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Propagators and dimensional reduction of hot SU„2… gauge theory
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We investigate the large distance behavior of the electric and magnetic propagators of hot SU~2! gauge
theory in different gauges using lattice simulations of the full four-dimensional~4D! theory and the effective,
dimensionally reduced, 3D theory. A comparison of the 3D and 4D propagators suggests that dimensional
reduction works surprisingly well down to the temperatureT52Tc . Within statistical uncertainty the electric
screening mass is found to be gauge independent. The magnetic propagator, on the other hand, exhibits a
complicated gauge dependent structure at low momentum.
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I. INTRODUCTION

Understanding the large distance behavior of the st
electric and magnetic propagators in hot SU(N) gauge
theory is of interest for several reasons. First of all it
related to the screening phenomenon in a hot non-Abe
plasma. In fact, the concepts of electric and magnetic ma
extracted from these propagators form to a large extent
basis for our intuitive understanding of screening in no
Abelian gauge theories@1#. Furthermore, the concept o
screened electric propagators finds application in refined
turbative calculations~hard thermal loop resummation!
@2–4#. Nonperturbative calculations of these propagat
thus can provide a bridge between perturbative and non
turbative descriptions of the electric screening phenomen

Of course, a drawback of such an approach is that
gluon propagator itself is a gauge dependent quantity. O
thus has to question to what extent the results extracted f
these propagators have a physical meaning. The poles o
gluon propagator at finite temperature were proven to
gauge invariant in perturbation theory@5#. However, for
static quantities such as the Debye mass static magn
fields can lead to a breakdown of perturbation theory. T
Debye mass cannot be defined perturbatively beyond lea
order @6,7#. Nonperturbatively the problem of the gauge i
dependence of the screening masses is thus an open que

It has been shown that at high temperature the large
tance behavior of an SU(N) gauge theory can be describe
in terms of the dimensionally reduced effective theory, i
the three-dimensional~3D! adjoint Higgs model@8–15#. The
screening masses extracted from gauge invariant correla
were studied in terms of the effective three-dimensional~3D!
theory @12–17# and were compared with the correspondi
results from four-dimensional~4D! simulations@18,19#. The
relation between the propagator masses and the masse
tracted from gauge invariant correlators was discussed
Ref. @8#. The screening masses extracted from gauge inv
ant correlators correspond to the masses of some bo
states of the 3D effective theory and are several times la
than the masses extracted from propagators.

In the present paper we extend our earlier studies on
0556-2821/2001/64~3!/036001~13!/$20.00 64 0360
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electric and magnetic propagators@8,20,21#. Contrary to
Refs.@8,20,21# where propagators were studied only in La
dau gauge, we consider here a class of generalized Lan
gauges, the Coulomb gauge, the maximally Abelian gau
and the static time-averaged Landau gauge. We study
propagators in terms of the 3D effective theory as well as
the 4D theory at finite temperature. A comparison of t
propagators in the full 4D and in the 3D effective theo
provides further evidence for the applicability of dimension
reduction. A detailed study of finite-size effects in the prop
gators shows that the picture of magnetic screening give
Refs.@8,20,21# needs to be revised to some extent. First
sults from our analysis of the magnetic sector have b
presented in Ref.@22#.

The paper is organized as follows. In Sec. II we discu
questions related to gauge fixing and the definition of pro
gators in finite temperature SU~2! theory as well as in the
dimensionally reduced effective theory, the 3D adjoint Hig
model. Section III contains our main results on electric a
magnetic propagators and the analysis of their gauge
volume dependence. Finally we give our conclusion in S
IV. In the Appendix details of the determination of the p
rameters of the effective theory are discussed.

II. GLUON PROPAGATORS IN FINITE TEMPERATURE
SU„2… GAUGE THEORY

In this section we define the actions we use for our sim
lations in three and four dimensions and introduce our ba
notation for gauge fields, gluon propagators, and the differ
gauges we have analyzed.

A. Actions in three and four dimensions

In four dimensions~4D! all our calculations are per
formed with the standard Wilson action for SU~2! lattice
gauge theory:

SW5b4 (
x,n.m

@12 1
2 Tr Um~x!Un~x1m̂ !Um

† ~x1 n̂ !Un
†~x!#,

~1!
©2001 The American Physical Society01-1
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where Um(x)PSU(2) are the usual link variables andb4

54/g4
2. In three dimensions~3D! the standard dimensiona

reduction process leads us to consider the 3D adjoint H
model

S52b3 (
x,n.m

1

2
Tr Um~x!Un~x1m̂ !Um

† ~x1 n̂ !Un
†~x!

2b3(
x,m̂

1

2
Tr A0~x!Um~x!A0~x1m̂ !Um

† ~x!

1b3(
x

H S 31
1

2
hD 1

2
TrA0

2~x!1xF1

2
TrA0

2~x!G2J ,

~2!

whereb3 now is related to the dimensionful 3D gauge co
pling and the lattice spacinga, i.e., b354/g3

2a. The adjoint
Higgs field is parametrized by Hermitian matricesA0

5(asaA0
a (sa are the usual Pauli matrices! @12#. Further-

more,x parametrizes the quartic self-coupling of the Hig
field andh denotes the bare Higgs mass squared. The rela
between the 3D and the 4D couplings will be discussed
the Appendix. We also note that the indicesm, n, of course,
run from 0 to 3 in four dimensions and from 1 to 3 in thr
dimensions. Although we will not always mention this d
ference explicitly it should be obvious from the context ho
various sums that appear have to be interpreted.

