PHYSICAL REVIEW D, VOLUME 64, 036009

Relativistic unitary description of 74 scattering
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A unitary framework based on the Bakamjian-Thomas construction of relativistic quantum mechanics is
used to describe two-pion scattering from threshold to 1400 MeV. The framework properly includes unitarity
cuts for one-, two- and three-hadron states and provides an excellent description of the availabledata for
phase shifts and inelasticities. The role and importance of three-hadron cuts are calculated and discussed.
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[. INTRODUCTION requires only a minimal complication from the proper imple-
mentation of relativistic spins, since both of the two-body

A.n.or?perturbative framework capable of describir_1g thestates ¢r and KK) involved are comprised of spin-0 par-
relativistic, coupled-channel scattering of hadrons is preticles. Another attractive aspect of applying the framework to

sented. The approach is based on a relativistic Hamiltonian, - scattering is the relative wealth of experimental data for
formulation with model interactions introduced into the Masshe isoscalarSwave channel.

operator, and with few-body states implemented in a way one drawback with using-m scattering as a touchstone
that maintains the unitarity of the theory. The elementaryyay pe that inelasticities due tpenstates of three or more
degrees of freedom in the framework are finite-sized hadrongaicles, do not appear to be significant for this process; that
which provide a natural ultraviolet regularization, ensuring;g thepmm andwm thresholds seem to have little impact
that the scattering amplitudes are finite. on theS andP-wave observables. The effects of the opening

The Hilbert space is truncated to include only one-, tWo-o¢ these three- and four-body channels seem to be over-
and three-body states. A central and novel feature of this helmed by the opening of the two-botK channel. None-
framework is the explicit inclusion of both real and imagi- w y pening W K '

nary parts of scattering amplitudes arising from the openin helﬁ)ﬁi’ds’.ﬁ\':;a; |m|pcc;r;[%rr1]t t?ospi%;ttzfr';he framework can be
of three-body channels. The proper handling of three-bod XF')I'h ! | | ppll | II 0J7FT’C—O++I g.h | of
unitarity cuts is crucial to gaining a deeper understanding of e isoscalar-scalarl £0J""= ) channel of

several well-known scattering systems; a good example ig;:a(;’gerlng_l]_hhas tbgzen fa subject ofttnqmer_outsh_arlld extensive
7N scattering in theP; channel, which exhibits a signifi- studies. 1he study of meson scatiering in this low-energy

cant inelasticity arising from the intermediate three-bodyreglon may be an ideal test of.our understandmg of the n-
7N state[1]. terplay petween bound states in QCD and chwgl dynqmlcs.
It presents a formidable challenge to develop a generall '€ "€gion neak=1000 MeV is perhaps most interesting,

relativistic scattering framework to describe the final-stateas it is dominated by the mixing betweenr andKK chan-
interactions between hadrons that includes the effects diels and the isoscalar-scalaf(980) meson resonance. The
three-body unitarity cuts. Nonetheless, a practical frameworkature of thefo(980) resonance, and the question of whether
which can treat hadron reactions beyond the lowest-orddf is comprised of valence quarks or arises purely from me-
valence quark picture is clearly desirable. For example, th€0on scattering dynamics, has been addressed by many au-
systematic analysis of hadron reactions in the baryon resdhors[2—8]|. Above this energy region, three additional scalar
nance region currently being conducted in Hall B at the Tho/neson resonances have been well established. These are re-
mas Jefferson National Accelerator FacilitfJNAF) re-  ferred to as the((1370), fo(1500) and thefo(1710). It is
quires that such a framework be used to extract informatiotill unclear which of these should be considered as quark-
about baryon resonances in this highly complex dynamicagntiquark bound states, glueballs or possibly resonances aris-
region. The framework developed herein is an attempt tdng from dynamical effects of final-state interactid®s-13].
construct a useful, relativistic framework capable of describ-Thus, the isoscalar-scalar channel remains a source of great
ing the nonperturbative, low-momentum transfer final-statdnterest and mystery for meson phenomenology.
interactions between hadrons in a unitary manner. Although there have been previous studies which employ
For the first application of the framework developed here@ framework similar to the one developed here, there are
a simple model forr7 scattering is introduced and used to Some important differences. Most studies of meson scattering
described theS and P partial waves for energies ranging dynamics are based on potential modelsis the framework
from the two-pion threshold up to 1400 MeV. This systemdeveloped herg.However, most other approaches typically
provides an excellent test for the framework. A relativisticinclude one- and two-particle channels only; that is, they
treatment is quite important when dealing with particles agnclude s-channel states and several two-particle channels,
light as pions and the interplay between strong dynamics ansuch asr, KK, oo, etc. They either neglect the possibility
chiral symmetry makes this system quite interesting. #e  of open three-particle channels altogether or only partially
system is somewhat simpler than others, in that its studymplement them. For example, in the model developed by
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the Julich group14], the interaction potentials between two- invariant on-shellT-matrix elementsT(E,P) for colliding

particle channels, such asm-7 or wa-KK interactions  particles with total momentur® and energyg; that is, one

are obtained using an instantaneous approximation of finds T(E,P)=T(y/s) where \s=\EZ—P? is the invariant

meson-exchange model. Such instantaneous approximationass of the system.

generally do not account for absorptive effects due to the The Poincaregenerators act on a Hilbert space which, in

opening of three-body channels. Still, there is no questiorgeneral, contains an infinite number of states. The Hilbert

that the Julich model quite successfully describes the phasipace is truncated to include only those states essential to

shifts and inelasticities ofrw scattering forS, P and D describe the scattering system of interest within a particular

waves. Alternatively, the Krakow groufi5] has developed a energy range. Here, only one-, two- and three-particle states

separable-potential model fersr scattering. In their calcu- are maintained. Following this truncation, the operator form

lation, few-body dynamical effects are incorporated by in-of the Lippmann-Schwinger equation can be written as a set

cluding additional,effectivetwo-body channels, such as a of coupled integral equations. The input that determines the

oo channel[16]. Their model also obtains excellent results dynamics is given in terms of the matrix elements of a model

for the = phase shifts and inelasticities. potentialV. Once these are provided, the full scattering prob-
The outline of this article is as follows. In Sec. Il, the lem is solved in a straightforward manner.

relativistic scattering formalism employed herein is briefly

discussed, beginning with a short proof of the covariance of A. Relativistic covariance

observables calculated within this framework. Then, the in-

tegral equations that relate the one-, two- and three-body A Simple realization of the Poincamdgebra for an inter-
scatteringT-matrices are provided. acting system of a finite number of constituents is given by

In Sec. Ill, the framework is applied to a study ofr the Bakamjian-Thomas constructiph7]. This approach has

scattering. The particle states that are included in the moddi® @dvantage of providing a Lorentz-covariant generaliza-
are discussed, along with the necessary dynamical model pon for @ large class of noncovariant microscopic models,
rameters. The interactions employed in this study arise frongUch @s the constituent quark model. In principle, a nonco-

the meson exchanges which couple states of various numbeYariant microscopic model could be used to obtain matrix
elements of the underlying elementary hadronic potentials

of particles to each other. In our framework, these interac="= " ; ; .
tions arise from one-, two- and three-meson intermediat this case, one might consider this framework as a means to

states which may exhibit production thresholds, resulting iffxt€nd the original noncovariant model dynamics, allowing
absorptive contributions to the kernels and self-energies ag®" @ Lorentz-covariant treatment of scattering phenomena.
pearing in the Lippmann-Schwinger equations. A simple fit- The explicit construction of the Pomcaa?gebra proceeds
ting procedure is shown to provide excellent agreement wit@S follows. Starting from a system ofoninteractingpar-
data form scattering phase shifts and inelasticities. DetailsliCleS; described by their coordinates, momentap, , spins

of the relevant model dynamics that produce the various fea% @nd massesi,, the Poincargenerators are

tures observed in the resulting phase shifts and inelasticities

are discussed. Then, it is shown that the numerical methods H= Y, &m,,p,)=>, Vm2+p2,

employed herein are sufficient to maintain the unitarity of the a a

framework to better than one part in a million. Finally, in

Sec. 1V, the article is summarized and plans for future studies

are presented. PZE p
a’
a
II. RELATIVISTIC QUANTUM MECHANICAL
FRAMEWORK
In this section, a relativistic Hamiltonian framework that ‘JZEa: XaX Pat S,

provides a covariant unitary approach to the study of multi-

channel scattering is described. Lorentz symmetry is main-

tained by identifying the interactions with the mass operator 1

(that is, the Hamiltonian in the overall center-of-momentum K=Z E{xa,é'(ma,pa)}—

frame. It is shown in Ref.[17] that the complete set of a

Poincaregenerators can be constructed in a simple way that

separates the internal dynamics from the center-ofHere,H andP are the total free energy and linear momentum

momentum(c.m,) motion. In Sec. Il A a proof of the cova- of the system, andK are the total angular momentum and

riance of this approach is provided. Furthermore, Betz andboost operators, respectively. The relative coordinaigs

