1c2 sinf!e2 iF,
~2.17!

e25~2c1 sinf1c2 cosf!e2 iF.

Note that each of Eqs.~2.16!, ~2.17! correspond to a rotation
of the quadraturesd1 , d2 ~or c1 , c2) plus the addition of an
overall phase. Finally, denoting byai and bi the input and
output fields of the whole system at the output port~see Fig.
1! we conclude that the following relations should be sa
fied at the SR mirror:

e15ta11r f 1 , e25ta21r f 2 , ~2.18!

b15t f 12ra1 , b25t f 22ra2 , ~2.19!

where6r andt are the amplitude reflectivity and transmi
sivity of the SR mirror, respectively. We use the convent
that r andt are real and positive, with the reflection coef
cient being1r for light coming from inside the cavity and
2r for light coming from outside. In this section we lim
ourselves to a lossless SR mirror; therefore the follow
relation holds:t21r251.

7Note thatv0l /c52pm1f, with m a large integer. Indeed, typi
cally v0.1015 s21, l .10 m, hencev0l /c@1.
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Before giving the solution of the above equations, let
notice that the equations we derived so far for the quan
EM fields in the Heisenberg picture are exactly the same
those of classical EM fields. To deduced them it is sufficie
to replace the quadrature operators by the Fourier com
nents of the classical EM fields. The input-output relation
shall give below is also the same as in the classical case
the latter we should assume that a fluctuating field enters
input port of the entire interferometer. More specifically, a
suming a vacuum state in the input port, we can model
two input quadrature fields as two independent white nois
Then using the classical equations, we can derive the ou
fields which have the correct noise spectral densities.

Solving the system of Eqs.~2.11!, ~2.16!–~2.19! gives the
final input-output relation:

S b1

b2
D 5

1

M Fe2i (b1F)S C11 C12

C21 C22
D S a1

a2
D

1A2Ktei (b1F)S D1

D2
D h

hSQL
G , ~2.20!

where, to ease the notation, we have defined:

M511r2e4i (b1F)22re2i (b1F)S cos 2f1
K
2

sin 2f D ,

~2.21!

C115C22

5~11r2!S cos 2f1
K
2

sin 2f D22r cos@2~b1F!#,

~2.22!

C1252t2~sin 2f1K sin2 f!,
~2.23!

C215t2~sin 2f2K cos2 f!,

D152~11re2i (b1F)!sinf,
~2.24!

D252~211re2i (b1F)!cosf.

A straightforward calculation usingCi j PR and C11C22

2C12C215uM u2, confirms that the quadraturesbi ,bi
† satisfy

the commutation relations~2.8!, as they should since as wit
ai andai

† they represent free fields. Let us also observe t
both the quadraturesb1 and b2 in Eq. ~2.20! contain the
gravitational-wave signalh and that it is not possible to pu
the signal into just one of the quadratures through a trans
mation that preserves the commutation relations ofb1 and
b2. Indeed, the most general transformation that prese
the commutation relations is of the form

S b̃1

b̃2
D 5eiaS L11 L12

L21 L22
D S b1

b2
D , Li j PR, detLi j 51,

~2.25!
6-5
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ALESSANDRA BUONANNO AND YANBEI CHEN PHYSICAL REVIEW D64 042006
wherea is an arbitrary phase. Because theDi are complex
@see Eq.~2.24!#, it is impossible to null theh contribution
either in b̃1 or b̃2.

Henceforth, we limit our analysis toF50, which corre-
sponds to a SR cavity much shorter than the arm-cavit
e.g., l .10 m. We assume for simplicity that there is n
radio-frequency~MHz! modulation-demodulation of the ca
rier and the signal@21#; instead, some frequency-independe
quadrature

bz5b1 sinz1b2 cosz

5
1

M Fe2ib~C11sinz1C21cosz!a11e2ib~C12sinz

1C22cosz!a21A2K t eib~D1 sinz1D2 cosz!
h

hSQL
G ,

~2.26!

is measured via homodyne detection@8#.8 Before going on to
evaluate the noise spectral density in the measured qua
ture bz , let us first comment on the results obtained in t
section.

B. Discussion of the naive result

There is a major delicacy in the input-output relati
given by Eq. ~2.18!. By naively transforming it from the
frequency domain back into the time domain, we deduce
the output quadratures depend on the gravitational-wave
and the input optical fields both in the pastand in the future.
Mathematically this is due to the fact that the coefficie
1/M , in front of h and ai( i 51,2) in Eq. ~2.20!, contains
poles both in the lowerand in the uppercomplex plane. This
situation is a very common one in physics and enginee
~it occurs for example in the theory of linear electronic n
works @25# and the theory of plasma waves@26#!, and the
cure for it is well known: in order to construct an output fie
that only depends on the past, we have to alter the integra
contour in the inverse-Fourier transform, going above~with
our convention of Fourier transform! all the poles in the
complex plane. This procedure, which can be justified rig
ously using Laplace transforms@27#, makes the output signa
infinitely sensitive to driving forces in the infinitely distan
past. The reason is simple and well known in other conte
our optical mechanical system possesses instabilities, w
can be deduced from the homogeneous solutionbi

hom of Eqs.
~2.11!, ~2.15! and ~2.19!, which has eigenfrequencies give
by M50. Because the zeros of the equationM50 are ge-

8It is still unclear what detection scheme~direct homodyne detec
tion or rf modulation/demodulation! will be used in LIGO-II. The
decision will require a quantum-mechanical analysis of the ad
tional noise introduced by the modulation-demodulation proce
which will be given in a future paper@24#.
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nerically complex and may have positive imaginary pa
@11#, we end up with homogeneous solutions that gr
exponentially.9

To quench the instabilities of a SR interferometer we ha
to introduce a proper control system. In Ref.@11# we have
given an example of such a control system, which we brie
illustrate here. Let us suppose that the observed output ibz

and we feed back a linear transformation of it to control t
dynamics of the end mirrors. This operation corresponds
making the following substitution in Eq.~2.26!:

h→h1Cbz , ~2.27!

whereC is someretardedkernel. Solving again forbz , we
get

bz
C5

1

M C
Fe2ib~C11sinz1C21cosz!a11e2ib~C12sinz

1C22cosz!a21A2Kt eib~D1 sinz1D2 cosz!
h

hSQL
G ,

~2.28!

simply replacing theM in Eq. ~2.26! by M C , which depends
on C. Note that, by contrast with theuncontrolledoutput Eq.
~2.20!, the output fieldbz

C is no longer a free electric field
i.e., a quadrature field defined in half open space, satisfy
the radiative boundary condition. This is due to the fact t
part of it has been fed back into the arm cavities. Nevert
less, in the time domain,bz

C commutes with itself at differen
times. In Ref.@11# we have shown that there exists a we
definedC that makes Eq.~2.28! well defined in the time
domain, getting rid of the instabilities. As a consequence,M C
has zeros only in the lower-half complex plane and we c
neglect the homogeneous solutionM Cbz

C hom50 because it
decays exponentially in time.

Finally, let us remember the important fact that the intr
duction of this kind of control system only changes the n
malization of the output field. As a consequence, the no
spectral density isnot affected. However, an extra noise wi
be present due to the electronic device that provides the
trol force on the end mirrors. Strain estimated that it can
kept smaller than about 10% of the quantum noise@28#.

III. FEATURES OF NOISE SPECTRAL DENSITY IN SR
INTERFEROMETERS

In light of the discussion at the end of the last section,
shall use Eq.~2.28! as the starting point of our derivation o
the noise spectral density of a~stabilized! SR interferometer.

i-
s,

9Quadrature operators withcomplexfrequency can be defined b
analytical continuations of quadrature operators withreal frequency
considered as analytical functions ofV.
6-6
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A. Evaluation of the noise spectral density: Going below the
standard quantum limit

The noise spectral density is calculated as follows@7#.
Equation ~2.28! tells us that the interferometer noise, e
pressed as an equivalent gravitational-wave Fourier com
nent, is

hn[
hSQL

A2KDbz , ~3.1!

where

Dbz5
~C11sinz1C21cosz!a11~C12sinz1C22cosz!a2

t~D1 sinz1D2 cosz!
.

~3.2!

Then the ~single-sided! spectral densitySh
z( f ), with f

5V/2p, associated with the noisehn can be computed by
the formula@Eq. ~22! of Ref. @7##

1

2
2p d~V2V8!Sh

z~ f !

