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Relativistic unitary description of pp scattering
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A unitary framework based on the Bakamjian-Thomas construction of relativistic quantum mechanics is
used to describe two-pion scattering from threshold to 1400 MeV. The framework properly includes unitarity
cuts for one-, two- and three-hadron states and provides an excellent description of the available data forpp
phase shifts and inelasticities. The role and importance of three-hadron cuts are calculated and discussed.
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I. INTRODUCTION

A nonperturbative framework capable of describing t
relativistic, coupled-channel scattering of hadrons is p
sented. The approach is based on a relativistic Hamilton
formulation with model interactions introduced into the ma
operator, and with few-body states implemented in a w
that maintains the unitarity of the theory. The element
degrees of freedom in the framework are finite-sized hadr
which provide a natural ultraviolet regularization, ensuri
that the scattering amplitudes are finite.

The Hilbert space is truncated to include only one-, tw
and three-body states. A central and novel feature of
framework is the explicit inclusion of both real and imag
nary parts of scattering amplitudes arising from the open
of three-body channels. The proper handling of three-b
unitarity cuts is crucial to gaining a deeper understanding
several well-known scattering systems; a good exampl
pN scattering in theP11 channel, which exhibits a signifi
cant inelasticity arising from the intermediate three-bo
ppN state@1#.

It presents a formidable challenge to develop a gene
relativistic scattering framework to describe the final-st
interactions between hadrons that includes the effects
three-body unitarity cuts. Nonetheless, a practical framew
which can treat hadron reactions beyond the lowest-o
valence quark picture is clearly desirable. For example,
systematic analysis of hadron reactions in the baryon re
nance region currently being conducted in Hall B at the T
mas Jefferson National Accelerator Facility~TJNAF! re-
quires that such a framework be used to extract informa
about baryon resonances in this highly complex dynam
region. The framework developed herein is an attemp
construct a useful, relativistic framework capable of desc
ing the nonperturbative, low-momentum transfer final-st
interactions between hadrons in a unitary manner.

For the first application of the framework developed he
a simple model forpp scattering is introduced and used
described theS and P partial waves for energies rangin
from the two-pion threshold up to 1400 MeV. This syste
provides an excellent test for the framework. A relativis
treatment is quite important when dealing with particles
light as pions and the interplay between strong dynamics
chiral symmetry makes this system quite interesting. Thepp
system is somewhat simpler than others, in that its st
0556-2821/2001/64~3!/036009~16!/$20.00 64 0360
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requires only a minimal complication from the proper impl
mentation of relativistic spins, since both of the two-bo

states (pp and KK̄) involved are comprised of spin-0 pa
ticles. Another attractive aspect of applying the framework
pp scattering is the relative wealth of experimental data
the isoscalar,S-wave channel.

One drawback with usingpp scattering as a touchston
may be that inelasticities due toopenstates of three or more
particles, do not appear to be significant for this process;
is, therpp andpppp thresholds seem to have little impa
on theS- andP-wave observables. The effects of the openi
of these three- and four-body channels seem to be o
whelmed by the opening of the two-bodyKK̄ channel. None-
theless, several important aspects of the framework can
explored in an application topp scattering.

The isoscalar-scalar (I 50,JPC5011) channel of pp
scattering has been a subject of numerous and exten
studies. The study of meson scattering in this low-ene
region may be an ideal test of our understanding of the
terplay between bound states in QCD and chiral dynam
The region nearE51000 MeV is perhaps most interestin
as it is dominated by the mixing betweenpp andKK̄ chan-
nels and the isoscalar-scalarf 0(980) meson resonance. Th
nature of thef 0(980) resonance, and the question of wheth
it is comprised of valence quarks or arises purely from m
son scattering dynamics, has been addressed by many
thors@2–8#. Above this energy region, three additional sca
meson resonances have been well established. These a
ferred to as thef 0(1370), f 0(1500) and thef 0(1710). It is
still unclear which of these should be considered as qua
antiquark bound states, glueballs or possibly resonances
ing from dynamical effects of final-state interactions@9–13#.
Thus, the isoscalar-scalar channel remains a source of g
interest and mystery for meson phenomenology.

Although there have been previous studies which emp
a framework similar to the one developed here, there
some important differences. Most studies of meson scatte
dynamics are based on potential models~as is the framework
developed here.! However, most other approaches typica
include one- and two-particle channels only; that is, th
include s-channel states and several two-particle chann
such aspp, KK̄, ss, etc. They either neglect the possibilit
of open three-particle channels altogether or only partia
implement them. For example, in the model developed
©2001 The American Physical Society09-1
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the Julich group@14#, the interaction potentials between tw
particle channels, such aspp-pp or pp-KK̄ interactions
are obtained using an instantaneous approximation o
meson-exchange model. Such instantaneous approxima
generally do not account for absorptive effects due to
opening of three-body channels. Still, there is no ques
that the Julich model quite successfully describes the ph
shifts and inelasticities ofpp scattering forS, P and D
waves. Alternatively, the Krakow group@15# has developed a
separable-potential model forpp scattering. In their calcu-
lation, few-body dynamical effects are incorporated by
cluding additional,effectivetwo-body channels, such as
ss channel@16#. Their model also obtains excellent resu
for the pp phase shifts and inelasticities.

The outline of this article is as follows. In Sec. II, th
relativistic scattering formalism employed herein is brie
discussed, beginning with a short proof of the covariance
observables calculated within this framework. Then, the
tegral equations that relate the one-, two- and three-b
scatteringT-matrices are provided.

In Sec. III, the framework is applied to a study ofpp
scattering. The particle states that are included in the mo
are discussed, along with the necessary dynamical mode
rameters. The interactions employed in this study arise fr
the meson exchanges which couple states of various num
of particles to each other. In our framework, these inter
tions arise from one-, two- and three-meson intermed
states which may exhibit production thresholds, resulting
absorptive contributions to the kernels and self-energies
pearing in the Lippmann-Schwinger equations. A simple
ting procedure is shown to provide excellent agreement w
data forpp scattering phase shifts and inelasticities. Deta
of the relevant model dynamics that produce the various
tures observed in the resulting phase shifts and inelastic
are discussed. Then, it is shown that the numerical meth
employed herein are sufficient to maintain the unitarity of
framework to better than one part in a million. Finally,
Sec. IV, the article is summarized and plans for future stud
are presented.

II. RELATIVISTIC QUANTUM MECHANICAL
FRAMEWORK

In this section, a relativistic Hamiltonian framework th
provides a covariant unitary approach to the study of mu
channel scattering is described. Lorentz symmetry is m
tained by identifying the interactions with the mass opera
~that is, the Hamiltonian in the overall center-of-momentu
frame!. It is shown in Ref.@17# that the complete set o
Poincare´ generators can be constructed in a simple way
separates the internal dynamics from the center
momentum~c.m.! motion. In Sec. II A a proof of the cova
riance of this approach is provided. Furthermore, Betz
Coester@18# show that such a framework can satisfy clus
separability. All of these features are desirable for the st
of hadron scattering.

In Sec. II A, the Lorentz covariance of the framework
demonstrated and the fully interacting mass operatorM is
constructed. It is shown that the framework leads to Loren
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invariant on-shellT-matrix elementsT(E,P) for colliding
particles with total momentumP and energyE; that is, one
finds T(E,P)5T(As) whereAs5AE22P2 is the invariant
mass of the system.

The Poincare´ generators act on a Hilbert space which,
general, contains an infinite number of states. The Hilb
space is truncated to include only those states essenti
describe the scattering system of interest within a particu
energy range. Here, only one-, two- and three-particle st
are maintained. Following this truncation, the operator fo
of the Lippmann-Schwinger equation can be written as a
of coupled integral equations. The input that determines
dynamics is given in terms of the matrix elements of a mo
potentialV. Once these are provided, the full scattering pro
lem is solved in a straightforward manner.

A. Relativistic covariance

A simple realization of the Poincare´ algebra for an inter-
acting system of a finite number of constituents is given
the Bakamjian-Thomas construction@17#. This approach has
the advantage of providing a Lorentz-covariant generali
tion for a large class of noncovariant microscopic mode
such as the constituent quark model. In principle, a non
variant microscopic model could be used to obtain ma
elements of the underlying elementary hadronic potentialsV.
In this case, one might consider this framework as a mean
extend the original noncovariant model dynamics, allowi
for a Lorentz-covariant treatment of scattering phenomen

The explicit construction of the Poincare´ algebra proceeds
as follows. Starting from a system ofnoninteractingpar-
ticles, described by their coordinatesxa , momentapa , spins
sa , and massesma , the Poincare´ generators are

H5(
a

E~ma ,pa!5(
a

Ama
21pa

2,

P5(
a

pa ,

J5(
a

xa3pa1sa ,

K5(
a

1

2
$xa ,E~ma ,pa!%2

sa3pa

E~ma ,pa!1ma
. ~2.1!