Coeste[18] show that such a framework can satisfy clusterrelative moment&,, center-of-momentuntc.m, spinss,,

separability. All of these features are desirable for the studwand the c.m. coordinateR,. ,,, total momentunP.,,, and

of hadron scattering. total spinS.,,,, are introduced via the Gartenhaus-Schwartz
In Sec. Il A, the Lorentz covariance of the framework is transformation which allows a separation of theernal dy-

demonstrated and the fully interacting mass operdtbris  namics and c.m. motion. In terms of these new variables, the

constructed. It is shown that the framework leads to LorentzPoincaregenerators are given by

SaX Pa

fmaparmy 2
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H= P2+ M2(ky Ky, ...), pressed in terms of the individual particle momenta in an-
other frame by using the boost relations analogous to Egs.
P=P¢ ., (2.4 and(2.5.
Within this framework, the Lorentz covariance of observ-
J=R: mXPem+Sem. ables may be demonstrated from the following consider-
ations. Construct an invariarf-matrix which satisfies a
1 X P, Lorentz-invariantLippmann-Schwinger equatioh.SE),
Ke (R, HI- SemXPom 22 pp ger equatiolit-SE)
2 H+ M(kq, Ky, ..0)

. . T=V+VGT, (2.9
with the constraints

with an invariant interactiorV,

E Mgra=0,
e V=H!—H?
2 ka=0, = (P24+ M) — (P2+ M?)
=W2+HW+WH
Sem—| 2 raxkats;|=0. 2.3
2 =VZ+ MV+VM, (2.9

In Eqg. (2.2), the quantityM = M(kq,k,, ...) isreferred to
as thefree invariant mass in the Schdinger picture. The
internal momentak, are related to the individual particle by
momentap, via a free Lorentz transformation to the c.m.

and an invariant propagat6r for scattering energ¥, given

frame: G=(E2—H?+i¢) 1
Ka=A(Ka—Pa)Pa =(E?-P’~M?+ie) L. (2.10
o PP &Mapa) b (2.4 Since V is independent of the c.m. momentufand the
~Pa M(M+H) M ' scattering energ¥, one may rewrite the scattering energy

E=s+P?, in terms of a new variable, referred to as the
and the c.m. frame spirs§ are related to the individual spins invariant mass squared. From Eg.10, one observes that
s, via a Wigner rotation corresponding to the product ofthe propagatorG(s) is a function of the invariant mass
Lorentz boostR= A (0—p,) A (pa—ka)A(ky«—0), leading  squared only, and one concludes that the L(3B) depends
to only on the invariant mass squared It follows that the

resultingZ-matrix 7(/s) depends only on the invariant mass

S;= D(s)(R)SﬁD(S)(R)* _ (2.5 squarec% 7(\/_) P y
It is possible to relate then-shellmatrix elements of this
invariant 7-matrix to the on-shell matrix elements of a
T-matrix that is the solution of a noninvariant LSE with the

M M,(Fa Ka 8l = M+V. (2.6) interaction potentialy,

Interactions are incorporated into the Poincgemerators
by the addition of a term in the free mass operator

Thus, transforming the free Hamiltonidhinto the interact- T(E,P)=W+WG(E)T(E,P), (2.11
ing HamiltonianH, ,
whereG(E)=(E—H+ie€) L. The relation between the on-

H—H=H+W, shell matrix elements is given by
W= MP+P2— M2+ P2, 2.7 T(\/s)=2\s+ P?T(E,P), (2.12

This replacement preserves the canonical commutation relgghich can be demonstrated term by term by expanding the
tions, providedv=V(r,,k,,s,) is a function of internal co-  on-shelimatrix elements of/'in powers of the potentiaV,
ordinates only and is invariant under rotatiof¥,J]

=[V,S.m]=0. For example, consider the case for which the T=V+VG(E)V+0(V3)

elementary interaction is a Yukawa-type three-meson vertex.

The matrix elements of the three-meson interaction vertex 1
would be given bya|V|bc) and would only depend on the =W?+2EW+W(E + H) ez
internal variables associated with the c.m. frame whgre

=pp+p.=0. Of course, these internal variables can be ex- X (E+H)W+0(V?3)
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one drawback of such a truncation is that some symmetries,

1
=2EW+ 2Ewmw+ o(V?) such as crossing symmetry, which require the inclusion of
many-particle states may be lost. The addition of states with
—2ET(E,P) a higher number of particles, such as four-particle states, can

in principle be included in a straightforward manner but the
In this article, calculations are carried out in the c.m. framg@Sulting set of equations would be far more complicated

; ; : . than that studied here.
for which E= /s, then the interaction potentialv= M, . s . .
— M=V, and the relevant LSE is The main objective of this work is to develop a frame-

work for handling up to three-body channels in a fully uni-

T(E)=V+VG(E)T(E), (2.13 tary fashion, by including effects beyond their contribution

to the real part of the effective, two-body potentials. The

whereT(E)=T(E,P=0). In the c.m. frame, one finds intended application is the description of soft final-state in-
teractions in hadron production processes. Such processes

T(\Js)=2+/sT(\/s). (2.14  are distinguished by their strong couplings and low momen-

tum transfers. For this reason, composite hadr@gnssons
Thus, the on-shell matrix elements of the soluti®{E  and/or baryonsare chosen as the fundamental degrees of
= ys) of the noninvariant LSE in Eq2.13 are related by freedom rather than quarks and gluons.
Eqg. (2.14 to the on-shell matrix elements of the solution  The truncation of the Hilbert space to contain only one-,
7(\/s) of the invariant LSE of Eq(2.8). It follows that ob-  two- and three-hadron states may be sufficient since, in many
servables calculated from E(R.13 are equivalent to those applications, states with higher numbers of hadrons contrib-

calculated from a Lorentz-invariant theory. ute very little to two-hadron elastic scattering amplitudes.
This suppression arises because many-hadron intermediate
B. Coupled Lippmann-Schwinger equations states typically have a large invariant mass, which appears in

In the above framework, the particle dynamics are giventhe denominator of the Green's functio, tending to

. o weaken its contribution. Interestingly, this suppression of
In th? center-of-momenturfe.m) frame whereP=0 by the higher-order Hilbert space states is also observed in some
invariant mass operator,

guantum field theoretical frameworks. In a study of the pion-
M= M+V. (2.15 loop contribtion to thep-meson self-energy and charge ra-
dius, based on a phenomenological application of the Dyson-
The quantityM, introduced in Eq(2.2), is thefreeinvariant ~ Schwinger equations of QCLL9], the covariant, quantum
mass in the Schainger picture and is the elementary had- field theoretic expression for the-meson self-energy was
ron interaction potential. separated into the various time orderings and their relative
The probability amplitude for observing atbody state importance calculated. The time orderings include contribu-
|BQ) with total momentunQ, given an initialN-body state  tions arising fromm 7 andpp - intermediate states, as well
|aP) with total momentunP, is given by theSmatrix ele-  as others. In this calculation, it was shown that terms asso-
ment( BQ|S(E)|aP). TheT-matrix T(E,P) is defined by the ciated with the two-pion intermediate state contributed more
Lippmann-Schwinger equatioft. SE) of Eq. (2.13 and de- than 95% of the total, while the four-hadron states contrib-
termines the on-shef-matrix elements, uted less than 5%. Thus, one expects that a truncation
scheme which neglects states with four or more hadrons
(BQ|S(E)|aP)=(BQ|aP)—2mi  &(Mz,Q)—EM,,P)]  should provide a reasonable description of the residual
strong interactions between mesons and baryons.