5^ inuhn~V!hn
†~V8!u in&sym

[
1

2
^ inuhn~V!hn

†~V8!1hn
†~V8!hn~V!u in&. ~3.3!

Here we put the superscriptz on Sh
z to remind ourselves tha

this is the noise when the output is monitored at carrier ph
z by homodyne detection. Assuming that the input of t
whole SR interferometer is in its vacuum state, as is plan
for LIGO-II, i.e. u in&5u0a&, and using

^0auaiaj 8
† u0a&sym5

1

2
2p d~V2V8!d i j ~3.4!

@Eq. ~25! of Ref. @7## we find that Eq.~3.3! can be recast in
the simple form~note thatCi j PR)

Sh
z5

hSQL
2

2K
~C11sinz1C21cosz!21~C12sinz1C22cosz!2

t2uD1 sinz1D2 coszu2
.

~3.5!

For comparison, let us recall some properties of the no
spectral density for conventional interferometers~for a com-
plete discussion see Ref.@7#!. To recover this case we have
take the limit f→0 and r→0 in the above equations o
simply use Eq.~2.11! ~in a conventional interferometer ther
are no instabilities!. In particular, for a conventional interfer
ometer, Eqs.~2.26! and ~3.1! take the much simpler form10

bz
conv5cosz$@a21~ tanz2K!a1#e2ib%,

~3.6!

10Note that our definition ofz differs from the one used in Ref
@7#.
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hn
conv5

hSQL

AK eib@a21~ tanz2K!a1#,

and the noise spectral density reads

Sh
z,conv5

hSQL
2

2K @11~ tanz2K!2#. ~3.7!

As has been much discussed by Matsko, Vyatchanin
Zubova@8# and by KLMTV @7#, and as we shall see in mor
detail in Sec. III B, taking as the outputbz , instead of the
quadratureb2 in which all the signalh is encoded, builds up
correlations between shot noise and radiation-pressure n
We refer to correlations of this kind, which are introduced
the special read-out scheme, asstaticcorrelations by contras
with those produced by the SR mirror, which we calldy-
namicalsince they are built up dynamically, as we shall d
cuss in Sec. IV. The static correlations allow the noise cur
for a conventional interferometer to go below the SQL wh
I 05I SQL, as was originally observed by Matsko, Vyatchan
and Zubova@8#. However, ifz is frequency independent as
must be when one uses conventional homodyne detec
then the SQL is beaten,Sh

z,conv<hSQL
2 , only over a rather

narrow frequency band and only by a very modest amou
On the other hand, as Matsko, Vyatchanin and Zubova@8#
showed, and one can see from Eq.~3.7!, if we could make
the homodyne detection anglez frequency dependent, the
choosing@7# z(V)[arctanK(V), would remove completely
~in the absence of optical losses! the second term in the
square parenthesis of Eq.~3.7!, which is the radiation-
pressure noise, leaving only the shot noise in the interfero
eter output, i.e.Sh

z,conv5hSQL
2 /2K. In order to implement fre-

quency dependent homodyne detection, KLMTV@7# have
recently proposed to place two 4-km-long filter cavities
the interferometer dark port and follow them by convention
homodyne detection. This experimentally challenging p
posal would allow the interferometer to beat the SQL at f

quency f 5100 Hz by a factorASh
conv/ASh

SQL;0.24, over a
band of D f ; f , at light power I 05I SQL, and by
ASh

conv/ASh
SQL;0.18 if I 0.3.2I SQL. In conclusion, already

in conventional interferometers it is possible to beat the S
provided that we measurebz and build up properstatic cor-
relations between shot noise and radiation-pressure nois

Let us now go back to SR interferometers. They have
interesting property of building updynamicallythe correla-
tions between shot noise and radiation-pressure noise, th
to the SR mirror. Indeed, even if we restrict ourselves to
noise curves associated with the two quadraturesb1

C andb2
C ,

i.e. we do not measurebz
C , the SR interferometer can still g

below the SQL. Moreover, if the SR interferometer works
the SQL power, i.e.I 05I SQL, as is tentatively planned fo
LIGO-II, then the noise curves@Eq. ~3.5!# can exhibit one or
two resonant dips whose depths increase and widths decr
as the SR-mirror’s reflectivity is raised.~We postpone the
discussion of this interesting feature to Sec. IV.! These reso-
nances allow us to reshape the noise curves and beat the
by much larger amounts than in a conventional interfero
6-7
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ALESSANDRA BUONANNO AND YANBEI CHEN PHYSICAL REVIEW D64 042006
eter with static correlations introduced by frequenc
independent homodyne detection.

More specifically, the noise spectral density, Eq.~3.5!,
depends on the physical parameters which characterize
SR interferometer~see Table I!: the light powerI 0, the SR
detuningf, the reflectivity of the SR mirrorr and the ho-
modyne phasez. To give an example of LIGO-II noise
curves, in Fig. 2 we plot theASh(V) for the two quadratures
b1

C (z5p/2) andb2
C (z50), for r50.9, f5p/220.47 and

I 05I SQL. Also shown for comparison are the SQL line, t
noise curve one would obtain if one ignored the correlatio
between the shot noise and radiation-pressure noise@21#,11

and for a conventional interferometer withI 05I SQL and z
50, explicitly given by@7#

Sh
z50,conv5

Sh
SQL

2 S K1
1

KD . ~3.8!

The sensitivity curves for the two quadratures go subs
tially below the SQL and show two interesting resonant v

11Before the research reported in this paper, the LIGO commu
computed the noise curves for SR interferometers by~i! evaluating
the shot noiseSh

shot, ~ii ! then ~naivelyassuming no correlations be
tween shot noise and radiation-pressure noise! using the uncertainty
principleSh

shotSh
RP>(Sh

SQL)2/4, with the equality sign to evaluate th
radiation-pressure noiseSh

RP, ~iii ! then adding the two. This proce
dure gave the noise curve labeled ‘‘correlations neglected’’ in F
2; see Fig. 2 of Ref.@21#.

FIG. 2. Log-log plot ofASh(V)/ASh
SQL(g) versusV/g for ~i!

the quadraturesb1
C (z5p/2) andb2

C (z50) with r50.9, f5p/2
20.47, andI 05I SQL, ~ii ! the SQL,~iii ! a conventional interferom-
eter with I 05I SQL, and ~iv! the noise curve of LIGO-II@21# one
would obtain if shot-noise–radiation-pressure correlations were~na-
ively! neglected. For LIGO-II,g52p3100 Hz ~top axis! and
ASh

SQL(g)52310224 Hz21/2. These curves do not include seism
and thermal noises; for LIGO-II the latter is expected to be sligh
above the SQL@15#.
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leys. In Fig. 3 we plot the noise curvesASh(V) for different
values of the frequency independent homodyne anglez,
choosing the same parameters used in Fig. 2, i.e.r50.9, f
5p/220.47 and I 05I SQL. Note that the location of the
resonant dips does not depend much on the anglez. This
property is confirmed analytically in Sec. IV in the case o
highly reflecting SR mirror, by an analysis that elucidate t
underlying physics.

Before ending this section, let us give an idea of the p
formances achievable in a SR interferometerif its thermal
noise can be made negligible@15#. We have estimated the
signal-to-noise ratio for inspiraling binaries, which a
among the most promising sources for the detection of G
with earth-based interferometers. The square of the signa
noise ratio for a binary system made of black holes and
neutron stars is given by

S S

ND 2

54E
0

1` uh~ f !u2

Sh~ f !
d f . ~3.9!

Using the Newtonian quadrupole approximation, for whi
the waveform’s Fourier transform isuh( f )u2} f 27/3, and in-
troducing in the above integral a lower cutoff due to seism
noise atVs50.1g ( f s.10 Hz!, we get for the parameter
used in Fig. 2:

~S/N!1

~S/N!conv
.1.83,

~S/N!2

~S/N!conv
.1.98, ~3.10!

where (S/N)1 , (S/N)2 and (S/N)conv use for the noise spec
tral density either that of the first quadratureb1

C or the second
quadratureb2

C or the conventional interferometer, respe
tively. A more thorough analysis of signal-to-noise ratio f

ty

.

y

FIG. 3. Log-log plot ofASh(V)/Sh
SQL(g) versusV/g for the

following choices of the frequency independent homodyne pha
z50, z5p/6, z5p/3 andz5p/2, with r50.9,f5p/220.47 and
I 05I SQL. The plot also shows the noise curve for a conventio
interferometer and the SQL line. For LIGO-II,g52p3100 Hz~top

axis! andASh
SQL(g)52310224 Hz21/2.
6-8
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QUANTUM NOISE IN SECOND GENERATION, SIGNAL- . . . PHYSICAL REVIEW D64 042006
inspiraling binaries inevitably requires the specification
the readout scheme and we plan to publish it elsewhere@24#.