Here,H andP are the total free energy and linear momentu
of the system,J andK are the total angular momentum an
boost operators, respectively. The relative coordinatesra ,
relative momentaka , center-of-momentum~c.m.! spinssa8 ,
and the c.m. coordinatesRc.m., total momentumPc.m., and
total spinSc.m., are introduced via the Gartenhaus-Schwa
transformation which allows a separation of theinternal dy-
namics and c.m. motion. In terms of these new variables,
Poincare´ generators are given by
9-2
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RELATIVISTIC UNITARY DESCRIPTION OFpp SCATTERING PHYSICAL REVIEW D 64 036009
H5AP21M 2~k1 ,k2 , . . . !,

P5Pc.m.,

J5Rc.m.3Pc.m.1Sc.m.,

K5
1

2
$Rc.m.,H%2

Sc.m.3Pc.m.

H1M~k1 ,k2 , . . . !
, ~2.2!

with the constraints

(
a

mara50,

(
a

ka50,

Sc.m.2S (
a

r a3ka1sa8D 50. ~2.3!

In Eq. ~2.2!, the quantityM5M(k1 ,k2 , . . . ) is referred to
as thefree invariant mass in the Schro¨dinger picture. The
internal momentaka are related to the individual particl
momentapa via a free Lorentz transformation to the c.m
frame:

ka5L~ka←pa!pa

5pa1
pa•P

M~M1H !
P2

E~ma ,pa!

M P ~2.4!

and the c.m. frame spinssa8 are related to the individual spin
sa via a Wigner rotation corresponding to the product
Lorentz boostsR5L(0←pa)L(pa←ka)L(ka←0), leading
to

sa85D (s)~R!saD (s)~R!* . ~2.5!

Interactions are incorporated into the Poincare´ generators
by the addition of a term in the free mass operator

M→MI~ra ,ka ,sa8!5M1V. ~2.6!

Thus, transforming the free HamiltonianH into the interact-
ing HamiltonianHI ,

H→HI5H1W,

W5AMI
21P22AM21P2. ~2.7!

This replacement preserves the canonical commutation
tions, providedV5V(ra ,ka ,sa8) is a function of internal co-
ordinates only and is invariant under rotations@V,J#
5@V,Sc.m.#50. For example, consider the case for which t
elementary interaction is a Yukawa-type three-meson ver
The matrix elements of the three-meson interaction ve
would be given bŷ auVubc& and would only depend on th
internal variables associated with the c.m. frame wherepa
5pb1pc50. Of course, these internal variables can be
03600
f
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x
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pressed in terms of the individual particle momenta in a
other frame by using the boost relations analogous to E
~2.4! and ~2.5!.

Within this framework, the Lorentz covariance of obser
ables may be demonstrated from the following consid
ations. Construct an invariantT-matrix which satisfies a
Lorentz-invariantLippmann-Schwinger equation~LSE!,

T5V1VGT, ~2.8!

with an invariant interactionV,

V5HI
22H2

5~P21M I
2!2~P21M 2!

5W21HW1WH

5V21MV1VM, ~2.9!

and an invariant propagatorG for scattering energyE, given
by

G5~E22H21 i e!21

5~E22P22M 21 i e!21. ~2.10!

Since V is independent of the c.m. momentumP and the
scattering energyE, one may rewrite the scattering energ
E5As1P2, in terms of a new variables, referred to as the
invariant mass squared. From Eq.~2.10!, one observes tha
the propagatorG(s) is a function of the invariant mas
squared only, and one concludes that the LSE~2.8! depends
only on the invariant mass squareds. It follows that the
resultingT-matrix T(As) depends only on the invariant mas
squareds.

It is possible to relate theon-shellmatrix elements of this
invariant T-matrix to the on-shell matrix elements of a
T-matrix that is the solution of a noninvariant LSE with th
interaction potentialW,

T~E,P!5W1WG~E!T~E,P!, ~2.11!

whereG(E)5(E2H1 i e)21. The relation between the on
shell matrix elements is given by

T~As!52As1P2T~E,P!, ~2.12!

which can be demonstrated term by term by expanding
on-shellmatrix elements ofT in powers of the potentialV,

T5V1VG~E!V1O~V3!

5W212EW1W~E1H !
1

E22H21 i e

3~E1H !W1O~V3!
9-3
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52EW12EW
1

E2H1 i e
W1O~V3!

52ET~E,P!.

In this article, calculations are carried out in the c.m. fra
for which E5As, then the interaction potentialW5MI
2M5V, and the relevant LSE is

T~E!5V1VG~E!T~E!, ~2.13!

whereT(E)5T(E,P50). In the c.m. frame, one finds

T~As!52AsT~As!. ~2.14!

Thus, the on-shell matrix elements of the solutionT(E
5As) of the noninvariant LSE in Eq.~2.13! are related by
Eq. ~2.14! to the on-shell matrix elements of the solutio
T(As) of the invariant LSE of Eq.~2.8!. It follows that ob-
servables calculated from Eq.~2.13! are equivalent to those
calculated from a Lorentz-invariant theory.

B. Coupled Lippmann-Schwinger equations

In the above framework, the particle dynamics are giv
in the center-of-momentum~c.m.! frame whereP50 by the
invariant mass operator,

MI5M1V. ~2.15!

The quantityM, introduced in Eq.~2.2!, is thefree invariant
mass in the Schro¨dinger picture andV is the elementary had
ron interaction potential.

The probability amplitude for observing anN-body state
ubQ& with total momentumQ, given an initialN-body state
uaP& with total momentumP, is given by theS-matrix ele-
ment^bQuS(E)uaP&. TheT-matrix T(E,P) is defined by the
Lippmann-Schwinger equation~LSE! of Eq. ~2.13! and de-
termines the on-shellS-matrix elements,

^bQuS~E!uaP&5^bQuaP&22p id@E~Mb ,Q!2E~Ma ,P!#

3^bQuT~E,P!uaP&, ~2.16!

whereE(Ma ,P)5AM a
21P2.

The potentialV and theT-matrix describe all interaction
between the various channels, including channels with
fering numbers of particles. In general, they do not conse
particle number. Therefore, the LSE of Eq.~2.13! represents
a countably infinite system of coupled-channel equati
which couple states of different numbers of particles.

This infinite system of coupled equations may be simp
fied by truncating the Hilbert space to include only a fin
number of states that are expected to contribute substan
to a given reaction. For the purposes of this study, the Hilb
space is restricted to contain a finite number of one-, tw
and three-particle states. Furthermore, the particles are
sumed to be of finite spatial extension, thereby providing
ultraviolet regularization to the theory. With these restr
tions, the LSE of Eq.~2.13! reduces to a closed system
integral equations which may be solved exactly. Of cour
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one drawback of such a truncation is that some symmetr
such as crossing symmetry, which require the inclusion
many-particle states may be lost. The addition of states w
a higher number of particles, such as four-particle states,
in principle be included in a straightforward manner but t
resulting set of equations would be far more complica
than that studied here.

The main objective of this work is to develop a fram
work for handling up to three-body channels in a fully un
tary fashion, by including effects beyond their contributio
to the real part of the effective, two-body potentials. T
intended application is the description of soft final-state
teractions in hadron production processes. Such proce
are distinguished by their strong couplings and low mom
tum transfers. For this reason, composite hadrons~mesons
and/or baryons! are chosen as the fundamental degrees
freedom rather than quarks and gluons.

The truncation of the Hilbert space to contain only on
two- and three-hadron states may be sufficient since, in m
applications, states with higher numbers of hadrons cont
ute very little to two-hadron elastic scattering amplitude
This suppression arises because many-hadron interme
states typically have a large invariant mass, which appear
the denominator of the Green’s functionG, tending to
weaken its contribution. Interestingly, this suppression
higher-order Hilbert space states is also observed in s
quantum field theoretical frameworks. In a study of the pio
loop contribtion to ther-meson self-energy and charge r
dius, based on a phenomenological application of the Dys
Schwinger equations of QCD@19#, the covariant, quantum
field theoretic expression for ther-meson self-energy wa
separated into the various time orderings and their rela
importance calculated. The time orderings include contri
tions arising frompp andrrpp intermediate states, as we
as others. In this calculation, it was shown that terms as
ciated with the two-pion intermediate state contributed m
than 95% of the total, while the four-hadron states contr
uted less than 5%. Thus, one expects that a trunca
scheme which neglects states with four or more hadr
should provide a reasonable description of the resid
strong interactions between mesons and baryons.

The matrix elements of the potentialV describe the cou-
plings between hadrons that arise from the underlying Q
dynamics of quarks and gluons. Color confinement requ
that all physical particle thresholds are associated with
colorless hadron states. It follows that the matrix elements
the potentialV are real. In this framework, all of the analyti
structure of theT-matrix necessarily arises from the colo
singlet hadron poles and branch cuts which result from
LSE of Eq.~2.13!.

Once the Hilbert space has been truncated to include o
one-, two- and three-particle states, Eq.~2.13! is expanded
and rewritten in a simpler form by labeling each of the H
bert space operators with subscripts indicating the numb
of particles they act on. The potentialV is of the form

V5S V11 V12 V13

V21 V22 V23

V31 V32 V33

D . ~2.17!
9-4
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RELATIVISTIC UNITARY DESCRIPTION OFpp SCATTERING PHYSICAL REVIEW D 64 036009
The part of the potential associated with the coupling o
one-particle state to a two-particle final state is denotedV21.
The resulting system of integral equations can be solved
mally in a straightforward manner.