B. Gauge fixing

As we want to analyze properties of the gluon propaga
which is a gauge dependent quantity, we have to fix a ga
on each configuration on which we want to calculate t
observable. In the past most studies of the gluon propag
have been performed in Landau gauge. Here we will c
sider a class ofl gauges, which are generalizations
gauges that have been introduced in Ref.@23,24# to smoothly
interpolate between the Landau and Coulomb gauge. In
continuum these gauges correspond to the gauge condit

(
m

lm]mAm50. ~3!

On the lattice, these gauges are realized by maximizing
quantity

Tr(
m,x

lmUm~x!. ~4!

In 4D the Landau gauge condition thus corresponds to
caselm[1 for all m50, . . . ,3,while the Coulomb gauge is
given by l050 andl i51 for i 51, 2, 3. In the latter case
we have to impose an additional gauge condition for
residual gauge degree of freedom. We do this by deman

(
x

U0~x0 ,x!5u0 ~5!
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to be independent ofx0. In addition to thel gauges we also
consider the maximally Abelian gauge~MAG! which can be
realized by maximizing the quantity@25#

(
x,m

Tr@s3Um~x!s3Um
† ~x!#, ~6!

with s3 being a Pauli matrix. Also in this case one has to
a residual gauge degree of freedom which we do by imp
ing a U~1! Landau gauge condition@26#. In 4D SU~2! gauge
theory we also consider the static time-averaged Lan
gauge ~STALG! introduced in Refs.@27,28#. In the con-
tinuum it is defined by

]0A0~x0 ,x!50, (
x0

(
i 51

3

] iAi50. ~7!

On lattice this gauge is realized in two steps. First we ma
mize the quantity Tr(xU0(x). In the second step we max
mize the quantity

Tr(
i 51

3

(
x

Ui~x! ~8!

performingx0 -independent gauge transformations.
While the notion of Landau and maximally Abelia

gauges carries over easily to the 3D case, we have to exp
our notion ofl gauges in 3D a bit more in detail. We hav
considered two versions ofl gauge:

l3 gauge:]1A11]2A21l3]3A350, ~9!

l1 gauge:l1]1A11]2A21]3A350. ~10!

The l1 gauges are more closely related to the 4Dl gauges
considered by us; in both cases the rotational symmetry
the gauge condition is broken in a direction orthogonal to
x3 ~or z) direction, which we are going to use for separati
the sources in our correlation functions. Furthermore, we
troduce in 3D the so-called Coulomb gauges (c1 gauges!
which fix the gauge in a plane transverse to thez direction

c1 gauge: c1]1A11]2A250. ~11!

Of course, as in the 4D case, we again need an additi
gauge condition for the residual gauge degree of freed
The casec151.0 is the usual Coulomb gauge. This gau
has the advantage that a positive definite transfer matrix
ists in thez direction.

In our numerical calculations the gauge fixing was p
formed using a standard iterative algorithm accelerated by
overrelaxation step@29# as well as by using a stochastic ove
relaxation algorithm@30#.

When analyzing observables in a fixed gauge one also
to address the question to what extent can Gribov cop
influence the result? This problem will not be discussed he
It previously has been studied in 4D SU~2! gauge theories a
zero temperature@31# as well as at nonzero temperature@20#.
1-2
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In both cases no influence of Gribov copies on the glu
propagators was found within the statistical accura
achieved in these studies.

C. Gauge fields and gluon propagators

Definitions of the lattice gauge fieldAm(x) utilize the na-
ive continuum relation between the lattice link variabl
Um(x) and the gauge field variables in the continuum lim
i.e.,Um(x)5exp@igaAm(x)#. A straightforward definition thus
is

Am~x!5
1

2iga
@Um~x!2Um

† ~x!#, ~12!

which in the continuum limit differs from the continuum
gauge fields byO@(ag)2# corrections. Herea is the lattice
spacing andg either the 3D or 4D bare gauge couplin
Other possible definitions forAm(x), which formally lead to
smaller discretization errors were considered in Ref.@32#. It
was found that up to an overall multiplicative constant, t
difference in magnetic and electric propagators, due to
ferent definitions of the gauge field, is much smaller than
statistical errors. We note that the definition~12! of the
gauge field assumes that the link variableUm is close to the
unit matrix. This seems to be the case for all gauges con
ered except the Coulomb gauge. In the case of Coulo
gauge the gauge fixing procedure does not force the temp
link to be close to the unit matrix. Only the spatial links tu
out to be close to the unit matrix. For instance, for lin
averaged over a lattice volume of size 12232434, we find
for b452.512 ~corresponding to 2Tc) ^Tr U0/2&50.576(4)
and^Tr Ui /2&50.900 89(6). These numbers should be com
pared with the corresponding ones in Landau gau
^Tr U0/2&50.8879(1) and̂ Tr Ui /2&50.887 09(7). One can
expect that TrU0/2 gets closer to 1 as the continuum limit
approached. Indeed for the Coulomb gauge on a 242348
38 lattice atb52.74 ~also corresponding to 2Tc) we find
^Tr U0/2&50.625(6). However, from these numbers, it
clear that very large values ofNt , i.e., large couplingsb4,
are necessary to get a meaningful definition of theA0 field.
Therefore we will use the 4D Coulomb gauge only to an
lyze magnetic propagators.

The lattice gluon propagators ind dimension are defined
as

Dmm~z!5
1

adV
K a(

x3 ,b
Qm

b ~x31z!Qm
b ~x3!L . ~13!