B. Effective shot noise and radiation-pressure noise

In this section we shall discuss the crucial role played
shot-noise–radiation-pressure correlations that are prese
LIGO-II’s quadrature outputs~2.20! and noise spectral den
sities~3.5!, in beating the SQL. Our analysis is based on
general formulation of linear quantum measurement the
developed by Braginsky and Khalili@4# and assumes also th
results obtained in Refs.@16,11#.

To identify the radiation pressure and the shot noise c
tributions in the total optical noise, we use the fact that th
transform differently under rescaling of the mirror mass.
deed, it is straightforward to show that in the total optic
noise there exist only two kinds of terms. There are ter
that are invariant under rescaling of the mass and terms
are proportional to 1/m. Hence, quite generally we can re
write the outputO of the whole optical system as@4,11#

O~V!5Z~V!1Rxx~V!F~V!1L h~V!, ~3.11!

where by output we mean one of the two quadraturesb1
C , b2

C

or a combination of them, e.g.,bz
C ~modulo a normalization

factor! and whereRxx is the susceptibility of the antisym
metric mode of motion of the four mirrors@4#, given by

Rxx~V!52
4

m V2
. ~3.12!

The observablesZ andF in Eq. ~3.11! do not depend on the
mirror massesm, and satisfy the commutation relations@Eq.
~2.19! in Ref. @11##

@F~V!,F †~V8!#505@Z~V!,Z †~V8!#,
~3.13!

@Z~V!,F †~V8!#522p i\d~V2V8!.

We shall refer toZ and F as theeffectiveshot noise and
effectiveradiation-pressure force, respectively, because
have shown@11# that for a SR interferometer thereal back-
action force acting on the test masses is not proportiona
the effective radiation-pressure noise, but instead is a c
bination of the two effective observablesZ andF. When the
shot noise and radiation-pressure noise are correlated
real back-action force does not commute with itself at diff
ent times,12 which makes the analysis in terms of real qua
tities more complicated than in terms of the effective on
We prefer to discuss our results in terms of real quanti
separately@11#, in a more formal context which uses th
description of a GW interferometer as a linear quantu
measurement device@4#.

12We have shown@11# that as a consequence of this the antisy
metric mode of motion of the four mirrors acquires an optic
mechanical rigidity and a SR interferometer responds to GW sig
similar to an optical spring. This phenomenon was already obse
in optical bar detectors by Braginsky’s group@9#.
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The noise spectral density, written in terms of the effe
tive operatorsZ andF, reads@4#

Sh5
1

L2
$SZZ12Rxx R@SFZ#1R xx

2 SFF%, ~3.14!

where the~one-sided! cross spectral density of two operato
is expressible, by analogy with Eq.~3.3!, as

1

2
SAB~V!2p d~V2V8!

5
1

2
^A~V!B †~V8!1B †~V8!A~V!&. ~3.15!

In Eq. ~3.14! the terms containingSZZ , SFF and R@SFZ#
should be identified as effective shot noise, back-action no
and a term proportional to the effective correlation betwe
the two noises, respectively@4#. Relying on the commutators
~3.13! between the effective field operators one can der
@4,11# the following uncertainty relation for the~one-sided!
spectral densities and cross correlations ofZ andF:

SZZSFF2SZF SFZ>\2. ~3.16!

Equation~3.16! does not, in general, impose a lower bou
on the noise spectral density Eq.~3.14!. However, in a very
important type of measurement it does, namely for interf
ometers with uncorrelated shot noise and back-action no
e.g., LIGO-I/TAMA/Virgo. In this caseSZF505SFZ @7#
and inserting the vanishing correlations into Eqs.~3.15!,
~3.16!, one easily finds that the noise spectral density ha
lower bound which is given by the standard quantum lim
i.e.

Sh~V!>Sh
SQL~V![

2uRxx~V!u\

L2
5

8\

mV2L2
5hSQL

2 ~V!.

~3.17!

From this it follows that to beat the SQL one must crea
correlations between shot noise and back-action noise.

Before investigating those correlations in a SR intefero
eter, we shall first show how such correlations can be b
up statically in a conventional~LIGO-I/TAMA/Virgo ! inter-
ferometer by implementing frequency-independent hom
dyne detection at some anglez @8,7#. By identifying in the
interferometer output~3.6! the terms independent ofm as
effective shot noise and those inversely proportional tom as
effective back-action noise, we get the effective field ope
tors Z z

conv andF z
conv:

Z z
conv~V!5

eibL hSQL

A2K ~a21a1 tanz!,

~3.18!

F z
conv~V!5

\ eibA2K
L hSQL

a1 .

@We remind the readers thathSQL}1/Am and thatK}1/m.#
Evaluating the spectral densities of those operators u

-
-
al
ed
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ALESSANDRA BUONANNO AND YANBEI CHEN PHYSICAL REVIEW D64 042006
Eqs. ~3.15! and ~3.4!, we obtain the following expression
for the spectral densities and their static correlations:

SZzZz

conv ~V!5
L2hSQL

2

2K ~11tan2 z!, SFzFz

conv ~V!5
2K\2

L2hSQL
2

,

SZzFz

conv ~V!5\ tanz5SFzZz

conv ~V!. ~3.19!

By inserting these in Eq.~3.14! and optimizing the coupling
constantK, we see that the SQL can be beaten for a
04200
y

0,z,p/2, i.e. whenever there are nonvanishing corre
tions. See Refs.@7# and @8# for further details.

Let us now derive the correlations between shot noise
back action noise in SR interferometers. Because in this c
the correlations are built up dynamically by the SR mirr
and are present in all quadratures, as an example, we
ourselves to the two quadraturesb1

C and b2
C . Identifying in

Eqs. ~3.1!, ~3.2! the effective shot and back-action nois
terms due to theirm dependences, we obtain the effecti
field operatorsZ1 , Z2 , F1 andF2:
Z1~V!52
eibLhSQL

A2K
@a1~22r cos 2b1~11r2!cos 2f!1a2~211r2!sin 2f#cscf

t~11e2ibr!
,

~3.20!

Z2~V!52
eibLhSQL

A2K
@a1~12r2!sin 2f1a2~22r cos 2b1~11r2!cos 2f!#secf

t~211e2ibr!
,

and

F1~V!5
\eibA2K

LhSQL

@a1~11r2!cosf1a2~211r2!sinf#

t~11e2ibr!
,

~3.21!

F2~V!5
\eibA2K

LhSQL

@a1~211r2!cosf1a2~11r2!sinf#

t~211e2ibr!
.

Evaluating the spectral densities of the above operators through Eqs.~3.15! and ~3.4! we obtain the following expressions:

SF1F1
~V!5

\22K
L2hSQL

2

11r412r2 cosf

~12r2!~11r212r cos 2b!
,

~3.22!

SF2F2
~V!5

\22K
L2hSQL

2

11r422r2 cosf

~12r2!~11r222r cos 2b!
,

and

SZ1Z1
~V!5

L2hSQL
2

2K
@4~211r2!2 cos2 f1~22r cos 2b1~11r2!cos 2f!2csc2 f#

~12r2!~11r212r cos 2b!
,

~3.23!

SZ2Z2
~V!5

L2hSQL
2

2K
@4~211r2!2sin2 f1~22r cos 2b1~11r2!cos 2f!2sec2 f#

~12r2!~11r222r cos 2b!
.

Finally, for the correlations between the shot noise and back-action noise we get

SF1Z1
~V!5SZ1F1

~V!52
\@~211r2!222r~11r2!cos 2b14r2 cos 2f#cotf

~12r2!~11r212r cos 2b!
,

~3.24!

SF2Z2
~V!5SZ2F2

~V!5
\@~211r2!212r~11r2!cos 2b24r2 cos 2f#tanf

~12r2!~11r222r cos 2b!
.

