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A data-analysis strategy based on the maximum-likelihood metiad/ ) is presented for the detection of
gravitational waves from inspiraling compact binaries with a network of laser-interferometric detectors having
arbitrary orientations and arbitrary locations around the globe. For simplicity, we restrict ourselves to the
Newtonian inspiral wave form. However, the formalism we develop here is also applicable to a wave form with
post-Newtoniar{PN) corrections. The Newtonian wave form depends on eight parameters: the distaribe
binary, the phasé, of the wave form at the time of final coalescence, the polarization-ellipse anglee
angle of inclinatione of the binary orbit to the line of sight, the source-direction anfeg}, the time of final
coalescence, at the fiducial detector, and the chirp tirdeAll these parameters are relevant for a chirp search
with multiple detectors, unlike the case of a single detector. The primary construct on which the MLM is based
is the network likelihood ratigLR). We obtain this ratio here. For the Newtonian inspiral wave form, the LR
is a function of the eight signal parameters. In the MLM-based detection strategy, the LR must be maximized
over all of these parameters. Here, we show that it is possible to maxinmarelittically with respect to four
of the eight parameters, namely, ., #, €}. Maximization over the time of arrival is handled most efficiently
by using the fast-Fourier-transform algorithm, as in the case of a single detector. This not only allows us to
scan the parameter space continuously over these five parameters but also cutsubdstantiallyon the
computational costs. The analytical maximization over the four parameters yields the optimal statistic on which
the decision must be based. The value of the statistic also depends on the nature of the noises in the detectors.
Here, we model these noises to be mainly Gaussian, stationary, and uncorrelated for every pair of detectors.
Instances of non-Gaussianity, as are present in detector outputs, can be accommodated in our formalism by
implementing vetoing techniques similar to those applied for single detectors. Our formalism not only allows
us to express the likelihood ratio for the network in a very simple and compact form, but also is at the basis of
giving an elegant geometric interpretation to the detection problem. Maximization of the LR over the remain-
ing three parameters is handled as follows. Owing to the arbitrary locations of the detectors in a network, the
time of arrival of a signal at any detector will, in general, be different from those at the others and, conse-
quently, will result in signal time delays. For a given network, these time delays are determined by the
source-direction angle, ¢}. Therefore, to maximize the LR over the paramefgtsp} one needs to scan
over the possible time delays allowed by a network. We opt for obtaining a bank of templates for the chirp time
and the time delays. This means that we construct a bank of templates,o9erand ¢. We first discuss
“idealized” networks with all the detectors having a common noise curve for simplicity. Such an exercise
nevertheless yields useful estimates about computational costs, and also tests the formalism developed here.
We then consider realistic cases of networks comprising the LIGO and VIRGO detectors: These include
two-detector networks, which pair up the two LIGOs or VIRGO with one of the LIGOs, and the three-detector
network that includes VIRGO and both the LIGOs. For these networks we present the computational speed
requirements, network sensitivities, and source-direction resolutions.
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I. INTRODUCTION waves[1,2]. However, detecting such waves with man-made
“antennas” has not been possible so far. Nevertheless, this
The existence of gravitational waves, which is predictedoroblem has received a lot of attention this decade, espe-
in the theory of general relativity, has long been verifiedcially, due to the arrival of laser-interferometric detectors,
“indirectly” through the observations of Hulse and Taylor Which are expected to have sensitivities close to that required
[1]. The inspiral of the members of the binary pulsar systenfor detecting such waves. .
named after them has been successfully accounted for in A gravitational-wave(GW) source that is one of the most

terms of the back reaction due to the radiated gravitationaPromising candidates for detection by Earth-based interfero-
metric GW detectors is the inspiraling compact bing3y.

Present estimates show a significant number of coalescence

*Electronic address: apai@iucaa.ernet.in events every year of such binaries that produce waves strong
"Electronic address: sdh@iucaa.ernet.in enough to be detectable by current detectors during their in-
*Electronic address: bose@aei-potsdam.mpg.de spiral phase, a few seconds before the onset of coalescence.
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Moreover, the time evolution of these wave forfohirpg is  optimal detection strategy for chirps in the simplifying case
well understood in the frequency band where the presentf a network with closely located laser-interferometric detec-
interferometric detectors are most sensitive. tors and with idealized detector noise. This work was based
In the past, a sizable amount of research has been done on a coherent search. Its main result was that the optimal
the problem of detecting gravitational waves using a singlestatistic for a network of up to three such detectors was
bar or interferometric detector. However, very little work hasproven to be the sum of the signal-to-noiSNR) ratios of
been devoted to develop techniques to analyze the data frothe individual detectors. It was also shown that the sensitiv-
a network of interferometric detectors to detect chirps.ity of such a network improved as roughly the square-root of
Searching for chirps using a network of detectors is gaininghe number of detectors in the network. This formalism was
importance due t¢a) its superior sensitivity in the manner of extended to the case of arbitrarily located detectors in Ref.
that of a constituent detector affg) improving feasibility for ~ [16], which showed a way to reduce the network statistic
a real-time computational search. As has been argued befoseich that the number of chirp parameters over which a nu-
(see, e.g., Refl4]), for a given false-alarm probability, the merical search is required for detecting chirps drops from
threshold for detection is lowered as the number of detectorsight to three. This paves the way for a vast reduction in
is increased. This increases the probability of detection byomputational speed requirements and makes a multiple de-
“coherently” analyzing the signals from a network rather tector search for chirps much more feasible. One of the main
than a single detector. One can think of simpler approacheaims of this paper is to formulate a data-analysis strategy that
to the network problem where one matches event lists fronimplements these formal findings in the case of existing and
different detectors in the network and sets up thresholds oopcoming networks and to provide estimates on the required
the estimated parameter differences. A formalism for intercomputational speeds, etc.
preting coincidences of burst events in a pair of interferom- As the members of a binary orbit around their center of
eters has been suggested by Schutz and ThitdHowever, mass, they lose energy in the form of gravitational waves.
such approaches, even if they were extended to the case ©his results in their inspiral. Consequently, they emit gravi-
chirps, would be non-optimal, because they do not use th&tional waves with monotonically increasing amplitude and
phase information of a signal at different detectors. The cofrequency[17]. Although the gravitational wave form origi-
herent search strategy described here crucially uses phasating from an inspiraling binary is known accurately up to
information. the 2.5 post-NewtoniaiPN) order [18], nevertheless as a
One of the early papers that came close to discussing thirst calculation we limit our study to the detection of the
problem of detecting a Newtonian chirp using a networkNewtonian chirp. This is because our primary aim here is to
optimally was that of Finn and Cherndf6]. This paper ob- develop the new formalism, namely, that of optimally using
served that since the orientations of the two Laser Interferothe data from anetworkof detectors to detect a chirp. We
metric Gravitational Wave Observator.IGO) detectors find evidence of the applicability of our formalism to higher
were very similar, their joint sensitivity was larger than any post-Newtonian orders. We also find for the Newtonian sig-
one of them. Bhawal and Dhurandhar also addressed the igal that there is essentially no correlation between the param-
sue of detection using multiple detectd7§. Their main aim eters describing the masses and the direction angles to the
was to find the optimal recycling mode of operation of thesource when the noise curves are assumed to be identical for
planned laser interferometric detectors for which a meaningall the detectors in the network. This has the following im-
ful coincidence detection of broadband signals could be perportant implications: The total number of templates is then
formed. However, the issue of how a network of detectorgust a product of number of templates for a single detector
with arbitrary orientations and arbitrary locations on theand the number of templates needed to scan source direc-
globe can be optimally used as a “single” detector of sensitions. If this property holds also for the PN case, then, in
tivity higher than that of any of its subsets of individual effect, we need to obtain the number of templates for the
detectors was not addressed in these earlier papers. directions only and club together with this the information
Use of a detector network has nevertheless received conve have on the number of templates for a PN signal in a
siderable attention in the context of the parameter estimatiomingle detector. We hope to address this issue in detail in
problem. A formalism for using the responses of multiplefuture work.
detectors, in the absence of noise, to infer the parameters of In our analysis, we assume that the noise in each detector
a chirp (also known as the “inverse problemias devel- is predominantly stationary and Gaussian, with occasional
oped by Dhurandhar and Tin{8,9]. Some of the other no- contamination from non-Gaussian events. Indeed, the real
table works that address this issue in the presence of noiskata stream from the detectors is not expected to be purely
are Refs[10—14. The prime motivation behind using a net- stationary and Gaussian, unlike what is assumed in most of
work in this regard is that the larger the number of detectorsthe GW data-analysis literature thus far. In fact, the data
the smaller are the errors in estimated values of the binarfrom the Caltech 40 meter prototype interferometer have the
parameters. However, the starting point in these approachexpected broadband noise spectrum, but superposed on this
is the assumption that the problem of detection has alreadgre several other noisy featurld®], such as long-term sinu-
been addressed and the detector-specific chirp-templates ttstidal disturbances arising from suspensions and electric-
result in “super-threshold” cross correlations with the indi- main harmonics, which have been studied in other works
vidual detector outputs, have been picked. [20,21]. There are also transients occurring every few min-
A formalism was developed in Refl5] that sought an utes, typically due to servo-controls instabilities or mechani-
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cal relaxation in suspension systems, etc. Adaptive methodsum of the individual detector’s LLRs. The form of LLR
are being explored to combat high amplitude ring-downs anallows us to deduce the network matched-filter in a straight-
sinusoids occurring in the dafa2], by effectively removing forward way; it turns out to be aMl-dimensional vector with
them from the data, so that the data are “cleaned” fromcomponents that are just the normalized single detector tem-
these non-Gaussian features. In the improved detectors of thates of Sathyaprakash and Dhurandi2&] (henceforth re-
future, it is expected that the noise will tend to Gaussianityferred to as S The problem of detection then reduces to
and may only be occasionally contaminated by non-Gaussiatihe maximization of LLR over the parameters and comparing
events. It is in this spirit that our above assumption about thés maximized value with the pre-determined detection
noise must be taken. The strategy we adopt in dealing witfhreshold. We argue that this step can be implemented in a
such a detector noise is to assume it to be stationary anfay similar to the one suggested in SD.

Gaussian for the purposes of our statistical analyses. Such an T0 obtain the maximum likelihood ratitMLR), the LR
assumption is justified in practice provided one vetoes ouf@s to be maximized over the eight parameters: the distance
detections due to the occasional non-Gaussian events occif.the binary system, the phase of the wave form at the time
fing in the data obtained from the detectors. The vetoindf coalescencé, the polarization-ellipse angig, the incli-

criterion we propose is an extension of th& criterion used .atlon Of the binary orbik, the d|r.ect|(.)n angled, ¢}, the
time of final coalescence at the fiducial detedtor and the

in Ref.[19]. This model of the noise is simple enough so thatChir ime £ In princiole. this can alwavs be done numeri
analytical methods can be used for the approach we take. pum 3 principie, t ; ay
We also assume that noises to be uncorrelated among di ally using a grid in the aghtl dimensional parameter space.
. . n practice, such a strategy is not only computationally in-
ferent pairs of detectors. When the detectors are widely sep

d d the alob lati h . ¢ di casible but, as we show in this paper, is also wasteful. The
rated around the globe, correlations among the noises of dilg o important result in this paper is a new representation for

ferent detectors are expected to be negligible, and OUg signal, which is expressed here in terms of the complex
assumption remains valid for such a case. For most networks,nansion coefficients of the wave and the detector tensor in
of proposed detectors this is true, unless it consists of the twg p5sis of symmetric, trace-fre&TP tensors of rank 2.

coincident detectors at Hanfotdn that case, a more general Such a representatioﬁ of the signal not only allows us to

anglysis iS necessary th_at ta!<es .into account possible COIMBxpress the LR for the network in a very simple and compact
lations between the noises in different detectors. Such afym put also brings out the symmetries in the response
approach is being pursued by Fif®3]. The only other as-  fnctions of the detectors and is at the basis of giving a novel
sumption we make on the detector noise is that it is additiveyeometric interpretation to the detection problem. Maximiza-
We use the maximum-likelihood method for optimizing o of the LR over four of the eight parameters can be per-
the detection problem. The problem is formulated by obtaingomed analytically using the symmetries in the responses,
ing a single likelihood-ratidLR) for the entire network. A \hich are clearly brought out when the responses are ex-
statistic derived from a similar construct was used earlier Nbressed in terms of the Gel'fand functions. Further, the fast
Refs.[24,25 to define a strategy to search for bursts_in therourier transform(FFT) can be used to maximize the LLR
outputs of a network of bar detectors. Here, we define thgyer the parameteg, as in the case of a single detector. The
network data output,”, as a single network vector, the neqyork template is constructed by taking into account ap-
components of which are the individual detector OUtp“tSpropriate time-delays at the individual detector sites.

Similarly, the “network signal,”s, is defined to be a single "~ The gnalytic maximization and the FFT have the follow-
network vector, the components of which are the |nd|V|duaIing advantages:

detector signals. Since we assume the noise in different de- (1) They allow us to scarcontinuouslythe parameter
tectors to be independent, the probability density functiorbpace for the five parameterss, , e, andt..

(PDF for the noise of the network is just a product of the (2) They save substantially on the computational cost.
PDFs of noise in the individual detectors. The LR is then a We are then left with the three parameters, namglyd,
simple expression in te_rms of the norm ofand th_e inner - 4ng 6. A full sky search over ¢,¢) maps to a time-delay
product ofx ands. In this form, the LR is a function of & \yindow, consisting of all possible time-delays, for a given
complete set of eight independent parameters that characte{atwork. The search over the time-delay window may be
ize the Newtonian chirp signal of an inspiraling binary. In herformed by using the samples of the cross correlations be-
contrast, the number of parameters characterizing a burgjeen the signal and the detector outputs or by constructing
event are typically less. As we show here, the largeness of emplate bank. The latter approach has the advantage of
the parameter set defining a chirp introduces intensive compcorporating the desired mismatch related to the fractional
putational costs to carry out a search. !Dewsmg a method t@cs in signal-to-noise ratio. Turning the argument around,
reduce these costs by orders of magnitude takes us beyoggh template bank can also be used as guideline to re-sample
what was achieved in the earlier papers. the data at a rate that is consistent with the desired mismatch

For the assumptions made on the detector noises, a N&lpq then scan over all samples in the time-delay windows.
work’s logarithmic likelihood ratigLLR) turns out to be the We, therefore, opt to construct a template bank,irg, and

¢. This is efficiently obtained by first computing the metric

as given by Owerj27]. We then obtain the volume of the
The Hanford site has two detectors with arm-lengths of 4 km andoarameter space, given the metric, and divide this volume by
2 km, respectively. the volume spanned by a template to obtain the number of
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templates. From this information, we can easily evaluate the using the symmetry properties of the detector responses
computational costs for the search. Secondly, the metric iE1l6]. We then show how the FFT can be used to efficiently
essentially the Fisher information matrix and its inversemaximize over the time of final coalescence or, alternatively,
yields the covariance matrix from which errors in the param-the time of arrival at a fiducial detector. This is followed by
eters can be obtained. a construction of the network template and the network cor-

We apply our formalism to analyze several networks offelation vector. The window consisting of all possible time-
detectors. First, we examine idealized networks, with all dedelays is discussed. In Sec. V, we construct the template bank
tectors having the LIGO-I noise. Such an exercise neverthedn the rest of the parameter space, i.e.{6y9,¢} by ex-
less yields useful estimates of computational costs while aending Owen'§27] method and present a way of arriving at
the same time simplifying the calculations and providing in-the number of templates required. We then give expressions
valuable insights. We then consider the LIGO-VIRGO net-for the computational costs and the resolutions achievable in
work with their respective noise curves. The computationgparameter values. Section VI is devoted to the discussion of
for this case are done numerically. For these networks wé&everal networks including the realistic network of LIGOs
estimate the computational speed requirements, sensitivitiedNd VIRGO. In Sec. VII, we discuss the statistical properties
and the resolution in the direction to the source. We find thaf the optimal network statistic. We calculate the false alarm
the computational costs are high even for the two-detectoand the detection probabilities associated with the network
network. The online data processing speeds required are Rtatistic, and obtain a relation between the network sensitiv-
terms of Gflops and foa 3 detector network the online ity and the number of detectors in a network. We also discuss
speeds needed escalate to few tens of Tflops. The cosiise case where the detector noise is contaminated by non-
would go up further when PN corrections are incorporatedsaussian noise events and suggest a vetoing criterion based
into the wave form. For example, for LIGO-I noise and al-on the x? test.
lowing a maximum mismatch of 3% between the signal and We use the following convention for symbols in this pa-
the template, the number of templates required increases byRgr, unless otherwise specified. When it is useful to keep
factor of about 4 or $28]. Hence, even for a network search- track of the complex nature of a network-based or individual
ing for PN-corrected wave forms, one may expect the comdetector-basedariable we denote it by an uppercase Roman
putational costs to increase by similar factor. Clearly, oudetter, whereas the lower case letters are reserved for real
results show that use of hierarchical search methods anériables Network-based vectors are displayed in the sans
called for. Assuming the individual masses to be greater thagerif font. Thelabel | in the superscript or subscript of a
0.5M, and with LIGO-I noises in the detectors at Hanford variable denotes &eal natural number that associates it
and Louisiana, the online computing speed requirement is 1%ith a particular detector. It ranges from 1 N whereM is
Gflops, for a 3% mismatch between the signal and the temthe total number of detectors in a network. It can be consid-
plate. The corresponding figure for one of the LIGO detec-ered as a vector index over detectors. We use the ihdiex
tors and VIRGO is 170 Gflops. For the three detector LIGO-several of the network variables. However, certain quantities
VIRGO network, the cost rises to few tens of Tflops. Thethat do not obviously display a vector character, but still
sensitivity roughly scales agM or a little less, wheréM is ~ Pertain to a detgctor,_ are denotgd by enclos_lng the index in
the number of detectors. The resolution in direction is abouParentheses. Einstein summation convention over repeated
a fraction of a degree for the networks where we have asindices is used for brevity, unless explicitly stated.
sumed LIGO-I noise and a signal-to-noise ratio of 12.