X(BQIT(E,P)|aP), (2.19 The matrix elements of the potentidldescribe the cou-
where&(M,, ,P)= \/W plings between hadrons that arise from the underlying QCD

dynamics of quarks and gluons. Color confinement requires

that all physical particle thresholds are associated with the

colorless hadron states. It follows that the matrix elements of
e potentiaV are real. In this framework, all of the analytic

The potentialV and theT-matrix describe all interactions
between the various channels, including channels with dif
fering numbers of particles. In general, they do not conserv

particle number. Therefore, the LSE of Hg.13 represents structure of theT-matrix necessarily arises from the color-

a gountably infinite system of coupled—channgl equ"’It'or@inglet hadron poles and branch cuts which result from the
which couple states of different numbers of particles. LSE of Eq.(2.13

This infinite system of coupled equations may be simpli-
fied by truncating the Hilbert space to include only a finite
number of states that are expected to contribute substantial

toa glvienrre?r(i:tltoré. ::or ﬂ:ﬁ F?rl:rpc;?rﬁts O;tr:T'betrUd%” trr:e H;:At;er ert space operators with subscripts indicating the numbers
space Is restricted to contain a finite nNUMDbEr of oNné-, Wo-¢ 5 ticles they act on. The potentilis of the form

and three-particle states. Furthermore, the particles are as-
sumed to be of finite spatial extension, thereby providing an Vi1 Vi Vi3

ultraviolet regularization to the theory. With these restric- Vel Vor Voo V 21
tions, the LSE of Eq(2.13 reduces to a closed system of B R (2.17
integral equations which may be solved exactly. Of course, Vi1 Vg Vg

Once the Hilbert space has been truncated to include only
ne-, two- and three-particle states, E8.13 is expanded
E/nd rewritten in a simpler form by labeling each of the Hil-
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> - 0 :i+ -+
V=| > T+ S+ K = X+ =~ + —~~
0 I+ 7 0

FIG. 2. Schematic diagram of the two-particle self-enekgy

FIG. 1. Schematic diagram of the interaction potential magrix and the two-particle kerné!, as defined in Eq2.21).

of Eq. (2.18.
Tll T12 T13
The part of the potential associated with the coupling of a T=| Tax Ta Tas|. (2.20
one-particle state to a two-particle final state is dendted Ty T Tas
The resulting system of integral equations can be solved for-
mally in a straightforward manner. In the c.m. frame, each submatr®;, G, or G in Eq.

It is important to note that each matrix element of the(2.19 is itself diagonal since our hadron states form a com-
potentialV in Eq. (2.17) is itself a matrix, since it may con- plete, orthogonal set of eigenstates of the free invariant mass
tain interactions between any number of different particlegperator M.
channels. That is, matrix elements of the foxy, describe Upon insertion of these forms forf, G and T from Egs.
the couplings of any one-particle state with any two-particle2.18), (2.19 and (2.20 into the LSE(2.13, one may for-
state. The number of one-, two-, and three-particle states onfally solve this system of integral equations. It is convenient
wishes to include depends on the specific application. For thgy consider the combination of teris,+ Vo3G3Vs,, Which
application torr7r scattering considered in Sec. Ill, a further gppears frequently in our formalism. These terms play an

simplification is made by assuming an absence of fundamenmportant role and so are collected and rewritten as the sum
tal interactions inV connecting one-particle states to three-of S andK,

particle states, and three-particle states to three-particle
states. Then, the potentislitakes a simpler form, 3+ K=Vt VysGsVas. (2.21)

These are referred to as th&o-particle self-energy., and

Vi Vi 0 the two-particle kernel K These terms are defined such that
V= Va1 Vy Vi3, (2.189  the matrix elements of the two-particle self-enebygontain
0 Vi O only terms proportional to @-function in therelative mo-

mentum of the two-particle state. Consequently, matrix ele-
ments of the two-particle kern& contain all contributions
and is shown schematically in Fig. 1. that arenot proportional to as-function in the relative mo-
The neglected term¢; ;= V1, are associated with energy- mentum.
independent transitions between one-particle and three- The two-particle self-energy and kernel are depicted sche-
particle states. When such terms are neglected the only wamatically in Fig. 2. In the following, it will become apparent
in which a one-body state can decay into a three-body state ifat>. andK are the central elements of the framework, from
through a multiple-step process involving a two-body inter-which all other quantities are obtained. In faait, effects due
mediate state. to three-particle intermediate states can be traced back to
In setting the termV;3=0, several possible elementary these two amplitudes.
interactions have been neglected. Fikét; describes direct One defines thalressedone- and two-particle Green’s
energy-independent couplings between two three-bodfunctions in the usual manner as
states, as well as interactions in which two of the particles

interact while the third particle is a spectator. Such terms élz(G[l—H)‘l, (2.22
may be important. One might argue that it is inconsistent to
include direct two-body interactions M,,, but neglect the &,=(G,1-3)1, 2.23

analogous two-body(plus spectator interactions inVas.
Nonetheless, in this work such terms are ignored. The SigThey are defined in terms of the two-body self-ene¥ggind
nificance and role of these interactions will be addressed i, one-body self-energhl, where
future studies.

In the truncated Hilbert space, the free Green’s function is

a diagonal matrix I=V11+V1,G5Vo, (2.24

V1=V +KG,Vs,

G, 0 O
G=| 0 G, 0], (2.19 =(1-KG,)  V,,. (2.25
0 0 G These quantities are shown schematically in Fig. 3.
The solution for the two-particle scatterifigmatrix can
and theT-matrix is be written as
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@ = e+ -CI0

‘/Bl Ty Y wnoﬁ

O o
= 1 1
@-= >+ K o® P
o _ _ q pP
FIG. 3. Schematic diagram of the integral equations for the one-
body self-energyll and the dressed verte\~>(21. These diagrams B2 o2

depict the expressions in Eq®.24 and (2.25. FIG. 5. Diagram depicting one of the contributions to the two-

B B B body self-energys.§)(p,E) given in Eq.(2.31). Shown here, par-
T22=Ggle(t(l)—H(z))Gngl—F GglGZE, (2.26 ticle @, decays into particley; and y;, and these subsequently
recombine to form particl@,. The relative momentum between the
where intermediate particles, and y; is k;3, the relative momentum of
the incoming statdap,p,) is p, and relative momentum of the
outgoing staté3q,q,) is g. Solid circles denote matrix elements of
the potentials from E¢2.18), V3, andV,3, evaluated between two-
and three-body states.

tM=V,,G, V15, (2.2

tP=K+KG,t?,

S0 =S [ k4P
=(1-KG,) K. (2.29 palPEIZ S P2 JE(my, p)EM,_.p)
These two scattering amplitudes are shown schematically in xvﬁlm(km)Gy(p,k13,E)V713a1(k13),
Fig. 4. Briefly, the contributions to the two-body scattering
amplitude T,, that proceed through one-body channels are (23D

(1) H H H . . . L . . .
d(ra]n?geg ’hwrﬁ:ielcor:'trlzuaor’tlg%;hgt 312(?)0'[ r%(i(cged rt'lrt]rci)rlljgh whereS M =V{)G;VY) . A similar expression is obtained for
one-body channeis are denoted, bo a coma 2(2)(p,E). The momentum integration is over the relative

the effects of the two- and three-body singularities, but only” 8« , . .
t® contains one-body singularities. momentumk,; between the first and third particles of the

) , L~ three-body intermediate statgjs the total angular momen-
'!'he matrix elements fo_r tharessedGreen'’s functionG, tum of the system, the sum is over all three-body states
defined by Eq(2.23 are given by and the three-body Green’s function is

Gpa(P.E) ={8upglE~ M, (p) +ie] =2 (p(p,E)} 1.
(2.29

One can collect the terms from E@.21) contributing to the ~ For brevity the ubiquitous two-body phase space factor
two-body self-energy. 4, , and organize them into the fol-

Gy(p.kis.B)=g—; (2.32

yd PKg) e

lowing sum: ks Pyi5 F13
a, (kiz,p)= , 2.3
" (D1 ) 2) i K13:P) (2m)3 28 M, (Ki3),P] 233
3 =63+ VEGV +VEG,VE . (2.30
SRR and two-body Jacobian

Here, the superscrifi) refers to the diagram in which the M., (Kg3)
ith particle in the two-body state emits and subsequently .. (Kig)= ng 13 , (2.34
reabsorbs the particlg;. The termd?, is identified with the 13 2&(m,, kg &(m, _,Kq3)

part of the potentialV,, that is proportional to a Dirac _ o
s-function in the relative two-body momenturpAll other ~ are introduced. The expression in E.31) for the two-body
terms that appear in E2.21) but which do not appear i self-energy= §)(p,E) is depicted in Fig. 5. The two-body
in Eq. (2.30 are part of the two-body kerné.] self-energyZ. 5,(p,E) is then the sum,

Upon inserting a complete set of three-body states into
Eq. FZ.SO) and eg\]/aluatingp the resulting expres)s/ions in the 3 ga(P.E) = 83 5,(P) + 350, E) + 2P E),
overall c.m. frame witlP=0, one obtains (2.39

where the counter term is chosen to be

55.(p)=
IGN

=—CPPE+2P(P.E)e-u, -
K+ K@ (2.36
FIG. 4. Schematic diagram of the scattering amplitud€sand ~ This is necessary and sufficient to ensure unitarity and that
t® which enter into the two-particle scattering matrix elements.the stable two-body system,, is observed asymptotically
These diagrams depict the expressions in EZ27) and (2.28. with the invariant mass/\/lalz(p). Evaluation of the two-
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body self-energy. ,(p,E) requires calculating the imaginary
part and a principal part of the integral in E®.31). For
energiesE above a three-body threshold, these integrals en-
counter poles in the three-body Green’s function
G,(p,ki3,E) for values of the relative momenturky;
=ko,, Wherek,, satisfies the relatiovk/lylzs(p,koy) =E.