It is important to note that each matrix element of t
potentialV in Eq. ~2.17! is itself a matrix, since it may con
tain interactions between any number of different parti
channels. That is, matrix elements of the formV21 describe
the couplings of any one-particle state with any two-parti
state. The number of one-, two-, and three-particle states
wishes to include depends on the specific application. For
application topp scattering considered in Sec. III, a furth
simplification is made by assuming an absence of fundam
tal interactions inV connecting one-particle states to thre
particle states, and three-particle states to three-par
states. Then, the potentialV takes a simpler form,

V5S V11 V12 0

V21 V22 V23

0 V32 0
D , ~2.18!

and is shown schematically in Fig. 1.
The neglected termsV135V31

† are associated with energy
independent transitions between one-particle and th
particle states. When such terms are neglected the only
in which a one-body state can decay into a three-body sta
through a multiple-step process involving a two-body int
mediate state.

In setting the termV3350, several possible elementa
interactions have been neglected. First,V33 describes direct
energy-independent couplings between two three-b
states, as well as interactions in which two of the partic
interact while the third particle is a spectator. Such ter
may be important. One might argue that it is inconsisten
include direct two-body interactions inV22, but neglect the
analogous two-body~plus spectator! interactions inV33.
Nonetheless, in this work such terms are ignored. The
nificance and role of these interactions will be addresse
future studies.

In the truncated Hilbert space, the free Green’s functio
a diagonal matrix

G5S G1 0 0

0 G2 0

0 0 G3

D , ~2.19!

and theT-matrix is

FIG. 1. Schematic diagram of the interaction potential matrixV
of Eq. ~2.18!.
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T5S T11 T12 T13

T21 T22 T23

T31 T32 T33

D . ~2.20!

In the c.m. frame, each submatrixG1 , G2 or G3 in Eq.
~2.19! is itself diagonal since our hadron states form a co
plete, orthogonal set of eigenstates of the free invariant m
operatorM.

Upon insertion of these forms forV, G and T from Eqs.
~2.18!, ~2.19! and ~2.20! into the LSE~2.13!, one may for-
mally solve this system of integral equations. It is conveni
to consider the combination of termsV221V23G3V32, which
appears frequently in our formalism. These terms play
important role and so are collected and rewritten as the s
of S andK,

S1K[V221V23G3V32. ~2.21!

These are referred to as thetwo-particle self-energyS, and
the two-particle kernel K. These terms are defined such th
the matrix elements of the two-particle self-energyS contain
only terms proportional to ad-function in therelative mo-
mentum of the two-particle state. Consequently, matrix e
ments of the two-particle kernelK contain all contributions
that arenot proportional to ad-function in the relative mo-
mentum.

The two-particle self-energy and kernel are depicted sc
matically in Fig. 2. In the following, it will become apparen
thatS andK are the central elements of the framework, fro
which all other quantities are obtained. In fact,all effects due
to three-particle intermediate states can be traced bac
these two amplitudes.

One defines thedressedone- and two-particle Green’
functions in the usual manner as

G̃15~G1
212P!21, ~2.22!

G̃25~G2
212S!21. ~2.23!

They are defined in terms of the two-body self-energyS and
the one-body self-energyP, where

P5V111V12G̃2Ṽ21, ~2.24!

Ṽ215V211KG̃2Ṽ21,

5~12KG̃2!21V21. ~2.25!

These quantities are shown schematically in Fig. 3.
The solution for the two-particle scatteringT-matrix can

be written as

FIG. 2. Schematic diagram of the two-particle self-energyS,
and the two-particle kernelK, as defined in Eq.~2.21!.
9-5
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T225G2
21G̃2~ t (1)1t (2)!G̃2G2

211G2
21G̃2S, ~2.26!

where

t (1)5Ṽ21G̃1Ṽ12, ~2.27!

t (2)5K1KG̃2t (2),

5~12KG̃2!21K. ~2.28!

These two scattering amplitudes are shown schematical
Fig. 4. Briefly, the contributions to the two-body scatteri
amplitudeT22 that proceed through one-body channels
denotedt (1), while contributions that do not proceed throug
one-body channels are denotedt (2); both t (1) andt (2) contain
the effects of the two- and three-body singularities, but o
t (1) contains one-body singularities.

The matrix elements for thedressedGreen’s functionG̃2
defined by Eq.~2.23! are given by

G̃ba~p,E!5$dab@E2Ma12
~p!1 i e#2Sab~p,E!%21.

~2.29!

One can collect the terms from Eq.~2.21! contributing to the
two-body self-energySba , and organize them into the fol
lowing sum:

S5dS1V23
(1)G3V32

(1)1V23
(2)G3V32

(2) . ~2.30!

Here, the superscript~i! refers to the diagram in which th
i th particle in the two-body state emits and subseque
reabsorbs the particleg3. The termdS is identified with the
part of the potentialV22 that is proportional to a Dirac
d-function in the relative two-body momentum.@All other
terms that appear in Eq.~2.21! but which do not appear inS
in Eq. ~2.30! are part of the two-body kernelK.#

Upon inserting a complete set of three-body states
Eq. ~2.30! and evaluating the resulting expressions in
overall c.m. frame withP50, one obtains

FIG. 3. Schematic diagram of the integral equations for the o

body self-energyP and the dressed vertexṼ21. These diagrams
depict the expressions in Eqs.~2.24! and ~2.25!.

FIG. 4. Schematic diagram of the scattering amplitudest (1) and
t (2) which enter into the two-particle scattering matrix elemen
These diagrams depict the expressions in Eqs.~2.27! and ~2.28!.
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Sba
(1)~p,E!5(

g13

E
0

`

dk13

ag13
~k13,p!

2AE~mb1
,p!E~ma1

,p!

3Vb1g13
~k13!Gg~p,k13,E!Vg13a1

~k13!,

~2.31!

whereS ( i )5V23
( i )G3V32

( i ) . A similar expression is obtained fo
Sba

(2)(p,E). The momentum integration is over the relativ
momentumk13 between the first and third particles of th
three-body intermediate state,J is the total angular momen
tum of the system, the sum is over all three-body statesg,
and the three-body Green’s function is

Gg~p,k13,E!5
1

E2Mg123
~p,k13!1 i e

. ~2.32!

For brevity the ubiquitous two-body phase space factor

ag13
~k13,p!5

k13
2

~2p!3

rg13
~k13!

2E@Mg13
~k13!,p#

, ~2.33!

and two-body Jacobian

rg13
~k13!5

Mg13
~k13!

2E~mg1
,k13!E~mg3

,k13!
, ~2.34!

are introduced. The expression in Eq.~2.31! for the two-body
self-energySba

(1)(p,E) is depicted in Fig. 5. The two-body
self-energySba(p,E) is then the sum,

Sba~p,E!5dSba~p!1Sba
(1)~p,E!1Sba

(2)~p,E!,
~2.35!

where the counter term is chosen to be

dSa~p!52~Sa
(1)~p,E!1Sa

(2)~p,E!!E5Ma12
(p) .

~2.36!

This is necessary and sufficient to ensure unitarity and
the stable two-body systema12 is observed asymptotically
with the invariant massMa12

(p). Evaluation of the two-

-

.

FIG. 5. Diagram depicting one of the contributions to the tw
body self-energySba

(1)(p,E) given in Eq.~2.31!. Shown here, par-
ticle a1 decays into particlesg1 and g3, and these subsequentl
recombine to form particleb1. The relative momentum between th
intermediate particlesg1 andg3 is k13, the relative momentum of
the incoming stateuap1p2& is p, and relative momentum of the
outgoing stateubq1q2& is q. Solid circles denote matrix elements o
the potentials from Eq.~2.18!, V32 andV23, evaluated between two
and three-body states.
9-6
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body self-energySa(p,E) requires calculating the imaginar
part and a principal part of the integral in Eq.~2.31!. For
energiesE above a three-body threshold, these integrals
counter poles in the three-body Green’s functi
Gg(p,k13,E) for values of the relative momentumk13
5k0g , wherek0g satisfies the relationMg123

(p,k0g)5E.
From Eq.~2.24!, one obtains an expression for the on

body self-energy in the c.m. frame,

Pa~E!5dPa1
1

2ma1

(
g12

E
0

`

dkag12
~k,0!

3Va1g12
~k!G̃g~k,E!Ṽg12a1

~k,E!. ~2.37!

In Eq. ~2.37!, ma1
is the mass of the one-body stateuaP&,

Va1g12
(k) is the vertex function of the potentialV12,

Ṽg12a1
(k,E) is the vertex function for the dressed vert

Ṽ21, G̃g(k,E) is the dressed two-body Green’s function, a
ag12

(k,0) is a factor from Eq.~2.33! associated with the

phase space of the two-body systemg12. The one-body mass
counter termdPa is fixed by demanding that the elements
the one-body self-energies be identically zero when the d
ing energyE5E(ma1

,P). In the c.m. frame, the mass reno
malization condition is

Re@Pa~E!#E→ma1
50. ~2.38!