The paper is organized as follows. We begin by setting up
in Sec. Il the basic mathematical framework required for our Il. MATHEMATICAL FRAMEWORK
formalism. This includes a discussion of the various relevant
coordinate frames and their relationships with one other. We ) o ) ) .
also introduce the wave and detector tensors, using which we OUr first aim is to obtain a quantity that would define the
define the signal at a detector. The signal at a detector is thdRSPonseof an arbitrary network of broadband detectors to
used to define the network signal and infer the network sta@n incoming gravitational wave. In this quest, it is important
tistic. In Sec. Ill, we present the Newtonian chirp in its fa- {0 understand how the responses of arbitrarily oriented and
miliar form. This allows us to define the role of each param-arbitrarily located individual detectors to such a wave relate
eter influencing the wave form. It also introduces importantl© one another. This is aided by introducing the three differ-
notations that we follow in the rest of the paper. We thenent fram(_as of reference that_.arlse naturally in such a p.r.oblem,
derive a less familiar expression for the signal induced by &amely,(i) the wave frameii) the network frame, andii)
chirp in a detector. This new representation for the chirp-
signal simplifies the analysis associated with a network-
based detection strategy. In Sec. IV, we show how the de-2Note that quantities such as the gravitational cons@nthough
tection problem can be optimally addressed using thevritten in upper case, are not complex since they do not represent
maximum-likelihood method. We present a single likelihoodany inherent characteristic of the network or an individual detector.
ratio for the entire network. It has a very simple form owing On the other hand, we shall not use an uppercase letter to denote a
to our use of the new representation for the signal. The LR isomplex quantity when its complex nature is apparent from other
analytically maximized first with respect oand 6. in the  means, such as by the use of a tilde, e.gn,iwhich denotes the, in
well established wa}26,15, and then with respect t¢ and  general, complex Fourier transform of the real quartity

A. Reference frames
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the frame of a representative detector in the network. We One can imagine yet another frame attached to the source

define these reference frames in terms of the following rightwhosez axis is along the orbital angular-momentum vector

handed, orthogonal, three-dimensional Cartesian coordief the binary. The angles, between this vector and our line

nates: of sight to the binary is termed as the inclination angle and
(i) Wave frameg(X,Y,Z): The gravitational wave travels has the rangg0,7]. The associated—y plane specifies the

along the positivez-direction; X and Y denote the polariza- plane of the binary. It is then possible to orient thandy

tion axes of the wave. axes on this plane in such a way that a rotation of the wave
(i) Network frame(Xg,Yg,zg): There is no unique defi- frame through the Euler angles, é@), aligns it with the

nition of this frame. For Earth-based detectors being dissource framé.

cussed here, if the network has a large number of detectors

(say,M>3), a convenient choice is a frame attached to the B, wave tensor, detector tensor, and beam-pattern functions

center of the Earth. Theg axis lies along the line joining .

Earth’s center and the equatorial point that lies on the me- In the transverse trace-fr¢&T) gauge, the non-vanishing

ridian passing through Greenwich, England. It points radiallyf:Omponents of a gravitational-wave metric fluctuatiop, ,

outwards. Theze axis is taken to lie in the direction of the 1N the wave frame aren,=—hy,=h,, hy=hy,=h.,

line passing through the center of Earth and the north poleVhich are the two linear-polarization components of the

The y axis is chosen to form a right-handed coordinateVave. Its spatial part are cust_omarily identifieq as twice the

system with thecg andzg axes. wave tensorw;;, wherei andj refer to space indices and
For a network consisting d1<3 detectors, certain cal- take values 12 and Gsee.Ref.[S]). In the TT gauge, the

culations can be simplified by using the fact that the corne}"’ﬁwe tensor IS a symmetric trace-fré8TH tensor of rank

stations(or hubg of all the detectors will lie on a single 2 In any afb'”?‘fy frame, the wave tensor can be expressed

plane. Specifically, foM =3 we define the network frame in terms of its circular-polarization components as

such that one of the detectors is at its origin, a second detec- 1 B -

tor is on one of the coordinate axes, sayand the third lies w(t)= E[(h+(t)+ihx(t))eg+ (hy (1) —ihy(t)e],

on one of the coordinate planes containing zla&is, say, the 29

x—z plane. Later in the text when we consider various ex- 22

amples of three-detector networks, we choose this as the n%’hereeg _ are the right and left-circular polarization tensors

work frame. ' . . . :
. STH), respectively which obey the orthonormality condi-
(ii) I-th detector frame(X(;y,Y(),Z)) : This denotes the (. P ij p* _ y i % }i Ay .
. t(llons, e're rii=1, e’'grerLii=0 and the reality condi-
orthogonal coordinate frame attached to the detector Iabelet T ITh the wat Jt ih) si
I. The xy—Yy() plane contains the detector arms and is as—'?fr.] eLt =€g. Thus the wave-tensor expressi(h?) sim-
sumed to be tangent to the surface of the Earth.X jeaxis pilies to
bisects the angle between the detector's arms. The direction
of the y() axis is chosen in such a way that the detector

frame f.o”.“s a right—handed coordinate system with Zfje wherefR[ A] denotes the real part of a complex quanfity
axis pointing radially out of Earth’s surface. i

Apart from the above choices for frames, we define a In an _arbitrary reference firjame, teg, can be ex panded
fourth frame, namely, the frame of a “fiducial” detector " @ basis of STF-2 tensorg}z, [8,9] (see Appendix A

(henceforth referred to as the “fidg."This frame serves as a

ref_erence frame with respect to vyhich the locations or orien.- ell — /S—WT_znan and eLj — A /8_7TT2nyi2jn,

tations of each of the detectors in a network shall be speci- 15 15

fied. Indeed, we will develop our whole formalism for a gen- 2.9

eral network using the fide frame as a reference. It is only ) o N )

towards the end, when we consider specific cases of netthere the expansion coefficients, ,, with n=0,%1,+2,

works, shall we identify the fide frame with one of the threeare Gel'fand function$30]. These functions depend on the

frames defined above, depending upon suitability. Euler angles through which one must rotate the reference
Physical quantities in these frames are related by orthogo-

nal transformation® that rotate one frame into another. Let

Xwaver Xfide 8N Xgetector(1) deNOte the 3D vectors correspond-  3However, since we will be expressing the gravitational-wave

ing to the frames described by the subscript. Then the transnetric fluctuationsh,,,, in the transverse-traceless gaugee be-

wi (1) =R[ (h, (1) +ih . (1)ed], 2.3

uyo

formations between the frames are given by low), in addition to this rotation we must also projéxf, orthogo-
nal to the direction of the wave in order to obtain its components in
Xwave= O( ¢, 0, ) Xsige , Xdetectopy = OCaqy, By Y(1)) Xside the wave frame. In that case the polarization-ellipse afigtan be

included as an Euler angle in the transformat®@¢y,e,0) of the

wave frame to the source frame, instead of including it in the rota-
tion from the fide frame to the wave frame, as is traditionally done.
where our definition of the orthogonal matiX is the same  This observation will be used in Sec. IV to obtain a reduced statistic

as that given in Ref[29], and its arguments are the Euler o the detection of chirps.
angles connecting the respective frames of references. 4See Appendix A for properties of such tensors.

(2.0
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frame to the wave frame. If the reference frame is chosen tohere h', (t)=h, (t— 7(1y) and hl (t)=h, (t— 7(y) are the

be the fide, then these angles are justd, ). While imple-  time-delayed amplitudes of the two polarizations of the wave
menting more than a single frame-transformation in relatingat detecton.

these two frames, the addition theorddd) for Gel'fand
functions is used to obtain the required wave tensor. In such
a case, the wave tensor depends on more than one set of The signal from an inspiraling binary will typically not

C. Network signal and network statistic

Euler angles. stand above the broadband noise of the interferometric de-
The I-th detector tens,o[;ii'j , is given by tectors; the concept of an absolutely certain detection does
not exist in such a case. Only probabilities can be assigned to

dgj:n(l)lin(l)lj_n(l)zin(l)2jv (2.5  the presence of an expected signal. In the absence of prior

probabilities, such a situation demands a decision strategy

wheren); andn,, are the unit vectors along the arms of that maximizes the detection probability for a given false
the I-th interferometer, which is taken to have orthogonalalarm probability. This is termed as the Neyman-Pearson cri-
arms (see Appendix B Like the polarization tensors, even terion[31]. Such gquterlon |mpI|e§ th{?lt the decision mgst be
dj; is an STF tensor of rank 2. Hence, in any frame it can béased on a statistic called the likelihood ratlR). It is
expanded in a basis of STF-2 tensors. In such a basis, tiefined as the ratio of the probability that a signal is present
functions, T, [see Eq(B3)]. In the fide frame, these func- criterion we emplqy in formulating our detection strategy.
tions deper_ld on the Euler anglés, 5.} which _In ordgr to defln'e'a'strategy to search. for signals in a
specify the relative orientation of theth detector with re- NOISY environment, itis important to recognize the character-
spect to the fide istics of the noise. Here, we assume that the nai&g), in

When detectors are distributed around the globe there aréhe _"th detector(a} has a zero mean aan} IS ”.‘OS“V
in general, relative delays in the arrival times of a particularStat'ona“; and statistically as well as algebraically indepen-
phase of a given wave at different locations. kg{( 6, $) be dent of the noise in any other detector. These requirements
the relative delay between the arrival times at ik detec- '€ Mathematically summarized, respectively, as
tor and the fide, where the source direction is given by T

. _ _ o n'(t)=0, (2.9a
(0,9). If n(6,¢) is the unit vector along the direction of the
wave, i.e.,n(8,$)=2, then R
R i (H)n2(F)=spuy(Fa(f—1)8),
(ray=Ty)-n( 6, ) (2.9b

T(1y(0,)= c , (2.6)

where the over-bar on a symbol denotes the ensemble aver-

. age of that quantity and the tilde denotes the Fourier trans-
wherer;, andr, are the position vectors of tHeth detector 9 q y

| (> | —2mift H
and fide, respectively, with respect to any given referencd®™: M (f)=/Z..n'(t)e""""dt and s, (f) is the two
frame. Note thatr,(6,¢) can take positive as well as nega- sided power-spectral-densit?SD of the I-th detector. We

tive values. assume the noise to be additive. This implies that when a
The signal in thd-th detector is the scalar signal is present in the data, theh(t)=s'(t) +n'(t) other-
wise x'(t)=n'(t). Finally, we assume that the noises are
() =wi(t— T(|))d!- 2.7) Gaussian, i.e., the two moments in Eg.9) are sufficient to
ij '

completely characterize the noises statistically.

As we shall see below, an important tool in the theory of
detection of known signals in noisy environments is the cross
| correlation between a signal template and a detector’s output.

For two real functionsa(t) andb(t), the cross-correlation
pertaining to thd-th detector is given by,

which, by definition, is invariant under coordinate transfor-
mations. Abovew' (t) is the wave tensor at the location of
the fide at timet. The above definition shows that the signa
depends on the projections of the polarization tensai’qﬁ,,
onto the I-th detector tensord;;, viz. F'=eld}, F'*
=e',{di'j These are the beam-pattern functions for the left-

and right-circular polarizations, respectively. They depend on = a*(f)b(f)
the direction of the source and the orientation of the detector. (a,b)(,)ZZ%fo dfw
Owing to any motion of the source with respect to the detec- o
tor this orientation can change with time. Hence, in general,
F' are functions of time. Since we will be concerned hereFor complex functiora,(t) +ia,(t), we adopt the conven-
with only short-duration signals, we will assume these function (a; +ia,,b)=(a;,b)—i(a,,b). This definition is con-
tions to be independent of tim@vhich is valid to a very
good approximation Using Eq.(2.3) in Eq. (2.7), the signal
takes the form

(2.10

SIn reality, detector noise contains non-Gaussian and non-
| | o I stationary components. To accommodate such features in our treat-
s () =R[(h, (1) +ih (1)F™], (2.8)  ment, we use vetoing techniques, which are discussed in Sec. VII B.
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sistent with the convention of E¢2.10 where the complex ll. THE SIGNAL
Eg{uugatlon 's performed on the first entry in the inner prod- Assume that the binary is at a luminosity distancer of

from the EartH Further, letm; andm, be the masses of the
individual stars. Then, in the Newtonian approximation the

trains, {x'(t)[1=1,2,... M and te[0,T]}. The network . . o )
; two corresponding GW linear-polarization components in
matched-template can be obtained naturally by th%he wave frgme a% the location %f the fide are P

maximum-likelihood method, where the decision whether
the signal is present or not is made by evaluating the likeli- N
hood ratio(LR) for the networl{31]. Under the assumptions h.(t: P 12

. . . +(t1r15C1t01§) a (tvtCIS)
made on the noise, the network LR, denoted\hyis just a r
product of the individual detector LRs. In addition, for
Gaussian noise, the logarithmic likelihood ratioLR) for
the network is just the sum of the LLRs of the individual