From Eq.(2.24), one obtains an expression for the one-
body self-energy in the c.m. frame,

FIG. 6. Definitions of the relative momenta and particle labels

* for the kernelK(Y)(q,p) given in Eq.(2.44.
ML(E)=oll,+ 5 — 3 f dka, (k,0) pol3P) 0 249
@ Y12 70 interaction. In the first two terms, the exchanged particle is
XV, (k)éy(k,E)\N/y (KE). (237 subsequently absorbed by the other particle in the outgoing
1712 1271 state.
In Eq. (2.37, m,, is the mass of the one-body stdteP), Explicit expressions for the most general two-body ker-

nels of Eqs(2.40 and(2.41) in the spherical wave basis are
N complicated and not particularly enlightening. However, in
Vnzﬂq(k'E) is the vertex function for the dressed vertex the model application tar# scattering considered in Sec.
dIII, the resulting kernel is relatively simple. The only matrix
elements ofV,; that are of interest in this application are
those associated with the transitions of the formsr

—aap, wr— iy, 7T7T—>KEp and WW—»KKfO, T

Vamz(k) is the vertex function of the potentiaV/,,,

Var, (~37(k,E) is the dressed two-body Green'’s function, an
aylz(k,O) is a factor from Eq.2.33 associated with the

phase space of the two-body system. The one-body mass
counter ternsll , is fixed by demanding that the elements of 2
the one-body self-energies be identically zero when the driv—7KK". In each of these hadron states, at least two of the
ing energyE=&(m,, ,P). In the c.m. frame, the mass renor- three particles are spin-0 mesons. For these interactions, the
malization conditior11 is plane-wave matrix elements of the potentl\d%) are of the

form
RETT,(E)le .m =0. (2.39
=M (Y12KKK 19 Vi | a1 PPy = (2)28(K = P) 8., .,
In this framework, the finite size of the hadrons involved X 2&(m,.,—p)
results in vertex form factors, such b@mz(k), which fall o2’
off sufficiently rapidly withk to ensure the convergence of X (y1KK 13 Vo1l @1p), (2.42
all integrals. Therefore, the counter terdEl and 6% are )
both finite. where the matrix elements &f;, are of the form
Having obtained expressions for the dressed one- and
two-body Green’s functions, one next considers the two- 5 (—1)S»?
body scattering amplitude$?) andt(®. These scattering am- { ¥1kK1gVai|a1p) = (27)>8(k— p)ﬁ
plitudes depend on the one- and two-body Green’s functions, Sy

as well as the two-body kernél. The two-body kernel is
comprised of three contributions

S - Sy\s%
X2, D, \(~Kis Pk FYE -

K=K®+ K@+ K (2.39
here X (K12 Vo (K19 (2.43
The vertex fotv$}) appears in Figs. 5 and 6 as the right-most
K®O=vRG,veY, (2.40  interaction vetrtex. In the partial-wave basis, the kek@)
is shown in Fig. 6 and is given by
K®=V{Gvy), (2.4
(1)J +l PJ(X) 1
andK“" s the part of the potential,, that is not propor- Kba'(a.p)=2m2 . dx—— 28(m,,_.p—q)
. . . . . . Y123 Y3’
tional to a Diracé-function in the relative momentum. This
latter term is the direct four-point coupling of four mesons, V5,7, K2d) S¥3(A,P)Vy, 0, (K13)
and it is depicted as four meson lines converging on a single E_ oot
point in Fig. 1. In Eq.(2.39, the parenthetical superscripts 12d QPP Fie
on the first two quantities refer to which of the two particles (2.44)

in the incoming state emits the exchanged particle; the su-
perscript on the third quantity refers to the direct four-mesorwhere
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S%=%q,p)=1, N -
Ve, (D =Vp 0 (A)+ 7212 fo dka, (k,0)

2
m73gMV+ k73Mk73V v
ay !

53=1 =gk
S~ (q,p) qﬁl(Myzs(kza)Mm(kls) P

I=s,, ~ ~
XKy "8 (KE)V,, 0 (K). (249
(2.45

for scalar exchangess§3=0) and vector exchanges

—1), respectively, an®,(x) are the usual Legendre poly- clear. It follows that the solution to E2.49 is just
nomials inx=p-g/pg. The three four-momenta appearing in
(2)3=s

Eq.(2.44 are V(=2 f “dka,, (k00T TGV, L, ().
v12 JO Y
s, =[&(mg ,a).ql, (2.50

Finally, the two-body scattering amplitud€’ is

The similarity between this integral equation and the integral
equation of Eq(2.47) with J=s, which determines® is

pgzz[g(mazl_p)!_p]l

Y1%12

Vﬁlzy:’l(q)Gyi‘yl(E)V (p)

ks =[&(m,, p—q),p—al. (2.49 ((q.p)=3
Y171 2 m,.m,,
Expressions corresponding to the matrix elements of (2.52)
K(ﬁzg(q,p) can be obtained in a similar manner.
Once specific forms of the model vertex form factors The complete expression for the two-body scattering ampli-
V., (K1g) @ndVpg .. (Kaq) are provided and substituted into tude T, is obtained by adding this expression 6 to t)
Eq. (2.44), the matrix elements of the kerni€lare computed according to Eq(2.26).
numerically. One can proceed to solve the integral equation In the previous sections, it was demonstrated that the ex-
in Eq. (2.29 for the scattering amplitudé?). In the c.m.  plicit solution to the scattering problem involving one-, two-,
frame, the integral equation for the partial-wave scatteringdnd three-body states can be obtained by performing several
amplitudet(ﬁzczj(q,p) has the form integrations and one matrix inversion. The matrix inversion
is necessary to obtain the two-body Moller amplitude
(2)3 J ” Q%(a,p).
t52(a,p) =Kpa(a,p) + 2 fo dka, (k,0)

Y12
Ill. APPLICATION TO @ w SCATTERING

XK (q,K)G(kE)t®(k,p), (2.4
L L A In this section, the framework is applied tar scattering.

Simple model forms of the elementary vertex form factors

wherea,, (k,0) is the usual two-body phase space factor, i ! :
12 V,.4,(0) are introduced, and solutions for the self-energies

Obtaining the solution of this integral equation is compli- . i 19
cated by the presence of the two-body pole in the two-bodyls«(E) and> z.(p,E) and scattering amplitudes.’(q,p),
Green's functionG,(k), and possibly the appearance of t2(q,p), andV,_,, (q) are obtained numerically. Several
three-body unitarity cuts in botﬁ;y(k) and the two-body interesting aspects of the obtained soI.utions are Qiscussed. It
kernel K3,(q,p). The method used to solve this integral should be emphasized that the model introduced in Sec. Ill A
equation is adapted from RdR0]. It involves obtaining a S preliminary and the manner in which the model parameters

two-body Moller operatof)?, whoseJth partial-wave ma- &€ fit to the data may be overly simplistic, as it focuses on
trix element satisfies ' reproducing only a few observables and therefore does not

represent an exhaustive or complete study of the dynamics of

o 7rar scattering. The motivation is to provide a demonstration

tr(,fcfj(q,p)=2 j dkaylz(k,O)Q(ﬁzy)J(q,k)KW(k,p). of the framework and exhibit the features of the model, and
712 /0 its ability to describe the scattering of a system of strongly-

(2.48 coupled particles with emphasis on the multiparticle channel

. 2)3 : . aspect. More complete studies of meson scattering within the
After a solution fortg,™(q,p) is obtained, one proceeds 10 present framework will be the subject of future articles.

ot_)tain a(q)expli_cit (_axpr_ession for the two-pody scatterin_g am |n Sec. Il A, the dynamical assumptions are discussed
plitude £, which is given by Eq(2.27). Since the solution 5154 with the model parameters. A detailed list of the states
of the intermediate dressed one-body Green's fundBigns  included in the Hilbert space is provided. The model param-
obtained from the one-body self-energy from E2.37), all  eters are determined using a simple method to fit experimen-
that remains is to determine the form of the dressed verticeg| data for therw isoscalar-scalar phase shift apaneson