In this framework, the finite size of the hadrons involv
results in vertex form factors, such asVb1g12

(k), which fall
off sufficiently rapidly with k to ensure the convergence
all integrals. Therefore, the counter termsdP and dS are
both finite.

Having obtained expressions for the dressed one-
two-body Green’s functions, one next considers the tw
body scattering amplitudest (1) andt (2). These scattering am
plitudes depend on the one- and two-body Green’s functio
as well as the two-body kernelK. The two-body kernel is
comprised of three contributions

K5K (1)1K (2)1K (4pt), ~2.39!

where

K (1)5V23
(2)G3V32

(1) , ~2.40!

K (2)5V23
(1)G3V32

(2) , ~2.41!

andK (4pt) is the part of the potentialV22 that isnot propor-
tional to a Diracd-function in the relative momentum. Thi
latter term is the direct four-point coupling of four meson
and it is depicted as four meson lines converging on a sin
point in Fig. 1. In Eq.~2.39!, the parenthetical superscrip
on the first two quantities refer to which of the two particl
in the incoming state emits the exchanged particle; the
perscript on the third quantity refers to the direct four-mes
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interaction. In the first two terms, the exchanged particle
subsequently absorbed by the other particle in the outgo
state.

Explicit expressions for the most general two-body k
nels of Eqs.~2.40! and~2.41! in the spherical wave basis ar
complicated and not particularly enlightening. However,
the model application topp scattering considered in Sec
III, the resulting kernel is relatively simple. The only matr
elements ofV23 that are of interest in this application ar
those associated with the transitions of the formspp

→ppr, pp→pp f 0 , pp→KK̄r and pp→KK̄ f 0 , pp

→pK̄K* . In each of these hadron states, at least two of
three particles are spin-0 mesons. For these interactions
plane-wave matrix elements of the potentialsV23

(1) are of the
form

^g123Kkk 13uV32
(1)ua12Pp&5~2p!3d~K2P!dg2 ,a2

32E~ma2
,2p!

3^g13kk13uV21ua1p&, ~2.42!

where the matrix elements ofV12 are of the form

^g13kk13uV21ua1p&5~2p!3d~k2p!
~21!sg3

2l

A2sg3
11

3(
l

D
lg3

,l

sg3 ~2k13,p!k
13

sg3Ysg3
,2l*

3~ k̂13!Vg13a1
~k13!. ~2.43!

The vertex forV32
(1) appears in Figs. 5 and 6 as the right-mo

interaction vetrtex. In the partial-wave basis, the kernelK (1)

is shown in Fig. 6 and is given by

Kba
(1)J~q,p!52p(

g123

E
21

11

dx
PJ~x!

4p

1

2E~mg3
,p2q!

3
Vb2g23

~k23!S sg3~q,p!Vg13a1
~k13!

E2Mg123
~q,2p,p2q!1 i e

,

~2.44!

where

FIG. 6. Definitions of the relative momenta and particle lab
for the kernelKba

(1)(q,p) given in Eq.~2.44!.
9-7
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Ssg3
50~q,p!51,

Ssg3
51~q,p!5qb1

m S 2mg3

2 gmn1kg3mkg3n

Mg23
~k23!Mg13

~k13!
D pa2

n ,

~2.45!

for scalar exchanges (sg3
50) and vector exchanges (sg3

51), respectively, andPJ(x) are the usual Legendre poly
nomials inx5p•q/pq. The three four-momenta appearing
Eq. ~2.44! are

qb1

m 5@E~mb1
,q!,q#,

pa2

m 5@E~ma2
,2p!,2p#,

kg3

m 5@E~mg3
,p2q!,p2q#. ~2.46!

Expressions corresponding to the matrix elements
Kba

(2)(q,p) can be obtained in a similar manner.
Once specific forms of the model vertex form facto

Vg13a1
(k13) andVb2g23

(k23) are provided and substituted int
Eq. ~2.44!, the matrix elements of the kernelK are computed
numerically. One can proceed to solve the integral equa
in Eq. ~2.28! for the scattering amplitudet (2). In the c.m.
frame, the integral equation for the partial-wave scatter
amplitudetba

(2)J(q,p) has the form

tba
(2)J~q,p!5Kba

J ~q,p!1(
g12

E
0

`

dkag12
~k,0!

3Kbg
J ~q,k!G̃g~k,E!tga

(2)J~k,p!, ~2.47!

where ag12
(k,0) is the usual two-body phase space fac

Obtaining the solution of this integral equation is comp
cated by the presence of the two-body pole in the two-b
Green’s functionG̃g(k), and possibly the appearance
three-body unitarity cuts in bothG̃g(k) and the two-body
kernel Kba

J (q,p). The method used to solve this integr
equation is adapted from Ref.@20#. It involves obtaining a
two-body Moller operatorV (2), whoseJth partial-wave ma-
trix element satisfies,

tba
(2)J~q,p!5(

g12

E
0

`

dkag12
~k,0!Vbg

(2)J~q,k!Kga~k,p!.

~2.48!

After a solution fortba
(2)J(q,p) is obtained, one proceeds t

obtain an explicit expression for the two-body scattering a
plitude t (1), which is given by Eq.~2.27!. Since the solution
of the intermediate dressed one-body Green’s functionG̃1 is
obtained from the one-body self-energy from Eq.~2.37!, all
that remains is to determine the form of the dressed vert
Ṽ12 and Ṽ21. The integral equation for the dressed vertex
obtained for the transpose of the dressed vertex fr
Eq. ~2.25!,
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Ṽb12a1
~q!5Vb12a1

~q!1(
g12

E
0

`

dkag12
~k,0!

3K
bg

J5sa1~q,k!G̃g~k,E!Ṽg12a1
~k!. ~2.49!

The similarity between this integral equation and the integ
equation of Eq.~2.47! with J5sa1

which determinest (2) is
clear. It follows that the solution to Eq.~2.49! is just

Ṽb12a1
~q!5(

g12

E
0

`

dkag12
~k,0!V

bg

(2)J5sa1~q,k!Vg12a1
~k!.

~2.50!

Finally, the two-body scattering amplitudet (1) is

tba
(1)J~q,p!5 (

g18g1

Ṽb12g18
J

~q!G̃g
18g1

~E!Ṽg1a12

J ~p!

2Amg
18
mg1

.

~2.51!

The complete expression for the two-body scattering am
tudeT22 is obtained by adding this expression fort (1) to t (2)

according to Eq.~2.26!.
In the previous sections, it was demonstrated that the

plicit solution to the scattering problem involving one-, two
and three-body states can be obtained by performing sev
integrations and one matrix inversion. The matrix inversi
is necessary to obtain the two-body Moller amplitu
Vba

(2)J(q,p).

III. APPLICATION TO pp SCATTERING

In this section, the framework is applied topp scattering.
Simple model forms of the elementary vertex form facto
Vb12a1

(q) are introduced, and solutions for the self-energ

Pba(E) andSba(p,E) and scattering amplitudestba
(1)J(q,p),

tba
(2)J(q,p), and Ṽb12a1

(q) are obtained numerically. Severa
interesting aspects of the obtained solutions are discusse
should be emphasized that the model introduced in Sec. I
is preliminary and the manner in which the model parame
are fit to the data may be overly simplistic, as it focuses
reproducing only a few observables and therefore does
represent an exhaustive or complete study of the dynamic
pp scattering. The motivation is to provide a demonstrat
of the framework and exhibit the features of the model, a
its ability to describe the scattering of a system of strong
coupled particles with emphasis on the multiparticle chan
aspect. More complete studies of meson scattering within
present framework will be the subject of future articles.

In Sec. III A, the dynamical assumptions are discuss
along with the model parameters. A detailed list of the sta
included in the Hilbert space is provided. The model para
eters are determined using a simple method to fit experim
tal data for thepp isoscalar-scalar phase shift andr-meson
decay width, using theS-wave phase shifts from Ref.@21#. In
Sec. III B the resulting phase shifts, inelasticities and cr
sections are provided and compared to the data, and s
9-8
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RELATIVISTIC UNITARY DESCRIPTION OFpp SCATTERING PHYSICAL REVIEW D 64 036009
aspects of thef 0(980) scalar meson are discussed in terms
a KK̄ bound state.

A. Dynamical model for pp scattering

The model is intended to describe the scattering in a ra
of center-of-momentum~c.m.! energies from threshold (E
52mp'280 MeV! to aboutE51400 MeV. Above 1400
MeV, it is important to include in more detail the effects
the three scalar mesons observed in this region. For this
liminary study, however, it is possible to avoid makin
strong assumptions concerning these scalar mesons, h
the model will not be accurate in this energy region. In t
following, only the isoscalar-scalarI 50,J50) and
isovector-vector (I 51,J51) channels are considered. Th
motivation is to explore some of the interesting physical
pects of the present framework and to estimate the imp
tance of including three-body states in such a model of h
ron scattering. The assumptions of the dynamical model
summarized below.

Two-body states:For the chanels and energies explor
herein, it is assumed thatpp scattering is primarily deter
mined by the dynamics arising from the coupling of thepp

andKK̄ two-body channels. Hence,upp& and uKK̄& are the
only two-body channels included in the Hilbert space.