6-10
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FIG. 4. Log-log plot ofASh
ESR(V)/Sh

SQL(g) versusV/g for the extreme signal-recycling configuration~left panel! f50 with r50.7,
r50.8,r50.9, andI 05I SQL and for the extreme resonant-sideband-extraction configuration~right panel! f5p/2 with r50.7,r50.8, and
r50.9, with I 05I SQL. Also plotted for comparison are the noise curve for a conventional interferometer and the SQL line. For furthe
on these well known configurations, see Refs.@13,14#.
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These correlations depend on the sideband angular frequ
V and are generically different from zero. However, wh
f50 andf5p/2 the correlations are zero. We shall analy
these two extreme configurations in the following section

C. Two special cases: Extreme signal-recycling and
resonant-sideband-extraction configurations

In this section we discuss two extreme cases that are
known and have been much investigated in the literat
using a semiclassical analysis@13,14#. In these two cases th
dynamical correlations between shot noise and radiat
pressure noise are zero. This has two implications:~i! the
semiclassical analysis and predictions@13,14# are correct
~when straightforwardly complemented by radiation press
noise!, and ~ii ! the noise curves are always above the SQ
Of course, static correlations can always be introduced
measuring the quadraturebz . In these two extreme case
there are no instabilities and the input-output relation of
SR interferometer can be obtained from the conventio
noise by just rescaling the parameterK @Eq. ~2.13!#.

1. Extreme signal-recycling (ESR) configuration:fÄ0

For f50, the gravitational-wave signal appears only
the second quadratureb2 but not in the first quadratureb1
@see Eq.~2.26! with z50 andp/2, respectively#. Defining

K̃[
Kt2

11r222r cos 2b
, ~3.25!

it is straightforward to deduce that the spectral density of
noise takes the simple form
04200
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Sh
ESR5

Sh
SQL

2 S 1

K̃
1K̃D . ~3.26!

In the left panel of Fig. 4 we plotASh
ESR(V)/Sh

SQL(g) versus
V/g for different choices of the reflectivityr. As we vary
the reflectivity of the SR mirror the minimum of the variou
curves is shifted along the SQL line, and the shape of
noise curve change a bit because bothK and b in Eqs.
~3.25!, ~3.26! depend on frequency. Moreover, forV/g@1
andV/g!1 the curves are well above the conventional
terferometer noise. This effect becomes worse and wors
r→1 and is described by the formulas

Sh
ESR~V!

Sh
SQL~g!

→ 1

4

V2

g2 S 11r

12r D I SQL

I 0
,

V

g
@1,

~3.27!

Sh
ESR~V!

Sh
SQL~g!

→ g4

V4 S 11r

12r D I 0

I SQL
,

V

g
!1.

The signal-to-noise ratio for inspiraling binaries is give
in this case~for r50.9, I 05I SQL! by

~S/N!ESR

~S/N!conv
.0.73. ~3.28!

Hence, this LIGO-II configuration (f50) is not appealing.
The noise curves could be better than the ones for a con
tional interferometer in the range;20– 60 Hz, depending on
the value ofr, but they get worse everywhere else, and ov
all, for anyr the signal-to-noise ratio for inspiraling binarie
is lower than in the case of a conventional interferomete
6-11



:

e

a
s

th

e

i
e
si
-
ng

-
a

a
ef

e
re

re

ibit

cal-
by

is
rs,
n
or-

he
rk

ant

he

ics,

um-

es of
rors
by

r,
vity
ds
es:

te

ALESSANDRA BUONANNO AND YANBEI CHEN PHYSICAL REVIEW D64 042006
2. Extreme resonant-sideband-extraction (ERSE) configuration
fÄpÕ2

For f5p/2, using Eq.~2.26! with z5p/2, we find that
only the first quadratureb1 contains the gravitational-wav
signal. Introducing

K̄[
Kt2

11r212r cos 2b
~3.29!

~which depends on frequency through bothK and b), we
easily deduce that the noise spectral density reads

Sh
ERSE5

Sh
SQL

2 S 1

K̄
1K̄D . ~3.30!

The right panel of Fig. 4 showsASh
ERSE(V)/Sh

SQL(g) as a
function of V/g for different values of the reflectivityr. As
for the ESR configuration discussed above, when we v
the reflectivity of the SR mirror the minimum of the variou
curves moves along the SQL line. But by contrast with
ESR configuration, forV/g@1 andV/g!1 the curves are
significantly below the conventional-interferometer nois
This effect becomes better and better asr→1 and is de-
scribed by the asymptotic limits

Sh
ERSE~V!

Sh
SQL~g!

→ 1

4

V2

g2 S 12r

11r D I SQL

I 0
,

V

g
@1,

~3.31!
Sh

ERSE~V!

Sh
SQL~g!

→ g4

V4 S 12r

11r D I 0

I SQL
,

V

g
!1.

In conclusion, in the ERSE configuration (f5p/2), the situ-
ation is in some sense the reverse of the ESR schemef
50). In the former the bandwidths are much larger than
either the ESR of the conventional interferometer. Howev
the more broadband curves are obtained at the cost of lo
sensitivity in the frequency range;70– 250 Hz and this ex
plains why the maximum signal-to-noise ratio for inspirali
binaries,

~S/N!ERSE

~S/N!conv
.1.096 for r50.48 and I 05I SQL

~3.32!

is not very different from that of a conventional interferom
eter. Finally, let us observe that our two extreme cases

linked mathematically by takingr→2r (K̄→K̃) and ex-
changing the two quadratures. For much further analysis
detail of the ERSE and ESR configurations, see R
@13,14#.

IV. STRUCTURE OF RESONANCES AND INSTABILITIES

We now turn our attention from the well known extrem
configurations, for which previous analysis gave correct p
dictions, to the more general case 0,f,p/2. As Figs. 2, 3
show, the noise curves for a SR interferometer with f
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quency independent homodyne detection generically exh
resonant features that vary asI 0 , r, f and z are changed.
These resonances are closely related to the opti
mechanical resonances of the dynamical system formed
the optical field and the mirrors. A thorough study of th
system must investigate explicitly the motion of the mirro
instead of including it implicitly in the formulas as we did i
this paper. It can be most clearly worked out using the f
malism of linear quantum measurements@4#, which we have
recently extended to SR interferometers@11#. In this section,
we limit our investigation to the resonant structures in t
amplitudes of the optical fields, and for simplicity we wo
in the limit of a totally reflecting SR mirror, i.e.r51. This
limit provides simple analytical expressions for the reson
frequencies as functions of the SR detuning phasef and the
light power I 0. We shall comment on the general caserÞ1,
which we have tackled at length in Ref.@11#, only at the end
of this section.

A. Resonances of the closed system:rÄ1

We shall investigate the free oscillation modes of t
whole interferometer when the GW signal is absent@h(V)
50# and there is no output field (r51), so the system is
closed. We consider the regime of classical electrodynam
i.e. we work with the two classical quadrature fieldsE1 and
E2, satisfying the same equations of motion as the quant
field operatorsc1 andc2 ~see Fig. 1!. We shall evaluate the
stationary modes, notably the eigenmodes and eigenvalu
the whole opticomechanical system made of the end mir
and the signal recycled optical field. We achieve this
propagating the in-going fieldsE1 andE2 ~entering the beam
splitter’s dark port! into the conventional interferomete
along a complete round trip, and then through the SR ca
back to the starting point. The round-trip propagation lea
to the following homogeneous equation for the eigenmod

F S cos 2f 2sin 2f

sin 2f cos 2f D e2ibS 1 0

2K 1D 2IG S E1

E2
D 50,

~4.1!

which can be simplified into the more interesting form:

TS e2i (a1b)21

0 e2i (2a1b)21DT21S E1

E2
D 50,

~4.2!

2a[arccosS cos 2f1
K
2

sin 2f D ,

whereT is a matrix whose precise form is unimportant. No
that the definition of the function arccos ensures thatR(2a)
ranges from 0 top. The free oscillation condition is then
given by

cos 2b res5cos 2a5cos 2f1
K
2

sin 2f. ~4.3!
6-12
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Solving Eq.~4.3! explicitly in terms of the frequencyV, we
obtain the rather simple analytical equation for the posit
of the resonances:

V res
2

g2
5

1

2 F tan2 f6Atan4 f2
4I 0

I SQL
tanfG . ~4.4!

This equation is characterized by three regimes (0,f,p):

~i! f.p/2: one real and one imaginary resonant f
quency;

~ii ! arctan@(4I0 /ISQL)
1/3#,f,p/2: two real resonant fre

quencies;
~iii ! 0,f,arctan@(4I0 /ISQL)

1/3#: two complex conjugate
resonant frequencies.