HereQm
b (x3) is a sum over all gauge fields in a hyperpla

orthogonal tox3

Qm
b ~x3!5ad21(

x'

Am
b ~x',x3!, ~14!

with Am
b (x)5 1

2 Tr@Am(x)sb#; x'5(x1 ,x2) in 3D and x'

5(x0 ,x1 ,x2) in 4D, respectively. Furthermore,V5N2Nz is
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the lattice volume in 3D andV5N2NzNt in 4D.1 The elec-
tric and magnetic propagators are then defined in the u
way ~see, e.g., Refs.@20,21#!,

DE~z!5D00~z!, DM~z!5 1
2 @D11~z!1D22~z!#. ~15!

D33(z) is not included in the definition ofDM(z) because it
is constant inl and Coulomb gauges. We will also consid
momentum space propagators, which are obtained throu
one-dimensional Fourier transformation,

D̃mm~k!5a (
z50

Nz21

eikzDmm~z! with k5
2pn

Nz
,

n50,1, . . . ,Nz/2. ~16!

We use the standard definition for the momentum sp
magnetic propagator~see, e.g.,@33,34#!

D̃M~k!5
1

3 (
m51

3

Dmm~k!. ~17!

We include hereD̃33 in the definition of the momentum
space propagators in order to take into account the contr
tion of the constant componentD33(z), which only influ-
ences the zero mode contributionD̃mm(k50). The electric
propagator in momentum space is simply defined byD̃E(k)
5D̃00(k). In order to absorb additional cutoff effects in mo
mentum space propagators, we find it useful to analyze th
in terms of the momentap[u2 sin(k/2)u rather than the lat-
tice momentak. In the following we will usep instead ofk as
a definition for our lattice momenta. For the analysis of t
long-distance behavior of these correlation functions, it
customary and, in fact, quite instructive to considerlocal
masses, which are defined by

Di~z!

Di~z11!
5

cosh@mi~z!~z2Nz/2!#

cosh@mi~z!~z112Nz/2!#
, ~18!

1We will also use the notationV5N2Nz for the spatial volume in
3D and 4D.

TABLE I. Couplings and lattice volumes used in the 4D sim
lations of finite temperature SU~2! gauge theory.

b452.512 8231634
12232434
16233234
20234034
24234834
28235634
32236434

b452.740 16233238
24234838
1-3
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FIG. 1. Comparison of 4D and 3D data for the electric~left! and magnetic~right! gluon propagator in Landau gauge calculated aT
52Tc .
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with i 5E,M . If the propagators decay exponentially starti
from some value ofz, the corresponding local masses w
reach a plateau.

All our 4D simulations have been performed at a tempe
ture T52Tc . The values for the 4D couplingb4, corre-
sponding to this temperature, were taken from Ref.@21# and
are given in Table I together with the corresponding latt
volumes used in our 4D simulations.

We give the choice of parameters for our 3D simulatio
in the next section. The cutoff dependence is discussed
the magnetic and electric propagators separately in Sec.

D. 3D vs 4D calculations

Most of the results we are going to discuss in the follo
ing section have been obtained through simulations in
dimensionally reduced version of the 4D SU~2! gauge theory
at finite temperature. As we do want to compare our res
obtained in 3D with corresponding results in the 4D theo
obtained at a temperatureT52Tc , we should check tha
dimensional reduction yields reliable results at temperatu
this close to the critical point. In Refs.@13–15# it was shown
that the effective theory is capable to describe the lo
distance behavior of some gauge invariant correlators
SU~2! and SU~3! gauge theories at these temperatures
03600
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similar conclusion has been reached for the 2D reduced
sion of the 3D SU~3! gauge theory at finite temperature@35#.

We have performed a detailed analysis of propagators
culated in Landau gauge in 4D and 3D atT52Tc . The latter
has been simulated at values ofh corresponding to the meta
stable region of the 3D adjoint Higgs model, i.e., forb
511, h520.3773, andx50.099~see the Appendix for de
tails!. The 4D simulations have been performed atb52.74
on lattices given in Table I. In order to compare the prop
gators obtained from simulations in 3D and 4D we ha
normalized them to unity at distancezT50. The results are
shown in Fig. 1. As one can see from the figure, the 3D a
4D results for the electric as well as for the magnetic pro
gators, are in excellent agreement. It is interesting to n
that good agreement between 3D and 4D propagators is
ready found at relatively short distances, although the
effective theory is expected to describe the 4D physics o
at distancezT.1. The above result implies that dimension
reduction works quite well even atT52Tc and can be estab
lished by comparing gauge fixed observables. In Fig. 2
compare the electric and magnetic propagators calcul
from full 4D and effective 3D theories at 2Tc for the maxi-
mally Abelian gauge. As one can see from the figure, a g
agreement between 4D and 3D results also exists here
e
FIG. 2. Comparison of 4D and 3D data for the electric~left! and magnetic~right! gluon propagator in maximally Abelian gaug
calculated atT52Tc .
1-4
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FIG. 3. The magnetic propagator inl gauges on a 16233238 lattice~left!, as well as on 24234838 and 12232434 lattices~right! at
T52Tc . Here also the propagator in STALG is shown. The propagators were normalized to 1 atz50.
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though it isa priori not clear in which sense the 3D max
mally Abelian gauge corresponds to the 4D maximally Ab
lian gauge. The agreement between the magnetic propag
in Fig. 2 shows that the two gauges are quite similar.
possible reason for this agreement is the decoupling of
A0 field from the dynamics of spatial~magnetic! gauge
fields, which will be discussed in Sec. III. We note, howev
that the magnetic propagators calculated in Landau
maximally Abelian gauges, respectively, show quite a diff
ent long-distance behavior. This is evident from the comp
son of Figs. 1 and 2 and will be analyzed in much mo
detail in Sec. III. Also the apparent volume dependence,
ible in these figures, will be discussed later in more deta

III. NUMERICAL RESULTS ON ELECTRIC
AND MAGNETIC GLUON PROPAGATORS

In this section we will discuss our numerical results o
tained from simulations in three and four dimensions. T
main purpose of this investigation was to quantify the gau
dependence of the electric and magnetic gluon propaga
and analyze to what extent gauge invariant masses ca
extracted from the long-distance behavior of the gluon c
relation functions.