2N
detectord 15,16, hy(tir, 8.t £) = ——a (it é)cose

For a network ofM detectors, the data consist df data

1+ co<e
2

xcog x(t;te,6) + ocl, (3.19

M M
1 H .
|n)\:IZl |n)\(|):|21 <sl,X|>(|)_§<sl,Sl>(|). (21]) XSIr{X(tatC!g)+6C]l (31b)

where

The network LLR takes a compact form in terms of the net-

work inner product, 2GBM B ()23

4

(3.2

c
M
(S X)ONw= |21 (s'(t) . X'(1))qy (212 s a constant appearing in the chirp amplitude having the
N dimensions of length. It depends on the binary’s “chirp”
mass, M= (m;m,) % (m;+m,)¥5, and a fiducial chirp fre-
where quency,fs. Usually,f. is taken to be the lowest frequency in
the bandwidth of a detector—the seismic cutoff—hence the
s(t)=(s(t),s%(t), ... ,sM(1)) (2.13  reason for the subscript This choice of the fiducial fre-
guency maximizes the duration of tracking the chirp because
is the network template-vector, which comprises of indi-the chirp frequency inpregses monptopically with time. Here
vidual detector templates as its components, and we setfs=40 Hz, which is the seismic cutoff for LIGO-I,
because every network we consider below has at least one
detector with LIGO-I noise. Note that a general network
might include several detectors with different seismic cut-
. _ offs, fsyy. Even in such a case, it is convenient to use the
is the network data vector. It can be shown by using theiducial frequency as a reference. This is apparent in(€§).
Schwarz inequality that the network templatg, defined where the noise moments for different detectors are merely
above yields the maximum signal-to-noi6@NR) amongst  scaled by appropriate powers oty /fs)-

all linear templates and, hence, is the matched template. As A quantity closely related to the chirp mass is the so-
shown in Ref.[15], in terms of the above definitions, the called chirp time,

network LLR takes the following simple form:
=34 M
g_ . M@

which equals the time duration for which the chirp exists in

which is a function of the source parameters that determin@ detector's sensitivity window from the time of arrival until
s. Givens, different selections of source-parameter valued€ time of final coalescence. The time of arrivgl, is de-
and, therefore, different values sfresult in varying magni- 11ned as the time when the instantaneous frequency of the
tudes of the LLR. The selection that gives the maximumChirP equals the fiducial frequency, i.é(f,) = fs. Formally,
value stands the best chance for beating the pre-set threshd[tif coalescence timé,, is the time at which the chirp fre-
on the LLR. Since scanning the complete source-paramet&ency divergegsee Eq(3.5)]. The corresponding phase of
manifold for the maximum of LLR is computationally very the wave form at. is é.. We define the quantity

expensive, we propose to perform its maximization analyti-

cally over as many parameters as possible. This requires the

knowledge of the analytic dependence of the network SHere,r is not to be confused with the magnitude of a detector
matched-template on source parameters. This is what wsosition vector, which always carries as an index the label of the
seek below. detector, i.e.(l) or (f).

x(t)=(x1(t),x2(1), ... xM(1)) (2.19

—5/3

f —8/3
S
20 Hz) sec, (3.3

1
In)\:<S’X>NW_§<S!S>NW- (2.19
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f —5/3
a

—3/8 =W(f;fs,t,&)—2mfr), (3.11
, (3.9

to—t where
a(t;te, )= g (3.9

and the instantaneous frequency,

+

f f
\I’(l)(f,fs,tc !f): _27Tfs|:f_stc+ —T(I)+ gg

ar
fg 4

to—t

§ for the Newtonian chirp. Note tha¥ )=V for vanishing

- ; : . time-delay (;)=0). Thus,¥ defines the phase in the FT of
\;vlzl(;:gh%:g%ﬁ:t at final coalescence. The above expressmtm normalized complex signal at the fide, in the SPA. The

normalization conditior(3.9) implies that

f(t;fs,tcag)zfsaials(t;tc ,g)zfs(

to=ty+&. (3.6 df

&y=3f f s (3.12

Finally, the instantaneous phase of the waveformy(s) dn=3ls tqy T Sny(F)” '

+ 6., where ) o

wherefg) is the seismic cutoff for thé-th detector.
tC
x(Gfs e, )= _ZWJt f(t5fs e, £)dt A. The signal at a detector
16 It can be shown that the signsli(t) at thel-th detector is
=— gﬂfséa%(ﬂtc 6). (3.77  related to the normalized complex signgl(t) by

s'(t)=2k R[(E} S"e' %], (3.13

The two GW polarization amplitudes at theh detector site
are obtained by substitutingwith (t—7) in Egs.(3.1),  where k=N\Jélr. Above, we used the extended beam-

(3.4), (3.5, and(3.7). pattern functions,
A chirp signal registers itself in a detector’s output only 2
after its instantaneous frequency crosses the seismic cut-off I_ 1+cose N |
of that detector. Thus, a signal arrives in thth detector’s E=aq) 2 R(F)+icosed(F)),  (3.14

bandwidth when its instantaneous frequency reaches

=fgq) and it lasts there for a time duration equalig, where,R(F') and3(F') are the real and imaginary parts of

= &(fsq /f5) 83 Alternatively put, the chirp wave form at thg detector peam-pattern functions, respectively. Note that
the I-th detector starts at=t.+ 7~ &y and ends at=t,  Jc is detector independent and separates out as a phase factor

+ 70y in the argument ofR above.
In order to formulate a strategy for detecting a chirp, it The E' can be expressed in terms of the Gel'fand func-
helps to isolate the factors in the two polarizatiohs, , , tions as
that are time dependent from those that are not. To this end, | |
we define two mutually orthogonal normalized wave forms E'=9T"(¢4,€0D,, p==*2, (3.19

sp ands,,, with sg . 5(t) = So 2(t— 71y), and their complex
combination S'=sj+is! ,—the normalized complex

signal—as Dp=—iT,(¢, 0,0 (T* (agy.Bay. Vo))
i U UL Xty (3.9 Tl Ao vo)) (319

g(,)\/g which obeysD'p*:D',p. Thus, E' depends on the source-
direction angles{ 6, ¢}, the angles{e, ¥}, as well as on the
orientation of thel-th detector relative to the fide, given by
the Euler anglesd,y,B),vq))- Also, E' depends on the
signal-normalization factog,, which expresses the sensi-

tivity of the detector to the incoming signal. As we find in the

We now obtain an expression for the normalization factor,next section, the fact that the dependenceEbfon {e,
. In the stationary-phase approximati , the Fou- ! ) . &
90 y-p PP @PA factors out in each summand in E§.15 will turn out to be

4 | i o
fier transform ofS (1) for positive frequencies is a useful property in obtaining the optimal statistic for the
% detection problem. Thus, the signal at the detector depends
é'(f;tc,§)=f S(t;t.,&)e 2mdt on a total of eight independent parameters, viz.,
- {r,é:,¥,€,.,£€,0,¢}. The ranges of the four angles are as
AT follows: ¢y e[0,27], e€[0,7], ¢[0,27], andfe[0,7].
9m 3fs( fs

where, for a detector with orthogonal arfisee Eq.(B4)],

S(tite,6)=

Here,g()) is a normalization factor such that

(s, shp=2. (3.9

_7/6eXF{i\If (F:fote.8)] From Egs.(3.15 and (3.16), it is clear thatE' can be
(LT Tsote &/ resolved into various factorfusing the addition theorem
(3.10  (A4) for Gel'fand functiond. One may interpreE' as the
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combined amplitude gaiaf the source and thieth detector. T
As was shown in Ref15], up to anr-dependent factotE'|?

can be interpreted as the total power transferred tol e
detector’ More appropriately, it is the gain factor associated
with thel-th detector. It can be decomposed into a sum of the
fractions of power transferred from a signal to the detector 1
by each of its two polarizations.

Expression(3.13 shows that the contribution of the ex-
tended beam-pattern functiof, to the signal,s', comes 0.5
from its magnitude as well as its phase. In the case of a
single detector, these contributions cannot be separated frorz
the overall amplitude and the “effective” initial phase of the
signal. Thus, one cannot obtain precise information, even in
the absence of any kind of noise, about the parameter:‘O o
{e,,0,¢}, which affect the signal only througg'. As a
result, for data analysis involving a single detector, itis more -1
meaningful to resolv&' and express the signal in the form
s(t)=o(t)cogx(t) + =) wherep andw are overall ampli- .
tude and the effective initial phase of the signal, which get fFIG'. L PfIOthS o;_the quant'wﬁ”z for atwo-_g:tector dneiwork as
contributions fromE. This is precisely what was done by & function of the direction fo the source, with=0 and=0. In
SD. While using a network with multiple detectors such a(a), the two detectors are |dent|cal_ly oriented with zirms lying in the
d . K Indeed. inf i X-Y plane, but haye different noise PSDs, %)Tl apd 9(2)

egeneracy in parameters can be broken. naeed, INformatioNg 5 - \whereas inlb), the two detectors have identical noise
e_lbout source direction, I.e.é’{db), can b.e obtalned from the PSDs, i.e.g1)=0(z=1, but have different orientations, say)
tlme-delaysm)(e,qS), by using the triangulation mgthqd. =B1y=Yw=0 and a(z)=y2)=0, Bz=90°, with respect to a
More pertinently, even when all the detectors are coincidenfge frame.
in a network, one can use a set of independently oriented
detectors to recover information about the differehs and, just the sum of the signal energies accessible to each indi-

consequently, about the parametpesy, 6, ¢} [8,9]. Hence,  vidual detector in the network. The quantibycan be re-

in data analysis with a network it is crucial to track the effectgarded as the signal strength accessible to a network and has
of E' on the signal explicitly. This is where we shall find the the following properties:

form of the signal given in Eq(3.13 useful in rest of the (i) If the detectors have identical noise PSDs and are ori-
paper. ented identically, then we haJ[?=<M and, therefore, the
strength obeybo /M. This clearly shows that for a givet,
B. Network signal normalization a network of detectors can probe deeper than a single detec-
The total energy in a signal that is accessible to a networkor, by @ distance that i§M times larger. _
is just the network scalas,s)yw, and is given by (ii) If the detectors are oriented identically but have dif-

ferent noise PSDs, then the amount of energy accessible to
M each detector is proportional to the optimal SNR of that de-
(s,s)aw= 2, (s'(1),5' (D)) tector, namelyg, . The detector having maximum SNR will
=1 contribute the most in terms the energy accessible to the
entire network.

(i) If the detectors have different orientations but identi-
cal noise PSDs, then the amount of energy accessible to each
detector is proportional to the modulus square of the ex-
The quantitysM ,E* E'=E-E=||E|? is the £2 norm of E' te_nded antenna-pattern function of the ir21d_ividual detector. In
in cM. To understand the significance bE|? consider a Fig. 1 for a network of two detector&” is plotted as a
network comprising of detectors with identical noise PSDsfunction of @ and ¢ (for e=0 andy=0). . ,
and, therefore, identicaj,. For simplicity, letg,=1 for Another important quantity of phy5|ca_1l interest is the_S|g—
all 1. Then, for a given set of values 6w, , &, 8}, ||E|? is nal energy average(_j over all the directions and the orienta-
a pure number. It defines the factor by which the energyions of the source, i.ed, ¢, €, and,
accessible to such a network is larger or smaller than th —(b?)
maximum energy that is accessible from an identical source,® 0..e.
but with y=0=¢, to a(favorably orienteglsingle detector. 1 [ o - o
This maximum energy is #°. Therefore,b? represents the = —zf sinedef dz/xf sinadaf deb2.
total energy in the signal that is accessible to a network. It is 167" Jo 0 0 0

M
=4K2§1 E* E'=b2 (3.17)

(3.18

This energy is clearly independent of the orientations of the
’In Ref.[15], the symboM(;, denotes a quantity analogouskb detectors. A detailed calculation shows that
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4x\2 Cr=co—ick,=(S"x")), 4.3
gavz(?> > dhy- (3.19
=1 with c=(sp,X')y andcl, ,=(s,.x')qy. C' is a complex
. : - quantity that combines the correlations of the two quadra-
The factorsg,) are then important in deciding the averagetures of the normalized template with the data. We proceed

signal strength. L . .
The above analysis also suggests the normalization for thféthher and maximize the LLR in E¢4.2 with respect to

network signal. The signal vector with unit norm is defined dc- This yieldsé.=arg(C- Q) and the LLR maximized over

by s=s/b. Its components are b and 3; as
glzm[(Qrsl)eltsc] (32@ In)\|6,A5c: %|CQ|2 (44)
where Now the maximized LLR is a function of six parameters,
namely!{evl/jitC!gvoy(vb}'
E! When all the detectors are “closely” located or coinci-
Q'=—. (3.2) dent, it is only theQ"s that depend on four angles
IE]
{6,,€,4}; the C' then depend only oft., 7, £}, with all
— (Al A2 MY [iac : the times of arrival being equal. We refer to this situation as
2‘%2;26}:;22 Tﬁ]ti\tlvggirxeﬁgf%||2(gl’_Q - Q) lies in the “same-site” approximation. Such a case was dealt with

in Ref.[15]. When the detectors are spatially well separated
or non-coincident, th€' depend or{ 6, ¢} as well. In such a
IV. MAXIMIZING THE LLR case, maximization over the remaining parameters is not as

In the case of a single detector, the LLR is a functional ofSIMPle as in the same-site approximation. However, in Ref.
the data as measured by that detector. For a netwoi of [16] it was found that analytic maximization over two of the
detectors, one needs to compute the statistic in terms of tRhgular variables,i, €}, is possible even in the case of non-
network data vectox. When our assumptions about the Sta_comcm_ient detectors. This use_ful observation aII_ovyed further
tistical properties of detector noise are valid, the appropriaté€duction of the LLR to obtain a network statistic. In the
network LLR is given by Eq(2.15. The optimal network followmg, we briefly mention this analyt_lc maximization be-
statistic is obtained by maximizing this LLR over the eight fore discussing how the reduced statistic can be used for
physical parameters that define the signal. It is this maxiS&arching chirps.
mized LLR that must be compared with a predetermined For spatially separated deteqtors the' cross correlafibn,
threshold, corresponding to a given false alarm probabilityiS Strongly dependent on the time of final coalescenge,

In the following two subsections, we show how such a maxi-2nd the time delayr,). Since ) depends on the source-
mization over four of the parameters can be performed anddirection, (9, ¢), so doesC'. This prompts us to recast the
lytically. Subsequently, we describe an efficient way of maxi-statistic, (4.4), in such a way that its dependence on the
mizing over the time of final coalescence or, analogouslyangles{y,e} is isolated as shown below. This aids in the

over the time of arrivalat the fidg of the signal. analytic maximization of In[; 5_over the anglege, ¢}. We
note that using Eqg3.15 and(3.21), the network vectoQ
A. Maximizing the LLR over b, ., €, and can be reexpressed as

We begin by analytically maximizing the network LLR 1
with respect to two parameters that are simplest to handle, Q= H[T[z(l/hf,o)DfﬁTzz(dh6,0)D+2]
namely,r andé$,. Note that the network LLR obtained in Eq.
(2.15 can be expressed as an explicit functiorbof

=Q 2D_,+Q"?D,,, (4.9
M

INn\=b>, (%',x')(,)—%bz. (4.1) WhereD, (p=*2) define two network vec:nors with the
=1 componentsg(,)D'p, respectively. The vector®, are their

normalized counterparts. Sin€ehas a unit norm, the above

Above, the luminosity distance, appears only throughb. expression implies that

Maximizing In\ with respect tob givesb=3" (s, x"),

where a hat denotes the value of a variable at which the LLR , IDl_ _, -, Dl _,
is a maximum as a function of that variable, keeping all other Q ZHTZ (4.0, Q ZHTZ (¢,€,0),
variables fixed. Here, the value of LLR bht=D is (4.6

M where||D||=|D. ,||=|D_,|. The pair{D.,,D_,} defines a

1 . 2 _
In 7\|6:§( 21 (s! 1XI>(I)) - E(m[efl%(c' QD two-dimensional complex subspacedM, on which a metric
(42 Gpq can be defined16]. D, , andD_, depend only on the
direction of the source and the orientation of the detectors,
where we have defined that is, on{6,¢,a(.Ba),vq)} and not on{e,}. Gpq is
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used to “raise” and “lower” indices of vectors lying in this
complex subspace, e.g., one MAg=G,,QY wherep, q
= +2. We observe that, in generd, , are not orthogonal.
For a face-on binaryi.e., e=0) revolving anti-clockwiséor
clockwise, D, itself is proportional to the network vectér

for p=—2 (or for p=2). Hence, we may call the two-

dimensional subspace as the “helicity” plarig,

The M-dimensional complex correlation vector in gen-
eral, lies outsidg{. However,Q lies totally in H. Thus, the
statistic reduces to

2In\[55,=1C-QI?=|Cy- QI2, (4.7
whereC,, is the projection ofC on H. Maximization of the
above statistic ovefe,} is achieved by aligning) along
Cy, by a proper choice ofy ande. It was proved in Refl16]

that this is always possible. Thus, the LLR maximized over

the four parameters is

21InA

5.5, .3.e=Crl*=A. (4.8

PHYSICAL REVIEW D64 042004

than its square. We will call as our network statistic. This
statistic was first obtained in Rgf16].