Equation~4.4! is very similar to the resonance equatio
that Braginsky, Gorodetsky and Khalili have derived for th
proposal ‘‘Optical bar’’ GW detectors~see Appendix D of
Ref. @9#!.

For very low light power,I 0!I SQL, the second term un
der the square root on the right-hand side~RHS! of Eq. ~4.4!
goes to 0 and the four roots tend toV50 ~double root! and
V56g tanf. We interpret this limit as follows~see Ref.
@11# for further details!: When the coupling between the mo
tion of the mirror and the optical field is zero (I 0→0), the
resonant frequencies of the entire system are given by
resonances of the test mass, i.e. the free-oscillation mode
a test mass (V50), plus the resonances of the optical fie
i.e. the electromagnetic modes of the entire cavity with fix
mirrors, given byV56g tanf @13#. When the light power
is increased towardI SQL, the coupling between the free te
mass and the optical field drives the four resonant frequ
cies away from their decoupled values. By analyzing the f
coupled resonant frequencies, we can easily identify the o
with the 2 ~1! sign in Eq.~4.4! as remnants of the resona
frequencies of the free test mass~optical field!. ~For a more
thorough discussion of these results see Ref.@11#, where we
explicitly examine the mirror motion.!

Let us observe that Eq.~4.3! can also be obtained as fo
lows. By expanding the noise spectral density~3.5! for t
→0, we get

Sh~V!

hSQL
2 ~V!

5
~22 cos 2b12 cos 2f1K sin 2f!2

8 K@cos2 b~sin2 z2cos2 f!1cos2 f cos2 z#

1

t2

1O~t0!. ~4.5!

The leading term of the expansion goes to zero wh
2 cos 2f22 cos 2bres1K sin 2f50, which is exactly the
resonant condition~4.3! for the closed system derived abov
This means that for~open! SR interferometers with highly
reflecting SR mirrors, the dips in the noise curves agree w
the resonances of the closed system.

In practice, the real part of the resonant frequencies~4.4!
for the closed system turns out to be a good approximatio
the positions of the valleys in the noise spectral density o
~open! SR interferometer with high SR-mirror reflectivity. T
illustrate this fact, in Fig. 5 we plot the noise curvesASh(V)
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for the second quadratureb2
C with I 05I SQL, r50.95 and

varyingf. The vertical lines have been drawn by solving E
~4.4! numerically forV and taking its real part, i.e., the rea
part of the resonant frequencies of the closed systems. T
is indeed very good agreement. This suggests that the ga
sensitivity comes from a resonant amplification effect; s
the discussion at the end of the Sec. IV C.

If the imaginary part of the resonant frequency is posit
~negative! then, with our convention for the Fourier tran
form, the solution is unstable~stable!. The best noise sensi
tivity curves have detuning phasef in the range
arctan@(4I0 /ISQL)

1/3#&f&p/2, which forr51 correspond to
two real resonant frequencies, and no instability. However
soon as we allow the transmissivity of the SR mirrort to be
different from zero~as it must be in a real interferometer!,
we always find that one of the two resonant frequencies
a positive imaginary part@11#. A more detailed analysis o
the dynamics of the system has shown that this is a ra
weak instability which typically develops on a time scale
&0.1g and can be cured by introducing an appropriate c
trol system@11#.

B. Semiclassical interpretation of resonances for smallK:
Pure optical resonances

In this section we shall focus on the optical-field res
nances and shall relate our results to previous semiclas
analyses of SR interferometers@13,14#.

The test-mass motion affects the optical fields through
term K52(I 0 /I SQL)g

4/@V2(V21g2)#, where the factor
I 0 /I SQL can be considered a measure of the strength of
coupling. The quantityK governs both the resonant cond

FIG. 5. Log-log plot ofASh(V)/Sh
SQL(g) versusV/g for I 0

5I SQL, r50.95 andz50 ~i.e. the second quadratureb2
C is mea-

sured!. The detuning phasef takes the values~going from right to
left! p/220.19, p/220.39 andp/220.59. The vertical grid lines
have been drawn by using Eq.~4.4! and taking the real part ofV res.
These lines agree well with the positions of the resonant dips.
6-13
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ALESSANDRA BUONANNO AND YANBEI CHEN PHYSICAL REVIEW D64 042006
tion and the relative magnitude of shot noise and radiati
pressure noise. In particular, whenK is very small, Eq.~4.3!
simplifies to cos 2f2cos 2bres50, which can be solved eas
ily, giving

2~6b res1f!52p n, i.e. V res56g tanf, ~4.6!

with n an integer. Equation~4.6! can be explained with a
simple optics argument: The quantity62b is the phase
gained by the upper and lower GW sidebands while in
arm cavity, whilef is the phase gained when traveling o
way down the SR cavity. Thus 2(6b1f) is just the round-
trip phase, and Eq.~4.6! is the resonant condition for th
entire ~closed! interferometer. Hence, the presence ofK in
the resonant condition~4.3! provides the deviation from a
pure optical resonance. Moreover,K is also an indicator of
the different scalings ofI 0 andm in the final expressions fo
the noises, and therefore it governs the relative magnitud
the shot noise and radiation-pressure noise—the smalle
K, the more important the shot noise compared to radia
pressure noise. WhenK is small, a semiclassical argume
helps to explain the features of our noise curves. If we
close to the resonance, then feeding back the signal at
frequency increases the peak sensitivity while decreasing
bandwidth. Different schemes of such narrow-banding h
been proposed, e.g., see Drever@29#. The scheme discusse
here, in which the signal at the dark port is fed back into
arm cavities, is called signal recycling~in the narrower
sense!, and was invented by Meers@13#. If, on the other
hand, we are far enough from the resonances, sideband
nals are not encouraged to go back into the interferomete
particular, at ubantiresu.ub res6p/2u, there is antiresonance
and the signal is encouraged to go out. This is what is g
erally called resonant sideband-extraction and was inve
by Mizuno @14#, see Sec. III C. The range in between,b res
,b,bantires, is called ‘‘detuned’’ signal recycling and ha
recently been demonstrated experimentally on the 30 m l
interferometer at Garching, Germany by Freiseet al. @30#
and at Caltech on a table-top experiment by Mason@31#.

As an example of resonance~not antiresonance!, we plot
in Fig. 6 the spectral densitySh(V) when the second quadra
ture b2

C is measured, for very low light powerI 051024I SQL

and high reflectivityr50.95, and for various values of th
detuning phasef. The vertical grid lines in Fig. 6 are draw
according to Eq.~4.6! and indeed, there is excellent agre
ment.

It is interesting to note that although for LIGO-III 0
5I SQL, there is still a frequency band whereK is relatively
small. This is due to the fact thatK drops very fast asV
increases. In that frequency band the semiclassical forma
gives a correct result for the optical resonances@28#. How-
ever, since the semiclassical approach does not take into
count the motion of the arm-cavity end mirrors, it can on
describe one resonance~and not two! in the entire spectrum

C. Quantum mechanical discussion of the general case: Two
resonances andrÅ1

The correspondence between the optical-mechanical r
nances and the minima of the noise curves suggests tha
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gain in sensitivity comes from a resonant amplification of t
input signal, i.e. of the gravitational force acting on the m
rors, as already observed for optical bar GW detectors
Braginsky’s group@9#. Let us discuss this point more deepl

The quantum part of the input-output relation~2.20! ~with
uFu!1 as we have assumed throughout this paper! reads

bi
quant5

e2ibCi j

M
aj , i , j 51,2. ~4.7!

We find it convenient to renormalize the quantum trans
matrix:

Mi j [
Ci j

uM u
, i , j 51,2 ~4.8!

so detMi j 51. Note that thisMi j is normalized with respec
to unit quantum noise. Because theCi j are real, the
matrix M depends on three real parameters and we
always decompose it into two rotationsR(u), R(w) and a
squeeze S(r ) ~see for details Ref. @23#!, e.g., M
5R(u)R(w)S(r )R(2w), with

R~u!5S cosu 2sinu

sinu cosu D , S~r !5S er 0

0 e2r D , ~4.9!

where the factorer describes the stretching (r .0) or
squeezing (r ,0) of the quantum fluctuations in the quadr
ture bi @see Eqs.~4.7!, ~4.8!#. Note that classical optica
fields always have a zero squeeze factor.

