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Data-analysis strategy for detecting gravitational-wave signals from inspiraling compact binaries
with a network of laser-interferometric detectors
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A data-analysis strategy based on the maximum-likelihood method~MLM ! is presented for the detection of
gravitational waves from inspiraling compact binaries with a network of laser-interferometric detectors having
arbitrary orientations and arbitrary locations around the globe. For simplicity, we restrict ourselves to the
Newtonian inspiral wave form. However, the formalism we develop here is also applicable to a wave form with
post-Newtonian~PN! corrections. The Newtonian wave form depends on eight parameters: the distancer to the
binary, the phasedc of the wave form at the time of final coalescence, the polarization-ellipse anglec, the
angle of inclinatione of the binary orbit to the line of sight, the source-direction angles$u,f%, the time of final
coalescencetc at the fiducial detector, and the chirp timej. All these parameters are relevant for a chirp search
with multiple detectors, unlike the case of a single detector. The primary construct on which the MLM is based
is the network likelihood ratio~LR!. We obtain this ratio here. For the Newtonian inspiral wave form, the LR
is a function of the eight signal parameters. In the MLM-based detection strategy, the LR must be maximized
over all of these parameters. Here, we show that it is possible to maximize itanalyticallywith respect to four
of the eight parameters, namely,$r ,dc ,c,e%. Maximization over the time of arrival is handled most efficiently
by using the fast-Fourier-transform algorithm, as in the case of a single detector. This not only allows us to
scan the parameter space continuously over these five parameters but also cuts downsubstantiallyon the
computational costs. The analytical maximization over the four parameters yields the optimal statistic on which
the decision must be based. The value of the statistic also depends on the nature of the noises in the detectors.
Here, we model these noises to be mainly Gaussian, stationary, and uncorrelated for every pair of detectors.
Instances of non-Gaussianity, as are present in detector outputs, can be accommodated in our formalism by
implementing vetoing techniques similar to those applied for single detectors. Our formalism not only allows
us to express the likelihood ratio for the network in a very simple and compact form, but also is at the basis of
giving an elegant geometric interpretation to the detection problem. Maximization of the LR over the remain-
ing three parameters is handled as follows. Owing to the arbitrary locations of the detectors in a network, the
time of arrival of a signal at any detector will, in general, be different from those at the others and, conse-
quently, will result in signal time delays. For a given network, these time delays are determined by the
source-direction angles$u,f%. Therefore, to maximize the LR over the parameters$u,f% one needs to scan
over the possible time delays allowed by a network. We opt for obtaining a bank of templates for the chirp time
and the time delays. This means that we construct a bank of templates overj, u, and f. We first discuss
‘‘idealized’’ networks with all the detectors having a common noise curve for simplicity. Such an exercise
nevertheless yields useful estimates about computational costs, and also tests the formalism developed here.
We then consider realistic cases of networks comprising the LIGO and VIRGO detectors: These include
two-detector networks, which pair up the two LIGOs or VIRGO with one of the LIGOs, and the three-detector
network that includes VIRGO and both the LIGOs. For these networks we present the computational speed
requirements, network sensitivities, and source-direction resolutions.
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I. INTRODUCTION

The existence of gravitational waves, which is predic
in the theory of general relativity, has long been verifi
‘‘indirectly’’ through the observations of Hulse and Taylo
@1#. The inspiral of the members of the binary pulsar syst
named after them has been successfully accounted fo
terms of the back reaction due to the radiated gravitatio
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waves@1,2#. However, detecting such waves with man-ma
‘‘antennas’’ has not been possible so far. Nevertheless,
problem has received a lot of attention this decade, es
cially, due to the arrival of laser-interferometric detecto
which are expected to have sensitivities close to that requ
for detecting such waves.

A gravitational-wave~GW! source that is one of the mos
promising candidates for detection by Earth-based interfe
metric GW detectors is the inspiraling compact binary@3#.
Present estimates show a significant number of coalesc
events every year of such binaries that produce waves st
enough to be detectable by current detectors during their
spiral phase, a few seconds before the onset of coalesce
©2001 The American Physical Society04-1
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Moreover, the time evolution of these wave forms~chirps! is
well understood in the frequency band where the pres
interferometric detectors are most sensitive.

In the past, a sizable amount of research has been don
the problem of detecting gravitational waves using a sin
bar or interferometric detector. However, very little work h
been devoted to develop techniques to analyze the data
a network of interferometric detectors to detect chir
Searching for chirps using a network of detectors is gain
importance due to~a! its superior sensitivity in the manner o
that of a constituent detector and~b! improving feasibility for
a real-time computational search. As has been argued be
~see, e.g., Ref.@4#!, for a given false-alarm probability, th
threshold for detection is lowered as the number of detec
is increased. This increases the probability of detection
‘‘coherently’’ analyzing the signals from a network rath
than a single detector. One can think of simpler approac
to the network problem where one matches event lists fr
different detectors in the network and sets up thresholds
the estimated parameter differences. A formalism for in
preting coincidences of burst events in a pair of interfero
eters has been suggested by Schutz and Tinto@5#. However,
such approaches, even if they were extended to the cas
chirps, would be non-optimal, because they do not use
phase information of a signal at different detectors. The
herent search strategy described here crucially uses p
information.

One of the early papers that came close to discussing
problem of detecting a Newtonian chirp using a netwo
optimally was that of Finn and Chernoff@6#. This paper ob-
served that since the orientations of the two Laser Interfe
metric Gravitational Wave Observatory~LIGO! detectors
were very similar, their joint sensitivity was larger than a
one of them. Bhawal and Dhurandhar also addressed th
sue of detection using multiple detectors@7#. Their main aim
was to find the optimal recycling mode of operation of t
planned laser interferometric detectors for which a mean
ful coincidence detection of broadband signals could be p
formed. However, the issue of how a network of detect
with arbitrary orientations and arbitrary locations on t
globe can be optimally used as a ‘‘single’’ detector of sen
tivity higher than that of any of its subsets of individu
detectors was not addressed in these earlier papers.

Use of a detector network has nevertheless received
siderable attention in the context of the parameter estima
problem. A formalism for using the responses of multip
detectors, in the absence of noise, to infer the paramete
a chirp ~also known as the ‘‘inverse problem’’! was devel-
oped by Dhurandhar and Tinto@8,9#. Some of the other no
table works that address this issue in the presence of n
are Refs.@10–14#. The prime motivation behind using a ne
work in this regard is that the larger the number of detecto
the smaller are the errors in estimated values of the bin
parameters. However, the starting point in these approa
is the assumption that the problem of detection has alre
been addressed and the detector-specific chirp-templates
result in ‘‘super-threshold’’ cross correlations with the ind
vidual detector outputs, have been picked.

A formalism was developed in Ref.@15# that sought an
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optimal detection strategy for chirps in the simplifying ca
of a network with closely located laser-interferometric dete
tors and with idealized detector noise. This work was ba
on a coherent search. Its main result was that the opti
statistic for a network of up to three such detectors w
proven to be the sum of the signal-to-noise~SNR! ratios of
the individual detectors. It was also shown that the sensi
ity of such a network improved as roughly the square-roo
the number of detectors in the network. This formalism w
extended to the case of arbitrarily located detectors in R
@16#, which showed a way to reduce the network statis
such that the number of chirp parameters over which a
merical search is required for detecting chirps drops fr
eight to three. This paves the way for a vast reduction
computational speed requirements and makes a multiple
tector search for chirps much more feasible. One of the m
aims of this paper is to formulate a data-analysis strategy
implements these formal findings in the case of existing a
upcoming networks and to provide estimates on the requ
computational speeds, etc.

As the members of a binary orbit around their center
mass, they lose energy in the form of gravitational wav
This results in their inspiral. Consequently, they emit gra
tational waves with monotonically increasing amplitude a
frequency@17#. Although the gravitational wave form origi
nating from an inspiraling binary is known accurately up
the 2.5 post-Newtonian~PN! order @18#, nevertheless as a
first calculation we limit our study to the detection of th
Newtonian chirp. This is because our primary aim here is
develop the new formalism, namely, that of optimally usi
the data from anetworkof detectors to detect a chirp. W
find evidence of the applicability of our formalism to high
post-Newtonian orders. We also find for the Newtonian s
nal that there is essentially no correlation between the par
eters describing the masses and the direction angles to
source when the noise curves are assumed to be identica
all the detectors in the network. This has the following im
portant implications: The total number of templates is th
just a product of number of templates for a single detec
and the number of templates needed to scan source d
tions. If this property holds also for the PN case, then,
effect, we need to obtain the number of templates for
directions only and club together with this the informatio
we have on the number of templates for a PN signal in
single detector. We hope to address this issue in deta
future work.

In our analysis, we assume that the noise in each dete
is predominantly stationary and Gaussian, with occasio
contamination from non-Gaussian events. Indeed, the
data stream from the detectors is not expected to be pu
stationary and Gaussian, unlike what is assumed in mos
the GW data-analysis literature thus far. In fact, the d
from the Caltech 40 meter prototype interferometer have
expected broadband noise spectrum, but superposed on
are several other noisy features@19#, such as long-term sinu
soidal disturbances arising from suspensions and elec
main harmonics, which have been studied in other wo
@20,21#. There are also transients occurring every few m
utes, typically due to servo-controls instabilities or mecha
4-2
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cal relaxation in suspension systems, etc. Adaptive meth
are being explored to combat high amplitude ring-downs
sinusoids occurring in the data@22#, by effectively removing
them from the data, so that the data are ‘‘cleaned’’ fro
these non-Gaussian features. In the improved detectors o
future, it is expected that the noise will tend to Gaussian
and may only be occasionally contaminated by non-Gaus
events. It is in this spirit that our above assumption about
noise must be taken. The strategy we adopt in dealing w
such a detector noise is to assume it to be stationary
Gaussian for the purposes of our statistical analyses. Suc
assumption is justified in practice provided one vetoes
detections due to the occasional non-Gaussian events o
ring in the data obtained from the detectors. The veto
criterion we propose is an extension of thex2 criterion used
in Ref. @19#. This model of the noise is simple enough so th
analytical methods can be used for the approach we tak

We also assume that noises to be uncorrelated among
ferent pairs of detectors. When the detectors are widely s
rated around the globe, correlations among the noises of
ferent detectors are expected to be negligible, and
assumption remains valid for such a case. For most netw
of proposed detectors this is true, unless it consists of the
coincident detectors at Hanford.1 In that case, a more gener
analysis is necessary that takes into account possible c
lations between the noises in different detectors. Such
approach is being pursued by Finn@23#. The only other as-
sumption we make on the detector noise is that it is addit

We use the maximum-likelihood method for optimizin
the detection problem. The problem is formulated by obta
ing a single likelihood-ratio~LR! for the entire network. A
statistic derived from a similar construct was used earlie
Refs. @24,25# to define a strategy to search for bursts in t
outputs of a network of bar detectors. Here, we define
‘‘network data output,’’x, as a single network vector, th
components of which are the individual detector outpu
Similarly, the ‘‘network signal,’’s, is defined to be a single
network vector, the components of which are the individ
detector signals. Since we assume the noise in different
tectors to be independent, the probability density funct
~PDF! for the noise of the network is just a product of th
PDFs of noise in the individual detectors. The LR is then
simple expression in terms of the norm ofs and the inner
product ofx and s. In this form, the LR is a function of a
complete set of eight independent parameters that chara
ize the Newtonian chirp signal of an inspiraling binary.
contrast, the number of parameters characterizing a b
event are typically less. As we show here, the largenes
the parameter set defining a chirp introduces intensive c
putational costs to carry out a search. Devising a metho
reduce these costs by orders of magnitude takes us be
what was achieved in the earlier papers.

For the assumptions made on the detector noises, a
work’s logarithmic likelihood ratio~LLR! turns out to be the

1The Hanford site has two detectors with arm-lengths of 4 km
2 km, respectively.
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sum of the individual detector’s LLRs. The form of LLR
allows us to deduce the network matched-filter in a straig
forward way; it turns out to be anM-dimensional vector with
components that are just the normalized single detector t
plates of Sathyaprakash and Dhurandhar@26# ~henceforth re-
ferred to as SD!. The problem of detection then reduces
the maximization of LLR over the parameters and compar
its maximized value with the pre-determined detecti
threshold. We argue that this step can be implemented
way similar to the one suggested in SD.

To obtain the maximum likelihood ratio~MLR!, the LR
has to be maximized over the eight parameters: the dista
to the binary systemr, the phase of the wave form at the tim
of coalescencedc , the polarization-ellipse anglec, the incli-
nation of the binary orbite, the direction angles$u,f%, the
time of final coalescence at the fiducial detectortc , and the
chirp time j. In principle, this can always be done nume
cally using a grid in the eight dimensional parameter spa
In practice, such a strategy is not only computationally
feasible but, as we show in this paper, is also wasteful. T
first important result in this paper is a new representation
the signal, which is expressed here in terms of the comp
expansion coefficients of the wave and the detector tenso
a basis of symmetric, trace-free~STF! tensors of rank 2.
Such a representation of the signal not only allows us
express the LR for the network in a very simple and comp
form, but also brings out the symmetries in the respo
functions of the detectors and is at the basis of giving a no
geometric interpretation to the detection problem. Maximiz
tion of the LR over four of the eight parameters can be p
formed analytically using the symmetries in the respons
which are clearly brought out when the responses are
pressed in terms of the Gel’fand functions. Further, the f
Fourier transform~FFT! can be used to maximize the LLR
over the parametertc , as in the case of a single detector. T
network template is constructed by taking into account
propriate time-delays at the individual detector sites.

The analytic maximization and the FFT have the follo
ing advantages:

~1! They allow us to scancontinuouslythe parameter
space for the five parametersr ,dc ,e,c and tc .

~2! They save substantially on the computational cost.
We are then left with the three parameters, namely,j, u,

and f. A full sky search over (u,f) maps to a time-delay
window, consisting of all possible time-delays, for a giv
network. The search over the time-delay window may
performed by using the samples of the cross correlations
tween the signal and the detector outputs or by construc
a template bank. The latter approach has the advantag
incorporating the desired mismatch related to the fractio
loss in signal-to-noise ratio. Turning the argument arou
the template bank can also be used as guideline to re-sa
the data at a rate that is consistent with the desired mism
and then scan over all samples in the time-delay windo
We, therefore, opt to construct a template bank inj, u, and
f. This is efficiently obtained by first computing the metr
as given by Owen@27#. We then obtain the volume of th
parameter space, given the metric, and divide this volume
the volume spanned by a template to obtain the numbe

d

4-3
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templates. From this information, we can easily evaluate
computational costs for the search. Secondly, the metri
essentially the Fisher information matrix and its inver
yields the covariance matrix from which errors in the para
eters can be obtained.

We apply our formalism to analyze several networks
detectors. First, we examine idealized networks, with all
tectors having the LIGO-I noise. Such an exercise never
less yields useful estimates of computational costs while
the same time simplifying the calculations and providing
valuable insights. We then consider the LIGO-VIRGO n
work with their respective noise curves. The computatio
for this case are done numerically. For these networks
estimate the computational speed requirements, sensitiv
and the resolution in the direction to the source. We find t
the computational costs are high even for the two-dete
network. The online data processing speeds required ar
terms of Gflops and for a 3 detector network the onlin
speeds needed escalate to few tens of Tflops. The c
would go up further when PN corrections are incorpora
into the wave form. For example, for LIGO-I noise and a
lowing a maximum mismatch of 3% between the signal a
the template, the number of templates required increases
factor of about 4 or 5@28#. Hence, even for a network searc
ing for PN-corrected wave forms, one may expect the co
putational costs to increase by similar factor. Clearly, o
results show that use of hierarchical search methods
called for. Assuming the individual masses to be greater t
0.5M ( , and with LIGO-I noises in the detectors at Hanfo
and Louisiana, the online computing speed requirement is
Gflops, for a 3% mismatch between the signal and the t
plate. The corresponding figure for one of the LIGO det
tors and VIRGO is 170 Gflops. For the three detector LIG
VIRGO network, the cost rises to few tens of Tflops. T
sensitivity roughly scales asAM or a little less, whereM is
the number of detectors. The resolution in direction is ab
a fraction of a degree for the networks where we have
sumed LIGO-I noise and a signal-to-noise ratio of 12.