B. Maximizing £ over the time of arrival

Given a network data-vectaox(t), which may or may not
contain a chirp, it is necessary to first compute the correla-
tion vector,C, before one can obtai@;, and, therefore, the
network statistic. In order to do so, we ne@Y for all I. We
compute &C' (or, rather,C}") by first calculating the Fourier
transform of the cross correlatiqd.3) for an individual de-
tector by using FFTs. Taking its inverse FFT then gives us
the C{"(7) at all the time lags,r, in a cost effective way.
Thus we get

Cl(mte &', 0", =(S (Lt +7.6") X (Lte, &)y

(4.12
where the primed parameters define the detector template. If
the values chosen fdig’,0’,¢'} match those of a chirp in
the data, thefC'| is likely to peak whenr exactly compen-
sates for the differencet(—t.). Indeed, the corredt for a

Geometrically, we summarize the above maximizationnetwork of coincident detectors is just

over the anglege, ¢} as follows: Choosing a given source
direction fixes the orientation of the helicity plane in the
network space. After making this choice, one projects the

C(r;¥)={C' (7,9}, (4.13

correlation vectoC onto this plane. The vectd@ inevitably
lies in this plane. Thus, the values f,¢} that maximize
the statistic are those that align the vedfralong the pro-
jected vectoiC,, .

It is always possible to choose i, a two-dimensional

basis comprising of a pair of orthonormal real vectors. In

such a basis the components of any vectorHnwill, in

general, be complex. For the sake of concreteness, we defi

one such basisy(",v™), in the following way. We spliD. ,
into its real and imaginary parts

D+25dl+id2, (49)
whered,; andd, are real vectors. We then define
Qi:(aliaz)/”aliazn, (41@

whered; andd, are unit magnitude vectors along andd,,
respectively. Taking the projection & on v. , i.e., C*
=v*.C=cy +icl,, we re-express Eq4.8) as

[CHllZ=ICT[2+[CT2=(cg )2+ (Crp)*+(Cg )+ (Cp)?

=2 (4.11)

It can be verified that the statistic is, therefore, a sum of th
squares of four Gaussian random variables with constal
variance. With an appropriate choice of normalization, thes

whered’ is the four-dimensional template parameter-vector.
Also, | takes values from 1 t.

Construction ofC for a network of non-coincident detec-
tors is somewhat more involved owing to non-vanishing
time-delays,r(;,(6,¢), that may arise for a given source di-
rection. Recall that the time of arrival at theh detector is
ta+ 70)(6, ). If the detectors are spread around the globe,
r'[]rée times of arrival at any pair of detectors can at most differ
by 2R, /c~40 msec, wherd,, is the radius of the Earth.
For the two LIGO detectors, the maximum time difference is
~10 msec; for the network of LIGO-VIRGO, it is
~27 msec. We note that,,(¢,¢) can take positive as well
as negative values. Its range depends on the location of the
fide. If the fide is chosen at the center of the Earth, then
|71y|=<Rs /c; but if it is chosen to be one of the detectors on
the surface of the Earth, thgm()|<2R,/c. This contin-
gency is dealt with by using the appropriate setrgf's in
Eq. (3.8 to obtain theS'(t;t.,&’). With this in place, the
network correlation-vector is given by the same expression
as in Eq.(4.13.

One can obtain the same value fOrby an alternative
construction, which may be simpler to implement in practice.
In this method, one first obtains ti8 by setting the arrival
time at every detector to equal that at the fide. This is the
same as computing th8'(t+ Tyste,€"), for all I. [Note
érom Eqg. (3.8 that, despite appearances, a knowledge of
an(,)'s is actually not needed for this computatipWith these
éemplates one constructs the following inner products:

variances can be made unity. As we show in Sec VII, this
simplifies the computation of detection thresholds and prob-
abilities associated with the above statistic. Instead of using
the squared norm o€, we will find it convenient to use as which are independent of the time delays. Indeed, a choice of
our statistict =||C,,|, in what follows. We note that then  the time delays is not made thus far in this alternative con-
scales linearly with the amplitude of the signal vector, rathesstruction of C. To construct the network correlation-vector

CH(mtl &) =(S\(t+ gy ite+ 7.8 X (it )y,
(4.1
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from the above quantities, one begins by choosing a sourcrn is followed by a “post-padding” of duration &,
direction,{6",¢'}, for the template. This direction is used to — 74). The network template is then the Cartesian product of
compute a consistent set of time delayg,(6',¢’), for a  all these individual templates. Note that this can be taken to
given network. The network correlation-vector can then bedefine the network template for the most general network,
defined as regardless of whether the detectors in it are coincident or not.
For non-coincident detectors, the relative time-delays are ac-
C(r;9)={C'(++ Ty (0, ')t €D, (4.15 (éou?étlefs)for in the construction of the network statistic via
g.(4.15.
where the appropriately shifted time lags for each value of  In order to construct the network correlation-vectGr,
compensates for the time delay at each detector. In the rest 6he utilizes the above templates as follows. Using these
this section, we discuss the construction of network temindividual-detector templates one first obtains the correla-
plates in greater detail. There, for a network of non-tionsC'(7;t.,¢’) for all values ofr (after settingt,=0 or,
coincident detectors, we choose this latter prescription foequivalentlyt;=¢’, without any loss of generalifypy using

such a construction. the FFT algorithm, such as in the single-detector case. Note
that the range ofr, for a data train of lengtiT, is Tq<7
Network template construction <T—¢u)— 74 Next one selects a source directiofl; (¢').

ne evaluates the time-delays;)(6',¢'), corresponding to

is direction® These time delays are then used in E415
computeC, which in turn is projected oft{ (defined by

the same selection df9’,¢'}) in order to obtainC,,. The
etwork statistic can be easily recovered from this using Eq.

Based on the above discussion, we construct a networ%
template as follows. Given a chirp, consider the detector witfi
the least seismic cut-off frequency. Label that detectol as 0
=1. The other detectors in the network are labeled such th
fsay<fsz)=---fsm). Then from Sec. Il we have
=)= - &y - Now, consider the signal in the first detec-
tor, I=1. It lasts§(;y seconds. As in the case of a single-
detector “network,” an individual detector template, which

is an array of numb(_ars, is constructed to be much Ionger_th gnal. The two panels ife) depict the two individual detec-
the signal: It comprises of a sub-array that stores the S1aNgsy templates constituting the network template. These two

heing searched for, followet_j by a padding of the r‘E’QUiSitepanels correspond to detectors with different seismic cut-
number of zero$32]. In the single-detector case, it has been

. . ffs, viz., f51)=33 Hz andfg,)=40 Hz, respectively. The
shown. that a padding fac'_[or Qf 75%, that is, 7.5% ZETOS aNP4dding befordi.e., on the left-hand side pthe signal is of
25% signal, is a good choice in the sense that it optimizes th durationry=50 msec. The part of the curve for detector 2
computational cost arising from the computation of the d '

, . - “that is shown in dots and dashes is ineffective in contributing
FFT’s. Accordingly, here too we pad the template for the flrstto the SNR. Panelgb) show the relative positions of the
detector with zeros for a time duration of3§(;).

In th Vit wind ¢ t the other d signal in the individual detector templates for whiid| has
n the sensitivity window of any of the other detectors, , " ayimum when the second detector has a relative time
that is, for (#1), the signal effectively lasts for a time-

) : delay of (r;y— 7(1)) =20 msec. Here, we have included the
duration equal to or shorter thag,. Nevertheless, the sim- _time delay in the network template.

plest way to construct their templates is to let them contain Above, the chirp time in the detector with the ledsg,

':jhe same S|gn?l as in thﬁ first detect_or, gnd for the S@Mfecided the durations of the padding and the chirp signal in
uration, name y.g(.l) . Such a construction 0€s not restrict o yhe individual detector templates. Indeed, these durations

the network statistic in any way. Its only pertinent implica- ;.o the same in all of them. It may be possible to optimize on

uéomputational costs by varying these durations in different

frequency_ belowf, will be ine_ffective in cont_ributing to templates. However, in this work we do not pursue this point
the SNR in thel-th detector, which conforms with what we any further

expect. In the case of a network with coincident detectors,

In Fig. 2(@) we show a network template for a network of
two detectors. In all the panels, the dots represent the pad-
ding (with zerog, which is introduced before and after the

the individual detector-templates so constructed define the C. Maximization of £ over &, 6, and ¢
components of the network template vector. Using it in Eq. ) , i
(4.13 yields the relevant network correlation vector. Consider the network correlation vect@(7), for a fixed

Obtaining the template vector of a network with non-Value of &', but for a range of values for. As remarked
coincident detectors is trickier. This is essentially due to the?€fore, such a vector is constructed for specific values of
possibility of the occurrence in a given detector of negativeAd source directiond(, ¢") by taking into account the time
time delays. We deal with this possibility by splitting the 9€lays,7)(6',¢"), appropriate for the network under con-
padding into two parts of durations, and (33)— 7q), re- sideration. The network st_at|stlc for these_chqsen values of
spectively. Since the maximum magnitude that a time dela§? »#') and 7 can be obtained by first projectirg on the
can have is less than 50 msec, a choicer@t50 msec eI|C|_ty plane and then computing thg norm of_the pr_OJectlon.
satisfies all requirements at negligible cost. This is the valué* chirp search ovef¢’,¢’} for a given configuration of
we assume fofyq in our simulations. Thus, the template of
any one of the detectors in such a network is an array of
numbers that begins with a “pre-paddingith zerog of 8Alternatively, one may first select a consistent setrgf's and
duration 74 preceding the signal of interva,,, which in  then deducd¢’,4'} from them.
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FIG. 2. Network template for a two-detector network. We choose the fiducial frequerfgy=d48 Hz. The instant at which the signal
reached  is shown by a vertical line. We take the chirp time corresponding to the fide {&-Ifle3 sec. The dots represent the padding with
zeros, which is introduced before and after the signal. The two pané# @epict the two individual detector templates constituting the
network template. These two panels correspond to detectors with different seismic cutoffé, Miz.33 Hz andfg,)=40 Hz, respec-
tively. The respective chirp times a#g;)=0.5 sec and(;)=0.3 sec. The padding befofee., on the left-hand side pthe signal is of a
duration7y=50 msec. The part of the curve for detector 2 that is shown in dots and dashes is ineffective in contributing to the SNR. Panels
(b) show the relative positions of the signal in the individual detector-templates for W@ichas a maximum when the second detector has
a relative time delay of £,)— 7(;)) =20 msec. Each of the detectors has its seismic cutoff equal to 40 Hz, which giyest,)=¢
=0.3sec.

042004-13



ARCHANA PAI, SANJEEV DHURANDHAR, AND SUKANTA BOSE PHYSICAL REVIEW D64 042004

network leads to a “window” of time delays. In any network plane of the three detectors. In such a case, the possible time
of non-coincident detectors a windoW, is a bounded re- delays can be represented in a three-dimensional space of the
gion in the space of time-delays that arises from the restricthree time delays, which now lie on the surface of an ellip-
tions on each of the time delays to lie within certain limits. soid. The number of possible time delays is exactly doubled
As we illustrate below, these limits, in turn, originate owing compared to that of the three-detector network. Thus, its
to the maximum light-travel time between pairs of detectorsmaximum possible value i8S =47.4/(c?A?), where A is
Since the data are sampled discretely, a window is a boundatle area of the smallest of all possible triangles formed sub-
region of a lattice in the space of possible time delays. Consets of three of the four detectors. When there are more than
sequently, the number @lfattice) points in a window of finite 4 detectors there is redundant information on the direction to
“volume” is also finite. We now discuss the shape and sizethe source, but theg is the same as for four detectors. In the
of a window for networks with two, three, four, and more presence of noise this redundant information may be used to
than four detectors. reduce the errors in the direction to the source. Here, we do
Two-detector networkFor a network of two detectors, not pursue this point any further.
there exists effectively a single time-delay function of sig-  The sampling interval naturally provides the most sim-
nificance. It is the difference in the times of arrival of the pjistic discretization in carrying out the search in time de-
wave at the two detectors. For such a network we choose ongys. In searching ove# and ¢ one does not need to com-
of the detectors, say=1, as the fide. Them;)=0 and the pute additional Fourier transforms; rather, one needs to
time delay between the two detectors is reflected solely itombine the individual detector correlations with the correct
T(2), Which is restricted to lie within the range-d;>/  time delays to construct the optimal statistic, This gives
c,dp/c], wheredy; is the distance between the two detec-rise to two components to the computational cost: the cost
tors. Let A be the sampling interval, which is typically involved in computing Fourier transforms and the cost aris-
0.5 ms. Then the “width” of the window, expressed in terms ing due to the arithmetic operations involved in computing
of the number of time-sampled points, i&=27)/A,  over all possible time delays. As shown later, the latter cost
where the subscrip stands for sampling an€l for the can be considerable and may dominate over the cost in com-
direction in sky, @,¢). If we denote the LIGO detector at puting Fourier transforms while searching over
Hanford by H, the LIGO detector at Louisiana by L, and the It is important to note that sampling can introduce an
VIRGO detector by V, then for the two-detector networks arbitrary mismatch between the actual source direction, (
formed from pairs among these, we ham%(LH)~40, ¢), and the direction in the templated’( ¢'). The mis-
ng(HV)~108, andnZ(LV)~105. match, u, is the fractional loss in SNR when the signal and
Three-detector networktn the case of a network with the template parameter differ slightly. In agreement with
three detectors, we once again take the first @ee, 1=1)  most investigations carried out so far, we decide to tolerate a
to be fiducial. Also, we can always imagine all of them to lie mismatch to a maximum of 3%. The sampling can lead to a
on a single plane. In such a case, there arise two nontriviahismatch either greater or smaller than If the sampling
time delays, namelyr,, and 73y. The allowed values of gives a mismatch less than the desired one, then this simplis-
these two time delays are easily shown to be restricted withitic procedure of scanning/ leads to unnecessary extra com-
a bounded region of a plane; this region is circumscribed byutational costs. On the other hand, if the mismatch is more,
an ellipse. Any point in this region represents a pair of time-then one is likely to miss out more events than desired. The
delay values, £,),7(3)), corresponding to a given pair of question whether the sampling is adequate one way or the
values for the source-direction anglés;,¢'}. The equation  other can be resolved by constructing a template bank for the

of this ellipse is given by7] desired mismatch. In the next section, we proceed to con-
5 o o o 5 5 struct a bank of templates in the parameie, and¢. The
(7(2))“+ (7(3)) “(P*+q°) = 2p7(2)7(3)—q°(d12/C)“=0, template bank, in general, will produce time delays that do

(4.16 not fall exactly at the sampled values of the correlation vec-

) _ tor. However, we can easily interpolate to obtain the inter-
where p=(d;3/d;5)C0Sar3 and q=(d;3/d;))Sinaz;, with  mediate values by applying Shannon’s theof@3], which
dg (or dig being the distance between the first and theessentially states that a band-limited function can be con-
second(or third) detectors. Alsoay; is the angle subtended  strycted in the time domain from its discretely sampled val-
by the hubs of detectors 2 and 3 at that of the first detectoyes at the Nyquist rate. Or in other words, the template bank
From Eq.(4.16), the “area” of the elliptical window, given provides the rate at which the output can be re-sampled so as
in terms of the number of time-sampled pointsn§=27 1o obtain the desired maximum mismatch.
X Al(c?A?) where A is the area of the triangle formed by
the hubs of the three detectors in the network. We find that
the number of possible time-delays for the three-detector net-
work of LIGOs-VIRGO (LHV) is n§~3>< 10°. Recall that the LLR is a function of eight parameters,

Four or more detectorsin the case of a three detector namely{r,5.,€,¥,t.,&, 6,4} for the Newtonian chirp. As

network, the two time-delays produce two circles on the cementioned earlier, we adopt the maximum-likelihood method
lestial sphere that intersect at two points, which give thefor the detection problem. It implies that the LLR must be
possible directions to the source. This twofold degeneracy isaximized over all the parameters to obtain the MLR. We
broken when we introduce a fourth detector lying outside thehave shown that the maximization of LLR can be carried out

V. TEMPLATE BANK IN £, 6, AND ¢
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analytically with respect to the four of the eight parametersThus, the total number of templates required is;=V
{r,8;.,€,4}. Also, we can deal with the time of final coales- X pp(w) . In general, the total number of templates depends
cence at the fide, efficiently by using the FFT algorithm. on the source parametefs,/}. In order to scan the param-
Therefore, we now need to formulate a strategy to searcbter spacdfor a given mismatchs) for each pair of values
over the rest of the 3D parameter space formed by, and  {e, ¢}, we must maximize the volume over{e,}. This is
¢. ldeally, one should scan the whole range of the 3D patantamount to choosing the finest bank of templates. For
rameter space over the physically allowed parameter valuesimple cases, this is straightforward and has been imple-
This, however, is impractical due to computational limita- mented in some examples in Sec. VI. In general, however,
tions. Therefore, a prerequisite for such a maximization is asuch a maximization is non-trivial to perform.
estimate for the magnitude of grid discretization. The grid
spacing in the parameter space depends upon the fractional
loss in the SNR that one is prepared to tolerate.