V1, andV,;. The integral equation for the dressed vertex isdecay width, using th&wave phase shifts from R¢®21]. In
obtained for the transpose of the dressed vertex fronBec. Il B the resulting phase shifts, inelasticities and cross
Eq. (2.25, sections are provided and compared to the data, and some
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aspects of thé,(980) scalar meson are discussed in terms of=0"" f;(1370) meson. One ramification of choosing a
a KK bound state. single scalar resonance to model the effect of all observed
resonances in the 1300—1700 MeV region is in the width of
this resonance. In order to fit the model parameters torthe
phase shifts requires a single effective resonance with a very
The model is intended to describe the scattering in a rangkrge width. It is found that the model resonance has a decay
of center-of-momentunic.m) energies from thresholdE(  width of 805 MeV, which is approximately theumof the
=2m_~280 MeV) to aboutE=1400 MeV.Above 1400 widths of the three observed resonances in this region.
MeyV, it is important to include in more detail the effects of  Three-body statesOnly three-body states are included
the three scalar mesons observed in this region. For this prenat can couple to therm or KK states through the absorp-

liminary study, however, it is possible to avoid making tion or emission of the isovectdPC=1"" p(770), isodou-
strong assumptions concerning these scalar mesons, henge; jP—1- K*(892), andJPC=0"** f, mesons. Thus, the

;hﬁ model Willlnot tr)]e accurateI in thisI energy reg)ion. Ir:j thethree-body states included in this study werp), | wafo),
ollowing, only the isoscalar-scalarl=0J=0) an | — — o .
KKp), |[KKfp), |[7KK*) and|7KK*).

isovector-vector (=1J=1) channels are considered. The To summarize, the hadronic states included in this model
motivation is to explore some of the interesting physical as ¢ scatterin ,are
pects of the present framework and to estimate the impor- wm 9

A. Dynamical model for w4 scattering

tance of including three-body states in such a model of had- Ifo), |p),
ron scattering. The assumptions of the dynamical model are
summarized below. B |KE}

Two-body statesFor the chanels and energies explored
herein, it is assumed thatw scattering is primarily deter-
mined by the dynamics arising from the coupling of the

andKK two-body channels. Henceg ) andlK@ are the  where thef, meson refers to thd,(1350) meson[The

only two-body channels included in the Hilbert space. f,(980) meson is expected to appear in the model KKa
_One-body statestt is assumed that the coupling of the yesonancd.The values of the bare masses of these particles
KK system is strong enough to result in the appearance of are provided in Table | and are underlined to indicate that
narrow resonance in the scalar-isoscalar channelEat they are input parameters. As discussed in Sec. I, one- and
~ 980 MeV. This state is identified with thg"¢=0"" two-body counter terms are included in the elementary inter-
fo(980) meson. Since this scalar meson is presumed to arigetion potentiald/,; andV,,, respectively, such that the bare
from final-state interactions as a quasi-bod(ﬁ state, it is masses given in Table | coincide with the dressed masses of
not part of the free Hilbert space, and there is no bare mad§e mesons.
associated with it. Rather, it appears as a pole in the analyti- Model vertex form factorsThe vertices in the model are
cally continuedT-matrix. Furthermore, in the limit that the assumed to be finite-sized and hence require the appropriate

two-body 7 andKK channels decouple, this pole moves to form factors for the relative three-momentum They are
the real-energy axis below the two-kaon threshold: that is, iP1VeN by the universal form:

becomes &K bound state in this limit. The identification of 161 ) 2

the f,(980) meson as &K molecule is controversial. Al- Ve (D =235 pa, Vos 11 e 90, (3.2
though it appears as a molecular state in this model, the max

“true” nature of the f;(980) meson remains an open ques-where Smax:mMSBl,SﬁZ,Sal} is the largest spin of the par-

tion. . ticles involved. In the present study=0 for vertices involv-
In contrast to thefy(980) meson, it is assumed that at ing the f, meson, ands=1 for vertices involving thep or

least one of the scalar resonances observed in the mass {e* mesons. The vertex coupling constaafs and form
gion between 1300 and 1700 MeV will be a QCD bound ctor momentum scaled are choséﬁnzatt) rovide a
state; that is, a state which arises as a bound state Whog% u B1Boay provi

constituents are quarks, antiquarks and gluons. Such statggod fit to the data for the isoscalar-scatatr phase shift
do not arise from the meson final-state interactions, they aré»~ and thep-meson decay widtf', . ., =150 MeV. The
not bound states of mesons, and hence must be included nﬁr-ameter search was limited in a number of Ways. First, the
the model adare states with bare masses. various meson-exchange form factor sca@slﬁzal in Table
Experiments reveal the presence of several resonances lith were all constrained to be the same value and less than 1
the scalar-isoscalar channel between 1300 and 1700 MeV. &eV. The direct four-meson couplings in Table IV were cho-
complete study of therm scattering system in this energy sen to be one of two scales, the first was taken to be 125
range requires the inclusion of each of these resonances intdeV larger, and the second to be 125 MeV smaller than the
the model. However, to simplify the present study, all of meson-exchange scales in Table Ill. In the following, it is
these resonances are modeled in terms of a single scalar restrown that the vector-exchange interactions contribute little
nance. The resonance is assumed to have a mass of 13@0the observables considered. To reduce the number of pa-
MeV, which gives it a mass similar to the lightest of the rameters, the strength of the vector-exchange vertices were
resonances above kaon threshold, referred to aslfife taken to be identically equal, ,,= akk,= arkk*- 1he isos-

|wmp), [KKp), [7KK*), [wato), [KKfo), (3.1
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TABLE I. Masses and widths of mesons. Masses that are under- TABLE Ill. Coupling strengths and momentum scales for the
lined have been fixed to reproduce the accepted values. All otherertex form factors. The values of the momentum scales are given
values are obtained from the model calculation. In the present studjyn MeV.
the width of theK* meson was not calculated. All values are given

in units of MeV. BiB2ay mfy KKfo TP KKp KmK*
T K p K* fo(1350)  ,(980) ag ga, 12.4 5.08 20.0 20.0 20.0
Ag 6o 875 875 875 875 875
mass 140 500 770 890 1350 996 e
width 0 0 150 — 805 46

and possibility of including the dynamics of three-body in-
termediate states to the study of meson scattering and final

pin factors that arise in a calculation of the meson-exchanggate interactions, rather than to test a particular interaction
kernelsK,(d,p), such as in Eq(2.44), are given in Table model for 7o scattering.

. . N ~ Once the forms of the model vertices are fixed, the only
Direct interactions:In addition to meson eXChangeS, itis observables used in the fit are the Sca|ar_isosca+arphase
important to include real-valued potentials that d|rectIyShift 5., the existence of thKEresonancéreferred to as

couple two pseudoscall%r mesons to two pseudos_calar m?ﬁefo(980)], and the decay width of the(770) vector me-
sons, as a part of thi kernel in Eq.(2.39. Such inter- son. All measurable reaction channels are not used in the

action potentia!s could arise from the direct c_oupling of fo.urfitting procedure, since this paper represents more a proof of
mesons to a virtual-quark loop. Here, two direct four-point rinciple of the framework rather than a complete phenom-

interactions are considered. The first is intended as a way hological analysis ofrrr scattering. The resulting values of
mimic some of the effects of dynamical chiral symmetry l Co

. s Co . in nstants are provi in Tables lll and IV.
breaking. This interaction is taken to be of the form given byt e coupling constants are provided ables It and

the elementary potentidl,, and is referred to as the direct
41 (or 4K) interaction. In a partial-wave basis, the form of B. Phase shifts and inelasticities
the four-pion interaction is given by Below all three-body thresholds, the nontrivial part of the
) 2 ) 2 Smatrix in Eq.(2.16 can be written as a2 2 unitary matix
KU™I (q,p)=16m(qp)’a;, e 9 Name P7Nar, (3.3 Sg(E) with @, 8 denoting the only two open channetsr
andKK. The Smatrix in theJth partial wave can be param-

and the four-kaon ternk**)%(q,p)=0. The second four-  grized in terms of two phase shifs,.. and dci, and one
point interaction is a short-ranged attraction modeled as fhelasticity 7

t-channel exchange of a heavy scalar-isoscalar meson. Its

form is given by the scalar-exchange kernel of E444) and —-i S (E)

the two-body self-energy, of Eq. (2.31). For simplicity it is 0u(E)=—"1In , (3.5
: . 2 7.(E)

treated exactly as if two additional three-body states,

| Xy, |KKX), (3.4 7 E)=[So(E), (3.6

with my=1500 MeV, were added to the Hilbert space. for a=mm KK. Below all three-body thresholds there are

Clearly, modelled in this manner, for energi€&s>my  only two stable channels;7 andKK. Hence, there is only
+2m,=1780 MeV, the statdmmX) can go on-energy- one inelasticity parametey,. .= 5. For energie€ above
shell. However, the calculations described herein are for enthe lowest stable three-body threshold, one must augment the
ergies less than 1400 MeV, so that7X) is never on- Smatrix by including all stable three-body states. Conse-
energy-shell. quently, its parametrization requires more than two phase

Again, the objective is to study the framework developedshifts and one inelasticity. Nonetheless, one may still use
in this paper. That is, it is interesting to assess the importancggs. (3.5) and (3.6) to define the phase shifts,(E), and

inelasticitiesn,(E) for the two channelsy= 7= and KK.