The paper is organized as follows. We begin by setting
in Sec. II the basic mathematical framework required for o
formalism. This includes a discussion of the various relev
coordinate frames and their relationships with one other.
also introduce the wave and detector tensors, using which
define the signal at a detector. The signal at a detector is
used to define the network signal and infer the network
tistic. In Sec. III, we present the Newtonian chirp in its f
miliar form. This allows us to define the role of each para
eter influencing the wave form. It also introduces importa
notations that we follow in the rest of the paper. We th
derive a less familiar expression for the signal induced b
chirp in a detector. This new representation for the chi
signal simplifies the analysis associated with a netwo
based detection strategy. In Sec. IV, we show how the
tection problem can be optimally addressed using
maximum-likelihood method. We present a single likeliho
ratio for the entire network. It has a very simple form owin
to our use of the new representation for the signal. The LR
analytically maximized first with respect tor and dc in the
well established way@26,15#, and then with respect toc and
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e using the symmetry properties of the detector respon
@16#. We then show how the FFT can be used to efficien
maximize over the time of final coalescence or, alternative
the time of arrival at a fiducial detector. This is followed b
a construction of the network template and the network c
relation vector. The window consisting of all possible tim
delays is discussed. In Sec. V, we construct the template b
on the rest of the parameter space, i.e., on$j,u,f% by ex-
tending Owen’s@27# method and present a way of arriving
the number of templates required. We then give express
for the computational costs and the resolutions achievabl
parameter values. Section VI is devoted to the discussio
several networks including the realistic network of LIGO
and VIRGO. In Sec. VII, we discuss the statistical propert
of the optimal network statistic. We calculate the false ala
and the detection probabilities associated with the netw
statistic, and obtain a relation between the network sens
ity and the number of detectors in a network. We also disc
the case where the detector noise is contaminated by
Gaussian noise events and suggest a vetoing criterion b
on thex2 test.

We use the following convention for symbols in this p
per, unless otherwise specified. When it is useful to ke
track of the complex nature of a network-based or individ
detector-basedvariablewe denote it by an uppercase Rom
letter, whereas the lower case letters are reserved for
variables.2 Network-based vectors are displayed in the sa
serif font. The label I in the superscript or subscript of
variable denotes a~real! natural number that associates
with a particular detector. It ranges from 1 toM, whereM is
the total number of detectors in a network. It can be cons
ered as a vector index over detectors. We use the indexI for
several of the network variables. However, certain quanti
that do not obviously display a vector character, but s
pertain to a detector,I, are denoted by enclosing the index
parentheses. Einstein summation convention over repe
indices is used for brevity, unless explicitly stated.

II. MATHEMATICAL FRAMEWORK

A. Reference frames

Our first aim is to obtain a quantity that would define t
responseof an arbitrary network of broadband detectors
an incoming gravitational wave. In this quest, it is importa
to understand how the responses of arbitrarily oriented
arbitrarily located individual detectors to such a wave rel
to one another. This is aided by introducing the three diff
ent frames of reference that arise naturally in such a probl
namely,~i! the wave frame,~ii ! the network frame, and~iii !

2Note that quantities such as the gravitational constant,G, though
written in upper case, are not complex since they do not repre
any inherent characteristic of the network or an individual detec
On the other hand, we shall not use an uppercase letter to den
complex quantity when its complex nature is apparent from ot

means, such as by the use of a tilde, e.g., inñ, which denotes the, in
general, complex Fourier transform of the real quantityn.
4-4
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DATA-ANALYSIS STRATEGY FOR DETECTING . . . PHYSICAL REVIEW D64 042004
the frame of a representative detector in the network.
define these reference frames in terms of the following rig
handed, orthogonal, three-dimensional Cartesian coo
nates:

~i! Wave frame(X,Y,Z): The gravitational wave travel
along the positiveZ-direction;X andY denote the polariza
tion axes of the wave.

~ii ! Network frame(xE ,yE ,zE): There is no unique defi
nition of this frame. For Earth-based detectors being d
cussed here, if the network has a large number of detec
~say,M.3), a convenient choice is a frame attached to
center of the Earth. ThexE axis lies along the line joining
Earth’s center and the equatorial point that lies on the m
ridian passing through Greenwich, England. It points radia
outwards. ThezE axis is taken to lie in the direction of th
line passing through the center of Earth and the north p
The yE axis is chosen to form a right-handed coordina
system with thexE andzE axes.

For a network consisting ofM<3 detectors, certain cal
culations can be simplified by using the fact that the cor
stations~or hubs! of all the detectors will lie on a single
plane. Specifically, forM53 we define the network fram
such that one of the detectors is at its origin, a second de
tor is on one of the coordinate axes, say,z, and the third lies
on one of the coordinate planes containing thez axis, say, the
x2z plane. Later in the text when we consider various e
amples of three-detector networks, we choose this as the
work frame.

~iii ! I-th detector frame(x(I ) ,y(I ) ,z(I )) : This denotes the
orthogonal coordinate frame attached to the detector lab
I. The x(I )2y(I ) plane contains the detector arms and is
sumed to be tangent to the surface of the Earth. Thex(I ) axis
bisects the angle between the detector’s arms. The direc
of the y(I ) axis is chosen in such a way that the detec
frame forms a right-handed coordinate system with thez(I )
axis pointing radially out of Earth’s surface.

Apart from the above choices for frames, we define
fourth frame, namely, the frame of a ‘‘fiducial’’ detecto
~henceforth referred to as the ‘‘fide’’!. This frame serves as
reference frame with respect to which the locations or ori
tations of each of the detectors in a network shall be sp
fied. Indeed, we will develop our whole formalism for a ge
eral network using the fide frame as a reference. It is o
towards the end, when we consider specific cases of
works, shall we identify the fide frame with one of the thr
frames defined above, depending upon suitability.

Physical quantities in these frames are related by ortho
nal transformationsO that rotate one frame into another. L
xwave, xfide andxdetector(I) denote the 3D vectors correspon
ing to the frames described by the subscript. Then the tra
formations between the frames are given by

xwave5O~f,u,c!xfide, xdetector(I)
5O~a (I ) ,b (I ) ,g (I )!xfide,

~2.1!

where our definition of the orthogonal matrixO is the same
as that given in Ref.@29#, and its arguments are the Eul
angles connecting the respective frames of references.
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One can imagine yet another frame attached to the so
whosez axis is along the orbital angular-momentum vec
of the binary. The angle,e, between this vector and our lin
of sight to the binary is termed as the inclination angle a
has the range@0,p#. The associatedx2y plane specifies the
plane of the binary. It is then possible to orient thex andy
axes on this plane in such a way that a rotation of the w
frame through the Euler angles, (0,e,0), aligns it with the
source frame.3

B. Wave tensor, detector tensor, and beam-pattern functions

In the transverse trace-free~TT! gauge, the non-vanishing
components of a gravitational-wave metric fluctuation,hmn ,
in the wave frame arehxx52hyy[h1 , hxy5hyx[h3 ,
which are the two linear-polarization components of t
wave. Its spatial part are customarily identified as twice
wave tensor,wi j , where i and j refer to space indices an
take values 1,2, and 3~see Ref.@8#!. In the TT gauge, the
wave tensor is a symmetric trace-free~STF! tensor of rank
2.4 In any arbitrary frame, the wave tensor can be expres
in terms of its circular-polarization components as

wi j ~ t !5
1

2
@„h1~ t !1 ih3~ t !…eR

i j 1„h1~ t !2 ih3~ t !…eL
i j #,

~2.2!

whereeR,L
i j are the right and left-circular polarization tenso

~STF!, respectively which obey the orthonormality cond
tions, eL,R

i j eL,R i j* 51, eL,R
i j eR,L i j* 50 and the reality condi-

tion eL
i j * 5eR

i j . Thus the wave-tensor expression~2.2! sim-
plifies to

wi j ~ t !5R@„h1~ t !1 ih3~ t !…eR
i j #, ~2.3!

whereR@A# denotes the real part of a complex quantityA.
In an arbitrary reference frame, theeR,L

i j can be expanded
in a basis of STF-2 tensors,Y 2n

i j @8,9# ~see Appendix A!:

eR
i j 5A8p

15
T22

nY 2n
i j and eL

i j 5A8p

15
T2

nY 2n
i j ,

~2.4!

where the expansion coefficients,T62
n , with n50,61,62,

are Gel’fand functions@30#. These functions depend on th
Euler angles through which one must rotate the refere

3However, since we will be expressing the gravitational-wa
metric fluctuations,hmn , in the transverse-traceless gauge~see be-
low!, in addition to this rotation we must also projecthmn orthogo-
nal to the direction of the wave in order to obtain its components
the wave frame. In that case the polarization-ellipse anglec can be
included as an Euler angle in the transformationO(c,e,0) of the
wave frame to the source frame, instead of including it in the ro
tion from the fide frame to the wave frame, as is traditionally do
This observation will be used in Sec. IV to obtain a reduced stati
for the detection of chirps.

4See Appendix A for properties of such tensors.
4-5
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frame to the wave frame. If the reference frame is chose
be the fide, then these angles are just (f,u,c). While imple-
menting more than a single frame-transformation in relat
these two frames, the addition theorem~A4! for Gel’fand
functions is used to obtain the required wave tensor. In s
a case, the wave tensor depends on more than one s
Euler angles.

The I-th detector tensor,di j
I , is given by

di j
I 5n(I )1in(I )1 j2n(I )2in(I )2 j , ~2.5!

wheren(I )1 andn(I )2 are the unit vectors along the arms
the I-th interferometer, which is taken to have orthogon
arms ~see Appendix B!. Like the polarization tensors, eve
di j

I is an STF tensor of rank 2. Hence, in any frame it can
expanded in a basis of STF-2 tensors. In such a basis
components ofdi j

I can be expressed in terms of Gel’fan
functions,T62

n @see Eq.~B3!#. In the fide frame, these func
tions depend on the Euler angles$a (I ) ,b (I ) ,g (I )%, which
specify the relative orientation of theI-th detector with re-
spect to the fide.

When detectors are distributed around the globe there
in general, relative delays in the arrival times of a particu
phase of a given wave at different locations. Lett (I )(u,f) be
the relative delay between the arrival times at theI-th detec-
tor and the fide, where the source direction is given
(u,f). If n̂(u,f) is the unit vector along the direction of th
wave, i.e.,n̂(u,f)5Ẑ, then

t (I )~u,f!5

~r(I )2r( f )!•n̂~u,f!

c
, ~2.6!

wherer(I ) andr( f ) are the position vectors of theI-th detector
and fide, respectively, with respect to any given refere
frame. Note thatt (I )(u,f) can take positive as well as neg
tive values.

The signal in theI-th detector is the scalar

sI~ t !5wi j ~ t2t (I )!di j
I , ~2.7!

which, by definition, is invariant under coordinate transfo
mations. Above,wi j (t) is the wave tensor at the location o
the fide at timet. The above definition shows that the sign
depends on the projections of the polarization tensors,eL,R

i j ,
onto the I-th detector tensor,di j

I , viz. FI5eL
i j di j

I , FI*
5eR

i j di j
I These are the beam-pattern functions for the le

and right-circular polarizations, respectively. They depend
the direction of the source and the orientation of the detec
Owing to any motion of the source with respect to the det
tor this orientation can change with time. Hence, in gene
FI are functions of time. Since we will be concerned he
with only short-duration signals, we will assume these fu
tions to be independent of time~which is valid to a very
good approximation!. Using Eq.~2.3! in Eq. ~2.7!, the signal
takes the form

sI~ t !5R@„h1
I ~ t !1 ih3

I ~ t !…FI* #, ~2.8!
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where h1
I (t)[h1(t2t (I )) and h3

I (t)[h3(t2t (I )) are the
time-delayed amplitudes of the two polarizations of the wa
at detectorI.

C. Network signal and network statistic

The signal from an inspiraling binary will typically no
stand above the broadband noise of the interferometric
tectors; the concept of an absolutely certain detection d
not exist in such a case. Only probabilities can be assigne
the presence of an expected signal. In the absence of p
probabilities, such a situation demands a decision strat
that maximizes the detection probability for a given fal
alarm probability. This is termed as the Neyman-Pearson
terion@31#. Such a criterion implies that the decision must
based on a statistic called the likelihood ratio~LR!. It is
defined as the ratio of the probability that a signal is pres
in an observation to the probability that it is not. This is t
criterion we employ in formulating our detection strategy.

In order to define a strategy to search for signals in
noisy environment, it is important to recognize the charac
istics of the noise. Here, we assume that the noise,nI(t), in
the I-th detector~a! has a zero mean and~b! is mostly
stationary5 and statistically as well as algebraically indepe
dent of the noise in any other detector. These requirem
are mathematically summarized, respectively, as

nI~ t !50, ~2.9a!

ñI* ~ f !ñJ~ f 8!5sh(I )~ f !d~ f 2 f 8!d I
J ,

~2.9b!

where the over-bar on a symbol denotes the ensemble a
age of that quantity and the tilde denotes the Fourier tra
form, ñI( f )5*2`

` nI(t)e22p i f tdt and sh(I )( f ) is the two
sided power-spectral-density~PSD! of the I-th detector. We
assume the noise to be additive. This implies that whe
signal is present in the data, thenxI(t)5sI(t)1nI(t) other-
wise xI(t)5nI(t). Finally, we assume that the noises a
Gaussian, i.e., the two moments in Eq.~2.9! are sufficient to
completely characterize the noises statistically.

As we shall see below, an important tool in the theory
detection of known signals in noisy environments is the cr
correlation between a signal template and a detector’s out
For two real functionsa(t) and b(t), the cross-correlation
pertaining to theI-th detector is given by,

^a,b& (I )52RE
0

`

d f
ã* ~ f !b̃~ f !

sh(I )~ f !
. ~2.10!

For complex functiona1(t)1 ia2(t), we adopt the conven
tion ^a11 ia2 ,b&5^a1 ,b&2 i ^a2 ,b&. This definition is con-

5In reality, detector noise contains non-Gaussian and n
stationary components. To accommodate such features in our t
ment, we use vetoing techniques, which are discussed in Sec. V
4-6
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sistent with the convention of Eq.~2.10! where the complex
conjugation is performed on the first entry in the inner pro
uct.

For a network ofM detectors, the data consist ofM data
trains, $xI(t)uI 51,2, . . . ,M and tP@0,T#%. The network
matched-template can be obtained naturally by
maximum-likelihood method, where the decision wheth
the signal is present or not is made by evaluating the lik
hood ratio~LR! for the network@31#. Under the assumption
made on the noise, the network LR, denoted byl, is just a
product of the individual detector LRs. In addition, fo
Gaussian noise, the logarithmic likelihood ratio~LLR! for
the network is just the sum of the LLRs of the individu
detectors@15,16#,

ln l5(
I 51

M

ln l (I )5(
I 51

M

^sI ,xI& (I )2
1

2
^sI ,sI& (I ) . ~2.11!

The network LLR takes a compact form in terms of the n
work inner product,

^s,x&NW5(
I 51

M

^sI~ t !,xI~ t !& (I ) , ~2.12!

where

s~ t !5„s1~ t !,s2~ t !, . . . ,sM~ t !… ~2.13!

is the network template-vector, which comprises of in
vidual detector templates as its components, and

x~ t !5„x1~ t !,x2~ t !, . . . ,xM~ t !… ~2.14!

is the network data vector. It can be shown by using
Schwarz inequality that the network template,s, defined
above yields the maximum signal-to-noise~SNR! amongst
all linear templates and, hence, is the matched template
shown in Ref.@15#, in terms of the above definitions, th
network LLR takes the following simple form:

ln l5^s,x&NW2
1

2
^s,s&NW , ~2.15!

which is a function of the source parameters that determ
s. Given s, different selections of source-parameter valu
and, therefore, different values ofs result in varying magni-
tudes of the LLR. The selection that gives the maximu
value stands the best chance for beating the pre-set thres
on the LLR. Since scanning the complete source-param
manifold for the maximum of LLR is computationally ver
expensive, we propose to perform its maximization anal
cally over as many parameters as possible. This requires
knowledge of the analytic dependence of the netw
matched-template on source parameters. This is what
seek below.
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III. THE SIGNAL

Assume that the binary is at a luminosity distance or
from the Earth.6 Further, letm1 andm2 be the masses of th
individual stars. Then, in the Newtonian approximation t
two corresponding GW linear-polarization components
the wave frame, at the location of the fide, are

h1~ t;r ,dc ,tc ,j!5
2N
r

a21/4~ t;tc ,j!
11cos2e

2

3cos@x~ t;tc ,j!1dc#, ~3.1a!

h3~ t;r ,dc ,tc ,j!5
2N
r

a21/4~ t;tc ,j!cose

3sin@x~ t;tc ,j!1dc#, ~3.1b!

where

N[F2G5/3M 5/3~p f s!
2/3

c4 G ~3.2!

is a constant appearing in the chirp amplitude having
dimensions of length. It depends on the binary’s ‘‘chirp
mass,M[(m1m2)3/5/(m11m2)1/5, and a fiducial chirp fre-
quency,f s . Usually, f s is taken to be the lowest frequency
the bandwidth of a detector—the seismic cutoff—hence
reason for the subscripts. This choice of the fiducial fre-
quency maximizes the duration of tracking the chirp beca
the chirp frequency increases monotonically with time. He
we set f s540 Hz, which is the seismic cutoff for LIGO-I
because every network we consider below has at least
detector with LIGO-I noise. Note that a general netwo
might include several detectors with different seismic c
offs, f s(I ) . Even in such a case, it is convenient to use
fiducial frequency as a reference. This is apparent in Eq.~C5!
where the noise moments for different detectors are me
scaled by appropriate powers of (f s(I ) / f s).