In Fig. 3, we show results from a calculation of the ma
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netic propagator in 4D finite temperature gauge theory
different l gauges including the Coulomb gauge limit. A
the l gauges yield identical magnetic propagators. In fa
one should expect that alll gauges do lead to identica
propagators on an infinite spatial lattice. For static config
rations (]0A050) the gauge condition for thel gauges,
l]0A01] iAi50 is up to multiplicative factors identical to
the 3D Landau gauge condition. As we have shown that
4D propagators in Landau gauge can be mapped onto the
propagators, this has to be the case also for the 4D prop
tors calculated inl gauges. The same holds for STALG.

We also note that magnetic propagators show strong
ume dependence at distanceszT*1. This effect may be
traced back to the influence of zero mode contributions to
propagators@45#, which are different in different gauges an
give a volume dependent positive contribution to the cor
lation functions. Zero mode contributions are most prom
nent in the long-distance behavior of the correlation fun
tions calculated on finite lattices.

In Figure 4 we summarize our results for electric prop
gators. As in the case of magnetic propagators, elec
propagators calculated in different 4Dl gauges as well as in
STALG agree with each other as expected. Contrary to m
netic propagators, the electric propagators show no sig
FIG. 4. The electric propagators in different gauges. Shown is the electric propagator measured on 16233238 ~left! and on 242348
38 and 12232434 ~right!. The propagators were normalized to 1 atz50.
1-5
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cant volume dependence. We also note that the cutoff eff
seem to be small both for electric and magnetic propaga
~cf. Figs. 3 and 4!. The issues of volume and cutoff depe
dence will be discussed separately for electric and magn
propagators in the following two sections.

A. The magnetic gluon propagator

In this section we will discuss in more detail our resu
on magnetic propagators. Previous lattice calculations of
magnetic propagators in hot SU~2! gauge theory in 4D@21#
and 3D@8# gave evidence for its exponential decay in co
dinate space and thus indicated the existence of a mag
mass@36#. A nonzero magnetic mass was also found in a
lytical approaches based on gap equation@37–39# and a non-
perturbative analysis of 211 dimensional gauge theory@40#.
Nonetheless, it has been questioned whether a magnetic
in non-abelian gauge theories does exist@41,42#. In Ref.
@33#, the Landau gauge propagators of 3D pure gauge the
were studied on fairly large lattices and were found to
infrared suppressed.2 Such a behavior clearly is in conflic
with the existence of a simple pole mass. In order to furt
investigate this problem simulations on larger lattices
needed to explore the long-distance regime of the correla
functions. This can be achieved in the 3D reduced the
which gives a good description of the 4D theory even
temperatures a few timesTc . We thus concentrate, in th
following, on a discussion of results obtained from our c
culations in 3D. In fact, it also has been observed alread
earlier calculations that the magnetic propagators of the
adjoint Higgs model are very close to the correspond
propagators of 3D pure gauge theory. We thus further res
our analysis of the magnetic propagators to the limit of
pure gauge theory. Where appropriate, we will perform
comparison with results obtained from the 3D adjoint Hig
model and the 4D SU~2! gauge theory.

In order to get control over the propagators in the co
tinuum as well as in the infinite volume limit, we have pe
formed calculations forb355, 5.5, 6, 8, and 16 on differen
lattice volumes. The simulation parameters are summar
in Table II.

It has been pointed out in Ref.@45# that zero modes can
give sizeable contributions to gluon correlation functions.
terms of the lattice gauge fields, the zero mode contribu
is defined as the expectation value of the average gauge

fm
a 5

1

V (
x

Am
a ~x!. ~19!

The zero mode contribution is apparent in the moment
space propagators where one finds from Eq.~16! for vanish-
ing momentum

D̃mm~p50!5adV(
a

^~fm
a !2&. ~20!

2Similar results were found in 4D SU~N! gauge theory at zero
temperature@43,44#.
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By taking the inverse Fourier transformation of Eq.~16! one
can easily see that the zero modes give a constant cont
tion (Nza)21D̃mm(p50) to the coordinate space propagat
Dmm(z). In fact, such a contribution does qualitatively e
plain the overall volume dependence of the magnetic pro
gators observed in our calculation. The contribution fro
zero momentum mode fluctuations is expected to vanish
the infinite volume limit. We thus expect that at fixed di
tancezT the propagators approach their asymptotic, infin
volume values from above as the lattice size is increas
This is indeed the case, as can be seen in Fig. 5, where
show the 4D and 3D magnetic propagators calculated in L
dau and maximally Abelian gauges on different size lattic
at T52Tc . As one can see from the figure the volume d
pendence is quite different in these two gauges. In the cas
the Landau gauge, we observe that the magnetic propag
in coordinate space decay faster with increasing lattice s
In the maximally Abelian gauge, however, the propaga
does not exhibit any sizeable finite-size dependence.

For volumesVT3*300, the magnetic propagator calc
lated in Landau gauge becomes negative forzT*2. In Fig. 6
we show the large-distance behavior of the coordinate sp
propagator calculated in 4D and 3D on lattices with simi
3D lattice volume. A similar behavior of the coordina
space propagator was found in otherl gauges. The propaga
tors calculated in MAG, however, stay positive for all lattic
sizes and distances accessible in our calculation, i.e., u
zT;5.