To estimate the number of templates in the 3D parameter We apply the method described above to obtain the metric
space, we take the differential-geometric approg8# and  in the four-dimensional parameter spgtg,é, 6, ¢}. When
use Owen’s method of introducing a metric on that spacdhe parameters of the network template and that of signal
[27] and extend his formula for the one detector case to thamismatch, the network statistic given by E@.11) drops
of the network. Also the inverse of the metric is just the below the maximum value. The metri, ; defined on this
covariance matrix scaled by the square of the SNR. Thus thi®ur-dimensional space is related to the amount of drop in
metric also provides information on the errors in estimatingthe statistic,t., and is obtained by expanding the statistic
the parameters. In this geometric method, the signal vector igbout the maximum. Using E¢4.11) the squared statistic
characterized by P+1 parameters, 9%, where «  can be rewritten as,
=0,1, ... P. The signal vector lies in @R+ 1)-dimensional

A. The network metric

manifold denoted byP. We define the metric of® by g, L2=|v*".ClP+|v " Cl?
which is related to the fractional loss in SNR, denoteduhy
when there is a mismatch between the signal and the tem- =p/ JC|C§ _ (5.4)

plate parameters. Since here we consider the Newtonian
chirp as our signal, we havé=3, 9°=t., and o' g o ,
={£,0,¢}. Ast can be maximized over, numerically via 1€ quantityp; ~ is a projection tensor given by

the FFT, we only need to lay the templates in the rest of the

P-dimensional parameter space, comprising{ &f0, ¢}. In pl'JEv’+Jv'r+v’—Jv’f, (5.5
other words, we need to compute the metsig in the

P-dimensional subspace. It is determined by projecting the , . . oM .
metric g,; onto the subspace orthogonal to. We then which projects a vector i@" on the helicity plane spanned

obtain by v'*. It obeys the identities

_ 0i90; 5.1 piops =p " pipy'=2, (5.6

Yii = 9ij Joo
which are consistent with its being a projection tensor on a
The number of templates is obtained as follows. We computewvo-dimensional plane. The primed coordinates refer to the
the proper volume of the parameter space with the metfic template.
and multiply the volume by the number density of the tem- et 9* and 9'*=9%+Ad“ be the parameters corre-
plates. Fixing the value gf determines the grid spacing of sponding to the signal and the network template, respec-
the network templates in the parameter space. The numbefely. For computing the metric one takes normalized tem-
density, pp(u), which is the number of templates per unit plates(by settingb= 1) for the signal as well as the template,

proper volume, is given by so that the maximum value &fis unity when the parameters
of the signal and template match. In the absence of noise, Eq.
1 \F P - (4.3 yields
pe(p)=|5 ) (5.2

1
It is defined to be uniform over the whole parameter space Clr=(s'\s") = 7€ Q1 (S'",8) ), (5.7
and, therefore, its use is applicable as long as the curvature
of the astrophysically interesting region of the manifold de-
scribed byy;; is sufficiently small, and the effects arising
from the boundary of the region are negligible.
The total volume of the parameter space is

where, theS'' denotes the template. The above expression is
exact within the SPA. So the statistic can be written as

£2=p/’Q'Q30 )1y, (5.9

v= [ Vel fla". 5.3

where
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1 | . To obtaing,; we Taylor expand the network statistic about
®(|)(J)Ez<3(t;ﬁ'”),s(t;19”)>(|)<SJ('C;ﬁ'“)-sj(t;ﬁ“))(a), the peak at\ 9#=0 to obtain

1 9’k
* . ~ _— a B
= | dfAg(hexp(—id(f; 9,4 9%)) t(5,49) 1+2(amaamﬁ)|“°” A%
sy
o ) where 9 is the four-dimensional signal parameter vector.
X ff df A (Fexpli® g)(f;9#,A9*)) (5.9  Note that the first-order term in the Taylor expansion gives
) vanishing contribution. This is becaukehas a maximum
is the product of the individual ambiguity functions of the there atAd=0,
I-th andJ-th detectors. It is a measure of how distinguishable

the two wave-forms, i.e., the signal and the template, are. Za
H =0, (5.19
ere, a9
Ad=0
4 1 [f)TR
An(f)=— _(_> , 5.1 for any . Then, the metrig,;(%,A9) is defined as
Ol 3f59(1) Shy(f) | fs .19 b
_ o o B 1 L
which satisfies the normalization cond|t|dr$°s(l)A(.)(f)df gaﬁ(ﬂ)——z AN TP [a9=0- (5.1

=1. Note that in the limit ofA #*— 0 the projection tensor
of the filter is same as that of the projection tensor of therpe apove differentiations can be performed. But first we

signal, i. e.,py J—p’.In this limit, the projection tensor of  sydy the effect of a mismatch of signal and template param-
the signal obeys the relatlopHQ'Qj:l and noting the eters on the network statistic.

normalization ofS', we can see from E¢5.8) thatt>—1 as For a perfect match between the signal and template pa-
desired. rameters, the correlation vect@=Q, lies in the signal he-

The correlation phaseb(f; 9*,A9*), is given by[see licity plane (6, ). When mismatched, however, each com-
Eq. (3.1D)] ponent ofC gets multiplied by the weight factds'',S'){;, ,

_ B _ P ie., C'=3Q'(s",8){,. Since(S"",S){;, depends on the
Py (1% A =W y(F 15, e, &) =Wy (FiFs, tc . £7). noise PSD of the detector and the time delay, which are
(5.1 different for eacH, the components of the correlation vector
The correlation phase includes the contribution from the dif-9€t scaled differently for eachwhich makes the vecto€

ferential time-delay between the signal and the template. In0ve out of . Owing to this mismatciC may lie outside

stead of using ¢, &) to specify the direction to the source we 1(¢:¢) as well asH(6’,¢'). However, the maximization
. ~ over e and ¢ requires projectin@ onto the template helicity
use the components; and n; of the unit vector n

- . . . 1 plane H(6’,¢') in order to obtain the network statistic,
=(n1.n2,Nny) 10 do so. The time delays in units o[ * are |Csxll. Thus, the value of the computd€,,| can decrease
due to two effects:

(a) reduction in the norm o€,

(5.12 (b) C moving out of the signal helicity plane.

wherer is the position vector of theth detector’s hub and We assume that the orientation of the helicity plane
is henceforth measured in units of the “fiducial wavelength,” changes slowly as comparJed to the effect of the time delays.
Ne=c/f. Since we choose to measure the time delays with NiS means that we treq( * as effectively constants in Eq.

respect to the fide, we must hayg=0. Thus, we may write (5.8), and equal to the corresponding tensor for the source
the correlation phase as parameters, namelp,”. The validity of this assumption, to a

good approximation, is supported by the extensive numerical
Dy (F; 9%, A9*)=2m(,(f;9)A9*, ~ (5.13  computations that we have performed for the networks and
parameters that we have considered. Since we consider the
where 9*={f4t.,fs&,n3,n,} is a quartet of dimensionless mismatch to be quite smalB%), thetemplates are closely

2 2
fsT(I)(n31n1):[r(l)lnl+r(I)Z(l_n3_n1)1/2+r(l)3n3]:

parameters and spaced in the direction angles and hence the approximation is
valid to about few parts in f0or even better. Thus, from
e [[FY BT Egs.(5.8) and(5.16) we obtain the metric to be
el 99 = A o A QRO
1
Ns f ga,e(ﬁ)”ZPH%[Q'QFJQU)(J)M, (5.17
XW folfor o2

n f Where we used thg fact that bqﬂﬂ andg(y)ap are sym-
x—z—z—m} _}_ (5.14 metric under the interchange df and J. Also, g(yyap
(1=n3—ny ™ fs =— (%0 (1)(3) | IAI*IA P) |y 9v—o. The reality of g,z is
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now manifest. Owing to the linearity @b in A9“, the met-  (4.5). Such projections allow us to isolate the dependence of
ric g,z depends only on its first derivatives. Therefore, it canthe metric on the parametefs, #}. This simplification arises

be easily shown that becaus&) lies in the plane 0D, andD_,. To see this, let
us define the following four quantities:
91y ap= (PP ) (1) H{( PP p) () = (P ) (1) (P p) )
1
_<®B>(|)<q)a>(3) ’ (51& giZ,iZQﬁZZleDlJLZDJiZgU)(J)aB . (523)

where the suffixa denotes the derivative with respect to

A9¥“. The angular bracket denotes the average over a givelt follows from aforementioned properties that
frequency range. For the frequency rangg faf,oc ], the av-

erage value of the functioX,,(f) is denoted as 9-225=92-2a8" 9-2-24p=(92208)%, (5.29

K= fw Ay (XD, (5.19 and thatg _, 5,4 is real. The metric is then given by
f

0 1+coe 1—-coSe

where within the angular brackets we have dropped the sub- ||E||29aﬁ:—2 9-22pt T2 9{[974W92,2aﬁ]-
script onX simply because the same subscript appears out- (5.2
side those brackets. In other words, we have reduced redun-
dancy by introducing the notationtX))=(X()1y- We  We make use of this form in computing the cost for the
observe that Eq5.18 is a generalization of Owen’s formula | |GOs-VIRGO network.
in Ref. [27], wherein the metric for the single-detector case Before we proceed to the discussion of various cases of
was derived. It is not difficult to understand the origin of the networks, we mention a Sca“ng property of the ph@sdf
different factors in the expression fgr,z. This metric gets 4, is scaled by a constaat i.e., if ®=ad, then the compo-
contribution from every pair of detectors in a network, in- . _ o~

nents of the metric get scaled hy, viz., Yap=a Yap- AS-

cluding the diagonal termé.e., terms withl =J), through . . .
the “cgupling” r?ﬁetric 9(|)(J?a5- The magnitude) of eacﬁ of Suming the dimension of the search parameter space ® be

these contributions is determined by their respective couone finds that d#tyaEH:aZ"deﬂ Yapl- Thus, the proper vol-
pling strengths in the form of coefficientp,’R[(Q'Q%)],  ume scales a¥=a"V.
which depend on the four anglés, , 6, ¢}. This is because We now obtain the errors in determining the direction to
these coefficients essentially arise from the extended beanthe source. The errors are obtained via the covariance matrix.
pattern functions of the detectors, which, apart from dependNote thaty is the metric on the three-dimensional parameter
ing on the signal amplitude through determine how sensi- subspace withé¢, 6, ¢} as the coordinates. From a statistical
tive a given detector is to a source direction aphd point of view, y;; is the Fisher information matrix for a sig-
The above expressions allow one to calculate the paranial of unit amplitudd 31]. The covariance matrix for a signal
eter space metric for any Earth-based network. Howevef unit amplitude is justy”, the inverse ofy;; . The covari-
since the metric is non-fldas opposed to a flat metric for a ance matrix for a signal of arbitrary amplitude is obtained

single-detector “network), the template spacings§d will ~ from y' by dividing it by the square of the signal amplitude.
depend on the locationy, of the template. The general ex- The diagonal elements of the covariance matrix are the vari-
pressions for the moment functionals are ances in the errors of the estimated parameters. The errors in
the estimates of the parameters are given by the correspond-
(P 1y=27¢()sal (1y(7—3M,), (5.20  ing standard deviations,
where ¢ (ys,= ¢ (1ya(f(1ys: 9*) andm, is the power off on NI
which ¢y, depends angly(q) is g-th noise moment of the T[H="p (5.26

noise-curve corresponding to th¢h detector and is defined

in Appendix C. Similarly, . . . .
PP y whereb is the amplitude of the signal. In the next section,

(@@ )1y =820 (1)sa®(ysl (1) (7T— (M, + mlg))t - we list o;y in Table Ill for various networks.
5.

. . . B. Computational costs
In terms of the above expressions, the coupling metric is P

We now estimate the computational cost involved in

9y ap= 374 (1)sa®yspl (1) (7 —3(M,+Mmp)) searching over the parametets¢ and¢. We consider data
. . trains of durationT seconds sampled at the rate . The
~ PsaPyspl (77 3Ma)] (3)(7=3Mg) ] number of sampled points in each of thve data trains is
+[1J7}. (5.22 denoted byN=T/A. As remarked before, the computational

cost involved in obtaining the statistic has two important
Another form of the parameter-space metric that provesontributions:
useful in later computations is obtained by taking projections The cost involved in computing Fourier transforms, de-
on the vectorsD, (p=*2), which were first used in Eq. noted byCF'.
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The cost in computing the optimal statistic while search-In Eq. (5.30, we have ignored the overhead costs. Also, in
ing over the time delays or, analogously, over the sourcethe template bank case, we have ignored the cost involved in
direction angles{6, ¢}. We denote this cost bg?, where  computingC at non-sampled values, which can be obtained

0=(6,9). from Shannon’s theorem. The length of the data that is ef-
Also, we consider two different ways of searching overfectively processed is equal to the length of the zero padding.
the time delays: This is because if the time-of-arrival of the signal exceeds
(1) Scanning all the time delays in a window, the padding duration, the longest chirp can extend out of the

(2) Using selected values of time-delays from the tem-qata train. Thus we need to consider times of arrival only up
plate b_ank. For the quantities relevant (tb) » We attach a 5 the padding length. The next data train must begin at this
subscriptS (for sampling and to (2) a subscrif (for bank- j,stant leading to an overlap between successive data trains.
of-templates Let the number of templates required in 1, hocess the data online requires that the processing rate
sg:archlng oveg in thesegtvyo methods be de”‘?ted”‘g’a“d be at least equal to the rate of data acquisition. Since the
ng, respectively. Them is obtained by placing the tem- jength of the processed data is just the length of the padding
plates in theP-dimensional space, WhllBé is obtained by \yith zeros in the template, the online computing sp&ad
placing the templates just in tifecoordinate. Thusmg isthe  ang Sg are given by dividing the computing costs by the
proper length associated with the parameter range ogthe padding duration, 8,. In the next section, we obtain the

coordinate, multiplied by (1) =1/(2/). This yields template bank and the computational costs for various net-
o works.
ng:_ V Y11 Emax— Emin) - (5.27)

S
Vi
For detectors with identical noise curveg, is just the num-
ber of templates required for searching o¥em the one-
detector case for a given coalescence phéseThe quantity
n§ for a detector network, with all detectors having identical

noise, is justyP times the number of templates ifor a
single detector. The factor ofP comes from the fact that

VI. EXAMPLES OF DETECTOR NETWORKS: RESULTS

Before considering the case of the actual network of laser-
interferometric detectors being built around the globe, we
shall first consider some idealized cases that are simple to
analyze. Such an exercise is meant to provide us with some
useful estimates on the number of templates required, com-

the template must reach out to signals that mismatch Wiﬂputatn_)nal costs, etc. We begl_n by verifying that in the case
templates in all the parameters. For a two-detector networlo! @ Single detector the formalism developed in the previous
since the bank is i and 6, we haveP=2. For networks sections yields the results expected from earlier studies

with three or more detectors, the search is over three pararh26,27- Then we apply our formalism to cases of networks
eters and, therefor®=3. with two and three identical detectors, respectively, with

Let us assume that the FT of the templates are stored itfléntical noise PSDs. Assuming a common noise simplifies
memory and the FT of the data has been taken. Then theomputation of the metric on the signal parameter space.

computing cost in FT for the two cases[B2], Purely for the purposes of obtaining estimates we choose the
noise PSDs in these cases to be that of LIGO-I, with
CEE=6nEsMN log;N, (5.28 =40 Hz. Here, cases of non-coincident as well as arbitrarily

oriented detectors are also studied. Subsequently, we gener-
where we have included a factor of 2 for the two sets ofalize these analyses to obtain estimates for realistic cases of
templates corresponding t.=0,7/2. We assume that the networks comprising of the LIGO and VIRGO detectors:
vectorth(0,¢>) are stored in the memory for each pair of These include two-detector networks, which pair up the two

(6,¢) in the window-template bank, typically few thousand LIGOs or VIRGO with one of the LIGOs, and the three-
for the LHV network. The number of real floating point op- detector network that includes VIRGO and both the LIGOs.

erations(“fl-pt ops” for short) for constructing the statistic In Tables Il and Ill we summarize our results, which include
A is 8M +3 (which essentially behaves adM8whenM is  the computational speed requirements, network sensitivities,
large for each point in the sky, {, ¢). Hence the costs in and source-direction resolutions for all of these networks.
two cases are

C2=~16MN ngng, A. The one-detector “network”

It is instructive to start with the one detector case since it

CE=8MNn=16MNngng, lays the foundation for th&l-detector case, the analysis of

(5.29  which would be the final goal. More pertinently, the number

P ] ) . o of templates in¢ for the single-detector case is required for

where nio=2ngng . This equation definesg. The total  computingn, in the case of networks with more than one

costs are given by detector. We first verify that our solution gives the expected
c o estimates forM=1. For a single detector, we havé°
Csp=2n5gMN(8ngg+3logN). (5.30  =ft. and 9= The network statistic is
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L=|CrQY=|C, beam-pattern functions of the two detectors are identical. If
the detectors were located at the same place, then the result-
ing network would have mimicked a single detector, but with

a higher sensitivity. Here, however, we consider spatially
separated detectors, where the relative time delgy, pro-
where the phas@ can be derived from Eq95.11) and vides partial information about the source direction, namely,
(3.1D by settingl=1 and the time-delay term to zero in 6. The time delay in units of_* is given by

those equations, respectively.