One-body states:It is assumed that the coupling of th
KK̄ system is strong enough to result in the appearance
narrow resonance in the scalar-isoscalar channel aE
' 980 MeV. This state is identified with theJPC5011

f 0(980) meson. Since this scalar meson is presumed to a
from final-state interactions as a quasi-boundKK̄ state, it is
not part of the free Hilbert space, and there is no bare m
associated with it. Rather, it appears as a pole in the ana
cally continuedT-matrix. Furthermore, in the limit that th
two-bodypp andKK̄ channels decouple, this pole moves
the real-energy axis below the two-kaon threshold; that is
becomes aKK̄ bound state in this limit. The identification o
the f 0(980) meson as aKK̄ molecule is controversial. Al-
though it appears as a molecular state in this model,
‘‘true’’ nature of the f 0(980) meson remains an open que
tion.

In contrast to thef 0(980) meson, it is assumed that
least one of the scalar resonances observed in the mas
gion between 1300 and 1700 MeV will be a QCD bou
state; that is, a state which arises as a bound state w
constituents are quarks, antiquarks and gluons. Such s
do not arise from the meson final-state interactions, they
not bound states of mesons, and hence must be include
the model asbare states with bare masses.

Experiments reveal the presence of several resonanc
the scalar-isoscalar channel between 1300 and 1700 Me
complete study of thepp scattering system in this energ
range requires the inclusion of each of these resonances
the model. However, to simplify the present study, all
these resonances are modeled in terms of a single scalar
nance. The resonance is assumed to have a mass of
MeV, which gives it a mass similar to the lightest of th
resonances above kaon threshold, referred to as theJPC
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5011 f 0(1370) meson. One ramification of choosing
single scalar resonance to model the effect of all obser
resonances in the 1300–1700 MeV region is in the width
this resonance. In order to fit the model parameters to thepp
phase shifts requires a single effective resonance with a
large width. It is found that the model resonance has a de
width of 805 MeV, which is approximately thesumof the
widths of the three observed resonances in this region.

Three-body states:Only three-body states are include
that can couple to thepp or KK̄ states through the absorp
tion or emission of the isovectorJPC5122 r(770), isodou-
blet JP512 K* (892), andJPC5011 f 0 mesons. Thus, the
three-body states included in this study areuppr&, upp f 0&,
uKK̄r&, uKK̄ f 0&, upK̄K* & and upKK* &.

To summarize, the hadronic states included in this mo
of pp scattering are

u f 0&, ur&,

upp&, uKK̄&,

uppr&, uKK̄r&, upK̄K* &, upp f 0&, uKK̄ f 0&, ~3.1!

where the f 0 meson refers to thef 0(1350) meson.@The
f 0(980) meson is expected to appear in the model as aKK̄
resonance.# The values of the bare masses of these partic
are provided in Table I and are underlined to indicate t
they are input parameters. As discussed in Sec. II, one-
two-body counter terms are included in the elementary in
action potentialsV11 andV22, respectively, such that the bar
masses given in Table I coincide with the dressed masse
the mesons.

Model vertex form factors:The vertices in the model ar
assumed to be finite-sized and hence require the approp
form factors for the relative three-momentumq. They are
given by the universal form:

Vb12a1
~q!5ab1b2a1

A 16p

2smax11
e2q2/Lb1b2a1

2
, ~3.2!

where smax5max$sb1
,sb2

,sa1
% is the largest spin of the par

ticles involved. In the present studys50 for vertices involv-
ing the f 0 meson, ands51 for vertices involving ther or
K* mesons. The vertex coupling constantsab1b2a1

and form

factor momentum scalesLb1b2a1
are chosen to provide a

good fit to the data for the isoscalar-scalarpp phase shift
dpp and ther-meson decay widthGr→pp5150 MeV. The
parameter search was limited in a number of ways. First,
various meson-exchange form factor scalesLb1b2a1

in Table
III were all constrained to be the same value and less tha
GeV. The direct four-meson couplings in Table IV were ch
sen to be one of two scales, the first was taken to be
MeV larger, and the second to be 125 MeV smaller than
meson-exchange scales in Table III. In the following, it
shown that the vector-exchange interactions contribute l
to the observables considered. To reduce the number of
rameters, the strength of the vector-exchange vertices w
taken to be identically equalappr5aKK̄r5apKK* . The isos-
9-9



ng

is
tly
m

u
in
y
try
b
t

of

s
.

e

e

e
n

n-
final
tion

nly

the
f of
m-
f

he

-

re

t the
se-
ase
use

tate

de
th
ud
en

he
iven

he
ales

M. A. PICHOWSKY, A. SZCZEPANIAK, AND J. T. LONDERGAN PHYSICAL REVIEW D64 036009
pin factors that arise in a calculation of the meson-excha
kernelsKba

J (q,p), such as in Eq.~2.44!, are given in Table
II.

Direct interactions:In addition to meson exchanges, it
important to include real-valued potentials that direc
couple two pseudoscalar mesons to two pseudoscalar
sons, as a part of theK (4pt) kernel in Eq.~2.39!. Such inter-
action potentials could arise from the direct coupling of fo
mesons to a virtual-quark loop. Here, two direct four-po
interactions are considered. The first is intended as a wa
mimic some of the effects of dynamical chiral symme
breaking. This interaction is taken to be of the form given
the elementary potentialV22 and is referred to as the direc
4p ~or 4K) interaction. In a partial-wave basis, the form
the four-pion interaction is given by

Kpp,pp
(4p)J ~q,p!516p~qp!Ja4p

2 e2q2/L4p
2

e2p2/L4p
2

, ~3.3!

and the four-kaon termK (4K)J(q,p)50. The second four-
point interaction is a short-ranged attraction modeled a
t-channel exchange of a heavy scalar-isoscalar meson
form is given by the scalar-exchange kernel of Eq.~2.44! and
the two-body self-energyS of Eq. ~2.31!. For simplicity it is
treated exactly as if two additional three-body states,

uppX&,uKK̄X&, ~3.4!

with mX51500 MeV, were added to the Hilbert spac
Clearly, modelled in this manner, for energiesE.mX
12mp51780 MeV, the stateuppX& can go on-energy-
shell. However, the calculations described herein are for
ergies less than 1400 MeV, so thatuppX& is never on-
energy-shell.

Again, the objective is to study the framework develop
in this paper. That is, it is interesting to assess the importa

TABLE I. Masses and widths of mesons. Masses that are un
lined have been fixed to reproduce the accepted values. All o
values are obtained from the model calculation. In the present st
the width of theK* meson was not calculated. All values are giv
in units of MeV.

p K r K* f 0(1350) f 0(980)

mass 140 500 770 890 1350 996
width 0 0 150 — 805 46

TABLE II. Isospin coupling constants for kernelKba(q,p) for
isoscalar,S-wave (I 50, JPC5011) and isovector,P-wave (I
51, JPC5122) scattering.

Channel Exchange I 50, J50 I 51, J51

pp↔pp pp f 0 1 1

KK̄↔KK̄ KK̄ f 0
1 1

pp↔pp ppr 21 21

KK̄↔KK̄ KK̄r 21 21

pp↔KK̄ pKK* 2A2 21
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and possibility of including the dynamics of three-body i
termediate states to the study of meson scattering and
state interactions, rather than to test a particular interac
model forpp scattering.

Once the forms of the model vertices are fixed, the o
observables used in the fit are the scalar-isoscalarpp phase
shift dpp , the existence of theKK̄ resonance@referred to as
the f 0(980)#, and the decay width of ther(770) vector me-
son. All measurable reaction channels are not used in
fitting procedure, since this paper represents more a proo
principle of the framework rather than a complete pheno
enological analysis ofpp scattering. The resulting values o
the coupling constants are provided in Tables III and IV.

B. Phase shifts and inelasticities

Below all three-body thresholds, the nontrivial part of t
S-matrix in Eq.~2.16! can be written as a 232 unitary matix
Sba(E) with a,b denoting the only two open channelspp

andKK̄. TheS-matrix in theJth partial wave can be param
etrized in terms of two phase shiftsdpp and dKK̄ , and one
inelasticityhpp ,

da~E!5
2 i

2
ln

Saa
J ~E!

ha~E!
, ~3.5!

ha~E!5uSaa
J ~E!u, ~3.6!

for a5pp,KK̄. Below all three-body thresholds there a
only two stable channels,pp andKK̄. Hence, there is only
one inelasticity parameterhpp5hKK̄ . For energiesE above
the lowest stable three-body threshold, one must augmen
S-matrix by including all stable three-body states. Con
quently, its parametrization requires more than two ph
shifts and one inelasticity. Nonetheless, one may still
Eqs. ~3.5! and ~3.6! to define the phase shiftsda(E), and
inelasticitiesha(E) for the two channelsa5pp and KK̄.
Of course, above the threshold of a stable three-body s
hppÞhKK̄ .

r-
er
y,

TABLE III. Coupling strengths and momentum scales for t
vertex form factors. The values of the momentum scales are g
in MeV.

b1b2a1 pp f 0 KK̄ f 0
ppr KK̄r KpK*

ab1b2a1
12.4 5.08 20.0 20.0 20.0

Lb1b2a1
875 875 875 875 875

TABLE IV. Coupling strengths and momentum scales for t
four-point meson interactions. The values of the momentum sc
are given in MeV.

ppX KK̄X 4p 4K

a 19.8 11.0 17.2 0.0
L 1000 1000 750 750
9-10
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The pp phase shift, as defined by Eq.~3.5! and obtained
from our model, is shown as a solid curve in Fig. 7. T
model provides an excellent description of thepp phase
shift data depicted in Fig. 7@22–25#, and the inelasticity
hpp , as shown in Fig. 8. The overall trend of the pion sc
tering phase shiftdpp is positive and increases slowly wit
energyE. This is indicative of a weak and attractive effectiv
pp scattering potential. At the kaon threshold, a rapid ph
motion is apparent. It results from the presence of a narr
f 0(980) scalar meson. Above the two-kaon threshold,
phase shift continues to increase slowly, at a rate simila
the increase in the phase shift below the threshold.