A quantity closely related to the chirp mass is the s
called chirp time,

j534.5S M
M (

D 25/3S f s

40 HzD
28/3

sec, ~3.3!

which equals the time duration for which the chirp exists
a detector’s sensitivity window from the time of arrival un
the time of final coalescence. The time of arrival,ta , is de-
fined as the time when the instantaneous frequency of
chirp equals the fiducial frequency, i.e.,f (ta)5 f s . Formally,
the coalescence time,tc , is the time at which the chirp fre
quency diverges@see Eq.~3.5!#. The corresponding phase o
the wave form attc is dc . We define the quantity

6Here, r is not to be confused with the magnitude of a detec
position vector, which always carries as an index the label of
detector, i.e.,~I! or ( f ).
4-7
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a~ t;tc ,j!5
tc2t

j
, ~3.4!

and the instantaneous frequency,

f ~ t; f s ,tc ,j!5 f sa
23/8~ t;tc ,j!5 f sS tc2t

j D 23/8

, ~3.5!

which diverges at final coalescence. The above expres
also shows that

tc5ta1j. ~3.6!

Finally, the instantaneous phase of the waveform isx(t)
1dc , where

x~ t; f s ,tc ,j![22pE
t

tc
f ~ t8; f s ,tc ,j!dt8

52
16

5
p f sja5/8~ t;tc ,j!. ~3.7!

The two GW polarization amplitudes at theI-th detector site
are obtained by substitutingt with (t2t (I )) in Eqs. ~3.1!,
~3.4!, ~3.5!, and~3.7!.

A chirp signal registers itself in a detector’s output on
after its instantaneous frequency crosses the seismic cu
of that detector. Thus, a signal arrives in theI-th detector’s
bandwidth when its instantaneous frequency reachef
5 f s(I ) and it lasts there for a time duration equalingj (I )
5j( f s(I ) / f s)

28/3. Alternatively put, the chirp wave form a
the I-th detector starts att5tc1t (I )2j (I ) and ends att5tc
1t (I ) .

In order to formulate a strategy for detecting a chirp,
helps to isolate the factors in the two polarizations,h1,3 ,
that are time dependent from those that are not. To this
we define two mutually orthogonal normalized wave form
s0

I andsp/2
I , with s0,p/2

I (t)5s0,p/2(t2t (I )), and their complex
combination SI5s0

I 1 isp/2
I —the normalized complex

signal—as

SI~ t;tc ,j![
a21/4~ t2t (I ) ;j!

g(I )Aj
eix(t2t(I ) ;j). ~3.8!

Here,g(I ) is a normalization factor such that

^SI ,SI& (I )52. ~3.9!

We now obtain an expression for the normalization fac
g(I ) . In the stationary-phase approximation~SPA!, the Fou-
rier transform ofSI(t) for positive frequencies is

S̃I~ f ;tc ,j!5E
2`

`

SI~ t;tc ,j!e22p i f tdt

5
2

g(I )
A 2

3 f s
S f

f s
D 27/6

exp@ iC (I )~ f ; f s ,tc ,j!#,

~3.10!
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where

C (I )~ f ; f s ,tc ,j!522p f sF f

f s
tc1

f

f s
t (I )1

3

5
jS f

f s
D 25/3G1

p

4

[C~ f ; f s ,tc ,j!22p f t (I ) , ~3.11!

for the Newtonian chirp. Note thatC (I )5C for vanishing
time-delay (t (I )50). Thus,C defines the phase in the FT o
the normalized complex signal at the fide, in the SPA. T
normalization condition~3.9! implies that

g(I )
2 5

4

3
f s

4/3E
f s(I )

` d f

f 7/3sh(I )~ f !
, ~3.12!

where f s(I ) is the seismic cutoff for theI-th detector.

A. The signal at a detector

It can be shown that the signalsI(t) at theI-th detector is
related to the normalized complex signal,SI(t) by

sI~ t !52k R@~EI* SI !eidc#, ~3.13!

where k[NAj/r . Above, we used the extended beam
pattern functions,

EI[g(I )F11cos2e

2
R~FI !1 i coseI~FI !G , ~3.14!

where,R(FI) andI(FI) are the real and imaginary parts o
the detector beam-pattern functions, respectively. Note
dc is detector independent and separates out as a phase
in the argument ofR above.

The EI can be expressed in terms of the Gel’fand fun
tions as

EI5g(I )T2
p~c,e,0!Dp

I , p562, ~3.15!

where, for a detector with orthogonal arms@see Eq.~B4!#,

Dp
I 52 iTp

s~f,u,0!„T2* s~a (I ) ,b (I ) ,g (I )!

2T22* s~a (I ) ,b (I ) ,g (I )!…, ~3.16!

which obeysDp
I* 5D2p

I . Thus,EI depends on the source
direction angles,$u,f%, the angles,$e,c%, as well as on the
orientation of theI-th detector relative to the fide, given b
the Euler angles (a (I ) ,b (I ) ,g (I )). Also, EI depends on the
signal-normalization factorg(I ) , which expresses the sens
tivity of the detector to the incoming signal. As we find in th
next section, the fact that the dependence ofEI on $e,c%
factors out in each summand in Eq.~3.15! will turn out to be
a useful property in obtaining the optimal statistic for t
detection problem. Thus, the signal at the detector depe
on a total of eight independent parameters, v
$r ,dc ,c,e,tc ,j,u,f%. The ranges of the four angles are
follows: cP@0,2p#, eP@0,p#, fP@0,2p#, anduP@0,p#.

From Eqs.~3.15! and ~3.16!, it is clear thatEI can be
resolved into various factors@using the addition theorem
~A4! for Gel’fand functions#. One may interpretEI as the
4-8
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combined amplitude gainof the source and theI-th detector.
As was shown in Ref.@15#, up to anr-dependent factor,uEI u2

can be interpreted as the total power transferred to theI-th
detector.7 More appropriately, it is the gain factor associat
with theI-th detector. It can be decomposed into a sum of
fractions of power transferred from a signal to the detec
by each of its two polarizations.

Expression~3.13! shows that the contribution of the ex
tended beam-pattern function,EI , to the signal,sI , comes
from its magnitude as well as its phase. In the case o
single detector, these contributions cannot be separated
the overall amplitude and the ‘‘effective’’ initial phase of th
signal. Thus, one cannot obtain precise information, eve
the absence of any kind of noise, about the parame
$e,c,u,f%, which affect the signal only throughEI . As a
result, for data analysis involving a single detector, it is m
meaningful to resolveEI and express the signal in the for
s(t)5%(t)cos„x(t)1Ã… where% andÃ are overall ampli-
tude and the effective initial phase of the signal, which
contributions fromE. This is precisely what was done b
SD. While using a network with multiple detectors such
degeneracy in parameters can be broken. Indeed, informa
about source direction, i.e., (u,f), can be obtained from the
time-delayst (I )(u,f), by using the triangulation method
More pertinently, even when all the detectors are coincid
in a network, one can use a set of independently orien
detectors to recover information about the differentEI ’s and,
consequently, about the parameters$e,c,u,f% @8,9#. Hence,
in data analysis with a network it is crucial to track the effe
of EI on the signal explicitly. This is where we shall find th
form of the signal given in Eq.~3.13! useful in rest of the
paper.

B. Network signal normalization

The total energy in a signal that is accessible to a netw
is just the network scalar̂s,s&NW , and is given by

^s,s&NW5(
I 51

M

^sI~ t !,sI~ t !& (I )

54k2(
I 51

M

E* IE
I[b2. ~3.17!

The quantity( I 51
M E* IE

I[E•E5iEi2 is theL 2 norm of EI

in C M. To understand the significance ofiEi2 consider a
network comprising of detectors with identical noise PS
and, therefore, identicalg(I ) . For simplicity, letg(I )51 for
all I. Then, for a given set of values for$c,e,f,u%, iEi2 is
a pure number. It defines the factor by which the ene
accessible to such a network is larger or smaller than
maximum energy that is accessible from an identical sou
but with c505e, to a ~favorably oriented! single detector.
This maximum energy is 4k2. Therefore,b2 represents the
total energy in the signal that is accessible to a network.

7In Ref. @15#, the symbolW(I ) denotes a quantity analogous toEI .
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just the sum of the signal energies accessible to each i
vidual detector in the network. The quantityb can be re-
garded as the signal strength accessible to a network and
the following properties:

~i! If the detectors have identical noise PSDs and are
ented identically, then we haveiEi2}M and, therefore, the
strength obeysb}AM . This clearly shows that for a givenk,
a network of detectors can probe deeper than a single de
tor, by a distance that isAM times larger.

~ii ! If the detectors are oriented identically but have d
ferent noise PSDs, then the amount of energy accessib
each detector is proportional to the optimal SNR of that
tector, namely,g(I ) . The detector having maximum SNR wi
contribute the most in terms the energy accessible to
entire network.

~iii ! If the detectors have different orientations but iden
cal noise PSDs, then the amount of energy accessible to
detector is proportional to the modulus square of the
tended antenna-pattern function of the individual detector
Fig. 1, for a network of two detectors,b2 is plotted as a
function of u andf ~for e50 andc50).

Another important quantity of physical interest is the s
nal energy averaged over all the directions and the orie
tions of the source, i.e.,u, f, e, andc,

Eav[^b2&u,f,e,c

5
1

16p2E
0

p

sine deE
0

2p

dcE
0

p

sinu duE
0

2p

dfb2.

~3.18!

This energy is clearly independent of the orientations of
detectors. A detailed calculation shows that

FIG. 1. Plots of the quantityiEi2 for a two-detector network as
a function of the direction to the source, withe50 andc50. In
~a!, the two detectors are identically oriented with arms lying in t
X-Y plane, but have different noise PSDs, sayg(1)51 and g(2)

50.25. Whereas in~b!, the two detectors have identical nois
PSDs, i.e.,g(1)5g(2)51, but have different orientations, say,a (1)

5b (1)5g (1)50 and a (2)5g (2)50, b (2)590°, with respect to a
fide frame.
4-9
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Eav5S 4k

5 D 2

(
I 51

M

g(I )
2 . ~3.19!

The factorsg(I ) are then important in deciding the avera
signal strength.

The above analysis also suggests the normalization for
network signal. The signal vector with unit norm is defin
by ŝ[s/b. Its components are

ŝI5R@~QI* SI !eidc#, ~3.20!

where

QI[
EI

iEi . ~3.21!

Note that the network vectorQ5(Q1,Q2, . . . ,QM) lies in
C M and has a unit norm, i.e.,iQi251.

IV. MAXIMIZING THE LLR

In the case of a single detector, the LLR is a functional
the data as measured by that detector. For a network oM
detectors, one needs to compute the statistic in terms o
network data vectorx. When our assumptions about the s
tistical properties of detector noise are valid, the appropr
network LLR is given by Eq.~2.15!. The optimal network
statistic is obtained by maximizing this LLR over the eig
physical parameters that define the signal. It is this ma
mized LLR that must be compared with a predetermin
threshold, corresponding to a given false alarm probabi
In the following two subsections, we show how such a ma
mization over four of the parameters can be performed a
lytically. Subsequently, we describe an efficient way of ma
mizing over the time of final coalescence or, analogou
over the time of arrival~at the fide! of the signal.

A. Maximizing the LLR over b, dc , e, and c

We begin by analytically maximizing the network LLR
with respect to two parameters that are simplest to han
namely,r anddc . Note that the network LLR obtained in Eq
~2.15! can be expressed as an explicit function ofb:

ln l5b(
I 51

M

^ŝI ,xI& (I )2
1

2
b2. ~4.1!

Above, the luminosity distance,r, appears only throughb.
Maximizing lnl with respect tob gives b̂5( I 51

M ^ŝI ,xI& (I ) ,
where a hat denotes the value of a variable at which the L
is a maximum as a function of that variable, keeping all ot
variables fixed. Here, the value of LLR atb5b̂ is

ln lu b̂5
1

2 S (
I 51

M

^ ŝI ,xI& (I )D 2

5
1

2
„R@e2 idc~C•Q!#…2,

~4.2!

where we have defined
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CI* 5c0
I 2 icp/2

I [^SI ,xI& (I ) , ~4.3!

with c0
I 5^s0

I ,xI& (I ) and cp/2
I 5^sp/2

I ,xI& (I ) . CI is a complex
quantity that combines the correlations of the two quad
tures of the normalized template with the data. We proc
further and maximize the LLR in Eq.~4.2! with respect to
dc . This yieldsd̂c5arg(C•Q) and the LLR maximized over
b anddc as

ln lu b̂,d̂c
5 1

2 uC•Qu2. ~4.4!

Now the maximized LLR is a function of six parameter
namely,$e,c,tc ,j,u,f%.

When all the detectors are ‘‘closely’’ located or coinc
dent, it is only the QI ’s that depend on four angle
$u,f,e,c%; the CI then depend only on$tc ,t (I ) ,j%, with all
the times of arrival being equal. We refer to this situation
the ‘‘same-site’’ approximation. Such a case was dealt w
in Ref. @15#. When the detectors are spatially well separa
or non-coincident, theCI depend on$u,f% as well. In such a
case, maximization over the remaining parameters is no
simple as in the same-site approximation. However, in R
@16# it was found that analytic maximization over two of th
angular variables,$c,e%, is possible even in the case of no
coincident detectors. This useful observation allowed furt
reduction of the LLR to obtain a network statistic. In th
following, we briefly mention this analytic maximization be
fore discussing how the reduced statistic can be used
searching chirps.

For spatially separated detectors the cross correlation,CI ,
is strongly dependent on the time of final coalescence,tc ,
and the time delay,t (I ) . Sincet (I ) depends on the source
direction, (u,f), so doesCI . This prompts us to recast th
statistic, ~4.4!, in such a way that its dependence on t
angles$c,e% is isolated as shown below. This aids in th
analytic maximization of lnlub̂,d̂c

over the angles$e,c%. We

note that using Eqs.~3.15! and~3.21!, the network vectorQ
can be reexpressed as

Q5
1

iEi @T2
22~c,e,0!D221T2

2~c,e,0!D12#

[Q22D̂221Q12D̂12 , ~4.5!

where Dp (p562) define two network vectors with th
componentsg(I )Dp

I , respectively. The vectorsD̂p are their
normalized counterparts. SinceQ has a unit norm, the abov
expression implies that

Q225
iDi
iEi T2

22~c,e,0!, Q125
iDi
iEi T2

2~c,e,0!,

~4.6!

whereiDi[iD12i5iD22i . The pair$D̂12 ,D̂22% defines a
two-dimensional complex subspace inC M, on which a metric
Gpq can be defined@16#. D̂12 and D̂22 depend only on the
direction of the source and the orientation of the detecto
that is, on$u,f,a (I ) ,b (I ) ,g (I )% and not on$e,c%. Gpq is
4-10
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used to ‘‘raise’’ and ‘‘lower’’ indices of vectors lying in this
complex subspace, e.g., one hasQp5GpqQ

q, where p, q

562. We observe that, in general,D̂62 are not orthogonal.
For a face-on binary~i.e.,e50) revolving anti-clockwise~or
clockwise!, Dp itself is proportional to the network vectorE
for p522 ~or for p52). Hence, we may call the two
dimensional subspace as the ‘‘helicity’’ plane,H.

TheM-dimensional complex correlation vectorC, in gen-
eral, lies outsideH. However,Q lies totally in H. Thus, the
statistic reduces to

2 lnlu b̂,d̂c
5uC•Qu25uCH•Qu2, ~4.7!

whereCH is the projection ofC on H. Maximization of the
above statistic over$e,c% is achieved by aligningQ along
CH by a proper choice ofc ande. It was proved in Ref.@16#
that this is always possible. Thus, the LLR maximized o
the four parameters is

2 lnlu b̂,d̂c ,ĉ,ê5iCHi2[L. ~4.8!

Geometrically, we summarize the above maximizat
over the angles$e,c% as follows: Choosing a given sourc
direction fixes the orientation of the helicity plane in th
network space. After making this choice, one projects
correlation vectorC onto this plane. The vectorQ inevitably
lies in this plane. Thus, the values of$e,c% that maximize
the statistic are those that align the vectorQ along the pro-
jected vectorCH .