=J:G.A(f)exr(—i@(f;ﬁ“,Aﬁ“))df , (6.2

.For the above statistic, .tl“exactmetri.c Jup can~be ob- fST(z):ZZ(i,ﬁ), (6.7)
tained from Eq.(5.16. Using the scalingd=27®, the
scaled metric is where we measurs, in units of the fiducial wavelength\g
1 (which is =~7500 km for f;=40 Hz). Thus, the network
aaB:§[<(§a&)B>_<a)a><a)B>]- 6.2 statistic in this case is
. : t=|C-Q’| (6.9
where the moment functionals can be expressed in terms of
the noise moments listed in Appendix C. The metric then 1
reduces to = ﬁ|(;>1k +C3|. (6.9
~ 1(ky kg
Yap=35 Ky Ky’ 63 Note thatQ'1=Q’? and|Q'Y|=|Q'?|=1/\2. This means

that we have no information about and . For a two-
wherek,, k,, andk; are certain useful combinations of noise detector network, any given value of the time delay corre-
moments and are defined in E§€4) (here we have dropped sponds to more than one source directions, all of which lie
the detector index from those combinations for obvious on the surface of a cone whose axis coincides with the line

reasons Projecting orthogonal taé°, we find joining the two detectors. Only when the source lies on the
line passing through the two detectors is the time delay
~ 1 k% 1, single-valued, and is of maximum magnitude for a given pair

Yu=s Kz Ky = Ek 6.4 of detectorgnote that we have allower} to be negative as

well). The value of the time delay,,) determines the open-
The parameter space in this case is just one-dimensional. lisg angle of the cone. Thus, the azimuthal direction arfgle

volume is the proper length of the wave remains undetermined in the case of two detec-
; tors. Only # can be estimated from the time delay that ap-
., D max [~ pears in the phase difference of the detector responses.
y=2my 27Tf5Lmin 71dé As in case &), the exact metrig,,; for the statistid6.8),
can be obtained directly from E¢5.16). The corresponding
=27t k(Emax— Emin)- (6.5  scaled metric is
Since the number density of templates here pig ) - 1 1 . . ~ ~
=1/(2p), the number of templateéncluding 2 sets of gaB:ZIEJ §[<q’aq’ﬁ>(l)_<‘I’a>(l)<q’ﬁ>(~l)]' (6.10
templates for searching oveéy) is just '
5 where thed ;) are defined in Eq(5.11). The metric on the
Niot= \ﬁﬂ'fsk(gmax_ Emin)- (6.6)  three-dimensional parameter spdési.,fs£,ns} can now be
)2

given in terms of the noise moments as
For LIGO-I noise we hav&=0.062, and the corresponding

Ntot IS given in Table Il for the parameter ranges listed there. 1 ke ks Z2k4/2
9ap=5 ks k, Z,K3/2 , (6.11
B. Two-detector networks 2,ki/2  2k3l2  Z5(ky+j(1))/4
1. Two non-coincident, identical detectors with identical noise ] ) ) ) ) 9
PSDs and identical orientations wherej(1) is a noise moment defined in EGC3).” After

We consider a network of two identical detectors with maximizationg,,; over the time of coalescence, we deduce

identical noise PSDs. We make the following choice of co-the metricy;; to be

ordinates. We choose one of the two detectors to be the fide.

Thez axis of the fide is chosen along the line joining the two

detectors. Then the second detector is taken to be located alwe have dropped the detector inderom the noise moment
(0,02,), with an orientation identical to that of the fide, i.e., combinationk;, k,, andk; (see Appendix Csince here the noise
@)= B2)= ¥(2y=0. Owing to the same orientations, the moments are identical for the two detectors.
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1/ (kko—KD/k, O - 1 (kiko—K3)/K, 0
(6.18

== . 6.1 == .
Wzl o w2 Tz 0 -k

Here, a vanishingy,, implies that there is no covariance

betweené and 6. This is however not true when the noise . ¢ directi I th |

curves are assumed to be different for the two detectors. Thfo"! Of SOUrce direction t.¢) as Well as the ang e, i}

is S0 in case ), which we discuss below hus, for every single source direction we have a two-
The volume on the 2D parameter spddeé,ns} is ob-  Parameter family of metricsy; (dependent ore and ¢).

. : L[ Clearly, the template spacings in this case will vary with
t/%lrbergebgf :mggégttl?s def|y| overng and ¢. The proper their locations. For the purpose of obtaining estimates, we

perform a simplification by opting to choose a bank of tem-
plates that is the finest over these two parameters. To do so,

we first maximize ddﬁﬁq,—” over € and s and then compute
the volume. The parametefs, i/} appear in the determinant
only through the factox/ (1 — %). The value ofy for which
the determinant is maximized is=1/2. We prove in Ap-
pendix D that one can always find a physically allowed pair
-2 of {e,y} such that the value;=1/2 is attainable for any
Niot=——TK'Zo(Emax— Emin) - (6.14  given pair of{ #,¢} and for any orientations of the detectors.
K We use this value of; to compute the parameter-space vol-
ume.
The proper volume after multiplying by the appropriate
scaling factor is

We note that the\/detﬁqju depends ory, which is a func-

V:(ZW)ZT):ZWZfSkIZZ(gmaX_ Emin) (6.13

where k'=/j (1) (k;k,— k3 5)/k;. For the two-detector net-
work, the number density of templates ps(w)=1/(2u).
Therefore, the number of templates is

For LIGO-I noise k' =0.288. The value off,,; for this case
is given in Table II.

2. Two non-coincident, identical detectors with identical noise )
PSDs, but with different orientations V=27K"f (Emax— Emin) Z2 (6.19

We make the choice of coordinates identical to that in
case(a) above. Since the two detectors have different orienWherek”= yk;k,—k3, which is equal to~0.13 for LIGO-I
tations, the beam-pattern functions for the two detectors difnoise. As in cased), the number of templates is arrived at
fer, i.e., Q'+ Q2. This has the implication that more infor- by multiplying the proper volume by the number density of
mation about the signal parameters, namelgnd ¢, can be  templates.
obtained. Since here we have only two dimensions on the
network space to contend with, the network correlation- 3. General case of two detectors

\ﬁ]ctorf, C, e:lr\]/vays g:as in?fi anq no E[)_rojecftit?]n :_sut;;aquire(tjr.] Here, we typically consider the case of a network com-
erefore, the problem of maximization orthe over eprising of the VIRGO detector and one of the LIGO detec-

angles{e,_zp}_ rec_juce_s_ to alignin®” alongC. Thus, the net- tors, say, the one at Louisiana, for concreten€Rse results
work statistic simplifies to do not differ much if we replace in our calculations the num-
bers corresponding to the detector at Louisiana with those
describing the 4 km long Hanford detecjowe assume the
noise curves of the respective detectors to be those given in
The metric gaﬁ on the parameter space with coordinatestaple |V [35]. Here, we have a case in which the seismic
{fste,fsé,na} is obtained from Eq(5.16) to be exactly cutoffs are different. Labeling the VIRGO detector as 1 and
LIGO as 2, we havefg;)=16 Hz andfs; =40 Hz. The
important implication of this is that the signal in the VIRGO
detector will last longer by a factorf {1y/fz) ~#3~11.5.
(6.16  Thus, till the chirp reaches the frequency of 40 Hz, essen-
tially it is only one detector, namely, VIRGO that contributes

where the<I> () are the same as in ca¢a) above. Setting to the SNR. The longest chirffor m; =m,~0.5M¢) in the
|QY|2= 7 and, thereforelQ?|2=1— 7, the metric in terms of ~detector output lasts for about 1588 sec. Accordingly, we

L=[|Cll=(|CY?+|C?A)Y2 (6.15

- 1 - o~ - -
9up=7 §|: IQ'P[(D oD g) 1y~ (P ) 1)(P )y ]

» and the noise moments is choose the data segments to be of duration 5000 sec each,
and assuming the same sampling rate of 2 kHz for both
Ky Kg Z(1— )k, detectors, we havd~10’". We now compute the metric and
~ 1 K K 2,(1— p)k the number of templates for this network.
Yap=35 3 2 2047 /%3 The expression for the scaled metric in this case is the
Z,(1— ks zo(1— ks Z5(1—n)k, same as the one in E@6.16. Let z, denote the distance

(6.17  between the detectors as in cdag and let| Q%= as in
_ (b). Also, we take the fiducial frequency to Wg="fg,),
The associateg;; is then given by without any loss of generality. Then the metric is given by
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. Koyt 7(0%kyy=Kiz)  Kazyt m(@ 2kay—Kazy) (1= 17)2oKy (2
Ejaﬁzi kst 70 2Pks)—Ka@) Koyt m(0 %1y —kaz) (1= m)Zokay) |, (6.20
(1= 1)25Ky (2 (1= 7)2K3(2) (1- 77)Z§k1(2)
where we have used ;)= fs1)/fs2)=0 [see Eq(C5)] andg,)=1. For the network under consideratigr=0.4, andk, ,
kz(,),(ks)(l) forr] VIRGO and LIGO-I are listed in Table IV. From Eq5.1) we computey;;. We find that vdef|;]|
=2z,B(7), wit

5 [ 7(0.23+ 13.33y+ 6.5177%— 20.07°) ]2
()= 457+ 6.95, ’

(6.21

which is a smoothly varying function of that attains its (x3,0,z3). The detectors have identical orientations, i.e.,

maximum value of~0.22 atn~0.6. aqy=0=B1=7vq). Hence, they have identical antenna-
The volume of the parameter space is pattern functions, i.e.Q’*=Q’2=Q’3. Then, the network
5 statistic simplifies to
V=1.767"Z5f ({max— min) (6.22
) ) L: C. !
and the corresponding number of templates is C-Q
1.76m2 1
n z—zf — in), 62 :_C*+C*+C*.
tot " 2 s(fmax gmln) ( 3) \/§| 1 2 3|

o _ (6.29
wheren,, is listed in Table II.
We do not specify the computing speed for the samplingNote that, the network of three spatially separated detectors
method in this case because it is not clear what noise curvgrovide two independent relative time delayg, and 73,

one must choose to obtain one detector templates in which determine the two possible source directions as fol-
lows. For each pair of detectors in such a network, the time
C. Three-detector networks delays draw a circle in the sky for possible source locations.

The intersections of two such circles determine two possible
source directions. Here, the time delays in unitsf pt are

, _ for=12y(z-n) andfgr(s)=Xa(X- N) +2z3(z- n). We measure
We consider a network of three d_etectors with |dent|calzzl Zs, andx, in units of fiducial wavelength .

noise PSD;. Th_e detectors are spgtlally sepa'ra_ted a_nd haveThe exact scaled metric is obtained via E5,.16 to be
identical orientations. Such a situation will be difficult, if not

impossible to realize on a spherical Earth. However, in this _
simple case our goal is to obtain order of magnitudes esti- Q=
mates for computational costs, etc. We treat one of the three

detectors to be the fide. We choose the coordinate system of ~ . )
the fide as follows: The-axis of the fide is along the line Where thed®,, can be obtained from E5.13 by using for
joining the fide and one of the remaining detectors. Thus, théhe time delaysfsA7;)=0, fsA7)=2,An5, and fA 7,
second detector is located at (@), The x-axis is chosen ~=XsAni+23An;. The resulting components of the symmet-
such that the plane formed by the network coincides with theic metric g,5, on the space of the variables
Xx—z plane. The spatial coordinates of the third detector ardft.,fs&,n3,n,}, are

1. Three non-coincident identical detectors with identical noise
PSDs and identical orientations

1 . - ~ ~
2 SH@D )0~ (D) Pp)n)]. (6.29

1,J

©| =

ki ki (z,+23)k4/3 X3k1/3
- 1 . kz (22+23)k3/3 X3k3/3
i . . . . 6.2
9es=3| . [RZHD)(1) (20271 (APVQ X[ 32) (1)~ (2+25)] (4)21/9 (626

x3(3j(1)—j(4)/9

Maximization overf . gives
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TABLE I. Locations and arm orientations of Earth-based interferometric gravitational-wave detectors.
The length of each arm is given in meters. The location of the corner station of each detector is given in terms
of the latitude and longitude there. The orientation of an arm is given by the angle through which one must
rotate it clockwisg(while viewing from top to point north.