Below all other thresholds, thepp channel is the only
open channel, and unitarity requires that the inelastic
hpp51 here. This is clearly observed in Fig. 8, where t
calculated inelasticityhpp has a value consistent with unit
below the threshold of theKK̄ channel at 1 GeV. Had four
body states been included into this framework, one mi
have expected to see a decrease in the inelasticityhpp due to
the opening of the four-pion state, which has a threshold

FIG. 7. Thepp scattering phasedpp in the scalar, isoscala
channel as a function of the c.m. driving energyE. The data are
from Refs.@22# ~open squares!, @23# ~closed circles!, @24# ~up tri-
angles!, and@25# ~down triangles!.

FIG. 8. Thepp scattering inelasticityhpp in the scalar, isosca
lar channel as a function of the c.m. driving energyE. The data are
from Ref. @22#.
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E54mp'0.560 GeV. However, the data in Fig. 8@22#
seem to suggest that the contribution of the four-pion stat
pp scattering is negligible. This can be seen by noting
lack of any systematic deviation fromhpp51 for the range
of energies 4mp,E,2mK .

It is clear from both Figs. 7 and 8 that theKK̄ channel has
a significant effect onpp scattering. At the two-kaon thresh
old atE'1.0 GeV, one observes a rapid increase in thepp
phase shiftdpp , and a sharp fall off of thepp inelasticity
hpp to its minimum valuehpp'0.31. This phase motion is
indicative of crossing the thresholds of the two-bodyKK̄
state and the one-bodyf 0(980) bound state. The rapid in
crease observed in the phase shiftdpp(E) is due to theweak

coupling between thepp and KK̄ channels. In the model
when the mixing of these two channels is further weaken
the rate of change of the phase motion tends toincrease,
until finally, in the limit that the coupling between the tw
channels goes to zero, the phase motion becomes a
function of magnitude 180 degrees. Such a phase motio
completely unobservable, and could therefore be ignored
together ~although it is relevant to Levinson’s theorem
which relates overall changes in the phase shifts from thre
old to infinite energy to the number of bound states in
system!.

The importance of the coupling between the two-bo
channelspp andKK̄ can be estimated quantitatively by re
calculating the pion phase shiftdpp after removing the kaon
stateuKK̄& from the Hilbert space. The result is shown as t
dotted curve in Fig. 9. However, from the above argume
perhaps a better indication of the importance of theKK̄
channel is obtained by letting the couplings that lead to
mixing between theKK̄ and pp channels gosmoothlyto
zero.~In practice, this is done by not allowing the one-bo
scalarf 0(1350) to have a bare coupling to theKK̄ state, and
settingaK* pK50. This has a minimal effect on the dynamic
but prevents mixing theupp& and uKK̄& states.! In this lim-

FIG. 9. Thepp scattering phasedpp in the scalar, isoscala
channel versus the c.m. energyE. The full calculation~solid curve!
is compared to the calculation~dashed and dotted curves! in the

limit the KK̄ andpp states become decoupled. The data are fr
Ref. @22#.
9-11
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iting case, the two statesuKK̄& and u f 0(980)& are coupled to
the upp& state, but the contributions they make topp scat-
tering go to zero. The result is that for energiesE
.1000 MeV, thepp scattering amplitude will cross th
branch cuts associated with the opening of these two ch
nels. But since these channels do not mix with thepp chan-
nel in this limit, thepp phase shift exhibits a steplike mo
tion at E51.0 GeV. This is shown as the dashed curve
Fig. 9. The difference between the solid curve, which rep
sents the full model calculation, and the dashed curve in
9 may be taken as being indicative of the significance of
KK̄ channel onpp scattering. One concludes that the mi
ing between thepp andKK̄ channels is significant near an
below the two-kaon threshold, where it can contribute m
than half of the total phase shiftdpp . At energies above the
two-kaon threshold, its importance quickly dimishes a
vanishes altogether aboveE51150 MeV.

The importance of the mixing between thepp and KK̄
channels can also be observed in the pion inelasticityhpp

shown in Fig. 8. Just above the two kaon threshold, the
elasticity plummets to a minimum valuehpp'0.31. In the
limit that the coupling to the kaon channel goes to zero,
described above, the inelasticity takes on a very differ
appearance.

In Fig. 10, the two pion inelasticity is plotted above th
KK̄ threshold. Below the threshold its value is unity. T
lowest multiparticle state to which two-pion flux can be lo
is the three-particle channeluppr&. The production thresh
old of this state is 1050 MeV. It is clear that one observe
slow decrease in the inelasticityhpp above 1050 MeV, due
to the opening of theppr channel. The effect of this chan
nel on the inelasticity is very small, with a minimum valu
hpp'0.994.

The energy dependence of theS-wave pion scattering in-
elasticity hpp and phase shiftdpp are conveniently plotted
together in an Argand diagram. In Fig. 11, the partial-wa
scattering amplitudeapp

J50(E) is plotted in the complex plane
as a parametric function of the c.m. energyE. This figure
clearly shows the rapid rise in the elasticpp phase shift just
below 1 GeV, and the resulting dramatic loss of flux from t

FIG. 10. Thepp inelasticityhpp in the isoscalar-scalar chann
with no kaons.
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elastic channel as soon as theKK̄ channel opens up.
For spinless particles, the amplitude is given by

app
J ~E!5

hppe2idpp21

2i
, ~3.7!

52
p0

~4p!2

1

2E
zpp@ tpp,pp

(1)J ~p0 ,p0!

1tpp,pp
(2)J ~p0 ,p0!#, ~3.8!

wherep05AE2/42mpp
2 is the magnitude of the on-energy

shell three-momentum of the pions,zpp is the wave function
renormalization of the two-pion stateupp&, and tba

(1)J(q,p)
and tba

(2)J(q,p) are the two-body scattering amplitudes, o
tained from Eqs.~2.47! and ~2.51!, respectively. The two-
body scattering cross sectionsb←a(E) can be written in
terms of the partial-wave scattering cross sections accor
to

sb←a~E!5 (
J50

`

sb←a
J ~E!. ~3.9!

In terms of the scattering amplitudes, these partial-wa
cross sections are given by

sb←a
J ~E!5

2J11

4p

zbza

64p2E2
utba

(1)J~q0 ,p0!1tba
(2)J~q0 ,p0!u2,

~3.10!

where p0 and q0 are the on-energy-shell solutions
Ma(p0)5E and Mb(q0)5E, respectively. The resulting
cross section for elastic,S-wavepp scattering is shown as
solid curve in Fig. 12. It is finite at threshold, exhibits
maximum value of 43 millibarns atE'600 MeV, and a
sharp decrease at the position of thef 0(980) scalar meson

FIG. 11. Argand diagram forpp scattering at all energies. Plot
ted is the energy dependence of the real and imaginary parts o
partial-wave scattering amplitudeapp

J50(E) for the J50 partial
wave from Eq.~3.7! or Eq. ~3.8!. The curve is calculated forall
energiesE.2mp , and annotated with the corresponding energieE
in GeV, from threshold to aboveE51.7 GeV.
9-12
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RELATIVISTIC UNITARY DESCRIPTION OFpp SCATTERING PHYSICAL REVIEW D 64 036009
resonance. This sudden drop occurs just below theKK̄
threshold, as can be seen upon examination of the inset
in Fig. 12 which depicts a closeup of theKK̄ threshold re-
gion.

The dot-dashed curve is the resulting cross sec
sKK̄←pp

J50 for the two-kaon production processpp→KK̄.
This cross section is considerably smaller than that of
elastic pp scattering cross section, reaching its maximu
value of 4.6 millibarns just above the two-kaon threshold
E51 GeV. Its small size is a result of the weak coupli
between the two-pion and two-kaon channels. As discus
above, a weak coupling of these channels is necessar
ensure a narrowf 0(980) meson. If the mixing between th
pion and kaon channels were stronger, thef 0(980) meson
would more easily decay into two pions, tending to increa
its width significantly.

The dashed curve in Fig. 12 is theS-wave cross section
for elasticKK̄ scattering. This cross section is comparab
huge, having its maximum at the two-kaon threshold ene
Its size can be compared to that of the two-pion elastic cr
section,

spp←pp
J50 ~E52mp!'18.3 mb,

sKK̄←KK̄
J50

~E52mK!'734 mb.