TABLE 1. Isospin coupling constants for kernlso(q,p) for ¢ o4 rse, above the threshold of a stable three-body state

isoscalar, Swave (=0, J°¢=0"") and isovector,P-wave (

=1, J°¢=1"") scattering. N 7KK -

Channel Exchange 1=0,J=0 1=1,J=1 TAB_LE IV. COL_Jpllng s_trengths and momentum scales for the
four-point meson interactions. The values of the momentum scales

T T maf, 1 1 are given in MeV.

KK—KK KKf, 1 1 —

T T TP -1 -1 X KKX A 4K

KK KK KKp -1 -1 a 19.8 11.0 17.2 0.0

mare KK TKK* —V2 -1 A 1000 1000 750 750
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FIG. 7. Theww scattering phasé,.,. in the scalar, isoscalar FIG. 9. Theww scattering phasé,., in the scalar, isoscalar

channel as a function of the c.m. driving enefgyThe data are channel versus the c.m. ener§yThe full calculation(solid curve
from Refs.[22] (open squargs[23] (closed circles [24] (up tri- is compared to the calculatioflashed and dotted curyeim the
angles, and[25] (down triangles limit the KK and 7 states become decoupled. The data are from
Ref.[22].
The 7 phase shift, as defined by E@.5 and obtained
from our model, is shown as a solid curve in Fig. 7. Theg_4m ~0560 GeV. However. the data in Fig. [22]

model provides an excellent description of ther phase  geem to suggest that the contribution of the four-pion state to
shift data depicted in Fig. 72229, and the inelasticity ;- scattering is negligible. This can be seen by noting the

"z, @S shown in Fig. 8. The overall trend of the pion scat-j5ck of any systematic deviation from,,.=1 for the range
tering phase shifé, . is positive and increases slowly with energies m_<E<2my.

energyE. This is indicative of a weak and attractive effective . . =
arar Scattering potential. At the kaon threshold, a rapid phase Itis clear from both Figs. 7 and 8 that thk channel has

motion is apparent. It results from the presence of a narrow, significant effect onr scattering. At the two-kaon thresh-

fy(980) scalar meson. Above the two-kaon threshold, thed)Id atE~1.0 GeV, one observes a rapid increase inthe

phase shift continues to increase slowly, at a rate similar t(g)hase ‘?’h'm.’f?’ and a sharp fall off of t.he”r |nelast|_C|ty_
the increase in the phase shift below the threshold. 7 10 its minimum valuer,,,~0.31. This phase motion is
Below all other thresholds, the'w channel is the only indicative of crossing the thresholds of the two-badi
open channel, and unitarity requires that the inelasticitytate and the one-body,(980) bound state. The rapid in-
n..=1 here. This is clearly observed in Fig. 8, where thecrease observed in the phase shift.(E) is due to theweak
calculated inelasticityy,., has a value consistent with unity coupling between ther and KK channels. In the model,
below the threshold of th& K channel at 1 GeV. Had four- When the mixing of these two channels is further weakened,
body states been included into this framework, one mighthe rate of change of the phase motion tendsntease
have expected to see a decrease in the inelastjcifydue to  until finally, in the limit that the coupling between the two

the opening of the four-pion state, which has a threshold ofhannels goes to zero, the phase motion becomes a step-
function of magnitude 180 degrees. Such a phase motion is

TT [ T T T T TV T T [T T T T[T T T T[T T Completely unobservable, and could therefore be ignored al-
i 1 together (although it is relevant to Levinson’s theorem,
121 0 which relates overall changes in the phase shifts from thresh-
1' 1 old to infinite energy to the number of bound states in a
i ” ] systen).
o0sk . h The importance of the coupling between the two-body
gg - 1 N channelsr7 andKK can be estimated quantitatively by re-
0.6 . c:__"" -t N calculating the pion phase shift, . after removing the kaon
04l ) i state| KK) from the Hilbert space. The result is shown as the
N * ] dotted curve in Fig. 9. However, from the above argument,
0.2~ . perhaps a better indication of the importance of Hk
[ | | | | ] channel is obtained by letting the couplings that lead to a
0 L1 L1 1 1 L1 1 1 L1 1 1 {1 | | | | _Z
1 1.2 14 mixing between theKK and 77 channels gosmoothlyto
E (GeV) zero.(In practice, this is done by not allowing the one-body

FIG. 8. Thewr scattering inelasticity ., in the scalar, isosca- Sca!arf0(1350) to hqve a barelcpupling to tHK state, a”?'
lar channel as a function of the c.m. driving enefgyThe data are  S€ttingays - =0. This has a minimal effect on the dynamics
from Ref.[22]. but prevents mixing thém ) and|KK) states. In this lim-
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FIG. 11. Argand diagram fofr7 scattering at all energies. Plot-
ted is the energy dependence of the real and imaginary parts of the
partial-wave scattering amplitudaf;o(E) for the J=0 partial

. — wave from Eq.(3.7) or Eq. (3.8). The curve is calculated faall
iting case, the two statd&K) and|f,(980)) are coupled to energie€>2m_, and annotated with the corresponding energies
the| 7 ) state, but the contributions they maketor scat- GeV, from threshold to abovE=1.7 GeV.

tering go to zero. The result is that for energiés

;;282 chggvéstggc?aqejcvﬁﬁr;ﬂg gpr;ﬂ;%difvtvr;”esce:cf\;vso t(r:]r?artla lastic channel as soon as & channel opens up.
; I H " For spinl rticl he ampli is given

nels. But since these channels do not mix with the chan- or spinless particles, the amplitude is given by

FIG. 10. Therw inelasticity 7, in the isoscalar-scalar channel
with no kaons.

nel in this limit, thew 7 phase shift exhibits a steplike mo- 7o €20mr—1

tion atE=1.0 GeV. This is shown as the dashed curve in al (E)= ”2— (3.7
Fig. 9. The difference between the solid curve, which repre- !

sents the full model calculation, and the dashed curve in Fig.

9 may be taken as being indicative of the significance of the ___Po i 2. Tt (o0 oo)

KK channel onr scattering. One concludes that the mix- (477)2 2E T mmmm EONTO

ing between ther 7 andKK channels is significant near and L@ ) 3.9
below the two-kaon threshold, where it can contribute more i Po:Po) l, '

than half of the total phase shift,.. At energies above the = el :
two-kaon threshold, its importance quickly dimishes andWherepO_ E%/A—m,, is the magnitude of the on-energy-

vanishes altogether abog=1150 MeV. shell three-momentum of the piors,,. is the wave function
renormalization of the two-pion staferm), andt)’(q,p)
andtﬁff(q,p) are the two-body scattering amplitudes, ob-
tained from Eqs(2.47 and (2.5]), respectively. The two-
body scattering cross sectiang._,(E) can be written in

{erms of the partial-wave scattering cross sections according

The importance of the mixing between ther and KK
channels can also be observed in the pion inelastigity
shown in Fig. 8. Just above the two kaon threshold, the in
elasticity plummets to a minimum valug_..~0.31. In the
limit that the coupling to the kaon channel goes to zero, a
described above, the inelasticity takes on a very differen
appearance. m

In Fig. 10, the two pion ineIasticity is pIotte.d abgve the Tp o E)= E af;_a(E). (3.9
KK threshold. Below the threshold its value is unity. The J=0
lowest multiparticle state to which two-pion flux can be lost . . .
is the three-particle channfirmp). The production thresh- In terms Qf the sca}tterlng amplitudes, these partial-wave
old of this state is 1050 MeV. It is clear that one observes £0SS Sections are given by
slow decrease in the inelasticity,., above 1050 MeV, due

to the opening of thermp channel. The effect of this chan- ):23+1 Z5Z, Tyey )+ 13 )2
nel on the inelasticity is very small, with a minimum value ~ A<« 41 G4g2E2 P Go:Po) T 1ga (do:Po)l™
Nrr~0.994, (3.10