It is always possible to choose inH, a two-dimensional
basis comprising of a pair of orthonormal real vectors.
such a basis the components of any vector inH will, in
general, be complex. For the sake of concreteness, we d
one such basis, (v̂1,v̂2), in the following way. We splitD12
into its real and imaginary parts

D12[d11 id2 , ~4.9!

whered1 andd2 are real vectors. We then define

v̂65~ d̂16d̂2!/i d̂16d̂2i , ~4.10!

whered̂1 andd̂2 are unit magnitude vectors alongd1 andd2,
respectively. Taking the projection ofC on v̂6 , i.e., C6

[ v̂6
•C5c0

61 icp/2
6 , we re-express Eq.~4.8! as

iCHi25uC1u21uC2u25~c0
1!21~cp/2

1 !21~c0
2!21~cp/2

2 !2

[Ł2. ~4.11!

It can be verified that the statistic is, therefore, a sum of
squares of four Gaussian random variables with cons
variance. With an appropriate choice of normalization, th
variances can be made unity. As we show in Sec VII, t
simplifies the computation of detection thresholds and pr
abilities associated with the above statistic. Instead of us
the squared norm ofCH, we will find it convenient to use as
our statisticŁ[iCHi , in what follows. We note thatŁ then
scales linearly with the amplitude of the signal vector, rat
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than its square. We will callŁ as our network statistic. This
statistic was first obtained in Ref.@16#.

B. Maximizing Ł over the time of arrival

Given a network data-vector,x(t), which may or may not
contain a chirp, it is necessary to first compute the corre
tion vector,C, before one can obtainCH and, therefore, the
network statistic. In order to do so, we needCI , for all I. We
compute aCI ~or, rather,CI* ) by first calculating the Fourier
transform of the cross correlation~4.3! for an individual de-
tector by using FFTs. Taking its inverse FFT then gives
the CI* (t) at all the time lags,t, in a cost effective way.
Thus we get

CI* ~t;tc8 ,j8,u8,f8!5^SI~ t;tc81t,j8!,xI~ t;tc ,j!& (I ) ,

~4.12!

where the primed parameters define the detector templat
the values chosen for$j8,u8,f8% match those of a chirp in
the data, thenuCI u is likely to peak whent exactly compen-
sates for the difference (tc82tc). Indeed, the correctC for a
network of coincident detectors is just

C~t;q8![$CI~t;q8!%, ~4.13!

whereq8 is the four-dimensional template parameter-vect
Also, I takes values from 1 toM.

Construction ofC for a network of non-coincident detec
tors is somewhat more involved owing to non-vanishi
time-delays,t (I )(u,f), that may arise for a given source d
rection. Recall that the time of arrival at theI-th detector is
ta1t (I )(u,f). If the detectors are spread around the glo
the times of arrival at any pair of detectors can at most dif
by 2R% /c;40 msec, whereR% is the radius of the Earth
For the two LIGO detectors, the maximum time difference
;10 msec; for the network of LIGO-VIRGO, it is
;27 msec. We note thatt (I )(u,f) can take positive as wel
as negative values. Its range depends on the location o
fide. If the fide is chosen at the center of the Earth, th
ut (I )u<R% /c; but if it is chosen to be one of the detectors
the surface of the Earth, thenut (I )u<2R% /c. This contin-
gency is dealt with by using the appropriate set oft (I )’s in
Eq. ~3.8! to obtain theSI(t;tc8 ,j8). With this in place, the
network correlation-vector is given by the same express
as in Eq.~4.13!.

One can obtain the same value forC by an alternative
construction, which may be simpler to implement in practi
In this method, one first obtains theSI by setting the arrival
time at every detector to equal that at the fide. This is
same as computing theSI(t1t (I ) ;tc8 ,j8), for all I. @Note
from Eq. ~3.8! that, despite appearances, a knowledge
t (I )’s is actually not needed for this computation.# With these
templates one constructs the following inner products:

C̄I* ~t;tc8 ,j8![^SI~ t1t (I ) ;tc81t,j8!,xI~ t;tc ,j!& (I ) ,
~4.14!

which are independent of the time delays. Indeed, a choic
the time delays is not made thus far in this alternative c
struction of C. To construct the network correlation-vecto
4-11
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from the above quantities, one begins by choosing a so
direction,$u8,f8%, for the template. This direction is used
compute a consistent set of time delays,t (I )(u8,f8), for a
given network. The network correlation-vector can then
defined as

C~t;q8!5$C̄I
„t1t (I )~u8,f8!;tc8 ,j8…%, ~4.15!

where the appropriately shifted time lags for each valueI
compensates for the time delay at each detector. In the re
this section, we discuss the construction of network te
plates in greater detail. There, for a network of no
coincident detectors, we choose this latter prescription
such a construction.

Network template construction

Based on the above discussion, we construct a netw
template as follows. Given a chirp, consider the detector w
the least seismic cut-off frequency. Label that detector aI
51. The other detectors in the network are labeled such
f s(1)< f s(2)<••• f s(M ) . Then from Sec. III we havej (1)
>j (2)>•••j (M ) . Now, consider the signal in the first dete
tor, I 51. It lastsj (1) seconds. As in the case of a singl
detector ‘‘network,’’ an individual detector template, whic
is an array of numbers, is constructed to be much longer t
the signal: It comprises of a sub-array that stores the sig
being searched for, followed by a padding of the requis
number of zeros@32#. In the single-detector case, it has be
shown that a padding factor of 75%, that is, 75% zeros
25% signal, is a good choice in the sense that it optimizes
computational cost arising from the computation of t
FFT’s. Accordingly, here too we pad the template for the fi
detector with zeros for a time duration of;3j (1) .

In the sensitivity window of any of the other detector
that is, for (IÞ1), the signal effectively lasts for a time
duration equal to or shorter thanj (1) . Nevertheless, the sim
plest way to construct their templates is to let them cont
the same signal as in the first detector, and for the sa
duration, namely,j (1) . Such a construction does not restr
the network statistic in any way. Its only pertinent implic
tion is that any part of the signal that has an instantane
frequency belowf s(I ) will be ineffective in contributing to
the SNR in theI-th detector, which conforms with what w
expect. In the case of a network with coincident detecto
the individual detector-templates so constructed define
components of the network template vector. Using it in E
~4.13! yields the relevant network correlation vector.

Obtaining the template vector of a network with no
coincident detectors is trickier. This is essentially due to
possibility of the occurrence in a given detector of negat
time delays. We deal with this possibility by splitting th
padding into two parts of durationstd and (3j (1)2td), re-
spectively. Since the maximum magnitude that a time de
can have is less than 50 msec, a choice oftd550 msec
satisfies all requirements at negligible cost. This is the va
we assume fortd in our simulations. Thus, the template
any one of the detectors in such a network is an array
numbers that begins with a ‘‘pre-padding’’~with zeros! of
durationtd preceding the signal of intervalj (1) , which in
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turn is followed by a ‘‘post-padding’’ of duration (3j (1)
2td). The network template is then the Cartesian produc
all these individual templates. Note that this can be taken
define the network template for the most general netwo
regardless of whether the detectors in it are coincident or
For non-coincident detectors, the relative time-delays are
counted for in the construction of the network statistic v
Eq. ~4.15!.

In order to construct the network correlation-vector,C,
one utilizes the above templates as follows. Using th
individual-detector templates one first obtains the corre
tions C̄I(t;tc8 ,j8) for all values oft ~after settingta850 or,
equivalently,tc85j8, without any loss of generality! by using
the FFT algorithm, such as in the single-detector case. N
that the range oft, for a data train of lengthT, is td<t
<T2j (1)2td . Next one selects a source direction, (u8,f8).
One evaluates the time-delays,t (I )(u8,f8), corresponding to
this direction.8 These time delays are then used in Eq.~4.15!
to computeC, which in turn is projected onH ~defined by
the same selection of$u8,f8%) in order to obtainCH . The
network statistic can be easily recovered from this using
~4.8!.

In Fig. 2~a! we show a network template for a network
two detectors. In all the panels, the dots represent the p
ding ~with zeros!, which is introduced before and after th
signal. The two panels in~a! depict the two individual detec
tor templates constituting the network template. These
panels correspond to detectors with different seismic c
offs, viz., f s(1)533 Hz andf s(2)540 Hz, respectively. The
padding before~i.e., on the left-hand side of! the signal is of
a durationtd550 msec. The part of the curve for detector
that is shown in dots and dashes is ineffective in contribut
to the SNR. Panels~b! show the relative positions of th
signal in the individual detector templates for whichiCi has
a maximum when the second detector has a relative t
delay of (t (2)2t (1))520 msec. Here, we have included th
time delay in the network template.

Above, the chirp time in the detector with the leastf s(I )
decided the durations of the padding and the chirp signa
all the individual detector templates. Indeed, these durati
are the same in all of them. It may be possible to optimize
computational costs by varying these durations in differ
templates. However, in this work we do not pursue this po
any further.

C. Maximization of Ł over j, u, and f

Consider the network correlation vector,C(t), for a fixed
value of j8, but for a range of values fort. As remarked
before, such a vector is constructed for specific values ot
and source direction (u8,f8) by taking into account the time
delays,t (I )(u8,f8), appropriate for the network under con
sideration. The network statistic for these chosen values
(u8,f8) and t can be obtained by first projectingC on the
helicity plane and then computing the norm of the projectio
A chirp search over$u8,f8% for a given configuration of

8Alternatively, one may first select a consistent set oft (I )’s and
then deduce$u8,f8% from them.
4-12
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FIG. 2. Network template for a two-detector network. We choose the fiducial frequency asf s540 Hz. The instant at which the signa
reachesf s is shown by a vertical line. We take the chirp time corresponding to the fide to bej50.3 sec. The dots represent the padding w
zeros, which is introduced before and after the signal. The two panels in~a! depict the two individual detector templates constituting t
network template. These two panels correspond to detectors with different seismic cutoffs, viz.,f s(1)533 Hz andf s(2)540 Hz, respec-
tively. The respective chirp times arej (1)50.5 sec andj (2)50.3 sec. The padding before~i.e., on the left-hand side of! the signal is of a
durationtd550 msec. The part of the curve for detector 2 that is shown in dots and dashes is ineffective in contributing to the SNR
~b! show the relative positions of the signal in the individual detector-templates for whichiCi has a maximum when the second detector h
a relative time delay of (t (2)2t (1))520 msec. Each of the detectors has its seismic cutoff equal to 40 Hz, which givesj (1)5j (2)5j
50.3 sec.
042004-13
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network leads to a ‘‘window’’ of time delays. In any networ
of non-coincident detectors a window,W, is a bounded re-
gion in the space of time-delays that arises from the res
tions on each of the time delays to lie within certain limi
As we illustrate below, these limits, in turn, originate owin
to the maximum light-travel time between pairs of detecto
Since the data are sampled discretely, a window is a boun
region of a lattice in the space of possible time delays. C
sequently, the number of~lattice! points in a window of finite
‘‘volume’’ is also finite. We now discuss the shape and s
of a window for networks with two, three, four, and mo
than four detectors.

Two-detector network:For a network of two detectors
there exists effectively a single time-delay function of s
nificance. It is the difference in the times of arrival of th
wave at the two detectors. For such a network we choose
of the detectors, say,I 51, as the fide. Thent (1)50 and the
time delay between the two detectors is reflected solely
t (2) , which is restricted to lie within the range@2d12/
c,d12/c#, whered12 is the distance between the two dete
tors. Let D be the sampling interval, which is typicall
0.5 ms. Then the ‘‘width’’ of the window, expressed in term
of the number of time-sampled points, isnS

V52t (2) /D,
where the subscriptS stands for sampling andV for the
direction in sky, (u,f). If we denote the LIGO detector a
Hanford by H, the LIGO detector at Louisiana by L, and t
VIRGO detector by V, then for the two-detector networ
formed from pairs among these, we havenS

V(LH);40,
nS

V(HV);108, andnS
V(LV);105.

Three-detector network:In the case of a network with
three detectors, we once again take the first one~i.e., I 51)
to be fiducial. Also, we can always imagine all of them to
on a single plane. In such a case, there arise two nontr
time delays, namely,t (2) and t (3) . The allowed values of
these two time delays are easily shown to be restricted wi
a bounded region of a plane; this region is circumscribed
an ellipse. Any point in this region represents a pair of tim
delay values, (t (2) ,t (3)), corresponding to a given pair o
values for the source-direction angles,$u8,f8%. The equation
of this ellipse is given by@7#

~t (2)!
21~t (3)!

2~p21q2!22pt (2)t (3)2q2~d12/c!250,
~4.16!

where p5(d13/d12)cosa23 and q5(d13/d12)sina23, with
d12 ~or d13) being the distance between the first and
second~or third! detectors. Also,a23 is the angle subtende
by the hubs of detectors 2 and 3 at that of the first detec
From Eq.~4.16!, the ‘‘area’’ of the elliptical window, given
in terms of the number of time-sampled points, isnS

V52p
3A/(c2D2) whereA is the area of the triangle formed b
the hubs of the three detectors in the network. We find t
the number of possible time-delays for the three-detector
work of LIGOs-VIRGO (LHV) is nS

V;33103.
Four or more detectors:In the case of a three detecto

network, the two time-delays produce two circles on the
lestial sphere that intersect at two points, which give
possible directions to the source. This twofold degenerac
broken when we introduce a fourth detector lying outside
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plane of the three detectors. In such a case, the possible
delays can be represented in a three-dimensional space o
three time delays, which now lie on the surface of an ell
soid. The number of possible time delays is exactly doub
compared to that of the three-detector network. Thus,
maximum possible value isnS

V54pA/(c2D2), whereA is
the area of the smallest of all possible triangles formed s
sets of three of the four detectors. When there are more
4 detectors there is redundant information on the direction
the source, but thenS

V is the same as for four detectors. In th
presence of noise this redundant information may be use
reduce the errors in the direction to the source. Here, we
not pursue this point any further.

The sampling interval naturally provides the most si
plistic discretization in carrying out the search in time d
lays. In searching overu andf one does not need to com
pute additional Fourier transforms; rather, one needs
combine the individual detector correlations with the corr
time delays to construct the optimal statistic,Ł. This gives
rise to two components to the computational cost: the c
involved in computing Fourier transforms and the cost a
ing due to the arithmetic operations involved in computingŁ
over all possible time delays. As shown later, the latter c
can be considerable and may dominate over the cost in c
puting Fourier transforms while searching overj.

It is important to note that sampling can introduce
arbitrary mismatch between the actual source direction,u,
f), and the direction in the template, (u8, f8). The mis-
match,m, is the fractional loss in SNR when the signal a
the template parameter differ slightly. In agreement w
most investigations carried out so far, we decide to tolera
mismatch to a maximum of 3%. The sampling can lead t
mismatch either greater or smaller thanm. If the sampling
gives a mismatch less than the desired one, then this sim
tic procedure of scanningW leads to unnecessary extra com
putational costs. On the other hand, if the mismatch is mo
then one is likely to miss out more events than desired. T
question whether the sampling is adequate one way or
other can be resolved by constructing a template bank for
desired mismatchm. In the next section, we proceed to co
struct a bank of templates in the parameterj, u, andf. The
template bank, in general, will produce time delays that
not fall exactly at the sampled values of the correlation v
tor. However, we can easily interpolate to obtain the int
mediate values by applying Shannon’s theorem@33#, which
essentially states that a band-limited function can be c
structed in the time domain from its discretely sampled v
ues at the Nyquist rate. Or in other words, the template b
provides the rate at which the output can be re-sampled s
to obtain the desired maximum mismatch.

V. TEMPLATE BANK IN j, u, AND f

Recall that the LLR is a function of eight paramete
namely $r ,dc ,e,c,tc ,j,u,f% for the Newtonian chirp. As
mentioned earlier, we adopt the maximum-likelihood meth
for the detection problem. It implies that the LLR must b
maximized over all the parameters to obtain the MLR. W
have shown that the maximization of LLR can be carried
4-14
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analytically with respect to the four of the eight paramete
$r ,dc ,e,c%. Also, we can deal with the time of final coale
cence at the fidetc efficiently by using the FFT algorithm
Therefore, we now need to formulate a strategy to sea
over the rest of the 3D parameter space formed byj, u, and
f. Ideally, one should scan the whole range of the 3D
rameter space over the physically allowed parameter val
This, however, is impractical due to computational limit
tions. Therefore, a prerequisite for such a maximization is
estimate for the magnitude of grid discretization. The g
spacing in the parameter space depends upon the fract
loss in the SNR that one is prepared to tolerate.