Project Location Year Lengttm) Corner location Arm1 Arm 2
TAMA-300 Tokyo, JPN 1998 300 35.68°N 139.54°E 90.0° 180.0°
GEO-600 Hannover, GER 1999 600 52.25°N 9.81°E 25.94° 291.61°
VIRGO Pisa, ITA 2000 3000 43.63°N 10.5°E 71.5°  341.5°
LIGO Hanford, WA 2000 4000 46.45°N —119.41°E  36.8°  126.8°
LIGO Livingston, LA 2000 4000 30.56°N —90.77°E  108.0°  198.0°
AIGO Gingin (Perth, AUS  TBA 80 —31.04°N 115.49°E  180° 270°
(kikp,—k3)/k, 0 0
:VU:E 0 2AZ+2Z5—2,23)[(1)/9  x3(223—2,)j(1)/9 | . (6.27)
0 X3(223—2,)j (1)/9 2x3j(1)/19
|
Then the proper volume is orientations of the detectors can easily be obtained from
6t Table I. In the fide(network frame, they are given by
_ 16w
V=(2m)*V= ﬁj (DKAfs(émax— émin),  (6.28 {ay, By, ynt=1{38.11°,256.35°,107.43°

B,y +=1{38.09°,283.54°,196.88°
where A is the area of the network. For the three-detector fac A=t 3

network discussed here, the parameter space is three- {ay,Byv,y}={320.34°,275.92°,159.0°
dimensional and the number density of templatepiGu) (6.30

=3/3/(8u%?). For typical parameters the quantities of in-  The numerical code that we have developed for this case
terest are listed in Table I1. first computesy(y(5)a from the moment functionals given
in Eg. (CH. Then EQ.(5.23 is used to COMPUt@ -5 +24p
and, subsequently, the metgg is obtained from Eq(5.25
as a function ohy, n; (analogously{ 6,¢}), € and ¢. This

We finally discuss the case of a non-coincident threesmetric is then projected orthogonal &3 to obtainy;; . Since
detector network involving the LIGO and VIRGO detectors our goal here is to get estimat@esithin a factor of 10 of the
with their respective noise curves. We denote such a networinline computational speed requirements, we obtain the
asHLV. The detector noise PSDs are represented by analytparameter-space volume of such a search by integrating
cal fits given in Ref[35]. These fits are reproduced here in \def|y| over the parameter8, ¢, and & for a few chosen
Table IV. We assume LIGO-I noise in both of the LIGO values ofe and . From this volume we derive the number
detectors. Table | lists the locations and the orientations obf templates,n,.;, the computational cost, and the online
the detectors on the gloly@6]. In order to compute the met- speed needed for this network.
ric we choose the fide frame to be the network frame ith The parameter-space volume is given by
at its origin, L lying on thez-axis, andV lying in the x—z

frﬁnc?étlenctlg;istsa?eﬂ;i’v (terr:eb(;imensionless position-vectors of V=t J’ j defly[dn,dns. (6.31)

2. The network comprising of LIGO (Livingston), LIGO
(Hanford), and VIRGO (Pisa) with their respective noise curves

r.=(0,0,0, r_=(0,0,040, ry,=(1.05,0,0.29. We have evaluated this integral for several values afid .
(6.29 Its average value turns out to be250. For most of the
astrophysically interesting ranges ferand ¢, the proper
Note that since thg-component of each of these vectors is yolume does not vary by more than a factor of 3 beyond this
zero in such a framéi.e., r(;);=0, for =1, 2, 3, the mo-  value. As before, takind;=40 Hz, &y.,~138 sec,ps(u
ment functionals given in E4CS) simplify considerably. An - =0.03)=125, we find the number of templates to bg,
inspection of that equation shows that in this case the noise few timesx 108. The computational cost using a template
moments do not depend on the direction to the source angyank is obtained from Eq(5.30. This cost is essentially

hence, theg(;)(; .5 are constants. Therefore, this choice of given by the search over the time-delay window and, hence,
the fide frame simplifies the computations involved. The

metric g,z however, depends om, andng throughQ. The Cg=24Nn,; . (6.32
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TABLE Il. The table lists number of templates, computational costs, and online computing speeds required for a search using specific
networks. The detector networks are labeled & a single detector|-a for two identical detectors with identical orientations located
diametrically opposite on the surface of the ealthb for two identical detectors with arbitrary orientations located diametrically opposite
on the surface of the earth, ahid for three identical detectors with identical orientations placed on Earth’s equator forming an equilateral
triangle. The detectoXp denotes a detector with LIGO-I noise at the location of the detdatdrhe lettersL, H, V, T, andA denote the
detectors, LIGO detector at Louisiana, LIGO detector at Hanfibrel one with arms of length 4 km eg¢WIRGO, TAMA and AIGO sites,
respectively. We assume LIGO-I noise for both the LIGO detectors. We take the lower limit on the masses M be iS5 M, andM,
each=0.5M . Thus, we have,, .~ 138 sec forf;=40 Hz, except for the.V case. We consider data trains of 500 sec. sampled at
2 kHz so thaN~10°, néz 4.4x 10°. For theLV network, £1)max~ 1588 sec and, therefore, for a data train of length 5000 sec, one finds
N~10'.

Network Cs Cs Sg Ss
configuration Niot ng ng ng (fl-pt ops (fl-pt ops (Gflops (Gflops
I 8.9x 10° 4.4x10° - - 5.3x 101 - 1.5 -
Il-a 1.6x1C° 6.2x10° 129 170 2.x101 2.5x 1013 75 69
I-b 7.7x10° 6.2x 10° 62 170 1.410"8 2.5x 1013 39 69
LH 1.9x10° 6.2 10° 15 40 4.5¢10% 6.9x 10'? 12 19

L Xy 5.3x 10° 6.2x10° 43 105 1.0¢ 10" 1.6x 10" 28 44
LX+ 6.2} 10° 6.2x10° 50 128 1. 10" 1.9x 10" 33 52
LXp 8.0x10° 6.2x10° 65 166 1.410% 2.4x10% 39 69
LV 3.5x 1P 3.8x 10 46 105 6. 10 - 170 -

I 3.6x10° 7.6x10° 2.4x 10 1.5x10* 8.6x 10'° 3.2x101° 2.3x10* 8.8x10°

If we take a data train 5000 sec long corresponding tahe values that\ takes at all the grid points on the space of
é(1)ymax= 1588 sec for VIRGO, we havél=10’, and the the remaining parameters. Each of these values must then be
computing cost i€<g~ 10 fl-pt ops. For online processing, compared with the threshold\,, to infer the presence or
this data must be processed in about 3412 sec, yielding aabsence of a signal. The value &f can be obtained via the
online speed requirement of about few tens of Tflops. Neyman-Pearson decision criterif@i7], given the predeter-
mined value of the false-alarm probabilit®,, associated
with the event of detection of the signal. Whan< Ay, we

In Table II, we summarize the numerical results for vari- conclude that the signal is absent in the data, whereas when
ous networks. We list the total number of templateg,, A > A, the detection of the signal is announced.
required for a search ovet ¢, and¢ and also the break up  To compute the false-alarm probability and the detection
into n§ andn?. In the case of a two-detector network} probability,Qq4, we need to know the probability distribution
corresponds to a 1-dimensional grid én We also give the of A in the absence of the signal, i.@g(A), and in the
corresponding values fm‘g. Finally in the last two columns presence of the signal, i.g;(A). We note thatA is a sum
we provide the online computational speeds where we havef squares of the random variable$, c,, ¢, , andc_,.
taken the data train to be of 500 sec. duration and the zeraf our assumed properties of the detector noises are valid,
padding is 506 &= 362 sec long, except for tHeV net-  then in the absence of a signal, i.e., for hypothékjseach
work. In the LV case, the duration of the data train is of the random variables, , ¢, ¢, , andc_,, has a mean
5000 sec, and the zero-padding is 3412 sec. The computaqual to zero. To see this, let
tional speed$g andSg are obtained by dividing the compu-
tational costs by the duration of the padding. C=cotiCquyp, (7.9

D. Numerical results

VIl. FALSE ALARMS, DETECTION PROBABILITIES, where

AND VETOES
co={co} and cp={c}. (7.2
A. False alarm and detection probabilities

i ikali . . Further, defin
The maximum-likelihood method involves computing the urther, define

likelihood ratio for given data and comparing it with a pre-
determined threshold. In some cases it is more useful to re-

place the likelihood ratio by another quantity derived from it. Then, from Eq.(4.3) it follows thatcg, Clw/z and, therefore,

When the likelihood ratio, or the LLR, is a function of sev- . - _
Co andc_,, each has a vanishing mean. From the assumed

eral parameters, it is often possible to maximize it analyti- . .
cally over some of these parameters, as we have shown he'lg_dependence of noise among the different detectors and the

In our case, such a maximization led to a reduced statisti@lrthonorma"ty between™ andv~, and also betwees, and

derived from the LLR. We call this statistit. To detect the Sz, We obtain the covariances betwegj andc, as well
presence of a signal in the data one must, therefore, compués the covariances betweep andc, to be zero. On the

co=Vv-co and C =V -Cpp. (7.3
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TABLE lll. Total number of templates, false-alarm probabilities, detection thresholds, relative sensitivi-
ties, and the resolutions in the direction to the source for various network configurations. We have
9(21)/9(22): 1.58, where the subscripts 1 and 2 correspond to VIRGO and LIGO, respectivelyJlee
needed to compute network sensitivities relative to that of a single detector with LIGO-I noise.

Network Relative oy
configuration Niot Qo Loy sensitivities Ofoq

I 8.9x10° 1.7x10° 15 8.7 1 -

I-a 1.6x10° 9.4x10 18 9.3 1.3 0.3°
I-b 7.7X10° 1.9x10° Y7 9.2 1.3 0.6°

LH 1.9x10° 7.9x10° Y7 9.0 1.4 2.5°

L Xy 5.3xX10° 2.8x10° Y 9.2 1.4 0.9°
LXt 6.2x 10° 2.4x10°Y 9.2 1.3 0.8°
LXa 8.0x 10° 1.9x10° Y 9.2 1.3 0.6°

LV 3.5x10° 4.3x10 8 9.4 1.5 0.7°

" 3.6x10° 4.2x10 % 9.9 1.6 0.15 sq.deg.
LHV 3.5x10° 4.3x10 % 9.9 1.7 1.2 sq.deg.

other hand, the variances of eachaf andc_, is unity. w

Thus, under théd, hypothesisA is the sum of squares of Qu= fA P1(A)dA, (7.9
the independent Gaussian random variabte® Eq.(4.11)] 0
with mean zero and unit variance. We conclude from stang,

dard literaturasee, e.q., Ref31)) that the probability den which we now obtain in the large SNR limit. In terms of the
) ) A : M =17 network statistick. = A, this asymptotic limit amounts to
sity function for A, under theH, hypothesis, is &? distri- ymb

! ) D th ditionbt.>1, and Eq/(7. imates to a G -
bution with four degrees of freedom, and is given by iare1 g?sr':rillaiﬁ?on' and Eq(7.7) approximates to a Gauss

A
Po(A) =z eXp(—A/2). (7.4 ! ;{ (e (7.9

pi(t)=—ex >

V2m

Thus, in the large SNR limit the network statistic is a Gauss-

ian with mean approximately equal to the network strength
exp—Ao/2). (7.5  of the signalb. For the networks considered in Sec. VI, we
summarize in Table Il detection thresholds, the resolution
. . . achievable in the direction to the source, and the relative
The value 0fQ,, which is inferred from astrophysical est- sensitivity of the network compared to that of a single detec-

mates of event rates and detector sensitivities, determines the. '\v/o taie the false-alarm rate to be one per year and the
detection threshold y through the above equation. :

i N . ... detection probability to be 95%. Then, assuming a sampling
The detection probability is obtained from the probability B > kH ; false-al ility of
distributionp,(A). In order to calculatg,(A), we need the rate of about 2, we arrive a a false-alarm probability o

 th work ot tor when the20™ 1:5% 10" Yn,,,. For the sake of this calculation, we
horm of Ine average network correiation vector when te,qq meq that output samples in the correlation vector are

;ﬁmpliﬂe gi\r/]es fatﬁerfe_ct mlaFCht\r/]vith dthte dgtz_a. As_?unlﬂrgg thq.'incorrelated. The correlation between these samples will re-
eAIS rengl of the signal in the data fis i.e., if x'(t) duceQq but this does not make appreciable difference to the
=bs'(t)+n'(t), then the average value of the network thresholds and sensitivitig88]. The thresholdA, is then

The false alarm probabilit®, is then obtained to be

Ao
1+7

Qo= f Do(A)dA =
Ao

correlation-vector iC=bQe %, Therefore, computed using Eq.7.5).
We define the sensitivity of amM-detector network rela-
|C|?=c2+c2, tive to that of a single detector to be equal to
— — — — \/2|:1g(|)/g(1)(|’_0(1)+ AL)/(Lo(M)+AL), where LO(M) is
=C gtC gtC ZptC 7p=b% (7.6)  the threshold corresponding to a network Mf detectors
(therefore,t o1y is the threshold for a single detectand
for which we obtain(see, e.g., Ref.31]) At is the solution of

1A A+b?
pl(A):E(g) EXF{—T

wherel ; is the modified Bessel function. The detection prob-It yields At ~1.64. The sensitivitywhich is>1) is roughly
ability itself is proportional to the average distance at which one can detect

1 (A,
1, (byA), (7.7 \/TT_:eX’de=QdEO.95. (7.10
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a source of a givert with a network of M detectors as The individual detector correlations can, therefore, be ex-

compared to a single detector, with 95% detection probabilPressed as
ity, where the average is taken over all directions and orien- P
tation; of the binary. For a network of detectors with identi- Cl= 2 CL- (7.14
cal orientations the result is exact. k=1
The resolution in the direction to the binary is obtained
from Eq.(5.26). It is obtained by noting that the error in the Define the deviation ifCL from the average contribution to

nz—n, plane is given by C' from thek-th frequency bin to be
I~ Al
b2y ®= (P ?=sinfcospo,, (7.1 AC=C,—Cl/p, (7.19

which, by definition, obey&P_,AC}=0. Then they? sta-
whereo, is the resolution given in terms of the angkeand tistic is given by
¢. We take SNR~12, sufficiently above the threshold to
guarantee a good detection probability. We compute the ) P .
source-direction resolutions, and o, in the case of two- X(')ngl |AC[, (7.1
and three-detector networks, respectively. Tdg is ob-
tained from the covariance matrix using the above equationgyhich has »—2 degrees of freedom. If the detectbiis
In Table I, we give the values for source-direction resolu-pehaving “properly,” that is, if the detector output is mainly
tion for a direction normal to the plane in which the detectorsihe Gaussian noise, with or without a chirp, theh has a
lie. The reason we choose this direction is because in thigmai value. On the other hand, a relatively large value of
direction we expect the resolution to be high. The big d|ffer-X(2|) is taken to indicate non-Gaussianity. Choosing20, as

ence in the values af, between caséll andLHV is be- 3, 'po¢ [19], we see thai;((zl) has 38 degrees of freedom.
causelll is a degenerate case of a network of identical de'Definin 2 10 be the decision threshold, #,>y2 , then
tectors, which are merely spatially separated. 9 X« X7 X

we reject the hypothesis that the event is a signal, else we
accept that there is a signal present. For 38 degrees of free-
B. Vetoing non-Gaussian events in detector noises dom at 90 percent confidence level, one fiadgv 50.

The assumptions of Gaussianity and stationarity of noise We apply the test to the network in the following way.
in detectors is an idealistic one. The noise in actual detector8Uppose, the statistic exceeds the threshold, for some
will not, in general, satisfy these assumptions, but will rathetime lag 7= 7o. After accounting for the relative time delays,
contain a non-Gaussian component arising from causes sugfe compute thé:'(k) at rg and construcj\/(zl) , for all I. Next,
as sudden strain releases in mechanical structures, ringivge test whether each detector satisfies the assumption of
from electronic servo loops, etc. Their deviations from GausGaussianity and stationarity by compariwé) with Xi Af
sianity are poorly understood and are difficult to model. But,)((2|)<)(fc , for anyl, then we accept the decision that we have
since such noise components may have sufficiently large anactually detected a signal. On the other hand, if for sdme
plitudes, they can trigger the statisticto register a “detec- =1, 1,,15, ... My X(ZJ)>Xi , we ignore the contribution
fcion” within ;che scope of the-methods described so far. Thisggm these detectors in computigand construct.’ for the
is where ay"-type test described in Reff19] can be used 10 yogt of the data fronM — M detectors. Now, it.’ crosses
discriminate against such~contlngenC|es by using the specifig, threshold, then we say that the signal is detected, other-
spectral profile of a chirp[§(f)|2ef =), which is different  wise it is not.
from that of a non-Gaussian event, in general. We describe we assume that non-Gaussian events occur relatively
such a test for a network below. rarely [39]. Then it is unlikely that more then one detector
The frequency bandwidth in each detector, frbm0 to  will simultaneously have such events, aktj on most oc-
f=fnyquist, 1S divided into p-subintervals in the following casions will be unity. In that case, we find that the abg%e

way. Let test adds negligible cost to the overall computational cost. It
~ e is quite likely that due to the non-Gaussian noise in a single

o firzay X7 (F)y'(F) detector, the network statistic crosses the threshold more

(x.y >(|)k—2mffk(l) Sna(D) df. (712 than once in each data train. Then we need to perform this

test on each of these trains. In such a situation, the number of
real floating-point operations needed to implement e

test can be shown to behave a$MN. For the networks
studied in Table I, we find that for two detectors this
amounts to~10’, which is fractionally a very small incre-
ment overCg g~ 10" in such cases. Similarly, for three de-
tectors, MN~1.5x10°, which is much smaller than the
correspondingCg s~ 10'°. Thus, even if there were spurious
events masquerading as chirps at the rate of one per second,
Ch=(s !XI>(I)k- (7.13  the increment in the computational cost to include ghitest

where in the integrand the indéxs not summed over. Using
the above definition, one partitions the interff yyquisi] by
setting (Sp,So) (1)k={Sw2:Swi2) ()K= 1/(2p). This way, for
each detector], we get a partition @y,foqy, .. .fo