The energy dependence of tBavave pion scattering in-
elasticity .., and phase shif6,,. are conveniently plotted where p, and g, are the on-energy-shell solutions to
together in an Argand diagram. In Fig. 11, the partial-waveM,(po) =E and Mg(qo) =E, respectively. The resulting
scattering amplitude‘;f,o(E) is plotted in the complex plane cross section for elasti§wave 7 scattering is shown as a
as a parametric function of the c.m. energy This figure solid curve in Fig. 12. It is finite at threshold, exhibits a
clearly shows the rapid rise in the elastier phase shift just maximum value of 43 millibarns aE~600 MeV, and a

below 1 GeV, and the resulting dramatic loss of flux from thesharp decrease at the position of thg€980) scalar meson
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150p——7——— —T T with thesesrm scattering data must be done with caution.
E sf || ] Extraction of these data requires the use of theoretical mod-
125F ¢k | g els, or theoretical assumptions, in order to fit the experimen-
3 ', ] tal observables. In the worst-case scenario, the resuiting
_’81001_ 2_ \‘ ] phase shift data may be more representative of the extraction
E_I F 1 ] methods employed than of the actuadr scattering process.
< BF w70 \ ] The extraction of therm phase shifts from experiment is
To 50: ‘\ ] a difficult and long-standing problem of hadron physics. At
. \ ] present, it is impossible to construct an experiment in which
25: ] a pion beam is scattered from a pion target. Hence, other
r ] techniques are required to extract ther phase shift from
01, g\ g~ experimental observables. One possibility is to use decays
0.4 0.6 0.8 1.0 12 14 that produce two pions in the final state, and attempt to ex-
E (GeV) tract thesr7r phase shifts from the final-state interactions.
FIG. 12. Swave cross section”=°(E) in millibarns for 7 The procedure employed by R¢24] is extract the phase

— — — i +, 0a+
— a7 (solid curve, KK— KK (dashed curve andm— KK (dot- shifts from the electroweak kaon decly — 7" 7 e” v,.

dashed curve The inset shows a detail of the region aroundktie The re;ults are shown as _open_ squares in Flgs. 9 and 13.
threshold aE=1 GeV. Extraction of the phase shift using decays with more than

two particles in the final state requires some knowledge of
transition form factors for the coupling of a kaon, two pions
and theW boson to determin& ™ — 7" 7~ W*. A nice fea-
fre of employing the electroweak ded&y — 7" 7le* v, is

resonance. This sudden drop occurs just below Khe
threshold, as can be seen upon examination of the inset pl

n Fig. 12 which depicts a closeup of theK threshold re- that the two pions are the only strongly-interacting particles
g'o%] dot-dashed s th " ._in the final state. Hence, one would expect that te in-
Jzoe ot-dashed curve s the _resu ting  cross S—ecnort]eractions would be the dominant contribution to the dressing
Ok nn fOF the two-kaon production processm—KK.  f he final state. However, this approach is hampered by two
This cross section is considerably smaller than that of th@yperimental difficulties. The first is the lack of statistics.

elastic war scattering cross section, reaching its maximumrhis particular kaon decay represents only a small fraction
value of 4.6 millibarns just above the two-kaon threshold at(4>< 1075 of the totalK *-meson decay width, which is al-

E=1 GeV. Its small size is a result of the weak coupling

b h . 4 K h s, As di ready extremely small. The second is the fact that the ener-
etween the two-pion and two-kaon channels. As diSCUSSEgqg g angles of the outgoing leptons provide a small lever
above, a weak coupling of these channels is necessary

ensure a narrow,(980) meson. If the mixing between the m with which to vary the ¢.m. enerdy of the two final-

ion and kaon channels were stronger, th€980) meson state pions.
P : : nger, . . Another method is to extract the final state interactions of
would more easily decay into two pions, tending to increas

: ) I the two-pion production processp— wmn, employed by
its width significantly. :
The dashed curve in Fig. 12 is ti&wave cross section Ref-[25] (down triangles, Ref.[22] (open squargsand Ref.

for elasticKK scattering. This cross section is comparably[23] (closed circles shown in Fig. 7. These studies require

A : some theoretical input in order to perform the extraction of
huge, having its maximum at the two-kaon threshold energy; : . . . )
e mwr scattering phase shifs,.. and inelasticity 7, ;

Its size can be compared to that of the two-pion elastic cros%1 . !
section, ence, they are not direct measurements ofrthrescattering

phase shift.

o3=°  (E=2m_)~18.3 mb, Our model parameters were originally fit to ther phase

e T shifts obtained by an analysi®3] of an experiment at
CERN involvingm ™~ p— 7" 7 n at 17.2 GeV. Recently, this
same data was reexamined by Kaminskial. [22], with
o weaker model assumptions than were used in R&f|. The
The very largeKK cross section arises_ from the scalarwork of Ref.[22] provides an exhaustive antkarly com-
f(980) meson which lies just below theK. The presence plete study of thers phase shift. In particular, there is no
of a bound state just below the two-body scattering threshole@ssumption that pion exchange is the dominant mechanism
will generally tend to increase the size of the cross sectiofior the processr p— 7~ n. Consequently, this analysis
dramatically. seems to be more general than the others. A relative phase

As was discussed earlier in Sec. Il A, the model param-ambiguity in the analysis of Ref22] provides four possible,

eters were chosen to provide a good fit to ieave pion  distinct solutions for therr phase shifts and inelasticities.
phase shifts,,, data from Ref[21]. In Fig. 7, the resulting Two of these solutions seem to have an unphysical inelastic-
phase shifts are also in excellent agreement with the dat#y 7., below the two-kaon threshold and can be discarded.
analyses of Refd22], [24], and[25]. However, it is impor-  The other two solutions, denoted the “up-flat” and “down-
tant to realize that direct comparison of these model resultfiat” solutions, are very similar in appearance and neither can

J=0
Kk kk(E=2my)~734 mb.

(o

036009-13



M. A. PICHOWSKY, A. SZCZEPANIAK, AND J. T. LONDERGAN PHYSICAL REVIEW D64 036009

360 twofold. First, their presence leads to a strong attractive po-
315 tential for energies below 1400 MeV. Second, they provide
270 the most important contribution toff-diagonal matrix ele-

25 r’r_1ents of the two-body scattering_ k_emeIThat is, they pro-
150 vide the strongest source of mixing for the two-pion and
3 two-kaon states in this model.

B 135 Both of these effects tend to produce an attraction for the

two pions. In particular, the strong attraction necessary to
bind the kaons to form thé,(980) resonance results in a
strong attraction in the two-pion channel as well. The amount
of mixing between the two-pion and two-kaon states dictates
the attraction felt by the pions. Hence, when the coupling
03 04 05 06 07 08 09 10 11 12 13 14 between ) and|f,(1350)) states is artificially reduced by

E (GeV) as little as 10%, the result is significant, as shown by the
dot-dot-dashed curve in Fig. 13. When the one-body state
ejf0(1350)> is removed entirely from the Hilbert space, the
dashed curve is obtained by removing the one-body §850) result_is the dashed curve. The resulting pion phase shift is
from the Hilbert space. The dot-dashed curve is obtained by com':'(agfa.tlve and close to zero below the two-kaon threshold, and
pletely removing the scaldt(1350) from the theory, both in one- positive above the threshold. The absen(?e of the one-body
body and three-body states. The dotted curve is same as the détchannel statefo(1350) reduces the mixing between the
dashed curve, but all scalar couplinghe “X’-exchanges and Wo-pion and two-kaon states, which results in a nearly
contact termsare also set to zero. This is the effect of just the Stable(and very narrow kaon bound staté,(980). In this
vector-meson exchanges. Above threshold it is negative with £ase, one observesfg(980) bound state with a width that
minimum of §,,~—2.0 degrees aE~1.2 GeV. The dot-dot- has been reduced from 46 to 0.28 MeV This is a result of the
dashed curve is obtained by weakening the coupling of the onefact that thef,— 77 decay must proceed throud&* ex-
body f,(1350) state to thers state by 10 percent. The data points change in the kerné{, which provides only a weak mixing

are from Fig. 7. of the war andKK states.