To estimate the number of templates in the 3D param
space, we take the differential-geometric approach@34# and
use Owen’s method of introducing a metric on that sp
@27# and extend his formula for the one detector case to
of the network. Also the inverse of the metric is just t
covariance matrix scaled by the square of the SNR. Thus
metric also provides information on the errors in estimat
the parameters. In this geometric method, the signal vect
characterized by P11 parameters, qa, where a
50,1, . . . ,P. The signal vector lies in a (P11)-dimensional
manifold denoted byP. We define the metric onP by gab ,
which is related to the fractional loss in SNR, denoted bym,
when there is a mismatch between the signal and the t
plate parameters. Since here we consider the Newto
chirp as our signal, we haveP53, q0[tc , and q i

[$j,u,f%. As Ł can be maximized overtc numerically via
the FFT, we only need to lay the templates in the rest of
P-dimensional parameter space, comprising of$j,u,f%. In
other words, we need to compute the metricg i j in the
P-dimensional subspace. It is determined by projecting
metric gab onto the subspace orthogonal totc . We then
obtain

g i j 5gi j 2
g0ig0 j

g00
. ~5.1!

The number of templates is obtained as follows. We comp
the proper volume of the parameter space with the metricg i j
and multiply the volume by the number density of the te
plates. Fixing the value ofm determines the grid spacing o
the network templates in the parameter space. The num
density,rP(m), which is the number of templates per un
proper volume, is given by

rP~m!5S 1

2
AP

m D P

. ~5.2!

It is defined to be uniform over the whole parameter sp
and, therefore, its use is applicable as long as the curva
of the astrophysically interesting region of the manifold d
scribed byg i j is sufficiently small, and the effects arisin
from the boundary of the region are negligible.

The total volume of the parameter space is

V5E
P
Adetig i j idPq. ~5.3!
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Thus, the total number of templates required is ,nf5V
3rP(m) . In general, the total number of templates depen
on the source parameters$e,c%. In order to scan the param
eter space~for a given mismatchm) for each pair of values
$e,c%, we must maximize the volumeV over $e,c%. This is
tantamount to choosing the finest bank of templates.
simple cases, this is straightforward and has been im
mented in some examples in Sec. VI. In general, howe
such a maximization is non-trivial to perform.

A. The network metric

We apply the method described above to obtain the me
in the four-dimensional parameter space$tc ,j,u,f%. When
the parameters of the network template and that of sig
mismatch, the network statistic given by Eq.~4.11! drops
below the maximum value. The metricgab defined on this
four-dimensional space is related to the amount of drop
the statistic,Ł, and is obtained by expanding the statis
about the maximum. Using Eq.~4.11! the squared statistic
can be rewritten as,

Ł25uv̂18
•Cu21uv̂28

•Cu2

[pI8
JCICJ* . ~5.4!

The quantitypI8
J is a projection tensor given by

pI8
J[v81Jv8I

11v82Jv8I
2

, ~5.5!

which projects a vector inC M on the helicity plane spanne
by v̂86. It obeys the identities

pI8
JpJ8

K5pI8
K, pI8

JpJ8
I52, ~5.6!

which are consistent with its being a projection tensor o
two-dimensional plane. The primed coordinates refer to
template.

Let qa and q8a5qa1Dqa be the parameters corre
sponding to the signal and the network template, resp
tively. For computing the metric one takes normalized te
plates~by settingb51! for the signal as well as the templat
so that the maximum value ofŁ is unity when the parameter
of the signal and template match. In the absence of noise,
~4.3! yields

CI* 5^S8I ,sI& (I ).
1

2
eidcQI* ^S8I ,SI& (I ) , ~5.7!

where, theS8I denotes the template. The above expressio
exact within the SPA. So the statistic can be written as

Ł25pI8
JQIQJ* Q (I )(J) , ~5.8!

where
4-15
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Q (I )(J)[
1

4
^SI~ t;q8m!,SI~ t;qm!&~ I !

* ^SJ~ t;q8m!,SJ~ t;qm!& (J) ,

5E
f s(I )

`

d fA(I )~ f !exp„2 iF (I )~ f ;qm,Dqm!…

3E
f s(J)

`

d fA(J)~ f !exp„iF (J)~ f ;qm,Dqm!… ~5.9!

is the product of the individual ambiguity functions of th
I-th andJ-th detectors. It is a measure of how distinguisha
the two wave-forms, i.e., the signal and the template,
Here,

A(I )~ f ![
4

3 f sg(I )
2

1

sh(I )~ f ! S f

f s
D 27/3

, ~5.10!

which satisfies the normalization condition* f s(I )

` A(I )( f )d f

51. Note that in the limit ofDua→0 the projection tenso
of the filter is same as that of the projection tensor of
signal, i. e.,pI8

J→pI
J. In this limit, the projection tensor o

the signal obeys the relationpI
JQIQJ* 51 and noting the

normalization ofSI , we can see from Eq.~5.8! thatŁ2→1 as
desired.

The correlation phase,F (I )( f ;qm,Dqm), is given by@see
Eq. ~3.11!#

F (I )~ f ;qm,Dqm!5C (I )~ f ; f s ,tc ,j!2C (I )~ f ; f s ,tc8 ,j8!.

~5.11!

The correlation phase includes the contribution from the
ferential time-delay between the signal and the template.
stead of using (u,f) to specify the direction to the source w
use the componentsn1 and n3 of the unit vector n̂
[(n1 ,n2 ,n3) to do so. The time delays in units off s

21 are

f st (I )~n3 ,n1!5@r (I )1n11r (I )2~12n3
22n1

2!1/21r (I )3n3#,

~5.12!

wherer(I ) is the position vector of theI-th detector’s hub and
is henceforth measured in units of the ‘‘fiducial wavelength
ls[c/ f s . Since we choose to measure the time delays w
respect to the fide, we must haver( f )50. Thus, we may write
the correlation phase as

F (I )~ f ;qm,Dqm![2pw (I )a~ f ;qm!Dqa, ~5.13!

where qa[$ f stc , f sj,n3 ,n1% is a quartet of dimensionles
parameters and

w (I )a~ f ;qa!5H S f

f s
D ,

3

5 S f

f s
D 25/3

,F r (I )32r (I )2

3
n3

~12n3
22n1

2!1/2G f

f s
,F r (I )12r (I )2

3
n1

~12n3
22n1

2!1/2G f

f s
J . ~5.14!
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To obtaingab we Taylor expand the network statistic abo
the peak atDqm50 to obtain

Ł~q,Dq!'11
1

2 S ]2Ł

]Dqa]DqbD uDq50DqaDqb,

where q is the four-dimensional signal parameter vect
Note that the first-order term in the Taylor expansion giv
vanishing contribution. This is becauseŁ has a maximum
there atDq50,

]Ł

]qa U
Dq50

50, ~5.15!

for any a. Then, the metricgab(q,Dq) is defined as

gab~q!52
1

2 S ]2Ł

]Dqa]DqbD uDq50 . ~5.16!

The above differentiations can be performed. But first
study the effect of a mismatch of signal and template para
eters on the network statistic.

For a perfect match between the signal and template
rameters, the correlation vectorC}Q, lies in the signal he-
licity planeH(u,f). When mismatched, however, each com
ponent ofC gets multiplied by the weight factor^S8I ,SI& (I )* ,
i.e., CI5 1

2 QI^S8I ,SI& (I )* . Since ^S8I ,SI& (I )* depends on the
noise PSD of the detector and the time delay, which
different for eachI, the components of the correlation vect
get scaled differently for eachI which makes the vectorC
move out ofH. Owing to this mismatchC may lie outside
H(u,f) as well asH(u8,f8). However, the maximization
overe andc requires projectingC onto the template helicity
plane H(u8,f8) in order to obtain the network statistic
iCHi . Thus, the value of the computediCHi can decrease
due to two effects:

~a! reduction in the norm ofC,
~b! C moving out of the signal helicity plane.
We assume that the orientation of the helicity pla

changes slowly as compared to the effect of the time dela
This means that we treatpI8

J as effectively constants in Eq
~5.8!, and equal to the corresponding tensor for the sou
parameters, namely,pI

J. The validity of this assumption, to a
good approximation, is supported by the extensive numer
computations that we have performed for the networks
parameters that we have considered. Since we conside
mismatch to be quite small(3%), thetemplates are closely
spaced in the direction angles and hence the approximatio
valid to about few parts in 103 or even better. Thus, from
Eqs.~5.8! and ~5.16! we obtain the metric to be

gab~q!'
1

4
pI

JR@QIQJ* #g(I )(J)ab , ~5.17!

where we used the fact that bothpI
J and g(I )(J)ab are sym-

metric under the interchange ofI and J. Also, g(I )(J)ab
52(]2Q (I )(J) /]Dqa]Dqb)uDqg50. The reality of gab is
4-16
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now manifest. Owing to the linearity ofF in Dqa, the met-
ric gab depends only on its first derivatives. Therefore, it c
be easily shown that

g(I )(J)ab5^FaFb& (I )1^FaFb& (J)2^Fa& (I )^Fb& (J)

2^Fb& (I )^Fa& (J) , ~5.18!

where the suffixa denotes the derivative with respect
Dqa. The angular bracket denotes the average over a g
frequency range. For the frequency range of@ f s ,`#, the av-
erage value of the functionX(I )( f ) is denoted as

^X& (I )5E
f s(I )

`

A(I )~ f !X(I )~ f !d f , ~5.19!

where within the angular brackets we have dropped the s
script onX simply because the same subscript appears
side those brackets. In other words, we have reduced re
dancy by introducing the notation:̂X& (I )5^X(I )& (I ) . We
observe that Eq.~5.18! is a generalization of Owen’s formul
in Ref. @27#, wherein the metric for the single-detector ca
was derived. It is not difficult to understand the origin of t
different factors in the expression forgab . This metric gets
contribution from every pair of detectors in a network, i
cluding the diagonal terms~i.e., terms withI 5J!, through
the ‘‘coupling’’ metric g(I )(J)ab . The magnitude of each o
these contributions is determined by their respective c
pling strengths in the form of coefficients,pI

JR@(QIQJ* )#,
which depend on the four angles$e,c,u,f%. This is because
these coefficients essentially arise from the extended be
pattern functions of the detectors, which, apart from depe
ing on the signal amplitude throughe, determine how sensi
tive a given detector is to a source direction andc.

The above expressions allow one to calculate the par
eter space metric for any Earth-based network. Howe
since the metric is non-flat~as opposed to a flat metric for
single-detector ‘‘network’’!, the template spacingsDq will
depend on the location,q, of the template. The general ex
pressions for the moment functionals are

^Fa& (I )52pw (I )sa j (I )~723ma!, ~5.20!

wherew (I )sa[w (I )a( f (I )s ;qa) and ma is the power off on
which w (I )a depends andj (I )(q) is q-th noise moment of the
noise-curve corresponding to theI-th detector and is define
in Appendix C. Similarly,

^FaFb& (I )54p2w (I )saw (I )sb j (I )„723~ma1mb!….
~5.21!

In terms of the above expressions, the coupling metric is

g(I )(J)ab54p2$@w (I )saw (I )sb j (I )„723~ma1mb!…

2w (I )saw (J)sb j (I )~723ma! j (J)~723mb!#

1@ I↔J#%. ~5.22!

Another form of the parameter-space metric that pro
useful in later computations is obtained by taking projectio
on the vectorsDp (p562), which were first used in Eq
04200
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~4.5!. Such projections allow us to isolate the dependence
the metric on the parameters$e,c%. This simplification arises
becauseQ lies in the plane ofD12 andD22. To see this, let
us define the following four quantities:

g62,62ab5
1

4
pIJD62

I D62
J g(I )(J)ab . ~5.23!

It follows from aforementioned properties that

g22,2ab5g2,22ab , g22,22ab5~g2,2ab!* , ~5.24!

and thatg22,2ab is real. The metric is then given by

iEi2gab5
11cos2e

2
g22,2ab1

12cos2e

2
R@e24icg2,2ab#.

~5.25!

We make use of this form in computing the cost for t
LIGOs-VIRGO network.

Before we proceed to the discussion of various case
networks, we mention a scaling property of the phaseF. If
F is scaled by a constanta, i.e., if F5aF̃, then the compo-
nents of the metric get scaled bya2, viz., gab5a2g̃ab . As-
suming the dimension of the search parameter space to bP,
one finds that detigabi5a2Pdeti g̃abi . Thus, the proper vol-
ume scales asV5aPṼ.

We now obtain the errors in determining the direction
the source. The errors are obtained via the covariance ma
Note thatg is the metric on the three-dimensional parame
subspace with$j,u,f% as the coordinates. From a statistic
point of view,g i j is the Fisher information matrix for a sig
nal of unit amplitude@31#. The covariance matrix for a signa
of unit amplitude is justg i j , the inverse ofg i j . The covari-
ance matrix for a signal of arbitrary amplitude is obtain
from g i j by dividing it by the square of the signal amplitud
The diagonal elements of the covariance matrix are the v
ances in the errors of the estimated parameters. The erro
the estimates of the parameters are given by the corresp
ing standard deviations,

s ( i )[
Ag i i

b
, ~5.26!

whereb is the amplitude of the signal. In the next sectio
we list s ( i ) in Table III for various networks.

B. Computational costs

We now estimate the computational cost involved
searching over the parametersu, f andj. We consider data
trains of durationT seconds sampled at the rateD21. The
number of sampled points in each of theM data trains is
denoted byN5T/D. As remarked before, the computation
cost involved in obtaining the statistic has two importa
contributions:

The cost involved in computing Fourier transforms, d
noted byCFT.
4-17
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The cost in computing the optimal statistic while searc
ing over the time delays or, analogously, over the sour
direction angles,$u, f%. We denote this cost byCV, where
V[(u,f).

Also, we consider two different ways of searching ov
the time delays:

~1! Scanning all the time delays in a window,W.
~2! Using selected values of time-delays from the te

plate bank. For the quantities relevant to(1), we attach a
subscriptS~for sampling! and to (2) a subscriptB ~for bank-
of-templates!. Let the number of templates required
searching overj in these two methods be denoted bynS

j and
nB

j , respectively. ThennB
j is obtained by placing the tem

plates in theP-dimensional space, whilenS
j is obtained by

placing the templates just in thej coordinate. Thus,nS
j is the

proper length associated with the parameter range of thj
coordinate, multiplied byr1(m)51/(2Am). This yields

nS
j5

p f s

Am
Ag̃11~jmax2jmin!. ~5.27!

For detectors with identical noise curves,nS
j is just the num-

ber of templates required for searching overj in the one-
detector case for a given coalescence phase,dc . The quantity
nB

j for a detector network, with all detectors having identic
noise, is justAP times the number of templates inj for a
single detector. The factor ofAP comes from the fact tha
the template must reach out to signals that mismatch w
templates in all the parameters. For a two-detector netw
since the bank is inj and u, we haveP52. For networks
with three or more detectors, the search is over three par
eters and, therefore,P53.

Let us assume that the FT of the templates are store
memory and the FT of the data has been taken. Then
computing cost in FT for the two cases is@32#,

CS,B
FT 56nS,B

j MN log2N, ~5.28!

where we have included a factor of 2 for the two sets
templates corresponding todc50,p/2. We assume that th
vectorsv̂6(u,f) are stored in the memory for each pair
(u,f) in the window-template bank, typically few thousan
for the LHV network. The number of real floating point op
erations~‘‘fl-pt ops’’ for short! for constructing the statistic
L is 8M13 ~which essentially behaves as 8M when M is
large! for each point in the sky, (u,f). Hence the costs in
two cases are

CS
V.16MNnS

VnS
j ,

CB
V.8MNntot[16MNnB

VnB
j ,

~5.29!

where ntot52nB
VnB

j . This equation definesnB
V . The total

costs are given by

CS,B52nS,B
j MN~8nS,B

V 13 log2N!. ~5.30!
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In Eq. ~5.30!, we have ignored the overhead costs. Also,
the template bank case, we have ignored the cost involve
computingC at non-sampled values, which can be obtain
from Shannon’s theorem. The length of the data that is
fectively processed is equal to the length of the zero padd
This is because if the time-of-arrival of the signal excee
the padding duration, the longest chirp can extend out of
data train. Thus we need to consider times of arrival only
to the padding length. The next data train must begin at
instant leading to an overlap between successive data tr
To process the data online requires that the processing
be at least equal to the rate of data acquisition. Since
length of the processed data is just the length of the padd
with zeros in the template, the online computing speedSS

and SB are given by dividing the computing costs by th
padding duration, 3j1. In the next section, we obtain th
template bank and the computational costs for various
works.