= fnyquist- Next, one computes the following correlation over
each subintervak:
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will be only ~10 Mflops, which is about T0times smaller tor 1. Thus, a detector with a larger valuegf) influences
than S s for a two-detector search and about®Ifimes  the relative sensitivity that much more.

smaller than those for a three-detector search. We also estimate the errors made in determining the di-
rection to the source by computing the covariance matrix
VIIl. CONCLUDING REMARKS which is just the inverse of the metric obtained in the param-

eter space divided by the square of the SNR. We find that for

We have presented here a data-analysis strategy based ametwork of detectors spread around the globe, with all de-
the maximum-likelihood method for the detection of GW tectors having LIGO-I noise curve and an SNR of 12, the
signals from inspiraling compact binary stars with a networkresolution is about a fraction of a degree.
of laser interferometric detectors. Our approach is based on a Our analysis essentially assumes Gaussian itk oc-
coherent search of the data from all the detectors in a netasional non-Gaussian burst§he fact that real detectors
work and, therefore, is inherently optimal. The formalism produce non-Gaussian and non-stationary noise makes this
described is mathematically elegant and simple. In Gaussiassue highly relevant. This issue must be addressed more
noise, the method is tantamount to matched filtering the sigthoroughly in the future. Since the signals are generally weak
nal. However, the noise model we consider here is morén nature, it is desirable that the search strategy be optimal. If
realistic in that it allows for occasional non-Gaussian bursts simple enough mathematical model that adequately de-
superposed on a predominantly Gaussian noise backgrounstribes the noise in the real detectors can be given, then our
Sections of data that contain non-Gaussian bursts are vetoegiproach based on the maximum likelihood method can still
out by ax? criterion. For simplicity, we consider the New- be explored. Creighton has already investigated this ap-
tonian inspiral wave form, but it is clear that our formalism proach where the model for noise contains Poisson-
is as well applicable to waveforms depending on a largedistributed bursts superposed on the usual Gaussian compo-
number of intrinsic parameters, such as spins of the binarpent[39]. Such an approach seems promising and could be
members. In particular, the formalism is extendable to theénvestigated further. Another approach that is simple, but
restricted 2.5 PN inspiral wave form. In that event the num-suboptimal is that of matching event lists in each detector
ber of network templates required increases essentially bgnd putting thresholds on estimated source parameter differ-
the same factor as in the case of a single detector: Assumirgnces.
LIGO-I noise in the detectors and individual stellar masses These issues for more realistic noises and signals still re-
of 0.BM, or larger, the increase in the number of templategnain to be addressed. Here our main goal in this work is to
is by a factor of about 4 to 5, when the maximum allowedprovide a general framework based on the method of maxi-
mismatch is 3%. One would then expect the computationainum likelihood, which uses a coherent approach and is
cost to increase by a similar factor. We expect to look intotherefore optimal. Also many of the results we obtain here
this issue in greater detail in the future. may be scaled up in a straightforward way to obtain order of

For the Newtonian case, the online computational speethagnitude estimates in more general situations. The exten-
requirements are high—from tens of Gflops for a network ofsion to the PN waveform is just one such case.
two detectors to a few tens of Tflops for a network of three
widely separated detectors around the globe. Clearly, effi- ACKNOWLEDGMENTS
cient signal extraction methods are called for. A hierarchical . .
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ber of detectors having identical noise PSDs. Although the _ ,
signal energy accessible to the network on an ave(agh APPENDIX A_' STF TENSORS AND GELFAND
the average taken over all the directions and the orientations FUNCTIONS: A REPRESENTATION OF SO(3)

of the binary increases by a factor d¥l, the change inthe 7o ynderstand the relation between the responses of two
threshold value of the network statistic, which obeys thegifferent detectors in a network to the same incoming chirp,
Rayleigh distribution in the absence of the signal, is such tha is yseful to study the behavior of the detector and wave
the overall factor of increase in SenSitiVity is a little less thantensors under three-dimensional Orthogona| transformations.
VM. In the case of detectors with different noise curves, therhis is tantamount to developing an understanding of STF
quantityg, plays a central role. In such a case, the relativetensors(of rank 2 under the action of an element of the
sensitivity of a network on an average increases asotation group SC8), g(«,,7), where @, 3,7) are the Eu-
\/E,ng(z')/gz(l) where the sensitivity is normalized to detec- ler angles. Since we extensively deal with STF tensors of
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rank 2 in the text, enunciating some frequently used propererientation of the detector relative to the fide. The depen-
ties of such objects is in ordé?.Any STF tensor of rank  dence ofd;; on these angles can be expressed in a neat form
can be expanded in a location-independent basis of “BTF- by realizing that it is a second-rank STF tensor, as is evident
tensors, )|\, which has a dimension ofl2-1. STFt ten-  from Eq.(B1). Thus, it can be expanded in a basis of STF-2

sors, with rank =2 are related to the spherical harmonics astensors. It can be shown that the expansion coefficients in
follows: such a basis ares]

Yom(6,4)=Y3 nn,, where m=+2 =+1, 0, ; - [15
2 e Ay GV i\ T (@B T (@B,

where n=(cos¢sind,sin¢ sinf,cosd). The “STF-2" ten- (B3)

sors defined above are also called spin-weighted sphericg| ihe fide frame. Aboven=0. +1. +2. and the Gel’fand
harmonics. They obey the following normalization relation: ¢ ,ctions depend ofia ,8,)/}. oo

) , 15 Similarly, the corresponding components @f can be
ygmy%m *=8_5m . (A2) deduced in the wave frame. Apart from depending on the
77 angles{a,B,v}, these coefficients will also depend on the
rientation of the wave frame relative to the fide, given by
¢, 6,¢}. Using the addition theorem for Gel'fand functions,
these components are

When one makes a passive orthogonal transformation
frames through the Euler angléa, 8, y}, the angleq 6, ¢}

get relabeled to, sayg’,¢'}. Then, the spherical harmonics
in the new frame can be expanded in terms of those in the

old frame as d”.ygn: =i \lngS(qb,e, P (T?* (a,B,7)
YZm(e,id),):Tmn(a/ti')/)YZn( 6! d))! (AS) T72* ( ﬂ ))
- (a. By

where the right-hand side has an implicit summation over

n=0, +1, =2. Above, the expansion coefficients,", are /ED

the Gel'fand functions of rank 2. 87 M
The group composition law of two elements of the rota-

tion group, saygi(¢,6,#) andg,(«,B,y) leads to the fol- in the wave frame. The extended beam-pattern function

lowing addition theorem for the Gel'fand functions: (3.15 depends on the coefficients,,, with n==2 and

Tn'(¢", 0" ¢ )=Tu(,0,9)T(a,B,y),  (A4)
where once again the summation oger0, =1, =2 on the APPENDIX C: NOISE CURVES AND NOISE MOMENTS

right-hand side is understood. The transformation of STF e define the moments of tHeth detector’s noise curve
tensors under rotation is governed by the above theorem fgyg
Gel'fand functions.

(B4)

ey sy x 53

f
APPENDIX B: GW POLARIZATION TENSORS |(I)(q):Sh(|)(fO(|))J1 dx—sh(l)(xfs(l)) , (€D
AND THE DETECTOR TENSOR

The detector tensor for an interferometer is defined as Wwhere f,,) denotes the “knee” frequency of that detector;
this is the frequency at which the sensitivity of the detector is
dij =sin 20(niny;—NyiNy;), (B1)  the highest. On the other hanti,, is its high-frequency
) cutoff and fg) is the seismic cutoff. The noise moment,
wheren; andn, are the unit vectors along the arms of thei(l)(7), is related to the normalizatiomy,,, as follows:
interferometer and @ is the opening angle, i.e., the angle
between its two armi8]. Here we shall take the detectors to

4
have orthogonal arms. In that event 2 =05 (7), C2
M7 3s)(fogy) 2aT(7) ©
1 1 ) _
n1=E(1,— 1,0, nfﬁ(l,l,O), (B2)  wheregy="fy)/fs. Since our templates are normalized us-

ing the above factor, we find the following ratio useful in our

in the detector frame. When referred to the fide frame, how—C alculations of the parameter-space metric:

ver,n nd on the Euler angl that give th . — .
ever,n, , depend on the Euler angldsy, 3, v}, that give the Joy (@ =iy ()i (7). (C3)
In this paper, we evaluate these noise moments using the
For a detailed discussion, see R¢80,40. For a more selective analytical fits to noise PSDs of different detectors given in
reading of immediate relevance, we refer to R8i. Ref.[35]. These fits are presented in Table IV.
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TABLE IV. Analytical fits (for positive frequenciesto noise PSDs, &,(f), of the interferometric detec-
tors studied in this paper. Hesg denotes the minimum value sf(f), andf is the frequency at which this
minimum occurs. We taks, (f) to be infinite below the seismic cutoff frequenty. We choose the high

frequency cutofff,, to be 800 Hz for all.

Detector Fit to noise PSD So (Hz™1) fo (H2) fs (H2)
TAMA-300 So/32{(fo/F)>+13(fo/f)+9[1+ (f/f0)?]} 2.4x10° % 400 75
GEO0600 So/5[4(fo/1)%2—2+3(f/f0)?] 6.6x 1074 210 40
VIRGO Sol4[290(F o /T)5+2(fo /f)+ 1+ (f/f4)?] 1.1x 10745 475 16
LIGO | So/3[(fo/f)*+2(f/10)?] 8.0x 1046 175 40

There are certain combinations of the noise moments that

(D)*)y= 36W296)10/3j (17125,

appear frequently in the expression for the metric on the

parameter space relevant for a netwéske Sec. Vl In or-

der to simplify these expressions, we define the following

noise-moment combinations:
kyy=[igy(1)—igy(4)],
koy=90j1)(17)—i(12)]/25,

Kay=3[11)(9) =i )y(Hqy(12)]/5,

which are, in general, different for detectors with different
noise PSDs.

The moment functionalg¢® ), and(®,®z),, defined
in Eq. (5.19 for the I-th detector, can be given in terms of
the moments of its noise curve. They afer n,#0)

(Po)iy=2memia)(4),

<‘I’1>(|):67TQ(_|)5/3J(|)(12)/5.

(C4

(P y=27r s~ rm2Nza/N20eq) ig)(4)
=[ruysi— r(|)2"13,1/"‘2]<‘D0>(|) )
(@) =470l i),

(Do®1) )= 12720 R

ay Iy,
(D@2 1y =472[r ()31~ f(|)2n3,1/n2]9(2|)j m(1)

=[ruyza—r1y2n32/N0{(Po) %)y

(D12 1y=12771 (1y3.1— r(|)2n3,1/”2]9(_|)2/3j m(9)/5
=[rmz1— 2Nz /N2 Po® 1)y,

(@297 1y=4m205)[ ¥ ()31~ T (1y2"3,1/N21%) (1) (1)
=[ruyza—ray2Nz1/N20%(Po)?) 1y,

(DD 3)y=47205) [ ()3~ T )23 /N2]

X[rayr=rmzna/naljy(1)

:[f(l)s_r(|)2n3/n2][|’(|)1_rlznllnz]

X{(Po)) (CH
which shows that all the moment functionals are expressible
in terms of five independent noise-momerijtg)(q). These
are the ones correspondingde-1,4,9,12,17. The values of
these noise moments and the combinati@@¥) for relevant
noise PSDs are listed in Table V. Alternatively, all the mo-
ment functionals are determined by five basic ones, namely,
(@o)ys (Pady, (PEy s (PoPa)qy, and(D3) ).

For a network of three or less detectors a plane can al-
ways be arranged to contain the hubs of all the detectors.
This makes it possible to choose the fide frafoethe net-
work frame, in this casen such a way that,,=0 for all I.
With this choice the moment functionals reduce to

TABLE V. Noise moments of some of the planned interferometric detectors. In evaluating these, we take
the values of gy andfy, as given in Table IV. The upper cutoff frequendyy, , is assumed to be 800 Hz

for all detectors.

Noise moments i@ j(4) j(7) j(9) j(12 j@7 kq k, ks

LIGO-I 21.3 4.089 1 0.444 0.157 0.045 4.572 0.007 —0.1197
VIRGO 132.4 7.774 1 0.407 0.167 0.068 71.99 0.0145-0.5347
GEO-600 17.99 3.49 1 0.537 0.273 0.136 5.809 0.0222-0.2493
TAMA 20.94 4.111 1 0.443 0.133 0.045 4.039 0.0099—-0.0625
WHITE NOISE 12.97 2.574 1 0.677 0.453 0.291 6.351 0.031 -0.293
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(Po)iy=2menyi)(4), Q=0Q1+0Q%2, (D2)

D) y=670, "1y (12)/5, . .
{ 1>(') T Jo(12) with Q;=1-Q andQ,=2-Q. Using Eqs(D1) and(D2), we

; ; -2 +2
(Pom="13LPo)) find Q; andQ; in terms of Q< andQ™“ as
(@o)21y=47%08)i (1), Q:=(Q 2D_5,+Q"?D,,y)/||D|,
_ —2/3:
(Po®1)oy=12m¢ 1" 1)(9)/5, Q2=(Q 2D _,,+Q*2D /D), (D3)

<(Doq’2,3>(|): r(|)3,1<(‘1)o)2>(|) ,

<((I)1)2>(|)= 3%296)10/3j (|)(17)/25,

WhereDile i 6:2 and Di22: é 6i2' Thus,

Qi Q7?D +Q"?D,p
<q)1q)2,3>(|)=r(|)3,1<q)oq)1>(|), Q_z_ Q_ZD_22+Q+2D+22'

o 2 :rZ 1) 2 ,
((®29%0) (')3'1<( 20 Let us assume thd®, differs from Q, by an overall phase
iw H 112 2|12
(D,D3) 1y =T (1 1y2{ (P0) D) (ce) factore'®. Then, sincgQ*|*+[Q%*=1 for such a network,
we have|Q,|=|Q,|=1/y2. We shall now prove that for a
The moment functionals simplify significantly in this case. given set of values for the detector orientations, source di-
rection, andw, one can always fing and ¢, within their

(D4)

APPENDIX D: A NETWORK OF TWO IDENTICAL physically allowed range, i.e€e[0,77] and ¢ e[0,27],
DETECTORS WITH THE SAME NOISE PSD such that our above assumption is met. Equatiaf), there-
BUT DIFFERENT ORIENTATIONS fore, leads to
Consider a network of two identical detectors having ori- o "
entations{a), By, v} and{ap), B, 7@} re- Q" D-21—D_»e (D5a)
spectively, which we take to be different. Then the beam- Q2 D, ,e'“—D,y

pattern functions of each detector are dependent on
{agy,.Buyvay € ¥,0,¢4}, wherel= 1, 2. Here, we prove
that for a given set of values for the detector orientations and
source-direction, €, ¢), the function|Q'||Q? can always
attain the maximum value of 1/2, witlQ*|=|Q?=1/y2. whereY and v are real numbers. Note tha.t the right-hand
This proof is assumed in obtaining the result in Sec. VI B 0.side (RHS) of Eq. (D53 can take any value in the complex
Proof The network vectof lies in the helicity plang¢.  Plane. More importantly, this is true also of the LHS of Eq.
Therefore, (D58 becauseQ*2/Q 2=T, %(¢,€,0)/T5(1,€,0) can al-
ways take any value on the Argand plane for astrophysically
Q=Q %D_,+Q"%D,,, (D1)  relevant ranges o and . Thus, our assumption remains
A . vindicated and, hence, one can always choose values for
whereQ_,=D,,-Q andQ_,=D_,- Q. Alternatively, fora and ¢ that maximize the functioQ,||Q,| to attain the
two-detector network we can expa@lin the real basis of value of 1/2. These values corresponding to the maximum

=Y expiv), (D5hb)

I's on the network space: are y= —v/4 ande=cos [(Y¥°—1)/(Y¥2+1)].
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