FIG. 6. Log-log plot ofASh(V)/Sh
SQL(g) versusV/g for z

50 ~i.e., b2
C is measured! and for extremely low light power and

high reflectivity: I 051024I SQL and r50.95. f takes the values
~going from right to left! p/220.19, p/220.39, p/220.59, p/2
20.79 andp/220.99. A series of resonances appear whose p
tions agree with the vertical grid lines drawn according toV res/g
5utanfu @Eq. ~4.6!#.
6-14
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FIG. 7. Sketchy view of the
lossy signal-recycling interferom
eter. Optical losses in the signa
recycling cavity ~on the left! are
described by the noise quadratur
pi , while losses due to the photo
detection process~on the right!
are included through the nois
quadraturesqi .
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To express the squeeze parameterr in terms of the physi-
cal parameters describing the SR interferometer, we sim
take the trace of the matrixMM †, obtaining

e2r1e22r521
t4K 2

uM u2
. ~4.10!

Hence, in a SR interferometer the squeezing~generally
called ponderomotive squeezing! is induced by the back
action force acting on the mirror through the effective co
pling K. In particular, for smallK, we havee2r1e22r'2
and the squeeze factorr goes to 0, which means the outp
field is classical. For our discussion below the specific
pressions ofu andw in terms of the physical parameters a
unimportant.

From the previous discussions and the results derive
Ref. @11# we have learned that the zeros ofM (V) are the
resonant frequencies of the optical-mechanical system
the valleys of the noise spectral densities are their real p
It is straightforward to show that forV equal to the real par
of the resonancesuM u}t2. Hence, on resonance, for typic
values of the physical quantitiesI 0 , r andf, the RHS of Eq.
~4.10! goes to a constant whent→0. This means that the
squeeze factorr does not grow much around the resonanc
On the other hand, the absolute value of the output sig
strength@the term involvingh in Eq. ~2.20!#, is given by

A2KtuDi u
hSQLuM u

h, i 51,2, ~4.11!

and because on resonance 1/uM u;1/t2, whent→0 the clas-
sical signal is resonantly amplified and the amplification
comes stronger and stronger ast→0 ~closed system!.

This means that, by contrast with QND techniques ba
on static correlations between shot noise and radiat
pressure noise@7,8#, in SR interferometers the ponderom
tive squeezingdoes notseem to be the major factor tha
enables the interferometer to beat the SQL. Indeed, whe
the amplitude of the classical output signal is amplified n
the resonances, the nonclassical behavior of the output
is not resonantly amplified. Therefore, the beating of
SQL in SR interferometers comes from a resonant amp
cation of the input signal: the whole system acts as an op
spring,13 as we have described more thoroughly in Ref.@11#,

13In this sense we could refer to a signal recycled interferom
as a SPRING detector, which could also stand for Signal Po
Recycling Interferometer Gravitational wave detector.
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and it was also derived for optical bar GW detectors by B
ginsky’s group@9#.

V. INCLUSION OF LOSSES IN SIGNAL-RECYCLING
INTERFEROMETERS

In this section we shall compute how optical losses aff
the noise in a SR inteferometer using the lossy input-out
relations for a conventional interferometer@7# and doing a
similar treatment of losses in the SR cavity. We shall co
tinue to use our extension of the KLMTV’s formalism a
developed in Sec. II. In Ref.@11# we show that when losse
are included a suitable control system can be implemente
circumvent the instabilities.

KLMTV @7# described the noise that enters the arm ca
ties of a conventional interferometer at the loss points on
mirrors in terms of a noise operator, whose state is
vacuum, with quadraturesn1 and n2. The resulting lossy
input-output relations read@7#

d15c1e2ibS 12
E
2D1AEeibn1 , ~5.1!

d25c2e2ibS 12
E
2D1AEeibn21A2K h

hSQL
eib

3F12
e

4
~31e2ib!G

2Ke2ibH c1F12
e

2
~31e2ib!G1Ae

2
n1J , ~5.2!

wheree52L/T andL is the loss coefficient per round trip i
the arm-cavity. For LIGO-IIT and L are expected to beT
50.033 andL;20031026, so e;0.01. The quantityE
which appears in Eqs.~5.1! and~5.2! is frequency dependen
and is given by

E5
2e

11~V/g!2
. ~5.3!

In the present analysis, as in Ref.@7#, we do not take into
account losses coming from the beam splitter. We exp
their effect to be small compared to the losses introduced
the SR cavity and the photodetection process. Figur
sketches the way we have incorporated losses. We des
the loss inside the SR cavity by the fraction of photons los
each bounce of the interior field off the SR mirror,lSR, and
we introduce associated noise quantum operatorspi( i 51,2)

r
er
6-15
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into the inward-propagating field operator at the SR mir
~see left panel of Fig. 7!. Equations~2.18! then become

e15A12lSR~t a11r f 1!1AlSRp1 ,
~5.4!

e25A12lSR~t a21r f 2!1AlSRp2 ,

and the noise operatorspi satisfy the commutation relation
~2.8!. We also assume that the state ofpi is the vacuum. We
include the losses of the photodetection process in an e
tive way, by modifying the output field operators and intr
ducing another noise fieldqi with i 51,2 ~see right panel of
Fig. 7!:

b1
L5A12lPD~t f 12r a1!1AlPDq1 ,

~5.5!
b2

L5A12lPD~t f 22r a2!1AlPDq2 .

Here, lPD is the photodetector loss. The noise quadrat
fieldsqi describe additional shot noise due to photodetec
04200
r

c-

e
n

and are assumed to satisfy Eq.~2.8! and to be in the vacuum
state. Following the procedure described in Sec. II, we de
from Eqs. ~5.1!, ~5.2!, ~5.4! and ~5.5! the following input-
output relations for the lossy SR interferometer~for simplic-
ity we setF50):

S b1
L

b2
LD 5

1

ML Fe2ibS C11
L C12

L

C21
L C22

L D S a1

a2
D 1A2KteibS D1

L

D2
LD h

hSQL

1e2ibS P11 P12

P21 P22
D S p1

p2
D 1e2ibS Q11 Q12

Q21 Q22
D S q1

q2
D

1e2ibS N11 N12

N21 N22
D S n1

n2
D G , ~5.6!

where, to ease the notation, we have defined
uantities
ML511r2e4ib22rS cos 2f1
K
2

sin 2f De2ib

1lSRrS 2r e2ib1cos 2f1
K
2

sin 2f De2ib1e rF2 cos2 b~2r e2ib1cos 2f!1
K
2

~31e2ib!sin 2fGe2ib. ~5.7!

Note thatML, similar to M in Eq. ~2.21!, has zeros in the lower- and upper-half complexV plane. Hence, the lossy SR
interferometer, similar to the lossless one, also suffers from instabilities. Nevertheless, we have shown in Ref.@11# that an
appropriate control system can cure them, as in the lossless case. In the following equations we give the various q
which appear in Eq.~5.6! accurate to linear order ine and lSR but to all orders inlPD. ~We expectlSR;0.02 andlPD
;0.1 @28#.! The various quantities read

C11
L 5C22

L 5A12lPDH ~11r2!S cos 2f1
K
2

sin 2f D22r cos 2b2
1

4
e@22~11e2ib!2r14~11r2!cos2 b cos 2f

1~31e2ib!K~11r2!sin 2f#1lSRFe2ibr2
1

2
~11r2!S cos 2f1

K
2

sin 2f D G J ,

C12
L 5A12lPDt2H 2~sin 2f1Ksin2 f!1

1

2
e sinf@~31e2ib!K sinf14 cos2 b cosf#1

1

2
lSR~sin 2f1K sin2 f!J ,

~5.8!

C21
L 5A12lPDt2H ~sin 2f2K cos2 f!1

1

2
e cosf@~31e2ib!K cosf24 cos2 b sinf#1

1

2
lSR~2sin 2f1K cos2 f!J ,

D1
L5A12lPDH 2~11r e2ib!sinf1

1

4
e@31r12r e4ib1e2ib~115r!#sinf1

1

2
lSRe

2ibr sinfJ ,

D2
L5A12lPDH 2~211r e2ib!cosf1

1

4
e@231r12r e4ib1e2ib~2115r!#cosf1

1

2
lSRe

2ibr cosfJ , ~5.9!

P115P225
1

2
A12lPDAlSRt~22r e2ib12 cos 2f1K sin 2f!,

P1252A12lPDAlSRt sinf~2 cosf1K sinf!, ~5.10!
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P215A12lPDAlSRt cosf~2 sinf2K cosf!,

Q115Q225AlPDH e22ib1r2e2ib2r~2 cos 2f1K sin 2f!1
1

2
e r@e22ib cos 2f1e2ib~22r22r cos 2b

1cos 2f1K sin 2f!12 cos 2f13K sin 2f#2
1

2
lSRr@2r e2ib22 cos 2f2K sin 2f#J ,

Q12505Q21, ~5.11!