VI. EXAMPLES OF DETECTOR NETWORKS: RESULTS

Before considering the case of the actual network of las
interferometric detectors being built around the globe,
shall first consider some idealized cases that are simpl
analyze. Such an exercise is meant to provide us with so
useful estimates on the number of templates required, c
putational costs, etc. We begin by verifying that in the ca
of a single detector the formalism developed in the previo
sections yields the results expected from earlier stud
@26,27#. Then we apply our formalism to cases of networ
with two and three identical detectors, respectively, w
identical noise PSDs. Assuming a common noise simpli
computation of the metric on the signal parameter spa
Purely for the purposes of obtaining estimates we choose
noise PSDs in these cases to be that of LIGO-I, withf s

540 Hz. Here, cases of non-coincident as well as arbitra
oriented detectors are also studied. Subsequently, we ge
alize these analyses to obtain estimates for realistic case
networks comprising of the LIGO and VIRGO detector
These include two-detector networks, which pair up the t
LIGOs or VIRGO with one of the LIGOs, and the three
detector network that includes VIRGO and both the LIGO
In Tables II and III we summarize our results, which inclu
the computational speed requirements, network sensitivi
and source-direction resolutions for all of these networks

A. The one-detector ‘‘network’’

It is instructive to start with the one detector case sinc
lays the foundation for theM-detector case, the analysis o
which would be the final goal. More pertinently, the numb
of templates inj for the single-detector case is required f
computingnj in the case of networks with more than on
detector. We first verify that our solution gives the expec
estimates forM51. For a single detector, we haveq0

5 f stc andq15 f sj. The network statistic is
4-18
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Ł5uC1* Q1u5uC1u

5U E
f s

`

A~ f !exp„2 iF~ f ;qm,Dqm!…d fU, ~6.1!

where the phaseF can be derived from Eqs.~5.11! and
~3.11! by setting I 51 and the time-delay term to zero i
those equations, respectively.

For the above statistic, theexactmetric gab can be ob-
tained from Eq.~5.16!. Using the scalingF52pF̃, the
scaled metric is

g̃ab5
1

2
@^F̃aF̃b&2^F̃a&^F̃b&#, ~6.2!

where the moment functionals can be expressed in term
the noise moments listed in Appendix C. The metric th
reduces to

g̃ab5
1

2 S k1 k3

k3 k2
D , ~6.3!

wherek1 , k2, andk3 are certain useful combinations of nois
moments and are defined in Eqs.~C4! ~here we have droppe
the detector indexI from those combinations for obviou
reasons!. Projecting orthogonal toq0, we find

g̃115
1

2 S k22
k3

2

k1
D[

1

2
k2. ~6.4!

The parameter space in this case is just one-dimensiona
volume is the proper length

V52pṼ52p f sE
jmin

jmaxAg̃11dj

5A2p f sk~jmax2jmin!. ~6.5!

Since the number density of templates here isr1(m)
51/(2Am), the number of templates~including 2 sets of
templates for searching overdc) is just

ntot5A2

m
p f sk~jmax2jmin!. ~6.6!

For LIGO-I noise we havek50.062, and the correspondin
ntot is given in Table II for the parameter ranges listed the

B. Two-detector networks

1. Two non-coincident, identical detectors with identical noise
PSDs and identical orientations

We consider a network of two identical detectors w
identical noise PSDs. We make the following choice of c
ordinates. We choose one of the two detectors to be the
Thez axis of the fide is chosen along the line joining the tw
detectors. Then the second detector is taken to be locate
(0,0,z2), with an orientation identical to that of the fide, i.e
a (2)5b (2)5g (2)50. Owing to the same orientations, th
04200
of
n

Its

.

-
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at

beam-pattern functions of the two detectors are identica
the detectors were located at the same place, then the re
ing network would have mimicked a single detector, but w
a higher sensitivity. Here, however, we consider spatia
separated detectors, where the relative time delay,t (2) , pro-
vides partial information about the source direction, name
u. The time delay in units off s

21 is given by

f st (2)5z2~ ẑ•n̂!, ~6.7!

where we measurez2 in units of the fiducial wavelength,ls
~which is '7500 km for f s540 Hz). Thus, the network
statistic in this case is

Ł5uC•Q8u ~6.8!

5
1

A2
uC1* 1C2* u. ~6.9!

Note thatQ815Q82 and uQ81u5uQ82u51/A2. This means
that we have no information aboute and c. For a two-
detector network, any given value of the time delay cor
sponds to more than one source directions, all of which
on the surface of a cone whose axis coincides with the
joining the two detectors. Only when the source lies on
line passing through the two detectors is the time de
single-valued, and is of maximum magnitude for a given p
of detectors~note that we have allowedt (I ) to be negative as
well!. The value of the time delayt (2) determines the open
ing angle of the cone. Thus, the azimuthal direction anglef
of the wave remains undetermined in the case of two de
tors. Onlyu can be estimated from the time delay that a
pears in the phase difference of the detector responses.

As in case (a), the exact metricgab for the statistic~6.8!,
can be obtained directly from Eq.~5.16!. The corresponding
scaled metric is

g̃ab5
1

4 (
I ,J

1

2
@^F̃aF̃b& (I )2^F̃a& (I )^F̃b& (J)#, ~6.10!

where theF (I ) are defined in Eq.~5.11!. The metric on the
three-dimensional parameter space$ f stc , f sj,n3% can now be
given in terms of the noise moments as

g̃ab5
1

2 S k1 k3 z2k1/2

k3 k2 z2k3/2

z2k1/2 z2k3/2 z2
2
„k11 j ~1!…/4

D , ~6.11!

where j (1) is a noise moment defined in Eq.~C3!.9 After
maximizationg̃ab over the time of coalescence, we dedu
the metricg̃ i j to be

9We have dropped the detector indexI from the noise moment
combinationsk1 , k2, andk3 ~see Appendix C! since here the noise
moments are identical for the two detectors.
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g̃ i j 5
1

2 S ~k1k22k3
2!/k1 0

0 z2
2 j ~1!/4

D . ~6.12!

Here, a vanishingg12 implies that there is no covarianc
betweenj and u. This is however not true when the nois
curves are assumed to be different for the two detectors.
is so in case (c), which we discuss below.

The volume on the 2D parameter space$ f sj,n3% is ob-

tained by integratingAdeti g̃i over n3 and j. The proper
volume of interest is

V5~2p!2Ṽ52p2f sk8z2~jmax2jmin!, ~6.13!

where k8[Aj (1)(k1k22k3
2)/k1. For the two-detector net

work, the number density of templates isr2(m)51/(2m).
Therefore, the number of templates is

ntot5
2p2

m
f sk8z2~jmax2jmin!. ~6.14!

For LIGO-I noise,k850.288. The value ofntot for this case
is given in Table II.

2. Two non-coincident, identical detectors with identical noise
PSDs, but with different orientations

We make the choice of coordinates identical to that
case~a! above. Since the two detectors have different ori
tations, the beam-pattern functions for the two detectors
fer, i.e., Q1ÞQ2. This has the implication that more infor
mation about the signal parameters, namely,e andc, can be
obtained. Since here we have only two dimensions on
network space to contend with, the network correlatio
vector, C, always lies inH and no projection is required
Therefore, the problem of maximization of the LLR over t
angles$e,c% reduces to aligningQ8 alongC. Thus, the net-
work statistic simplifies to

Ł5iCi5~ uC1u21uC2u2!1/2. ~6.15!

The metric g̃ab on the parameter space with coordina
$ f stc , f sj,n3% is obtained from Eq.~5.16! to be exactly

g̃ab5
1

2 (
I

uQI u2@^F̃aF̃b& (I )2^F̃a& (I )^F̃b& (I )#,

~6.16!

where theF̃ (I ) are the same as in case~a! above. Setting
uQ1u2[h and, therefore,uQ2u2512h, the metric in terms of
h and the noise moments is

g̃ab5
1

2 S k1 k3 z2~12h!k1

k3 k2 z2~12h!k3

z2~12h!k1 z2~12h!k3 z2
2~12h!k1

D .

~6.17!

The associatedg̃ i j is then given by
04200
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g̃ i j 5
1

2 S ~k1k22k3
2!/k1 0

0 z2
2h~12h!k1

D . ~6.18!

We note that theAdeti g̃ i j i depends onh, which is a func-
tion of source direction (u,f) as well as the angles$e,c%.
Thus, for every single source direction we have a tw
parameter family of metricsg̃ i j ~dependent one and c).
Clearly, the template spacings in this case will vary w
their locations. For the purpose of obtaining estimates,
perform a simplification by opting to choose a bank of te
plates that is the finest over these two parameters. To do
we first maximize deti g̃ i j i over e and c and then compute
the volume. The parameters$e,c% appear in the determinan
only through the factorAh(12h). The value ofh for which
the determinant is maximized ish51/2. We prove in Ap-
pendix D that one can always find a physically allowed p
of $e,c% such that the valueh51/2 is attainable for any
given pair of$u,f% and for any orientations of the detector
We use this value ofh to compute the parameter-space vo
ume.

The proper volume after multiplying by the appropria
scaling factor is

V52p2k9 f s~jmax2jmin!z2 , ~6.19!

wherek9[Ak1k22k3
2, which is equal to;0.13 for LIGO-I

noise. As in case (a), the number of templates is arrived
by multiplying the proper volume by the number density
templates.

3. General case of two detectors

Here, we typically consider the case of a network co
prising of the VIRGO detector and one of the LIGO dete
tors, say, the one at Louisiana, for concreteness.~The results
do not differ much if we replace in our calculations the nu
bers corresponding to the detector at Louisiana with th
describing the 4 km long Hanford detector.! We assume the
noise curves of the respective detectors to be those give
Table IV @35#. Here, we have a case in which the seism
cutoffs are different. Labeling the VIRGO detector as 1 a
LIGO as 2, we havef s(1)516 Hz and f s(2)540 Hz. The
important implication of this is that the signal in the VIRG
detector will last longer by a factor (f s(1) / f s(2))

28/3;11.5.
Thus, till the chirp reaches the frequency of 40 Hz, ess
tially it is only one detector, namely, VIRGO that contribut
to the SNR. The longest chirp~for m15m2'0.5M () in the
detector output lasts for about 1588 sec. Accordingly,
choose the data segments to be of duration 5000 sec e
and assuming the same sampling rate of 2 kHz for b
detectors, we haveN;107. We now compute the metric an
the number of templates for this network.

The expression for the scaled metric in this case is
same as the one in Eq.~6.16!. Let z2 denote the distance
between the detectors as in case~a! and let uQ1u25h as in
(b). Also, we take the fiducial frequency to bef s5 f s(2) ,
without any loss of generality. Then the metric is given b
4-20
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g̃ab5
1

2 S k1(2)1h~%2k1(1)2k1(2)! k3(2)1h~%22/3k3(1)2k3(2)! ~12h!z2k1(2)

k3(2)1h~%22/3k3(1)2k3(2)! k2(2)1h~%210/3k2(1)2k2(2)! ~12h!z2k3(2)

~12h!z2k1(2) ~12h!z2k3(2) ~12h!z2
2k1(2)

D , ~6.20!

where we have used% (1)5 f s(1) / f s(2)[% @see Eq.~C5!# and% (2)51. For the network under consideration%50.4, andk1(I ) ,

k2(I ) , k3(I ) for VIRGO and LIGO-I are listed in Table IV. From Eq.~5.1! we computeg̃ i j . We find thatAdeti g̃ i j i
5z2B(h), with

B~h!.
@h~0.23113.33h16.51h2220.07h3!#1/2

4.5716.95h
, ~6.21!
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which is a smoothly varying function ofh that attains its
maximum value of;0.22 ath;0.6.

The volume of the parameter space is

V.1.76p2z2f s~jmax2jmin!, ~6.22!

and the corresponding number of templates is

ntot.
1.76p2

m
z2f s~jmax2jmin!, ~6.23!

wherentot is listed in Table II.
We do not specify the computing speed for the sampl

method in this case because it is not clear what noise c
one must choose to obtain one detector templates inj.

C. Three-detector networks

1. Three non-coincident identical detectors with identical noise
PSDs and identical orientations

We consider a network of three detectors with identi
noise PSDs. The detectors are spatially separated and
identical orientations. Such a situation will be difficult, if n
impossible to realize on a spherical Earth. However, in t
simple case our goal is to obtain order of magnitudes e
mates for computational costs, etc. We treat one of the th
detectors to be the fide. We choose the coordinate syste
the fide as follows: Thez-axis of the fide is along the line
joining the fide and one of the remaining detectors. Thus,
second detector is located at (0,0,z2). The x-axis is chosen
such that the plane formed by the network coincides with
x2z plane. The spatial coordinates of the third detector
04200
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(x3,0,z3). The detectors have identical orientations, i.
a (I )505b (I )5g (I ) . Hence, they have identical antenn
pattern functions, i.e.,Q815Q825Q83. Then, the network
statistic simplifies to

Ł5uC•Q8u

5
1

A3
uC1* 1C2* 1C3* u.

~6.24!

Note that, the network of three spatially separated detec
provide two independent relative time delays,t (2) andt (3) ,
which determine the two possible source directions as
lows. For each pair of detectors in such a network, the ti
delays draw a circle in the sky for possible source locatio
The intersections of two such circles determine two poss
source directions. Here, the time delays in units off s

21 are

f st (2)5z2( ẑ•n̂) and f st (3)5x3( x̂•n̂)1z3( ẑ•n̂). We measure
z2 , z3, andx3 in units of fiducial wavelengthls .

The exact scaled metric is obtained via Eq.~5.16! to be

g̃ab5
1

9 (
I ,J

1

2
@^F̃aF̃b& (I )2^F̃a& (I )^F̃b& (J)#, ~6.25!

where theF̃ (I ) can be obtained from Eq.~5.13! by using for
the time delays,f sDt (1)50, f sDt (2)5z2Dn3, and f sDt (3)
5x3Dn11z3Dn3. The resulting components of the symme
ric metric g̃ab , on the space of the variable
$ f stc , f sj,n3 ,n1%, are
g̃ab5
1

2 S k1 k3 ~z21z3!k1/3 x3k1/3

• k2 ~z21z3!k3/3 x3k3/3

• • @3~z2
21z3

2! j ~1!2~z21z3!2 j ~4!2#/9 x3@3z3 j ~1!2~z21z3! j ~4!2#/9

• • • x3
2
„3 j ~1!2 j ~4!…/9

D . ~6.26!

Maximization overf stc gives
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g̃ i j 5
1

2 S ~k1k22k3
2!/k1 0 0

0 2~z2
21z3

22z2z3! j ~1!/9 x3~2z32z2! j ~1!/9

0 x3~2z32z2! j ~1!/9 2x3
2 j ~1!/9

D . ~6.27!

TABLE I. Locations and arm orientations of Earth-based interferometric gravitational-wave detectors.
The length of each arm is given in meters. The location of the corner station of each detector is given in terms
of the latitude and longitude there. The orientation of an arm is given by the angle through which one must
rotate it clockwise~while viewing from top! to point north.

Project Location Year Length~m! Corner location Arm 1 Arm 2

TAMA-300 Tokyo, JPN 1998 300 35.68°N 139.54°E 90.0° 180.0°
GEO-600 Hannover, GER 1999 600 52.25°N 9.81°E 25.94° 291.61°
VIRGO Pisa, ITA 2000 3000 43.63°N 10.5°E 71.5° 341.5°
LIGO Hanford, WA 2000 4000 46.45°N 2119.41°E 36.8° 126.8°
LIGO Livingston, LA 2000 4000 30.56°N 290.77°E 108.0° 198.0°
AIGO Gingin ~Perth!, AUS TBA 80 231.04°N 115.49°E 180° 270°
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Then the proper volume is

V5~2p!3Ṽ5
16p4

3A6
j ~1!kAf s~jmax2jmin!, ~6.28!

whereA is the area of the network. For the three-detec
network discussed here, the parameter space is th
dimensional and the number density of templates isr3(m)
53A3/(8m3/2). For typical parameters the quantities of i
terest are listed in Table II.

2. The network comprising of LIGO (Livingston), LIGO
(Hanford), and VIRGO (Pisa) with their respective noise curve

We finally discuss the case of a non-coincident thr
detector network involving the LIGO and VIRGO detecto
with their respective noise curves. We denote such a netw
asHLV. The detector noise PSDs are represented by ana
cal fits given in Ref.@35#. These fits are reproduced here
Table IV. We assume LIGO-I noise in both of the LIG
detectors. Table I lists the locations and the orientations
the detectors on the globe@36#. In order to compute the met
ric we choose the fide frame to be the network frame withH
at its origin,L lying on thez-axis, andV lying in the x2z
plane. In units ofls , the dimensionless position-vectors
the detectors are given by

rH5~0,0,0!, rL5~0,0,0.40!, rV5~1.05,0,0.29!.
~6.29!

Note that since they-component of each of these vectors
zero in such a frame~i.e., r (I )250, for I 51, 2, 3!, the mo-
ment functionals given in Eq.~C5! simplify considerably. An
inspection of that equation shows that in this case the n
moments do not depend on the direction to the source
hence, theg(I )(J)ab are constants. Therefore, this choice
the fide frame simplifies the computations involved. T
metric gab however, depends onn1 andn3 throughQ. The
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orientations of the detectors can easily be obtained fr
Table I. In the fide~network! frame, they are given by

$aH ,bH ,gH%5$38.11°,256.35°,107.43°%,

$aL ,bL ,gL%5$38.09°,283.54°,196.88°%,

$aV ,bV ,gV%5$320.34°,275.92°,159.02°%.
~6.30!