As was mentioned above, the magnetic propagators in
3D adjoint Higgs model are not very sensitive to the pr
ence of the adjoint Higgs field. This is illustrated in Fig.
where we compare magnetic propagators in momen
space calculated in the 3D adjoint Higgs model with cor
sponding results obtained in the pure gauge theory at
same value ofb3. This also shows that the effect of th
adjoint Higgs field on the magnetic propagator decrea
with increasing temperature. In fact, for temperatureT
*10Tc , we find no visible effect of the adjoint Higgs fiel
on the magnetic propagators. In what follows, we will, the
fore, mainly discuss the magnetic propagators in the limit
pure gauge theory.

TABLE II. Lattice volumes used at different values ofb3 in our
3D calculations of the magnetic gluon propagator.

b355 b355.5 b356 b358 b3516

102320 162332 723 162332 322364
163 242348 242348 402396
243 282356 482396
303 323 643

323 322364 963

403 483

483 482364
563 643

603 963

643

723

963
1-6
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FIG. 5. Volume dependence of the magnetic propagator in coordinate space calculated in Landau~left! and maximally Abelian~right!
gauges. The propagators were normalized to 1 atz50. Shown are the results from 3D simulations atb358 and 4D simulations, which are
compared at similar values of the physical volume in units ofT3. These volumes correspond to lattices of size 16233238, 24234838, and
16233234 in 4D and to 162332, 242348, 322364, and 482364 in 3D. Theb4 values for our 4D simulations are given in Table I.
p
o

l

, t
a
re
p

r
t
th
n
o

at
e

d

o
t

in
e
uge

e of

r
w

om
gs
In Fig. 8 we show the momentum space magnetic pro
gators in Landau gauge obtained from 3D pure gauge the
at b355 andb358. For momentap.0.6g3

2 the propagators
in units of g3

4 are volume andb3 independent. For smal
momenta, however, they are strongly volume and alsob3
dependent. One can clearly see, that for large volumes
propagators reach a maximum at nonzero momentum
start decreasing with decreasing momenta. This is a di
consequence of the negative propagators in coordinate s
found in the Landau gauge forzT*2.

The volume dependence of the magnetic propagato
momentum space is strongest atp50. On the other hand, a
b355 one can see that the value of the propagator in
vicinity of its maximum is essentially volume independe
for the three largest volumes. A similar behavior of the m
mentum space propagator was found in otherl gauges. This
is demonstrated by Fig. 9. Note that although the propag
is a gauge dependent quantity the position of the peak se
to be gauge independent in the class ofl gauges considere
here.

The existing rigorous bound on the infrared behavior
the gluon propagator in momentum space implies that i

FIG. 6. Large-distance behavior of the magnetic propagato
coordinate space calculated in Landau gauge. The propagators
normalized to 1 atz50.
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less singular thanp22 in 4D andp21 in 3D @46#. It has been
further argued that it is likely to vanish at zero-momentum
the thermodynamic limit@47#. These considerations wer
also extended to the case of magnetic propagators in ga
theories at finite temperature@48#. We have analyzed this
question by performing studies of the volume dependenc
the zero momentum propagator. The data forD̃M(0) are
shown in Fig. 10 for differentb3 values. Forb355 and
b358, the data have been fitted to the ansatz

D̃M~0!g3
45a~Vg3

6!2z1b. ~21!

We have performed fits withb50 andb.0. In the first case
we have obtained rather largex2 values@typically the value
of x2/(DOF) was between 4 and 10# for both b355 and
b358. The three parameter fits give a reasonably goodx2

for both b3 values. Using the whole range

in
ere

FIG. 7. Momentum space magnetic propagator obtained fr
3D pure gauge theory and the adjoint Higgs model with couplin
corresponding to temperatures 2Tc and 3Tc . Shown are the mag-
netic propagators in pure gauge theory atb358 ~a!, in a 3D adjoint
Higgs model atb358, x50.09, andh520.4846 corresponding to
the temperature 3Tc ~b!, in pure gauge theory atb55.5 ~c! and in
a 3D adjoint Higgs model atb55.5, x50.099, andh520.7528
corresponding to the 2Tc ~d!.
1-7
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of volumes one findsa551(11),b52.06(15), and z
50.34(3) with x2/DOF51.8 for b355 and a552(9),b
52.08(33) andz50.31(3) with x2/DOF51.8 for b358.
Although the volume dependence ofD̃M(0) seems to beb3
independent, the value of the exponentz as well as the value
of D̃M(0) in the infinite volume limit, strongly depends o
the range of volumes used in the fit. For example by fitt
the data onD̃M(0) for b355, and using lattice volume
from 303 to 963, one getsa5281(139),b52.52(56), andz
50.55(5). In order to firmly determine the functional form
of the volume dependence ofD̃M(0) and the valueD̃M(0) in
the infinite volume limit, simulations on even larger lattic
are necessary.

In order to confirm the infrared suppression ofD̃M(p) and
the existence of a maximum inD̃M(p) at nonzero momen
tum, we have analyzed in more detail the interplay betw
infinite volume and continuum limit. We have seen that t
propagators are infrared suppressed for large enough
umes atb355 and 8. However, the magnitude of the prop
gator at small momenta shows a clearb3 dependence. There
fore, it is important to estimate the behavior of the magne
propagator in the continuum limit. We have seen that atb3
55, the magnetic propagator on a 603 lattice is already close

FIG. 8. The momentum space magnetic propagator atb355
~open symbols! andb358 ~filled symbols! calculated in the Landau
gauge.