N115A12lPDAe

2
t$K~11r e2ib!sinf12 cosb@e2 ib cosf2reib~cosf1K sinf!#%,

N2252A12lPDA2et~2e2 ib1r eib!cosb cosf,
~5.12!

N1252A12lPDA2et~e2 ib1reib!cosb sinf,

N215A12lPDAe

2
t$2K~11r!cosf12 cosb~e2 ib1r eib!cosb sinf%.
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Similarly to Sec. III A, we follow KLMTV’s method@7# to
derive the noise spectral density of a lossy SR interferom
@see Eq.~3.5!#:

Sh
z5

hSQL
2

2K t2uD1
L sinz1D2

L coszu2
@ uC11

L sinz1C21
L coszu2

1uC12
L sinz1C22

L coszu21uP11sinz1P21coszu2

1uP12sinz1P22coszu21uQ11sinz1Q21coszu2

1uQ12sinz1Q22coszu21uN11sinz1N21coszu2

1uN12sinz1N22coszu2#. ~5.13!

Exploring numerically this equation, we find that for the lo
levels expected in LIGO-II (e;0.01,lPD;0.1,lSR;0.02
@21#!, the optical losses have only a modest influence on
noise curves of a lossless SR interferometer. For exampl
Fig. 8 we compare the lossless noise spectral densities
the lossy ones for the two quadraturesb1 andb2. The main
effect of the loss is to smooth out the deep resonant vall
More specifically, for~i! the physical parameters used in Fi
2, ~ii ! a net fractional photon loss of 1% in the arm caviti
(e50.01) and 2% in each round trip in the SR cavity (lSR

50.02) and~iii ! a photodetector efficiency of 90% (lPD

50.1), we find that the losses produce a fractional loss
signal-to-noise ratio for inspiraling binaries@see Eqs.~3.8!,
~3.9!# of 8 and 21 %, for the first and second quadratur
respectively.

The reason why we get a modest effect from opti
losses as compared to schemes using squeezing or FD h
04200
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l
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dyne detections14 rests on the fact that our gain in sensitivi
mostly comes from resonant amplification, which is mu
less susceptible to losses than quantum correlations.
general consideration has long been understood by Bra
sky, Khalili and colleagues and underlies their motivation
the ‘‘optical bar’’ GW detectors@9#.

VI. CONCLUSIONS

In this paper we have extended the quantum formal
recently developed@7# for conventional interferometer
~LIGO-I/TAMA/Virgo !, to SR interferometer such as LIGO
II. The introduction of the SR cavity has been planned as
important tool to reshape the noise curves, making the in
ferometer work either in broadband or in narrowband co
figurations. This flexibility is expected to improve the obse
vation of specific GW sources@17#. Quite remarkably, our
quantum mechanical analysis has revealed other signifi
features of the SR cavity.

First, the SR mirror produces dynamical correlations b
tween quantum shot noise and radiation-pressure-fluctua
noise which break the light’s ability to enforce the SQL of
free mass, allowing the noise curves to go below the SQL
modest amounts: roughly a factor two over a bandwi
D f ; f . Before our work, researchers were unaware of
shot-noise–radiation-pressure correlations and thus om
them in their semiclassical analysis of the straw-man des
of LIGO-II @21#. The goal of beating the SQL in LIGO-II can
be achieved onlyif all sources of thermal noise can also
pushed below the SQL and indeed much R&D will go in

14Note that in KLMTV @7# they assumed a loss factor for en
mirrors which is 10% of our value, and they also did not take in
account losses coming from the photodetection.
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trying to push them downward. It turns out that even w
current estimates of the LIGO-II thermal noise@15#, which
are a little above the SQL, the net noise~thermal plus opti-
cal! is significantly affected by the shot-noise–radiatio
pressure correlations. Indeed, the correlations lift the nois
low frequencies 10 Hz&V/2p&50 Hz, as compared to th
semiclassical estimations, even though in this freque
range the optical noise may already be very much larger t
the SQL. This is due to the inaccuracy of the semiclass
method in estimating the effect of the radiation-press
force, which is important in this region. In the middle fr
quency range, i.e. near 100 Hz, the SQL-beating effect c
not lower the total noise much because of the thermal c
tribution. The effect of the correlations in the implementati
of LIGO-II will be clarified and sharpened once the reado
scheme has be specified@24#.

Second, we have learned that thedynamicalcorrelations
arise naturally from the nontrivial coupling between the a
tisymmetric mode of motion of the four arm-cavity mirro
and the signal recycled optical fields. This dynamical co
pling invalidates the naive picture, according to which t
arm cavity mirrors are subject only to random quantu
vacuum fluctuations. The SR interferometer responds t
GW signal as an optical spring@11#, and this oscillatory re-
sponse gives the possibility for resonant amplification of
GW signal. The optical-mechanical system is characteri
by two resonances and one of them is always unstable,
control system must be introduced to stabilize it@11#. In the
limit of a highly reflecting SR mirror we have worked ou
analytically a very simple equation which locates the po
tions of the resonant frequencies. Whereas the amplitud
the classical output signal is amplified near the resonan
the quantum noise is not particularly affected by them.

FIG. 8. Log-log plot ofASh(V)/Sh
SQL(g) versusV/g for the

two quadraturesb1 (z5p/2) and b2 (z50), including and not
including losses, withr50.9, f5p/220.47, I 05I SQL, e50.01,
lSR50.02 andlPD50.1. The noise curve for a conventional inte
ferometer and the SQL are shown as well.
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this suggests that the beating of the SQL in SR interfero
eters comes primarily from the resonant amplification of
input GW signal, as also occurs in ‘‘optical bar’’ GW dete
tors @9#.

The inclusion of losses does not greatly affect the
interferometer. This is due to the fact that the improvem
in the noise curves rests primarily on a resonant amplifi
tion and only modestly on ponderomotive squeezing. It
worthwhile to point out that the SR interferometers be
strong similarity to the ‘‘optical bar’’ detectors proposed b
Braginsky, Khalili and colleagues@9#. Both of them can be
viewed as oscillators with two different eigenfrequencie
However, because in SR interferometers the light plays
double role of providing the restoring force and being
probe to monitor the mirror displacements, we are forced
introduce in SR interferometers much higher laser power
circulate in the arm cavities~;1 MWatt!, than in the ‘‘optical
bar’’ scheme. Nevertheless, similar to the ‘‘optical ba
scheme, the SR interferometer is still less susceptible to
tical losses than many other schemes designed to bea
SQL.

It is now important to identify the best SR configuratio
i.e. the choice of the physical parameters~light powerI 0, SR
detuningf, reflectivity of SR mirrorr, quadrature phasez,
and the read-out scheme: homodyne or modulation or
modulation! that optimizes the signal-to-noise ratio for in
spiraling binaries, for low-mass x-ray binaries, and for oth
astrophysical GW sources. We shall discuss this issue
forthcoming paper@24#.

Finally, our analysis has shown that dynamical corre
tions, i.e. correlations that are intrinsic to the dynamics of
test mass-optical field system~i.e. they are not due to specifi
read-out schemes, as in the case of homodyne detection
conventional interferometer!, are present when the carrie
frequencyv0 is detuned from resonance (fÞ0) or antireso-
nance (fÞp/2) in the SR cavity. This suggests a speculati
that it could be worthwhile to investigate a LIGO-II configu
ration ~see Table I! without a signal recycling mirror, in
which the correlations are produced by detuning the a
cavities. However, this case will require a very careful ana
sis of the radiation-pressure force acting on the arm-ca
mirrors @20,19#.
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APPENDIX: REMARK ON COMMUTATION RELATIONS
AMONG QUADRATURE FIELDS IN

CAVES-SCHUMAKER TWO-PHOTON FORMALISM

As originally pointed out by Braginsky’s group@4# and
discussed by BGKMTV@16#, the output variables of the GW
interferometer should commute with themselves at differ
times, to guarantee that no other quantum noise is nece
ily introduced into the measurement result once further m
nipulations are performed on the output. Indicating gen
cally by O(t) the output quantity, the following condition
should be satisfied:

@O~ t !,O~ t8!#50 ; t,t8,

⇔ @O~V!,O †~V8!#50 ; V,V8. ~A1!