The numerical code that we have developed for this c
first computesg(I )(J)ab from the moment functionals given
in Eq. ~C5!. Then Eq.~5.23! is used to computeg62,62ab
and, subsequently, the metricgab is obtained from Eq.~5.25!
as a function ofn1 , n3 ~analogously,$u,f%), e andc. This
metric is then projected orthogonal toq0 to obtaing i j . Since
our goal here is to get estimates~within a factor of 10! of the
online computational speed requirements, we obtain
parameter-space volume of such a search by integra
Adetigi over the parametersu, f, andj for a few chosen
values ofe andc. From this volume we derive the numbe
of templates,ntot , the computational cost, and the onlin
speed needed for this network.

The parameter-space volume is given by

V. f sjmaxE E Adetigidn1dn3 . ~6.31!

We have evaluated this integral for several values ofe andc.
Its average value turns out to be;250. For most of the
astrophysically interesting ranges fore and c, the proper
volume does not vary by more than a factor of 3 beyond t
value. As before, takingf s540 Hz, jmax;138 sec,r3(m
50.03)5125, we find the number of templates to bentot
;few times3 108. The computational cost using a templa
bank is obtained from Eq.~5.30!. This cost is essentially
given by the search over the time-delay window and, hen

CB.24Nntot . ~6.32!
4-22
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TABLE II. The table lists number of templates, computational costs, and online computing speeds required for a search using
networks. The detector networks are labeled asI for a single detector,II -a for two identical detectors with identical orientations locat
diametrically opposite on the surface of the earth,II -b for two identical detectors with arbitrary orientations located diametrically oppo
on the surface of the earth, andIII for three identical detectors with identical orientations placed on Earth’s equator forming an equi
triangle. The detectorXD denotes a detector with LIGO-I noise at the location of the detectorD. The lettersL, H, V, T, andA denote the
detectors, LIGO detector at Louisiana, LIGO detector at Hanford~the one with arms of length 4 km each!, VIRGO, TAMA and AIGO sites,
respectively. We assume LIGO-I noise for both the LIGO detectors. We take the lower limit on the masses to be 0.5M ( , i.e., M1 andM2

each>0.5M ( . Thus, we havejmax;138 sec forf s540 Hz, except for theLV case. We consider data trains of 500 sec. sample
2 kHz so thatN;106, nS

j54.43103. For theLV network,j (1)max;1588 sec and, therefore, for a data train of length 5000 sec, one
N;107.

Network CB CS SB SS

configuration ntot nB
j nB

V nS
V ~fl-pt ops! ~fl-pt ops! ~Gflops! ~Gflops!

I 8.93103 4.43103 - - 5.331011 - 1.5 -
II -a 1.63106 6.23103 129 170 2.731013 2.531013 75 69
II -b 7.73105 6.23103 62 170 1.431013 2.531013 39 69
LH 1.93105 6.23103 15 40 4.531012 6.931012 12 19
LXV 5.33105 6.23103 43 105 1.031013 1.631013 28 44
LXT 6.23105 6.23103 50 128 1.131013 1.931013 33 52
LXA 8.03105 6.23103 65 166 1.431013 2.431013 39 69
LV 3.53106 3.83104 46 105 6.131014 - 170 -
III 3.63108 7.63103 2.43104 1.53104 8.631015 3.231015 2.33104 8.83103
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If we take a data train 5000 sec long corresponding
j (1)max51588 sec for VIRGO, we haveN.107, and the
computing cost isCB;1017 fl-pt ops. For online processing
this data must be processed in about 3412 sec, yieldin
online speed requirement of about few tens of Tflops.

D. Numerical results

In Table II, we summarize the numerical results for va
ous networks. We list the total number of templates,ntot ,
required for a search overj, u, andf and also the break up
into nB

j and nB
V . In the case of a two-detector network,nB

V

corresponds to a 1-dimensional grid inu. We also give the
corresponding values fornS

V . Finally in the last two columns
we provide the online computational speeds where we h
taken the data train to be of 500 sec. duration and the z
padding is 5002jmax5362 sec long, except for theLV net-
work. In the LV case, the duration of the data train
5000 sec, and the zero-padding is 3412 sec. The comp
tional speedsSB andSS are obtained by dividing the compu
tational costs by the duration of the padding.

VII. FALSE ALARMS, DETECTION PROBABILITIES,
AND VETOES

A. False alarm and detection probabilities

The maximum-likelihood method involves computing t
likelihood ratio for given data and comparing it with a pr
determined threshold. In some cases it is more useful to
place the likelihood ratio by another quantity derived from
When the likelihood ratio, or the LLR, is a function of se
eral parameters, it is often possible to maximize it anal
cally over some of these parameters, as we have shown
In our case, such a maximization led to a reduced stat
derived from the LLR. We call this statisticL. To detect the
presence of a signal in the data one must, therefore, com
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the values thatL takes at all the grid points on the space
the remaining parameters. Each of these values must the
compared with the threshold,L0, to infer the presence o
absence of a signal. The value ofL0 can be obtained via the
Neyman-Pearson decision criterion@37#, given the predeter-
mined value of the false-alarm probability,Q0, associated
with the event of detection of the signal. WhenL,L0, we
conclude that the signal is absent in the data, whereas w
L.L0, the detection of the signal is announced.

To compute the false-alarm probability and the detect
probability,Qd , we need to know the probability distributio
of L in the absence of the signal, i.e.,p0(L), and in the
presence of the signal, i.e.,p1(L). We note thatL is a sum
of squares of the random variablesc0

1 , cp/2
1 , c0

2 , andcp/2
2 .

If our assumed properties of the detector noises are va
then in the absence of a signal, i.e., for hypothesisH0, each
of the random variablesc0

1 , cp/2
1 , c0

2 , andcp/2
2 has a mean

equal to zero. To see this, let

C5c01 icp/2 , ~7.1!

where

c0[$c0
I % and cp/2[$cp/2

I %. ~7.2!

Further, define

c0
6[ v̂6

•c0 and cp/2
6 [ v̂6

•cp/2 . ~7.3!

Then, from Eq.~4.3! it follows that c0
I , cp/2

I and, therefore,
c0

6 andcp/2
6 , each has a vanishing mean. From the assum

independence of noise among the different detectors and
orthonormality betweenv̂1 andv̂2, and also betweenso

I and
sp/2

I , we obtain the covariances betweenc0
6 andcp/2

6 as well
as the covariances betweenc0

6 and cp/2
7 to be zero. On the
4-23
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TABLE III. Total number of templates, false-alarm probabilities, detection thresholds, relative sen
ties, and the resolutions in the direction to the source for various network configurations. We
g(1)

2 /g(2)
2 51.58, where the subscripts 1 and 2 correspond to VIRGO and LIGO, respectively. Theg(I ) are

needed to compute network sensitivities relative to that of a single detector with LIGO-I noise.

Network Relative su

configuration ntot Q0 Ł0(M ) sensitivities orsV

I 8.93103 1.7310215 8.7 1 -
II -a 1.63106 9.4310218 9.3 1.3 0.3°
II -b 7.73105 1.9310217 9.2 1.3 0.6°
LH 1.93105 7.9310217 9.0 1.4 2.5°
LXV 5.33105 2.8310217 9.2 1.4 0.9°
LXT 6.23105 2.4310217 9.2 1.3 0.8°
LXA 8.03105 1.9310217 9.2 1.3 0.6°
LV 3.53106 4.3310218 9.4 1.5 0.7°
III 3.63108 4.2310220 9.9 1.6 0.15 sq.deg.
LHV 3.53108 4.3310220 9.9 1.7 1.2 sq.deg.
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other hand, the variances of each ofc0
6 and cp/2

6 is unity.
Thus, under theH0 hypothesis,L is the sum of squares o
the independent Gaussian random variables@see Eq.~4.11!#
with mean zero and unit variance. We conclude from st
dard literature~see, e.g., Ref.@31#! that the probability den-
sity function forL, under theH0 hypothesis, is ax2 distri-
bution with four degrees of freedom, and is given by

p0~L!5
L

4
exp~2L/2!. ~7.4!

The false alarm probabilityQ0 is then obtained to be

Q05E
L0

`

p0~L!dL5S 11
L0

2 Dexp~2L0/2!. ~7.5!

The value ofQ0, which is inferred from astrophysical est
mates of event rates and detector sensitivities, determine
detection thresholdL0 through the above equation.

The detection probability is obtained from the probabil
distributionp1(L). In order to calculatep1(L), we need the
norm of the average network correlation vector when
template gives a perfect match with the data. Assuming
the strength of the signal in the data isb, i.e., if xI(t)
5bŝI(t)1nI(t), then the average value of the netwo
correlation-vector isC̄5bQe2 idc. Therefore,

iC̄i25 c̄0
21 c̄p/2

2

5c1̄
0
21c2̄

0
21c1̄

p/2
2 1c2̄

p/2
2 5b2, ~7.6!

for which we obtain~see, e.g., Ref.@31#!

p1~L!5
1

2 SAL

b D expF2
L1b2

2 G I 1~bAL!, ~7.7!

whereI 1 is the modified Bessel function. The detection pro
ability itself is
04200
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Qd5E
L0

`

p1~L!dL, ~7.8!

which we now obtain in the large SNR limit. In terms of th
network statistic,Ł[AL, this asymptotic limit amounts to
the conditionbŁ@1, and Eq.~7.7! approximates to a Gauss
ian distribution:

p1~Ł !5
1

A2p
expF2

~Ł2b!2

2
G . ~7.9!

Thus, in the large SNR limit the network statistic is a Gau
ian with mean approximately equal to the network stren
of the signal,b. For the networks considered in Sec. VI, w
summarize in Table III detection thresholds, the resolut
achievable in the direction to the source, and the rela
sensitivity of the network compared to that of a single det
tor. We take the false-alarm rate to be one per year and
detection probability to be 95%. Then, assuming a samp
rate of about 2 kHz, we arrive at a false-alarm probability
Q0;1.5310211/ntot . For the sake of this calculation, w
assumed that output samples in the correlation vector
uncorrelated. The correlation between these samples wil
duceQ0 but this does not make appreciable difference to
thresholds and sensitivities@38#. The thresholdL0 is then
computed using Eq.~7.5!.

We define the sensitivity of anM-detector network rela-
tive to that of a single detector to be equal
A( I 51

M g(I )
2 /g(1)

2 (Ł0(1)1DŁ)/(Ł0(M )1DŁ), where Ł0(M ) is
the threshold corresponding to a network ofM detectors
~therefore,Ł0(1) is the threshold for a single detector! and
DŁ is the solution of

1

A2p
E

2`

DŁ

e2x2/2dx5Qd[0.95. ~7.10!

It yields DŁ'1.64. The sensitivity~which is.1) is roughly
proportional to the average distance at which one can de
4-24
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a source of a givenj with a network of M detectors as
compared to a single detector, with 95% detection proba
ity, where the average is taken over all directions and ori
tations of the binary. For a network of detectors with iden
cal orientations the result is exact.

The resolution in the direction to the binary is obtain
from Eq. ~5.26!. It is obtained by noting that the error in th
n32n1 plane is given by

b22Ag22g332~g23!25sinu cosfsV , ~7.11!

wheresV is the resolution given in terms of the anglesu and
f. We take SNR;12, sufficiently above the threshold t
guarantee a good detection probability. We compute
source-direction resolutionssu and sV in the case of two-
and three-detector networks, respectively. ThesV is ob-
tained from the covariance matrix using the above equatio
In Table III, we give the values for source-direction reso
tion for a direction normal to the plane in which the detect
lie. The reason we choose this direction is because in
direction we expect the resolution to be high. The big diff
ence in the values ofsV between caseIII andLHV is be-
causeIII is a degenerate case of a network of identical
tectors, which are merely spatially separated.

B. Vetoing non-Gaussian events in detector noises

The assumptions of Gaussianity and stationarity of no
in detectors is an idealistic one. The noise in actual detec
will not, in general, satisfy these assumptions, but will rath
contain a non-Gaussian component arising from causes
as sudden strain releases in mechanical structures, rin
from electronic servo loops, etc. Their deviations from Ga
sianity are poorly understood and are difficult to model. B
since such noise components may have sufficiently large
plitudes, they can trigger the statisticŁ to register a ‘‘detec-
tion’’ within the scope of the methods described so far. T
is where ax2-type test described in Ref.@19# can be used to
discriminate against such contingencies by using the spe
spectral profile of a chirp (uS̃( f )u2} f 27/3), which is different
from that of a non-Gaussian event, in general. We desc
such a test for a network below.

The frequency bandwidth in each detector, fromf 50 to
f 5 f Nyquist, is divided into p-subintervals in the following
way. Let

^xI ,yI& (I )k52RE
f k(I )

f k11(I ) x̃I* ~ f !ỹI~ f !

sh(I )~ f !
d f , ~7.12!

where in the integrand the indexI is not summed over. Using
the above definition, one partitions the interval@0,f Nyquist# by
setting ^s0

I ,s0
I & (I )k5^sp/2

I ,sp/2
I & (I )k51/(2p). This way, for

each detector,I, we get a partition 0,f 1(I ) , f 2(I ) , . . . ,f p(I )
5 f Nyquist. Next, one computes the following correlation ov
each subintervalk:

CIk* [^SI ,xI& (I )k . ~7.13!
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The individual detector correlations can, therefore, be
pressed as

CI5 (
k51

p

Ck
I . ~7.14!

Define the deviation inCk
I from the average contribution to

CI from thek-th frequency bin to be

DCk
I [Ck

I 2CI /p, ~7.15!

which, by definition, obeys(k51
p DCk

I 50. Then thex2 sta-
tistic is given by

x (I )
2 5p(

k51

p

uDCk
I u2, ~7.16!

which has 2p22 degrees of freedom. If the detectorI is
behaving ‘‘properly,’’ that is, if the detector output is main
the Gaussian noise, with or without a chirp, thenx (I )

2 has a
small value. On the other hand, a relatively large value
x (I )

2 is taken to indicate non-Gaussianity. Choosingp520, as
in Ref. @19#, we see thatx (I )

2 has 38 degrees of freedom
Defining x

*
2 to be the decision threshold, ifx (I )

2 .x
*
2 , then

we reject the hypothesis that the event is a signal, else
accept that there is a signal present. For 38 degrees of
dom at 90 percent confidence level, one findsx

*
2 ;50.

We apply the test to the network in the following wa
Suppose, the statisticŁ exceeds the thresholdŁ0 for some
time lagt5t0. After accounting for the relative time delay
we compute theC(k)

I at t0 and constructx (I )
2 , for all I. Next,

we test whether each detector satisfies the assumptio
Gaussianity and stationarity by comparingx (I )

2 with x
*
2 . If

x (I )
2 ,x

*
2 , for anyI, then we accept the decision that we ha

actually detected a signal. On the other hand, if for somJ
5I 1 ,I 2 ,I 3 , . . . ,I M1

, x (J)
2 .x

*
2 , we ignore the contribution

from these detectors in computingŁ and constructŁ8 for the
rest of the data fromM2M1 detectors. Now, ifŁ8 crosses
the threshold, then we say that the signal is detected, ot
wise it is not.

We assume that non-Gaussian events occur relati
rarely @39#. Then it is unlikely that more then one detect
will simultaneously have such events, andM1 on most oc-
casions will be unity. In that case, we find that the abovex2

test adds negligible cost to the overall computational cos
is quite likely that due to the non-Gaussian noise in a sin
detector, the network statistic crosses the threshold m
than once in each data train. Then we need to perform
test on each of these trains. In such a situation, the numbe
real floating-point operations needed to implement thex2

test can be shown to behave as;5MN. For the networks
studied in Table II, we find that for two detectors th
amounts to;107, which is fractionally a very small incre
ment overCB,S;1013 in such cases. Similarly, for three de
tectors, 5MN;1.53107, which is much smaller than the
correspondingCB,S;1015. Thus, even if there were spuriou
events masquerading as chirps at the rate of one per sec
the increment in the computational cost to include ourx2 test
4-25
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will be only ;10 Mflops, which is about 104 times smaller
than SB,S for a two-detector search and about 106 times
smaller than those for a three-detector search.