FIG. 9. The momentum space magnetic propagator atb355 on
the 723 lattice in differentl gauges.
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enough to the corresponding infinite volume limit. Therefo
we have performed additional calculations of the magne
propagators atb356 and on 723. The lattice volumes 603,
723, and 963 at b355, 6, and 8 correspond to the sam
physical volume. Moreover, for small momentap,0.5g3

2,
the values of the propagators at approximately the same
ues of momenta, are available. In this region of momenta
have performed an extrapolation to the continuum limit
ting data at differentb3 with the ansatza1b/b3. The result
of this analysis is summarized in Fig. 11. As one can
from this figure the general structure of the propagator,
particular the existence of a maximum at nonzero mom
tum, is preserved in the continuum limit, although the v
ume dependence of the momentum space propagator ra
increases with decreasing momentum forp/g3

2<0.5.

B. The electric gluon propagator

Let us now turn to a discussion of the electric glu
propagator. The volume dependence of the electric propa
tor turns out to be quite different from the magnetic on
The electric propagators show exponential decay at large
tances in all gauges considered.

In Fig. 12 the Landau gauge electric propagators in m
mentum space are shown forT52Tc andT59200Tc . In the

FIG. 10. Volume dependence ofDM(0) at different values of
b3. The lines represent fits with the ansatz given in Eq.~21!.

FIG. 11. The Landau magnetic propagator at different values
b3 and the continuum extrapolation.
1-8
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FIG. 12. The Landau gauge electric propagator in momentum space at 2Tc ~left! andT59200Tc ~right!.
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latter case we performed the analysis only in the 3D effec
theory atx50.03, b516, andh520.2085. As one can se
from the figure, the volume dependence of the electric pro
gators is indeed quite different from the volume depende
of the magnetic propagators. In particular, the electric pro
gators show no sign of infrared suppression. For fixed lat
geometry, i.e., fixed ratioN/Nz , the volume dependence o
the zero mode contribution seems to approachV21, as ex-
pected for the propagator of a massive particle. Moreo
the infinite volume limit is almost reached on the large
lattices used in our simulations. We find a similar volum
dependence also in other gauges.

Since we are interested in extracting the screening m
from the electric propagator it is also important to addr
the question of volume dependence of the electric mass
Fig. 13 the local electric masses in Landau gauge are sh
for different lattice volumes forb3516, h520.2085, and
x50.03. As one can see from the figure, the value of
plateau~which in fact determines the screening mass! is es-
sentially volume independent, although there is some volu
dependence in the local masses at short distances. Thu
screening masses can be estimated even from the sm
lattice for these values of the parameters. We will use

FIG. 13. Local electric masses in Landau gauge forb516, h
520.2085, andx50.03. The solid line is the value of the electr
mass obtained from an exponential fit of the electric propag
calculated on a 322396 lattice. The dashed lines indicate the u
certainty in its value.
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fact in the discussion of the gauge dependence of the ele
screening mass.

Since the electric propagators show exponential deca
large distances in all gauges considered, it is natural to
whether the electric masses extracted from them are ga
independent. There is a formal proof that poles of finite te
perature propagators are gauge independent to any ord
perturbation theory@5#. However, as discussed in Sec. I, th
Debye mass is not calculable in perturbation theory bey
leading order. Therefore it is not clear whether the argume
of Ref. @5# apply for electric screening mass. In terms of t
effective 3D theory, the screening of static electric fields
related to propagation of the adjoint scalar field. Since
3D theory is confining, the adjoint scalar field is not a phy
cal state~the physical states are some bound states! and
therefore there is no physical principle that guarantees
mass to be gauge invariant. Guided by the analogous p
lem in 3D scalar QED, it was conjectured in Ref.@49# that
the large-distance behavior of the high-temperature n
Abelian electric propagator is dominated by a brunch
singularity. Although this is different from the simple po
obtained in leading-order perturbation theory, this still lea
to an exponential decay of the electric propagators in co
dinate space with a gauge invariant screening mass. Th
is also clear that the question of gauge~in!dependence of the
electric screening mass is in general nontrivial.

We have studied the gauge dependence of the ele
propagators for two sets of parameters of the 3D effec
theory x50.03,h520.2085,b3516 and x50.03,h5
20.1510, andb3524 both corresponding to the temperatu
T59200Tc . In this investigation, lattices with spatial vo
ume 162332, 242348, and 322396 were used. From stud
ies of the Landau gauge propagators we know that elec
masses forb3516 can be reliably extracted already from
162332 lattice. We have investigated electric propagators
different gauges introduced in Sec. II B. Forb3516, most
simulation were performed on a 162332 lattice. For calcu-
lations withl3 gauges, we also used a 322396 lattice. For
b3524, propagators in all gauges except the maxima
Abelian gauge, were measured on a 322396 lattice. Due to
the large number of iterations required for fixing the ma
mally Abelian gauge, propagators were measured only o
242348 lattice atb3524.

r
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Our main results forb3524 are summarized in Fig. 14
where local electric screening masses in Coulomb, m
mally Abelian, andl3 gauges are shown. As one can s
from the figure, local masses are strongly gauge depende
short distances. ForzT*2 they, however, approach a pla
teau, which is gauge independent within the statistical ac
racy reached in our calculation.

