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Propagators and dimensional reduction of hot SW2) gauge theory

A. Cucchieri
IFSC-USP, Caixa Postal 369, 13560-970 Sao Carlos, SP, Brazil

F. Karsch and P. Petreczky
Fakulta fur Physik, Universita Bielefeld, P.O. Box 100131, D-33501 Bielefeld, Germany
(Received 14 March 2001; published 18 June 2001

We investigate the large distance behavior of the electric and magnetic propagators of(Bpg&uye
theory in different gauges using lattice simulations of the full four-dimensi@tal theory and the effective,
dimensionally reduced, 3D theory. A comparison of the 3D and 4D propagators suggests that dimensional
reduction works surprisingly well down to the temperatlire2T,. . Within statistical uncertainty the electric
screening mass is found to be gauge independent. The magnetic propagator, on the other hand, exhibits a
complicated gauge dependent structure at low momentum.
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[. INTRODUCTION electric and magnetic propagatof8,20,21. Contrary to
Refs.[8,20,2] where propagators were studied only in Lan-

Understanding the large distance behavior of the statidlau gauge, we consider here a class of generalized Landau
electric and magnetic propagators in hot Sly(gauge gauges, the Coulomb gauge, the maximally Abelian gauge,
theory is of interest for several reasons. First of all it isand the static time-averaged Landau gauge. We study the
related to the screening phenomenon in a hot non-AbeliaRropagators in terms of the 3D effective theory as well as in
plasma. In fact, the concepts of electric and magnetic masséde 4D theory at finite temperature. A comparison of the
extracted from these propagators form to a large extent thBropagators in the full 4D and in the 3D effective theory
basis for our intuitive understanding of screening in non-Provides further evidence for the applicability of dimensional
Abelian gauge theorie§l]. Furthermore, the concept of reduction. A detailed study of finite-size effects in the propa-
screened electric propagators finds application in refined pegators shows that the picture of magnetic screening given in
turbative calculations(hard thermal loop resummatipn Refs.[8,20,21 needs to be revised to some extent. First re-
[2—4). Nonperturbative calculations of these propagatorsults from our analysis of the magnetic sector have been
thus can provide a bridge between perturbative and nonpeRresented in Re{22]. _
turbative descriptions of the electric screening phenomenon. The paper is organized as follows. In Sec. Il we discuss

Of course, a drawback of such an approach is that th@uestions related to gauge fixing and the definition of propa-
gluon propagator itself is a gauge dependent quantity. Ongators in finite temperature $2) theory as well as in the
thus has to question to what extent the results extracted frofimensionally reduced effective theory, the 3D adjoint Higgs
these propagators have a physical meaning. The poles of tmaodel. _Sectlon IIl contains our main re_sults on_electrlc and
gluon propagator at finite temperature were proven to b&agnetic propagators and the analysis of their gauge and
gauge invariant in perturbation theof{s]. However, for ~Volume dependence. Finally we give our conclusion in Sec.
static quantities such as the Debye mass static magnetl¥: In the Appendix details of the determination of the pa-
fields can lead to a breakdown of perturbation theory. Théa@meters of the effective theory are discussed.
Debye mass cannot be defined perturbatively beyond leading
order[6,7]. Nonperturbativ_ely the prob_lem of the gauge in-_ Il. GLUON PROPAGATORS IN FINITE TEMPERATURE
dependence of the screening masses is thus an open question. SU(2) GAUGE THEORY

It has been shown that at high temperature the large dis-
tance behavior of an SB) gauge theory can be described In this section we define the actions we use for our simu-
in terms of the dimensionally reduced effective theory, i.e. lations in three and four dimensions and introduce our basic
the three-dimension&BD) adjoint Higgs mode[8—15]. The  notation for gauge fields, gluon propagators, and the different
screening masses extracted from gauge invariant correlatogauges we have analyzed.
were studied in terms of the effective three-dimensig8Bl)
theory[12-17 and were compared with the corresponding
results from four-dimensiond¥D) simulations[18,19. The
relation between the propagator masses and the masses ex-In four dimensions(4D) all our calculations are per-
tracted from gauge invariant correlators was discussed iformed with the standard Wilson action for &) lattice
Ref.[8]. The screening masses extracted from gauge invarigauge theory:
ant correlators correspond to the masses of some bound
states of the 3D effective theory and are several times largekz _ 1 ~at Nt
than the masses extracted from propagators. Sw ﬂ4x,§>:;4 [172 TrULO0U O U () U, 00,

In the present paper we extend our earlier studies on the 1)

A. Actions in three and four dimensions

0556-2821/2001/68)/03600113)/$20.00 64 036001-1 ©2001 The American Physical Society