VIII. CONCLUDING REMARKS

We have presented here a data-analysis strategy base
the maximum-likelihood method for the detection of G
signals from inspiraling compact binary stars with a netwo
of laser interferometric detectors. Our approach is based
coherent search of the data from all the detectors in a
work and, therefore, is inherently optimal. The formalis
described is mathematically elegant and simple. In Gaus
noise, the method is tantamount to matched filtering the
nal. However, the noise model we consider here is m
realistic in that it allows for occasional non-Gaussian bur
superposed on a predominantly Gaussian noise backgro
Sections of data that contain non-Gaussian bursts are ve
out by ax2 criterion. For simplicity, we consider the New
tonian inspiral wave form, but it is clear that our formalis
is as well applicable to waveforms depending on a lar
number of intrinsic parameters, such as spins of the bin
members. In particular, the formalism is extendable to
restricted 2.5 PN inspiral wave form. In that event the nu
ber of network templates required increases essentially
the same factor as in the case of a single detector: Assum
LIGO-I noise in the detectors and individual stellar mas
of 0.5M ( or larger, the increase in the number of templa
is by a factor of about 4 to 5, when the maximum allow
mismatch is 3%. One would then expect the computatio
cost to increase by a similar factor. We expect to look in
this issue in greater detail in the future.

For the Newtonian case, the online computational sp
requirements are high—from tens of Gflops for a network
two detectors to a few tens of Tflops for a network of thr
widely separated detectors around the globe. Clearly,
cient signal extraction methods are called for. A hierarchi
search approach to this problem should, therefore, be
plored. Alternatively, the search can be restricted to sele
regions in parameter space, the selection of regions b
based on prior astrophysical information. For example,
search may be restricted to the masses of the stars b
greater than a solar mass, the argument being that it is
likely to find compact objects of a smaller mass. This wou
reduce the computational cost by a factor of 4 in the Ne
tonian case.

The relative sensitivity of a network, on an average,
creases by a factor little less thanAM , whereM is the num-
ber of detectors having identical noise PSDs. Although
signal energy accessible to the network on an average~with
the average taken over all the directions and the orientat
of the binary! increases by a factor ofM, the change in the
threshold value of the network statistic, which obeys
Rayleigh distribution in the absence of the signal, is such
the overall factor of increase in sensitivity is a little less th
AM . In the case of detectors with different noise curves,
quantityg(I ) plays a central role. In such a case, the relat
sensitivity of a network on an average increases
A( I 51

M g(I )
2 /g(1)

2 where the sensitivity is normalized to dete
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tor 1. Thus, a detector with a larger value ofg(I ) influences
the relative sensitivity that much more.

We also estimate the errors made in determining the
rection to the source by computing the covariance ma
which is just the inverse of the metric obtained in the para
eter space divided by the square of the SNR. We find that
a network of detectors spread around the globe, with all
tectors having LIGO-I noise curve and an SNR of 12, t
resolution is about a fraction of a degree.

Our analysis essentially assumes Gaussian noise~with oc-
casional non-Gaussian bursts!. The fact that real detector
produce non-Gaussian and non-stationary noise makes
issue highly relevant. This issue must be addressed m
thoroughly in the future. Since the signals are generally w
in nature, it is desirable that the search strategy be optima
a simple enough mathematical model that adequately
scribes the noise in the real detectors can be given, then
approach based on the maximum likelihood method can
be explored. Creighton has already investigated this
proach where the model for noise contains Poiss
distributed bursts superposed on the usual Gaussian com
nent @39#. Such an approach seems promising and could
investigated further. Another approach that is simple,
suboptimal is that of matching event lists in each detec
and putting thresholds on estimated source parameter di
ences.

These issues for more realistic noises and signals still
main to be addressed. Here our main goal in this work is
provide a general framework based on the method of m
mum likelihood, which uses a coherent approach and
therefore optimal. Also many of the results we obtain he
may be scaled up in a straightforward way to obtain orde
magnitude estimates in more general situations. The ex
sion to the PN waveform is just one such case.
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APPENDIX A: STF TENSORS AND GEL’FAND
FUNCTIONS: A REPRESENTATION OF SO„3…

To understand the relation between the responses of
different detectors in a network to the same incoming ch
it is useful to study the behavior of the detector and wa
tensors under three-dimensional orthogonal transformati
This is tantamount to developing an understanding of S
tensors~of rank 2! under the action of an element of th
rotation group SO~3!, g(a,b,g), where (a,b,g) are the Eu-
ler angles. Since we extensively deal with STF tensors
4-26
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rank 2 in the text, enunciating some frequently used prop
ties of such objects is in order.10 Any STF tensor of rankl
can be expanded in a location-independent basis of ‘‘STFl ’’
tensors,Y lm

i j , which has a dimension of 2l 11. STF-l ten-
sors, with rankl 52 are related to the spherical harmonics
follows:

Y2m~u,f!5Y 2m
i j ninj , where m562, 61, 0,

~A1!

where n5(cosf sinu,sinf sinu,cosu). The ‘‘STF-2’’ ten-
sors defined above are also called spin-weighted sphe
harmonics. They obey the following normalization relatio

Y 2m
i j Y i j

2m8* 5
15

8p
dm

m8 . ~A2!

When one makes a passive orthogonal transformation
frames through the Euler angles$a,b,g%, the angles$u,f%
get relabeled to, say,$u8,f8%. Then, the spherical harmonic
in the new frame can be expanded in terms of those in
old frame as

Y2m~u8,f8!5Tm
n~a,b,g!Y2n~u,f!, ~A3!

where the right-hand side has an implicit summation o
n50, 61, 62. Above, the expansion coefficients,Tm

n, are
the Gel’fand functions of rank 2.

The group composition law of two elements of the ro
tion group, say,g1(f,u,c) andg2(a,b,g) leads to the fol-
lowing addition theorem for the Gel’fand functions:

Tm
n~f8,u8,c8!5Tm

s~f,u,c!Ts
n~a,b,g!, ~A4!

where once again the summation overs50, 61, 62 on the
right-hand side is understood. The transformation of S
tensors under rotation is governed by the above theorem
Gel’fand functions.

APPENDIX B: GW POLARIZATION TENSORS
AND THE DETECTOR TENSOR

The detector tensor for an interferometer is defined as

di j 5sin 2O” ~n1in1 j2n2in2 j !, ~B1!

wheren1 and n2 are the unit vectors along the arms of t
interferometer and 2O” is the opening angle, i.e., the ang
between its two arms@8#. Here we shall take the detectors
have orthogonal arms. In that event

n15
1

A2
~1,21,0!, n25

1

A2
~1,1,0!, ~B2!

in the detector frame. When referred to the fide frame, ho
ever,n1,2 depend on the Euler angles,$a,b,g%, that give the

10For a detailed discussion, see Refs.@30,40#. For a more selective
reading of immediate relevance, we refer to Ref.@8#.
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orientation of the detector relative to the fide. The dep
dence ofdi j on these angles can be expressed in a neat f
by realizing that it is a second-rank STF tensor, as is evid
from Eq. ~B1!. Thus, it can be expanded in a basis of STF
tensors. It can be shown that the expansion coefficient
such a basis are@8#

di j Y 2n
i j 52 iA15

8p
„T2* n~a,b,g!2T22* n~a,b,g!…,

~B3!

in the fide frame. Above,n50, 61, 62, and the Gel’fand
functions depend on$a,b,g%.

Similarly, the corresponding components ofdi j can be
deduced in the wave frame. Apart from depending on
angles$a,b,g%, these coefficients will also depend on th
orientation of the wave frame relative to the fide, given
$f,u,c%. Using the addition theorem for Gel’fand function
these components are

di j Y 2n
i j 52 iA15

8p
Tn

s~f,u,c!„T2* s~a,b,g!

2T22* s~a,b,g!…

[A15

8p
Dn , ~B4!

in the wave frame. The extended beam-pattern funct
~3.15! depends on the coefficients,Dn , with n562 andc
50.

APPENDIX C: NOISE CURVES AND NOISE MOMENTS

We define the moments of theI-th detector’s noise curve
as

i (I )~q!5sh(I )~ f 0(I )!E
1

f c(I ) / f s(I )
dx

x2q/3

sh(I )~x fs(I )!
, ~C1!

where f 0(I ) denotes the ‘‘knee’’ frequency of that detecto
this is the frequency at which the sensitivity of the detecto
the highest. On the other hand,f c(I ) is its high-frequency
cutoff and f s(I ) is the seismic cutoff. The noise momen
i (I )(7), is related to the normalization,g(I ) , as follows:

g(I )
2 5

4

3sh(I )~ f 0(I )!
% (I )

24/3i (I )~7!, ~C2!

where% (I )[ f s(I ) / f s . Since our templates are normalized u
ing the above factor, we find the following ratio useful in o
calculations of the parameter-space metric:

j (I )~q![ i (I )~q!/ i (I )~7!. ~C3!

In this paper, we evaluate these noise moments using
analytical fits to noise PSDs of different detectors given
Ref. @35#. These fits are presented in Table IV.
4-27
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TABLE IV. Analytical fits ~for positive frequencies! to noise PSDs, 2sh( f ), of the interferometric detec-
tors studied in this paper. Heres0 denotes the minimum value ofsh( f ), and f 0 is the frequency at which this
minimum occurs. We takesh( f ) to be infinite below the seismic cutoff frequencyf s . We choose the high
frequency cutoff,f c(I ) , to be 800 Hz for allI.

Detector Fit to noise PSD s0 (Hz21) f 0 ~Hz! f s ~Hz!

TAMA-300 s0/32$( f 0 / f )5113(f 0 / f )19@11( f / f 0)2#% 2.4310244 400 75

GEO600 s0/5 @4( f 0 / f )3/22213( f / f 0)2# 6.6310245 210 40

VIRGO s0/4 @290(f s / f )512( f 0 / f )111( f / f 0)2# 1.1310245 475 16

LIGO I s0/3 @( f 0 / f )412( f / f 0)2# 8.0310246 175 40
th
th

in

n

f

ible

f

o-
ely,

al-
ors.
There are certain combinations of the noise moments
appear frequently in the expression for the metric on
parameter space relevant for a network~see Sec. VI!. In or-
der to simplify these expressions, we define the follow
noise-moment combinations:

k1(I )[@ j (I )~1!2 j (I )
2 ~4!#,

k2(I )[9@ j (I )~17!2 j (I )
2 ~12!#/25,

k3(I )[3@ j (I )~9!2 j (I )~4! j (I )~12!#/5, ~C4!

which are, in general, different for detectors with differe
noise PSDs.

The moment functionalŝFa& (I ) and ^FaFb& (I ) defined
in Eq. ~5.19! for the I-th detector, can be given in terms o
the moments of its noise curve. They are~for n2Þ0)

^F0& (I )52p% (I ) j (I )~4!,

^F1& (I )56p% (I )
25/3j (I )~12!/5,

^F2,3& (I )52p@r (I )3,12r (I )2n3,1/n2#% (I ) j (I )~4!

5@r (I )3,12r (I )2n3,1/n2#^F0& (I ) ,

^~F0!2& (I )54p2% (I )
2 j (I )~1!,

^F0F1& (I )512p2% (I )
22/3 j (I )~9!/5,

^F0F2,3& (I )54p2@r (I )3,12r (I )2n3,1/n2#% (I )
2 j (I )~1!

5@r (I )3,12r (I )2n3,1/n2#^~F0!2& (I ) ,
04200
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^~F1!2& (I )536p2% (I )
210/3j (I )~17!/25,

^F1F2,3& (I )512p2@r (I )3,12r (I )2n3,1/n2#% (I )
22/3j (I )~9!/5

5@r (I )3,12r (I )2n3,1/n2#^F0F1& (I ) ,

^~F2,3!
2& (I )54p2% (I )

2 @r (I )3,12r (I )2n3,1/n2#2 j (I )~1!

5@r (I )3,12r (I )2n3,1/n2#2^~F0!2& (I ) ,

^F2F3& (I )54p2% (I )
2 @r (I )32r (I )2n3 /n2#

3@r (I )12r (I )2n1 /n2# j (I )~1!

5@r (I )32r (I )2n3 /n2#@r (I )12r 2
I n1 /n2#

3^~F0!2& (I ) , ~C5!

which shows that all the moment functionals are express
in terms of five independent noise-moments,j (I )(q). These
are the ones corresponding toq51,4,9,12,17. The values o
these noise moments and the combinations~C4! for relevant
noise PSDs are listed in Table V. Alternatively, all the m
ment functionals are determined by five basic ones, nam
^F0& (I ) , ^F3& (I ) , ^F0

2& (I ) , ^F0F3& (I ) , and^F3
2& (I ) .

For a network of three or less detectors a plane can
ways be arranged to contain the hubs of all the detect
This makes it possible to choose the fide frame~or the net-
work frame, in this case! in such a way thatr (I )250 for all I.
With this choice the moment functionals reduce to
e take
z

TABLE V. Noise moments of some of the planned interferometric detectors. In evaluating these, w
the values off s(I ) and f 0(I ) as given in Table IV. The upper cutoff frequency,f c(I ) , is assumed to be 800 H
for all detectors.

Noise moments j~1! j~4! j~7! j~9! j~12! j~17! k1 k2 k3

LIGO-I 21.3 4.089 1 0.444 0.157 0.045 4.572 0.007 20.1197

VIRGO 132.4 7.774 1 0.407 0.167 0.068 71.99 0.014520.5347

GEO-600 17.99 3.49 1 0.537 0.273 0.136 5.809 0.022220.2493

TAMA 20.94 4.111 1 0.443 0.133 0.045 4.039 0.009920.0625

WHITE NOISE 12.97 2.574 1 0.677 0.453 0.291 6.351 0.031 20.293
4-28
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^F0& (I )52p% (I ) j (I )~4!,

^F1& (I )56p% (I )
25/3j (I )~12!/5,

^F2,3& (I )5r (I )3,1̂ F0& (I ) ,

^~F0!2& (I )54p2% (I )
2 j (I )~1!,

^F0F1& (I )512p2% (I )
22/3j (I )~9!/5,

^F0F2,3& (I )5r (I )3,1̂ ~F0!2& (I ) ,

^~F1!2& (I )536p2% (I )
210/3j (I )~17!/25,

^F1F2,3& (I )5r (I )3,1̂ F0F1& (I ) ,

^~F2,3!
2& (I )5r (I )3,1

2 ^~F0!2& (I ) ,

^F2F3& (I )5r (I )3r (I )1^~F0!2& (I ) . ~C6!

The moment functionals simplify significantly in this case

APPENDIX D: A NETWORK OF TWO IDENTICAL
DETECTORS WITH THE SAME NOISE PSD

BUT DIFFERENT ORIENTATIONS

Consider a network of two identical detectors having o
entations $a (1) , b (1) , g (1)% and $a (2) , b (2) , g (2)%, re-
spectively, which we take to be different. Then the bea
pattern functions of each detector are dependent
$a (I ) ,b (I ) ,g (I ) ,e,c,u,f%, where I 5 1, 2. Here, we prove
that for a given set of values for the detector orientations
source-direction, (u,f), the function uQ1uuQ2u can always
attain the maximum value of 1/2, withuQ1u5uQ2u51/A2.
This proof is assumed in obtaining the result in Sec. VI B

Proof. The network vectorQ lies in the helicity planeH.
Therefore,

Q5Q22D̂221Q12D̂12 , ~D1!

whereQ125D̂12•Q andQ225D̂22•Q. Alternatively, for a
two-detector network we can expandQ in the real basis of
I ’s on the network space:
e

n-

o
tr

04200
-

-
n

d

.

Q5Q11̂1Q22̂, ~D2!

with Q151̂•Q andQ252̂•Q. Using Eqs.~D1! and~D2!, we
find Q1 andQ2 in terms ofQ22 andQ12 as

Q15~Q22D2211Q12D121!/iDi ,

Q25~Q22D2221Q12D122!/iDi , ~D3!

whereD62151̂•D̂62 andD62252̂•D̂62. Thus,

Q1

Q2
5

Q22D2211Q12D121

Q22D2221Q12D122
. ~D4!

Let us assume thatQ1 differs from Q2 by an overall phase
factor eiv. Then, sinceuQ1u21uQ2u251 for such a network,
we haveuQ1u5uQ2u51/A2. We shall now prove that for a
given set of values for the detector orientations, source
rection, andv, one can always finde and c, within their
physically allowed range, i.e.,eP@0,p# and cP@0,2p#,
such that our above assumption is met. Equation~D4!, there-
fore, leads to

Q12

Q22
5

D2212D222e
iv

D122e
iv2D121

~D5a!

[Y exp~ i y!, ~D5b!

whereY and y are real numbers. Note that the right-ha
side ~RHS! of Eq. ~D5a! can take any value in the comple
plane. More importantly, this is true also of the LHS of E
~D5a! becauseQ12/Q225T2

22(c,e,0)/T2
2(c,e,0) can al-

ways take any value on the Argand plane for astrophysic
relevant ranges ofe and c. Thus, our assumption remain
vindicated and, hence, one can always choose values fe
and c that maximize the functionuQ1uuQ2u to attain the
value of 1/2. These values corresponding to the maxim
arec52y/4 ande5cos21@(Y1/221)/(Y1/211)#.
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