We also have performed simulations on a 162332 lattice
for b3516 using Coulomb gauges withc150.1, 10, as well
as l1 gauges withl150.1, 10, and a maximally Abelian
gauge. The corresponding results for local electric mas
are shown in Fig. 15. Again, within statistical accuracy,
gauge dependence of the plateau of the local electric ma

FIG. 14. The local electric masses calculated on 322396 for x
50.03, h520.1510 andb3524 in l3 gauges, in a 3D Coulomb
gauge (c151) and in maximally Abelian gauge. The solid line
the value of the electric mass obtained from an exponential fit of
electric propagator in the Landau gauge calculated on a 322396
lattice for b516, h520.2085, andx50.03. The dashed lines in
dicate the uncertainty in its value.

FIG. 15. The local electric masses calculated forx50.03, h5
20.2085, andb3516 on 162332 lattice. Shown are the local elec
tric masses calculated inc1 gauges forc150.1 ~a! andc1510 ~b!,
in l1 gauges forl150.1 ~c! and l1510 ~d! and the maximally
Abelian gauge~e!. The solid line is the value of the electric ma
obtained from an exponential fit of the electric propagator in
Landau gauge calculated on a 322396 lattice b516, h5
20.2085, andx50.03. The dashed lines indicate the uncertainty
its value.
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can be observed, though the local masses have quite diffe
z dependence.

IV. CONCLUSIONS

We have investigated electric and magnetic gluon pro
gators in the high-temperature phase of SU~2! pure gauge
theory in different gauges. The propagators were calcula
directly in full 4D theory and also in 3D effective theory.
was shown that the effective theory can describe the elec
and magnetic propagators remarkably well down to tempe
tureT52Tc . We find that electric propagators can safely
extrapolated to the infinite volume limit. Within the statist
cal accuracy of our present analysis and the class of ga
considered here, its long distance behavior is gauge inde
dent and yields a gauge independent electric screening m
which is compatible with earlier determinations.

The magnetic propagator, however, has a complica
volume and gauge dependent infrared structure, which is
compatible with a simple pole mass. While it still shows
simple exponential decay at large distances in the maxim
Abelian gauge, it starts getting negative forzT*2 in a class
of l gauges, which includes the Landau gauge. This lead
the infrared suppression of the propagator in moment
space and is incompatible with a simple pole in the magn
gluon propagator as it was deduced from earlier stud
@8,20,21,36# which were limited to shorter distances an
smaller lattices. Nonetheless, we find in all gauges that m
netic correlators are screened at large distances.
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APPENDIX

We will discuss here the procedure we followed to fix t
couplings of the 3D adjoint SU~2! Higgs models. Two dif-
ferent approaches were proposed for fixing the parame
appearing in Eq.~2!, the usual perturbative dimensional r
duction @12,9# and nonperturbative matching analyzed
Ref. @8#. Here we have used both approaches.

The lattice gauge couplingb3 is related to the dimension
ful 3D continuum gauge couplingg3

2 by the standard relation

b35
4

g3
2a

. ~A1!

This relation basically determines the lattice spacinga in
terms of the dimensionful couplingg3

2. The Higgs self-
coupling and the 3D gauge couplings are related to the re
malized gauge couplingg(m) of SU~2! gauge-theory in the

e

e
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PROPAGATORS AND DIMENSIONAL REDUCTION OF . . . PHYSICAL REVIEW D 64 036001
modified minimal subtraction (MS) scheme. The corre
sponding relations were calculated in Ref.@12# to a two-loop
level.

To fix the temperature scale, one needs to choose
renormalization scalem, which fixes the temperature depe
dence of the 4D gauge coupling. For this we will use info
mation on the temperature dependence of the spatial s
tension. The analysis of Ref.@50# showed that the spatia
string tension can be well described in terms of 3D effect
theory. Furthermore, it was observed that the tempera
dependence of the spatial string tension of finite tempera
SU~2! gauge theory can well be described by a simple f
mula 0.334(14)g2(T)T @51# with g(T) given by the one-
loop renormalization-group relation. The string tension
the pure 3D SU~2! gauge theory was found to be 0.335(2)g3

2

@52#. The string tension of the 3D adjoint SU~2! theory has
been calculated in Ref.@14#. Within statistical errors, it
turned out to be independent of the scalar couplings
equal to the string tension of the pure SU~2! gauge theory.
Based on these observations we have fitted the data on
spatial string tension from Ref.@51# using 0.335(2)g3

2 with
one-loop level couplingg3

2 and the relationTc51.06LMS

from Ref.@21#. The fit yieldsm518.86T. We have also fitted
the data for the spatial string tension using the two-loop f
mula for g3

2 from Ref. @12#. However, it turned out that the
simple one-loop formula fits the 4D data on spatial str
tension much better. Based on these observations the
gauge couplingg3

2 and the Higgs self-coupling were chose
according to the one-loop version of formulas~2.13! and
~2.15! from @12#

g3
25g2~m!T, ~A2!

x5
g2~m!