When all scalar mesons are removed from the theory en-
be dismissed on qualitative grounds. The phase shifts frortirely; thatis, when the couplings that lead to the existence of
the “down-flat” solution of Ref.[22] are shown as solid One-body statesf(1350)), and three-body statel$qm )
circles in Figs. 9 and 13. and |foKK) are set to zermmfoza@fozo, the resulting

The general behavior of thew phase shifts. . is posi-  phase shift is shown in Fig. 13 by the dot-dashed curve. The
tive, which is indicative of an attractiver scattering am-  sjightly repulsive behavior is a result of the combined effect
plitude. An abrupt increase in the pion phase shift is evidenpf the attractive scalax- and repulsive four-point interac-
at 1 GeV, which is due to the combined effects of the opentjons associated with chiral symmetry, given by the param-
ing of the KK threshold and the crossing of the scalareters in Table IV.
fo(980) resonance. To minimize the number of free parameters all of the

Apart from this feature, which in this particular model is a couplings to vector mesons are chosen to be equal to each
result of the delicate mixing between ther andKK chan- ~ othera ., =agx,=akk+. These coupling strengths were
nels, the calculated pion phase shift, exhibits a steady, then determined by solving-wave wm scattering at the
gentle increase from the threshold at 280 to above 14001€son massE=m,=770 MeV, and requiring that the
MeV. In the model, this slowly increasing behavior arisesp-meson width reproduced the experimental vallig
from subtle cancellations between the attractive potentials of 150 MeV, as given in Table I. It is found that the resulting
the heavy scalar-meson exchanges and the repulsive, direg®upling strength leads to a vector-meson exchange interac-
four-pion interaction from Eq(3.3) which is intended to tion kernelK which provides a very weak repulsion farr
model the effect of dynamical chiral symmetry breaking. Thescattering. This is illustrated by the dotted curve in Fig. 13,
different form factor scales involved in these interactionswhere all of the couplings except those involving the vector
(see Tables Il and IY are chosen to provide this slowly MeSONS &,.., a,kk, ak+-x) are set to zero. The resulting
increasing, weak phase shift observed in the two-pion charPphase shift is negativeepulsive and very small; its largest
nel. Typically, scalar potentials by themselves provide aabsolute value is about 2 degrees. Thus, in this model,
strong attraction in th&wave 7 channel, that leads to a p-meson exchange is negligible in tisewave. This model
rapidly rising phase shift just above ther threshold, which ~ differs from the analysis of Refl14], in which they report
then quickly falls away. This behavior is not seen in the  that the attractive potenti@vhich leads to the binding of the
phase shifts .. KK into thef,(980) resonandds primarily due top-meson

The importance and role of the scalar resonancessn exchange, which is strong and attractive in their model. In
scattering can be appreciated by a close examination of Fighe framework, the exchange of a spin-1 meson in the kernel
13. The effect of the heavg-channel resonances which are K results in a very weak and mildly repulsive interaction.
collectively modeled by the singli)(1350) in the model is This difference is a result of how the spin couplings and

-
-

FIG. 13. Importance of the different model contributionsnte
scattering phase shift. The solid curve is the full calculation. Th
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IV. SUMMARY AND FUTURE DIRECTIONS

Herein, a framework suitable for the description of non-
perturbative hadron scattering, based on the Bakamjian-
Thomas formulation of relativistic quantum mechanics, is
introduced. In Sec. Il, it is shown that by including the in-

: teractions into the free mass operatar, one can ensure that
10 three-body . observables calculated in the framework are Lorentz covari-
ant. When the Hilbert space is truncated to contain only one-,
two- and three-body states, the resulting Lippmann-
10 N Schwinger equation$LSE9 form a closed set of coupled
integral equations. The solution of these integral equations is

- Illlllltall'ltyl vl(l)latlmnI L obtained numerically.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 A significant improvement of this framework over earlier
a work is that thefull effect of three-body states have been

included. The three-body Green’s functions appear only in

FIG. 14. Fraction of incoming two-pion flux at enerdy o tyo-hody scattering kernéd and the two-body self-

=1400 MeV in the isoscalar-scalar channel, appearing as “two- - ) )
body” or “three-body” final states, or lost to unitarity violations. energy, and for energie£ above the three-body thresh

g ) 2 olds, unitary branch cuts associated with these thresholds

e fractions are shown versus the exporseot the adiabatic scale .

=102 GeV. appear both irK and 2. It follows that the kerneK and
two-body self-energy. arecomplexfunctions of the energy

) E. The appearance of such three-body branch cuts provides

energy denominators of the meson-exchange propagators &, means for important dynamical effects, such as three-

implemented n the kernelg of the ,tWO frameworks. .hadron production and decays into three-hadron states,

Before ending this section, a final comment conceming hich are automatically accounted for in our framework.
the accuracy of the numerical methods employed is prog,cp, effects have hitherto been ignored for the most part in
\{lded. The.accuracy is measured using the unitarity Cond'brevious studies.
tion (or optical theorem The inclusion of three-body cuts into the integral equa-

tions requires appropriate numerical methods to be em-

T-T'=TH(G-G"NT, (3.11) ployed. These methods, necessary to solve the coupled set of

LSEs are shown to maintain the unitarity of the theory to
better than one part in one million. To demonstrate the utility
of the framework, a preliminary study af 7 scattering is
carried out in Sec. Ill. The simple model, introduced in Sec.
911 A, is able to provide an excellent description of ther
ghase shifts and inelasticities.

The main purpose for developing this framework is to
ovide a means of incorporating the dynamics of low-
momentum transfer, final-state interactions into the study of
hadronic processes for energies up to a couple of GeV. In this
energy region, the comparison between experimental data
and theorectical predictions from models of QCD for quark

nd gluon dynamics, are often made difficult due to the pres-
ce of final-state interactions. The soft rescattering of final-

which is derived from the fact thaf in Eq. (2.18 is Her-
mitian. Evaluating Eq(3.11) between two-pion states, one
obtains an equation that relates the two-pion flux missin
from theforward direction to the one-, two-, and three-body
outgoing flux observed leaving the scattering center. Thi
relation provides a sensitive check of the numerical methodBr
employed.

The fraction of lost two-pion flux observed as outgoing
two- or three-particle states is shown versus the expoaent
of the adiabatic scale=10"2 GeV in Fig. 14 for c.m. en-
ergy E=1400 GeV. For any energy greater than the two-
pion scattering threshold, there can be no stable one-partic

state. It foIIows_ that no one-particle outgoing flux can begiate hadrons tends toaskthe QCD dynamics of interest.
observed. In Fig. 14, the regions labeled “two-body” and rp¢ framework developed herein provides a tractable means
three-body” represent the fractions of the missing two-pion ,, incorporate the effects of final-state interactions into stud-
flux that appear as outgoing two-bodyrf or KK) and jes of hadronic phenomena.

three-body @rmp) states, respectively. Since the Hilbert  Towards this end, the framework is constructed to be a
space is restricted to one-, two- and three-body states, thisonsistent extension for the constituent quark model. It pro-
should account for all the flux. However, in practice, thevides a means tanquenchthe quark model by providing for
numerical methods employed introduce violations to the unihadron loops, multiparticle thresholds and the unitarity
tarity condition of Eq.(3.11. The region below the solid branch cuts associated with these. The result is the genera-
curve in Fig. 14 represents the fraction of flux that com-tion of complex-valued scattering amplitudes. It is an exten-
pletely disappears from the theory; such a loss of flux viosion of the quark model, in that the quark model may be used
lates _unitarity. One observes that for values ef to provide the elementary couplings and form factors for the
<107 GeV, the violation is less than 16 of the outgoing  hadronic interactions iv. The framework uses this real po-
flux and is therefore negligible. In the application tor  tential V to generate the full scattering solution.

scattering described above, the valueeef10~** GeV (or Future applications of the framework will focus on the
a=12) was employed. dynamics of nucleon resonances and exotic, hybrid mesons
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that are the subject of current and proposed experiments attions. The best candidate for the exotic meson, the
TJINAF. In the baryon case, for energies up to about 2 GeV4r,(1600)[26] was found in thep7 decay channel, which is
there are some well-known and striking examplesniN  predicted to be suppressed with respect to other two-body
scattering for which three-body effects are crucial in under-decay channels, in particular tig s [27,28. This shift of
standing the experimental observables. For example, in thﬁrength fromb, 7 to pr could be explained by mixing with
L2i,29=Py, channel, themN inelasticity arising from the the three-bodyw o intermediate state which is believed to

three-bodymwN state is very largdl]. It is likely that a  hayve a strong coupling to these two-meson channels.
complete understanding of the;; =N scattering channel

and the mysterioudN* (1440) resonance requires the full
implementation of three-body unitary cuts that this frame-
work provides.

The effect of three-body cuts in exotic partial waves can This work is supported by the U.S. Department of Energy
also be very important. Most theoretical studies of hybridunder Contract No. DE-FG02-87ER40365 and the National
meson decays have so far ignored effects of final state inteScience Foundation under Contract No. PHY0070368.
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