If we assume that the system’s output is one quadratur
the quantized electromagnetic field~EM! @see Eq.~2.10!#,
with the GW signal encoded at side-band frequencyV
around the carrier frequencyv0, then the presence of term
proportional to V/v0 in Eq. ~2.4! prevents the outpu
quadratures from commuting with themselves at differ
times. However, Braginskyet al. @16# anticipated that, in the
case of LIGO-I/TAMA/Virgo, the quadrature fields at th
dark port should anyway satisfy very accurately the Four
domain condition given by Eq.~A1!, because the side-ban
frequencyV ~1 Hz<V/2p<103 Hz! is much smaller than
the carrier frequencyv0 (v0;1015 s21). In this Appendix
we investigate this approximation in much more detail, e
mating the amount of extra noise which will be present in
final noise spectral density as a result of condition~A1! be-
ing violated. Henceforth, for simplicity we restrict our anal
sis to conventional interferometers.

If the readout scheme is implemented by photodetect
then only a small frequency band aroundv0 contains the
final output signal. Hence, it is physically justified to intr
duce a cutoffL in the frequency domain which automat
cally discards all the Fourier components of the EM fie
outside the range@v02L, v01L] with 0<L<v0. As a
consequence, Eq.~2.6! for the EM field can be rewritten a
@see also Eqs.~4.22! of Ref. @22##

EL~ t ![E
v02L

v01LA2p\v

Ac
ave2 ivt

dv

2p
1H.c.

5A2p\v0

Ac
e2 iv0tE

0

LdV

2p
~a1e2 iVt1a2e1 iVt!1H.c.

5A4p\v0

Ac
@cos~v0t !O1

L~ t !1sin~v0t !O2
L~ t !#,

~A2!

wherea1(V) and a2(V), with V,L, are defined by Eq
~2.3! and therescaledquadrature fieldsOi

L(t) are

Oi
L~ t ![E

0

LdV

2p
@aie

2 iVt1ai
†eiVt#, i 51,2, ~A3!
04200
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with the quadrature operators given by Eq.~2.7!. Evaluating
the commutation relations among the quadrature opera
we find @see also Eqs.~4.31! of Ref. @22##

@a1 ,a18#5@a2 ,a28#50, ~A4!

@a1 ,a18
†

#5@a2 ,a28
†

#52pd~V2V8!S V

v0
D , ~A5!

@a1 ,a28
†

#52@a2 ,a18
†

#52p id~V2V8!. ~A6!

Note that Eq.~A5! differs from the one appearing in Eq
~2.8!, where we approximatedai andai 8

† as commuting. The
non-vanishing commutation relations in Eq.~A5! explicitly
yield a nonvanishing two-time commutator forOi

L . In par-
ticular, a straightforward calculation gives (i 51,2)

CO
i
LO

i
L~ t,t8![@Oi

L~ t !,Oi
L~ t8!#

5 i
L2

v0
FLt cos~Lt!2sin~Lt!

p~Lt!2 G , t5t2t8.

~A7!

ThereforeOi
L(t) cannot be the final output and there must

some unavoidable additional quantum noise due to the
that Oi

L(t) has a nonvanishing two-time commutator.
LIGO-I/TAMA/Virgo this additional noise is introduced in
the output during the final process of photodetection. A m
detailed study would involve a very technical analysis of t
photodetection’s dynamics, but fortunately, as we shall se
the following, a simple estimation of the order of magnitu
of this additional quantum noise suggests that it is very sm
and we can realistically neglect it.

We find it convenient to estimate the additional quantu
noise by calculating the noise induced by the photodete
approximated as a linear measurement device coupled to
quadrature fields.15 Having fixed the cutoff frequencyL and
working in the Fourier domain, we can write the final outp
as

Oi
out~V!5Oi

L~V!1Zi
PD~V!1RO

i
LO

i
L~V!Fi

PD~V!,

~A8!

where

15Here we are assuming that as a consequence of the homo
detection, the EM field impinging on the photodetector is compo
of carrier light plus quantum fluctuations, and thus the light inte
sity measured by the photodetector is linear in the annihilation
creation operators.
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RO
i
LO

i
L~V![

i

\E0

1`

dteiVtCO
i
LO

i
L~ t,t2t!

5
1

2p\v0
S 2L1 ipV1V ln

L2V

L1V D .

~A9!

The last two terms in Eq.~A8! are the shot noise and th
back-action noise of the photodetector~PD! and describe the
efficiency and the strength of perturbation of the PD on
quadrature field, respectively. Let us assume that there i
correlation betweenZi

PD andFi
PD. Hence,Zi

PD andFi
PD sat-

isfy the uncorrelated version~3.16! of the uncertainty rela-
tion, that is

SZ
i
PDZ

i
PDSF

i
PDF

i
PD>\2. ~A10!

We are interested in evaluating the overall quantum no
We first write the output in the form signal1noise as

Oi
out~V!5Pih~V!1@Q i

L~V!1Zi
PD~V!

1RO
i
LO

i
L~V!Fi

PD~V!#, ~A11!

where Pih is the part ofOi
L(V) that contains the signal

while Q i
L(V) contains the quantum fluctuations. Using E

~A11!, the overall noise spectral density is (i 51,2)

Si~V!5
1

uP i u2
$SQ

i
LQ

i
L~V!1SZ

i
PDZ

i
PD~V!

1uRO
i
LO

i
L~V!u2SF

i
PDF

i
PD~V!%. ~A12!

The first term in Eq.~A12! describes the quantum noise of a
interferometer when the nonvanishing commutators of
quadrature fields have been ignored and ideal photodete
is applied. The second term in Eq.~A12! describes the addi
tional shot noise introduced by the photodetection proc
Finally, the third term comes from the back-action force a
ing on the measured quadrature (i 51 or 2) because it doe
not commute with itself at different times. Let us notice th
given Eq. ~A10!, the second and third noise contributio
appearing on the RHS of Eq.~A12! are complementary. In
deed, the larger the shot noise, the weaker the minim
force the photodetector must apply to the quadrature fie
and the smaller the back-action noise. More specifica
there is a lowest achievable value for the PD part in E
~A12! given by
n

04200
e
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e.

.

e
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-

,

m
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1

uP i u2
@SZ

i
PDZ

i
PD~V!1uRO

i
LO

i
L~V!u2SF

i
PDF

i
PD~V!#

>
2uRO

i
LO

i
L~V!u\

uP i u2

5
2

uP i u2
U L

pv0
S 11

V

2L
ln

L2V

L1V D1 i
V

v0
U. ~A13!

Using Eq. ~3.8! we derive 1/uS i u25hSQL
2 /2K and SQ

i
LQ

i
L

5(K 211).1. Recalling that 10 Hz<V/2p<103 Hz and
v0;1015 sec21, fixing L to a value larger than the typica
V, e.g., L/2p;10 MHz, and adjusting the PD such th
SZ

i
PDZ

i
PD andSF

i
PDF

i
PD satisfy the minimal uncertainty relatio

@the equality sign in Eq.~A10!#, we find that the minimal
achievable PD noise is;1027 times the conventional sho
noise. Therefore, we can totally ignore the quantum no
introduced by the fact that the quadrature fields do not co
mute with themselves at different times in Eq.~A5!. Note the
importance of the cutoffL. If we had takenL;v0, the limit
on the PD noise would have been of the same order of m
nitude as the shot noise for a conventional interferometer
it would not have been realistic to neglect the quantum no
introduced by the non-vanishing commutation relations
the quadrature fields.

So far we evaluated the minimum quantum noise that
photodetector, coupled linearly to the quadrature field,
introduce. Let us now try to give a realistic value of it. T
estimateSZ

i
PDZ

i
PD, we can just recall that in the case of a los

photodetector we have~see the discussion of lossy interfe
ometers in Sec. V!

Zi
PD;AlPDpi , ~A14!

where pi with i 51,2 are quadrature operators in th
vacuum state. We expectlPD;0.120.2, henceSZ

i
PDZ

i
PD

.10223Sshot noise
conv , which is five orders of magnitude large

than the lowest achievable limit discussed above w
L/2p;10 MHz. Therefore, if one can justify fixing the cu
off L/2p at 10 MHz, and if the uncertainty relation~A10! is
satisfied with the equality sign, then one can conclude t
the inefficiency will dominate over the minimum possib
back-action noise by five orders of magnitude. Hence, we
justified in disregarding the nonvanishing two-time comm
tators of the quadrature fields in Eq.~A5!.
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