3p2 , ~A3!

with m518.86T. In Ref. @8# the parametersg3
2 and x were

chosen according to two-loop formulas from Ref.@12# and
m52pT. We have checked that differences between
present choice and that used in Ref.@8# are about 10%. In
Ref. @14# the parameters of the effective theory were a
calculated using the two-loop formulas from Ref.@12#, how-
ever, the 4D gauge coupling constant was determined fro
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one-loop formula in theMS scheme withm;7.0555. In Ref.
@14#, the screening masses extracted from gauge invar
correlators were calculated in the effective 3D theory a
compared with the corresponding results from 4D simu
tions @18,19#. A rather good agreement between the scre
ing masses calculated in 3D effective and full 4D theor
was found. However, the 3D gauge coupling constants
Ref. @14# were considerably larger than ours which wou
overestimate the spatial string tension by 30%. Neverthe
this contradiction can easily be resolved by noticing that
set of parameters corresponding to 5Tc in Ref. @14#, namely,
x50.104 andy50.242, would roughly correspond to th
temperature 2Tc in our approach. Using the results from Re
@14# for these values ofx and y and the value ofg3

2(2Tc)
52.89T, we get for the two smallest screening masses
values m(01

1)52.90(3) andm(02
2)53.91(8) ~for details

about the classification of different gauge invariant screen
masses, see Ref.@14#!. These numbers should be compar
with those obtained in the 4D simulation in Ref.@19# at T
52Tc , m(01

1)53.06(12) andm(02
2)54.06(12). Thus, it

seems that with our present choice of the parameters,
effective 3D theory could describe all static quantities m
sured so far in lattice simulations. We also note that in
case of~211!-dimensional gauge theory at finite temperatu
it has been shown that the spatial string tension and ga
invariant screening masses can be simultaneously well
scribed by the effective 2D theory@35#. In 211 dimensions,
the situation is simplified by the fact that the gauge coupl
has no renormalization scale dependence due to the su
renormalizability of the theory.

Generally we have used the nonperturbatively determi
values forh @8#. However, in some cases, the propagat
were also calculated for values ofh given by perturbative
dimensional reduction. The bare Higgs mass parameteh
could be related to the mass parametery5mD0

2 /g3
4 of the

continuum adjoint Higgs model@12#

h5
16

b3
2 y2

3.1759114~415x!

pb3

2
1

p2b3
2F ~20x210x2!S ln

3

2
b310.09D18.7111.6xG ,

~A4!
te two

TABLE III. Numerical values for the couplingh and continuum mass parametery5mD0

2 /g3
2 of the

effective 3D theory in our simulations and the corresponding values of the temperature. I and II deno
sets ofh values taken from Ref.@8#. The last two columns give the couplingh and mass parametery obtained
from the perturbative relations Eq.~A4! and Eq.~A5!.

x T/Tc b3 I II Pert

h y h y h y

0.099 2.0 11 20.3773 0.2274
0.090 2.8 16 20.2611 0.3556 20.2622 0.4007 20.2700 0.2755
0.070 9.0 16 20.2528 0.4408 20.2490 0.5009 20.2588 0.3470
0.050 72.1 16 20.2365 0.5914 20.2314 0.6721 20.2437 0.4756
0.030 9200 16 20.2085 0.9279 20.2006 1.0544 20.2181 0.7758
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with mD0 being the tree-level~from the point of view of the
effective theory! Debye mass. At the one-loop level one h

y5
mD0

2

g3
2

5
2

9p2x
. ~A5!

From Eqs.~A4! and ~A5! we have calculated values ofh
corresponding to the one-loop level dimensional reducti
In this case simulation was performed in the metasta
brunch of the broken phase~see Ref.@12# for details!.

Numerical values for the couplings of the 3D effecti
action, used in most of our calculations, are summarized
Table III together with the corresponding values ofT/Tc .
For other values ofb3 used in our calculations, we hav
calculated the couplingh from Eq. ~A4! using they values
from Table III.

FIG. 16. The electric screening masses in units of the temp
ture. Shown are the electric massesmE for the first ~filled circles!
and the second~open circles! set ofh. The line represents the fit fo
the temperature dependence of the electric mass from 4D sim
tions. The open triangles are the values of the electric mass fo
h values obtained from the perturbative reduction in the metast
region ~the last column in Table III!. Some data points at the tem
peratureT;70Tc andT;9000Tc have been shifted in the temper
ture scale for better visibility.
ys

e

03600
.
le

in

The electric propagators show exponential decay at la
distances. Therefore it is possible to extract screening ma
from them. The procedure of extracting the screening mas
from the propagators was described in Ref.@8#. In Figure 16
we compare the electric screening masses extracted from
Landau gauge propagators in the 3D adjoint Higgs mo
calculated on 322364 and 322396 lattices with the corre-
sponding results from 4D SU~2! gauge theory@21#. The pa-
rameters of the effective theory were chosen according
Table III.

As one can see from the figure, the agreement betw
the masses obtained from 4D and 3D simulation is rat
good. The electric mass shows some dependence onh. For
relatively low temperatures (T,50Tc) the best agreemen
with the 4D data for the electric mass is obtained for valu
of h corresponding to two-loop dimensional reduction a
lying in the metastable region. This fact motivated o
choice of the parameters of the effective theory atT52Tc in
Sec. III. For higher temperatures, however, practically
distinction can be made between the three choices ofh.

Before closing the discussion on the choice of the para
eters of the effective 3D theory, let us compare our pro
dure of fixing the parameters of the effective theory with th
proposed in Ref.@9#. In Ref. @9# the gauge coupling was
fixed by matching the data on Polyakov loop correlators
termined in lattice simulation to the corresponding value c
culated in lattice perturabtion theory. The resulting gau
couplings turned out to be considerably smaller than the c
responding ones used in our analysis, e.g., forT52Tc it
gave g251.43 while our procedure givesg2(2Tc)52.89.
The scalar couplings were fixed according to the one-lo
perturbation theory@9#. Using this procedure, the authors
Ref. @9# obtained a good description of the Polyakov lo
correlator in terms of the 3D effective theory, however, t
spatial Wilson loop, whose large distance behavior de
mines the spatial string tension was not well described in
reduced 3D theory. The reason for this is the fact that
value of the Polyakov loop correlator is cutoff depende
and, therefore, it is not very useful for extracting the ren
malized coupling.
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