The very largeKK̄ cross section arises from the sca
f 0(980) meson which lies just below theKK̄. The presence
of a bound state just below the two-body scattering thresh
will generally tend to increase the size of the cross sec
dramatically.

As was discussed earlier in Sec. III A, the model para
eters were chosen to provide a good fit to theS-wave pion
phase shiftdpp data from Ref.@21#. In Fig. 7, the resulting
phase shifts are also in excellent agreement with the
analyses of Refs.@22#, @24#, and@25#. However, it is impor-
tant to realize that direct comparison of these model res

FIG. 12. S-wave cross sectionsJ50(E) in millibarns for pp

→pp ~solid curve!, KK̄→KK̄ ~dashed curve!, andpp→KK̄ ~dot-

dashed curve!. The inset shows a detail of the region around theKK̄
threshold atE51 GeV.
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with thesepp scattering data must be done with cautio
Extraction of these data requires the use of theoretical m
els, or theoretical assumptions, in order to fit the experim
tal observables. In the worst-case scenario, the resultingpp
phase shift data may be more representative of the extrac
methods employed than of the actualpp scattering process

The extraction of thepp phase shifts from experiment i
a difficult and long-standing problem of hadron physics.
present, it is impossible to construct an experiment in wh
a pion beam is scattered from a pion target. Hence, o
techniques are required to extract thepp phase shift from
experimental observables. One possibility is to use dec
that produce two pions in the final state, and attempt to
tract thepp phase shifts from the final-state interactions.

The procedure employed by Ref.@24# is extract the phase
shifts from the electroweak kaon decayK1→p1p0e1ne .
The results are shown as open squares in Figs. 9 and
Extraction of the phase shift using decays with more th
two particles in the final state requires some knowledge
transition form factors for the coupling of a kaon, two pio
and theW boson to determineK1→p1p2W1. A nice fea-
ture of employing the electroweak decayK1→p1p0e1ne is
that the two pions are the only strongly-interacting partic
in the final state. Hence, one would expect that thepp in-
teractions would be the dominant contribution to the dress
of the final state. However, this approach is hampered by
experimental difficulties. The first is the lack of statistic
This particular kaon decay represents only a small fract
(431025) of the totalK1-meson decay width, which is al
ready extremely small. The second is the fact that the e
gies and angles of the outgoing leptons provide a small le
arm with which to vary the c.m. energyE of the two final-
state pions.

Another method is to extract the final state interactions
the two-pion production processpp→ppn, employed by
Ref. @25# ~down triangles!, Ref.@22# ~open squares!, and Ref.
@23# ~closed circles!, shown in Fig. 7. These studies requi
some theoretical input in order to perform the extraction
the pp scattering phase shiftdpp and inelasticityhpp ;
hence, they are not direct measurements of thepp scattering
phase shift.

Our model parameters were originally fit to thepp phase
shifts obtained by an analysis@23# of an experiment at
CERN involvingp2p→p1p2n at 17.2 GeV. Recently, this
same data was reexamined by Kaminskiet al. @22#, with
weaker model assumptions than were used in Ref.@23#. The
work of Ref. @22# provides an exhaustive andnearly com-
plete study of thepp phase shift. In particular, there is n
assumption that pion exchange is the dominant mechan
for the processp2p→p1p2n. Consequently, this analysi
seems to be more general than the others. A relative ph
ambiguity in the analysis of Ref.@22# provides four possible,
distinct solutions for thepp phase shifts and inelasticities
Two of these solutions seem to have an unphysical inelas
ity hpp below the two-kaon threshold and can be discard
The other two solutions, denoted the ‘‘up-flat’’ and ‘‘down
flat’’ solutions, are very similar in appearance and neither c
9-13
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be dismissed on qualitative grounds. The phase shifts f
the ‘‘down-flat’’ solution of Ref. @22# are shown as solid
circles in Figs. 9 and 13.

The general behavior of thepp phase shiftdpp is posi-
tive, which is indicative of an attractivepp scattering am-
plitude. An abrupt increase in the pion phase shift is evid
at 1 GeV, which is due to the combined effects of the op
ing of the KK̄ threshold and the crossing of the sca
f 0(980) resonance.

Apart from this feature, which in this particular model is
result of the delicate mixing between thepp andKK̄ chan-
nels, the calculated pion phase shiftdpp exhibits a steady,
gentle increase from the threshold at 280 to above 1
MeV. In the model, this slowly increasing behavior aris
from subtle cancellations between the attractive potential
the heavy scalar-meson exchanges and the repulsive, d
four-pion interaction from Eq.~3.3! which is intended to
model the effect of dynamical chiral symmetry breaking. T
different form factor scales involved in these interactio
~see Tables III and IV! are chosen to provide this slowl
increasing, weak phase shift observed in the two-pion ch
nel. Typically, scalar potentials by themselves provide
strong attraction in theS-wave pp channel, that leads to
rapidly rising phase shift just above thepp threshold, which
then quickly falls away. This behavior is not seen in thepp
phase shiftdpp .

The importance and role of the scalar resonances inpp
scattering can be appreciated by a close examination of
13. The effect of the heavys-channel resonances which a
collectively modeled by the singlef 0(1350) in the model is

FIG. 13. Importance of the different model contributions topp
scattering phase shift. The solid curve is the full calculation. T
dashed curve is obtained by removing the one-body statef 0(1350)
from the Hilbert space. The dot-dashed curve is obtained by c
pletely removing the scalarf 0(1350) from the theory, both in one
body and three-body states. The dotted curve is same as the
dashed curve, but all scalar couplings~the ‘‘X’’-exchanges and
contact terms! are also set to zero. This is the effect of just t
vector-meson exchanges. Above threshold it is negative wit
minimum of dpp'22.0 degrees atE'1.2 GeV. The dot-dot-
dashed curve is obtained by weakening the coupling of the o
body f 0(1350) state to thepp state by 10 percent. The data poin
are from Fig. 7.
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twofold. First, their presence leads to a strong attractive
tential for energies below 1400 MeV. Second, they prov
the most important contribution tooff-diagonalmatrix ele-
ments of the two-body scattering kernelK. That is, they pro-
vide the strongest source of mixing for the two-pion a
two-kaon states in this model.

Both of these effects tend to produce an attraction for
two pions. In particular, the strong attraction necessary
bind the kaons to form thef 0(980) resonance results in
strong attraction in the two-pion channel as well. The amo
of mixing between the two-pion and two-kaon states dicta
the attraction felt by the pions. Hence, when the coupl
betweenupp& andu f 0(1350)& states is artificially reduced by
as little as 10%, the result is significant, as shown by
dot-dot-dashed curve in Fig. 13. When the one-body s
u f 0(1350)& is removed entirely from the Hilbert space, th
result is the dashed curve. The resulting pion phase shi
negative and close to zero below the two-kaon threshold,
positive above the threshold. The absence of the one-b
s-channel statef 0(1350) reduces the mixing between th
two-pion and two-kaon states, which results in a nea
stable~and very narrow! kaon bound statef 0(980). In this
case, one observes af 0(980) bound state with a width tha
has been reduced from 46 to 0.28 MeV This is a result of
fact that thef 0→pp decay must proceed throughK* ex-
change in the kernelK, which provides only a weak mixing
of the pp andKK̄ states.

When all scalar mesons are removed from the theory
tirely; that is, when the couplings that lead to the existence
one-body statesu f 0(1350)&, and three-body statesu f 0pp&
and u f 0KK̄& are set to zeroapp f 0

5aKK̄ f 0
50, the resulting

phase shift is shown in Fig. 13 by the dot-dashed curve.
slightly repulsive behavior is a result of the combined effe
of the attractive scalar-X and repulsive four-point interac
tions associated with chiral symmetry, given by the para
eters in Table IV.

To minimize the number of free parameters all of t
couplings to vector mesons are chosen to be equal to e
other appr5aKK̄r5apKK* . These coupling strengths wer
then determined by solvingP-wave pp scattering at ther
meson massE5mr5770 MeV, and requiring that the
r-meson width reproduced the experimental valueGr

5150 MeV, as given in Table I. It is found that the resultin
coupling strength leads to a vector-meson exchange inte
tion kernelK which provides a very weak repulsion forpp
scattering. This is illustrated by the dotted curve in Fig. 1
where all of the couplings except those involving the vec
mesons (arpp , arKK̄ , aK* pK̄! are set to zero. The resultin
phase shift is negative~repulsive! and very small; its larges
absolute value is about 2 degrees. Thus, in this mo
r-meson exchange is negligible in theS wave. This model
differs from the analysis of Ref.@14#, in which they report
that the attractive potential@which leads to the binding of the
KK̄ into the f 0(980) resonance# is primarily due tor-meson
exchange, which is strong and attractive in their model.
the framework, the exchange of a spin-1 meson in the ke
K results in a very weak and mildly repulsive interactio
This difference is a result of how the spin couplings a
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RELATIVISTIC UNITARY DESCRIPTION OFpp SCATTERING PHYSICAL REVIEW D 64 036009
energy denominators of the meson-exchange propagator
implemented in the kernels of the two frameworks.

Before ending this section, a final comment concern
the accuracy of the numerical methods employed is p
vided. The accuracy is measured using the unitarity con
tion ~or optical theorem!

T2T†5T†~G2G†!T, ~3.11!

which is derived from the fact thatV in Eq. ~2.18! is Her-
mitian. Evaluating Eq.~3.11! between two-pion states, on
obtains an equation that relates the two-pion flux miss
from the forward direction to the one-, two-, and three-bod
outgoing flux observed leaving the scattering center. T
relation provides a sensitive check of the numerical meth
employed.

The fraction of lost two-pion flux observed as outgoi
two- or three-particle states is shown versus the exponea
of the adiabatic scalee5102a GeV in Fig. 14 for c.m. en-
ergy E51400 GeV. For any energyE greater than the two
pion scattering threshold, there can be no stable one-par
state. It follows that no one-particle outgoing flux can
observed. In Fig. 14, the regions labeled ‘‘two-body’’ an
‘‘three-body’’ represent the fractions of the missing two-pi
flux that appear as outgoing two-body (pp or KK̄) and
three-body (ppr) states, respectively. Since the Hilbe
space is restricted to one-, two- and three-body states,
should account for all the flux. However, in practice, t
numerical methods employed introduce violations to the u
tarity condition of Eq.~3.11!. The region below the solid
curve in Fig. 14 represents the fraction of flux that co
pletely disappears from the theory; such a loss of flux v
lates unitarity. One observes that for values ofe
<1027 GeV, the violation is less than 1026 of the outgoing
flux and is therefore negligible. In the application topp
scattering described above, the value ofe510212 GeV ~or
a512) was employed.

FIG. 14. Fraction of incoming two-pion flux at energyE
51400 MeV in the isoscalar-scalar channel, appearing as ‘‘tw
body’’ or ‘‘three-body’’ final states, or lost to unitarity violations
The fractions are shown versus the exponenta of the adiabatic scale
e5102a GeV.
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IV. SUMMARY AND FUTURE DIRECTIONS

Herein, a framework suitable for the description of no
perturbative hadron scattering, based on the Bakamj
Thomas formulation of relativistic quantum mechanics,
introduced. In Sec. II, it is shown that by including the i
teractions into the free mass operatorM, one can ensure tha
observables calculated in the framework are Lorentz cov
ant. When the Hilbert space is truncated to contain only on
two- and three-body states, the resulting Lippman
Schwinger equations~LSEs! form a closed set of coupled
integral equations. The solution of these integral equation
obtained numerically.

A significant improvement of this framework over earli
work is that thefull effect of three-body states have be
included. The three-body Green’s functions appear only
the two-body scattering kernelK and the two-body self-
energyS, and for energiesE above the three-body thresh
olds, unitary branch cuts associated with these thresh
appear both inK and S. It follows that the kernelK and
two-body self-energyS arecomplexfunctions of the energy
E. The appearance of such three-body branch cuts prov
the means for important dynamical effects, such as thr
hadron production and decays into three-hadron sta
which are automatically accounted for in our framewo
Such effects have hitherto been ignored for the most par
previous studies.

The inclusion of three-body cuts into the integral equ
tions requires appropriate numerical methods to be e
ployed. These methods, necessary to solve the coupled s
LSEs are shown to maintain the unitarity of the theory
better than one part in one million. To demonstrate the uti
of the framework, a preliminary study ofpp scattering is
carried out in Sec. III. The simple model, introduced in S
III A, is able to provide an excellent description of thepp
phase shifts and inelasticities.

The main purpose for developing this framework is
provide a means of incorporating the dynamics of lo
momentum transfer, final-state interactions into the study
hadronic processes for energies up to a couple of GeV. In
energy region, the comparison between experimental d
and theorectical predictions from models of QCD for qua
and gluon dynamics, are often made difficult due to the pr
ence of final-state interactions. The soft rescattering of fin
state hadrons tends tomaskthe QCD dynamics of interest
The framework developed herein provides a tractable me
to incorporate the effects of final-state interactions into st
ies of hadronic phenomena.

Towards this end, the framework is constructed to b
consistent extension for the constituent quark model. It p
vides a means tounquenchthe quark model by providing for
hadron loops, multiparticle thresholds and the unitar
branch cuts associated with these. The result is the gen
tion of complex-valued scattering amplitudes. It is an exte
sion of the quark model, in that the quark model may be u
to provide the elementary couplings and form factors for
hadronic interactions inV. The framework uses this real po
tential V to generate the full scattering solution.

Future applications of the framework will focus on th
dynamics of nucleon resonances and exotic, hybrid mes

-
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that are the subject of current and proposed experimen
TJNAF. In the baryon case, for energies up to about 2 G
there are some well-known and striking examples inpN
scattering for which three-body effects are crucial in und
standing the experimental observables. For example, in
L2I ,2J5P11 channel, thepN inelasticity arising from the
three-bodyppN state is very large@1#. It is likely that a
complete understanding of theP11 pN scattering channe
and the mysteriousN* (1440) resonance requires the fu
implementation of three-body unitary cuts that this fram
work provides.

The effect of three-body cuts in exotic partial waves c
also be very important. Most theoretical studies of hyb
meson decays have so far ignored effects of final state in
ys

R

03600
at
V,

r-
he

-

n

r-

actions. The best candidate for the exotic meson,
p1(1600) @26# was found in therp decay channel, which is
predicted to be suppressed with respect to other two-b
decay channels, in particular theb1p @27,28#. This shift of
strength fromb1p to rp could be explained by mixing with
the three-body,vpp intermediate state which is believed
have a strong coupling to these two-meson channels.

ACKNOWLEDGMENTS

This work is supported by the U.S. Department of Ener
under Contract No. DE-FG02-87ER40365 and the Natio
Science Foundation under Contract No. PHY0070368.
ev.

B

@1# J.A. Johnstone and T.-S.H. Lee, Phys. Rev. C34, 243 ~1986!.
@2# R. Jaffe, Phys. Rev. D15, 267 ~1977!.
@3# J. Weinstein and N. Isgur, Phys. Rev. D27, 588 ~1983!.
@4# T. Barnes, Phys. Lett.165B, 434 ~1985!.
@5# D. Morgan and M.R. Pennington, Phys. Lett. B258, 444

~1991!.
@6# J.A. Oller, E. Oset, and J.R. Pelaez, Phys. Rev. Lett.80, 3452

~1998!.
@7# E. Klempt, B.C. Metsch, C.R. Munz, and H.R. Petry, Ph

Lett. B 361, 160 ~1995!.
@8# N.N. Achasov and G.N. Shestakov, Usp. Fiz. Nauk161, 53

~1991! @Sov. Phys. Usp.34, 471 ~1991!#.
@9# Particle Data Group, D. Groenet al., Eur. Phys. J. C15, 1

~2000!.
@10# C.J. Morningstar and M.J. Peardon, Phys. Rev. D60, 034509

~1999!; SESAM Collaboration, G.S. Baliet al., Nucl. Phys. B
~Proc. Suppl.! 53, 239 ~1997!.

@11# S. Narison, Nucl. Phys.B509, 312 ~1998!.
@12# P. Minkowski and W. Ochs, Eur. Phys. J. C9, 283 ~1999!.
@13# R. Kaminski, L. Lesniak, and B. Loiseau, Eur. Phys. J. C9,

141 ~1999!.
@14# G. Janssen, B.C. Pearce, K. Holinde, and J. Speth, Phys.

D 52, 2690~1995!.
.

ev.

@15# R. Kaminski, L. Lesniak, and J.-P. Maillet, Phys. Rev. D50,
3145 ~1994!.

@16# R. Kaminski, L. Lesniak, and B. Loiseau, Phys. Lett. B413,
130 ~1997!.

@17# B. Bakamjian and L.H. Thomas, Phys. Rev.92, 1300~1953!.
@18# M. Betz and F. Coester, Phys. Rev. C21, 2505~1980!.
@19# M.A. Pichowsky, S. Walawalkar, and S. Capstick, Phys. R

D 60, 054030~1999!.
@20# M.I. Haftel and F. Tabakin, Nucl. Phys.158, 1 ~1970!.
@21# B. R. Martin, D. Morgan, and G. Shaw, inPion-Pion Interac-

tions in Particle Physics~Academic, London, 1976!, pp. 87–
101, and references therein.

@22# R. Kaminski, L. Lesniak, and K. Rybicki, Acta Phys. Pol.
31, 895 ~2000!.

@23# G. Grayeret al., Nucl. Phys.B75, 189 ~1974!.
@24# L. Rosseletet al., Phys. Rev. D15, 574 ~1977!.
@25# V. Shrinivasanet al., Phys. Rev. D12, 681 ~1975!.
@26# E852 Collaboration, G.S. Adamset al., Phys. Rev. Lett.81,

5760 ~1998!.
@27# N. Isgur, R. Kokoski, and J. Paton, Phys. Rev. Lett.54, 869

~1985!.
@28# P. Page, E.S. Swanson, and A.P. Szczepaniak, Phys. Rev. D59,

034016~1999!.
9-16