A. CUCCHIERI, F. KARSCH, AND P. PETRECZKY PHYSICAL REVIEW B4 036001

where U ,(x) e SU(2) are the usual link variables angl,  to be independent of,. In addition to the gauges we also
=4/g§. In three dimension$3D) the standard dimensional consider the maximally Abelian gaugeIAG) which can be
reduction process leads us to consider the 3D adjoint Higgeealized by maximizing the quantifp5]

model

1 2 TrlogU ()30 ,(x)], ®)
S=—8; > 5T @)Ul (x+v)U? o
BS 2 rUM(X)UV(X+M)UM(X+ V)UV(X)

X, v> ) i ) ) ) ) )
s with o3 being a Pauli matrix. Also in this case one has to fix

1 S a residual gauge degree of freedom which we do by impos-
~ B2 5 Tr AU () Ag(X+ 1)U (%) ing a U1) Landau gauge conditiof26]. In 4D SU?2) gauge
s theory we also consider the static time-averaged Landau
1\1 ) 1 ’ 2 gauge (STALG) introduced in Refs[27,28. In the con-
+,332 3+ Eh ETer(X)+X ETer(X) ' tinuum it is defined by
2 3
oAo(Xo,X) =0, 2 2 9iA=0. (7)
where 85 now is related to the dimensionful 3D gauge cou- Xo 1=1

pling and the lattice spacing, i.e.,,83=4/g§a. The adjoint
Higgs field is parametrized by Hermitian matrice,
=3,0°A) (o? are the usual Pauli matricegl2]. Further-
more, X parametrizes the quartic self-coupling of the Higgs
field andh denotes the bare Higgs mass squared. The relation 3

between thg 3D and the 4D couphngs 'WI|| be discussed in Trz > Ui(x) (8)

the Appendix. We also note that the indiges v, of course, i=1 X

run from 0 to 3 in four dimensions and from 1 to 3 in three

dimensions. Although we will not always mention this dif- performingx, -independent gauge transformations.

ference explicitly it should be obvious from the context how While the notion of Landau and maximally Abelian
various sums that appear have to be interpreted. gauges carries over easily to the 3D case, we have to explain
our notion ofA gauges in 3D a bit more in detail. We have
considered two versions of gauge:

On lattice this gauge is realized in two steps. First we maxi-
mize the quantity TE,Uq(X). In the second step we maxi-
mize the quantity

B. Gauge fixing

As we want to analyze properties of the gluon propagator, N3 gauged; A, + d,A,+ A 3d3A3=0, (9)
which is a gauge dependent quantity, we have to fix a gauge
on each configuration on which we want to calculate this N1 gaugel ;d,A; + doA,+ d3A5=0. (10)

observable. In the past most studies of the gluon propagator

hgve been performed in Landa.u gauge. Here we yvill CONThe \, gauges are more closely related to the ¥@auges
sider a class of\ gauges, which are generalizations of considered by us; in both cases the rotational symmetry of
gauges that have been introduced in R28,24 to smoothly  the gauge condition is broken in a direction orthogonal to the
interpolate between the Landau and Coulomb gauge. In the. (or z) direction, which we are going to use for separating
continuum these gauges correspond to the gauge conditiolne sources in our correlation functions. Furthermore, we in-
troduce in 3D the so-called Coulomb gauges @auges
2 \,3,A,=0. 3 which fix the gauge in a plane transverse to zhdirection
“

C, gauge: C131A1+ (92A2:0. (11)
On the lattice, these gauges are realized by maximizing the
guantity Of course, as in the 4D case, we again need an additional
gauge condition for the residual gauge degree of freedom.
The casec;=1.0 is the usual Coulomb gauge. This gauge
TrEX AU (%) (4) has the advantage that a positive definite transfer matrix ex-
. ists in thez direction.
. In our numerical calculations the gauge fixing was per-
In 4D the Landau gauge condition thus corresponds to th‘faormed using a standard iterative algorithm accelerated by an

case\ ,=1 for all =0, .. .,3,while the Coulomb gauge is : : :
o -
given byAg=0 and\;=1 fori=1, 2, 3. In the latter case %z:g:%ﬁag%rgﬁﬁ&ggs well as by using a stochastic over

we_glavle to |m[:éose an fa:cddltaonal \(;:]Vauge tﬁqngltlc(;n for ;he When analyzing observables in a fixed gauge one also has
residual gauge degree of ireedom. We do this by demanding, o yqress the guestion to what extent can Gribov copies
influence the result? This problem will not be discussed here.
2 U _ 5 It previously has been studied in 4D &) gauge theories at
0o(Xo,X)=Ug ®)
X zero temperaturg31] as well as at nonzero temperat(i2e].
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In both cases no influence of Gribov copies on the gluorthe lattice volume in 3D an€)=N?N,N, in 4D.! The elec-
propagators was found within the statistical accuracytric and magnetic propagators are then defined in the usual
achieved in these studies. way (see, e.g., Ref§20,21),

C. Gauge fields and gluon propagators De(2)=Do(2), Dm(2)=3[D11(2)+Doo2)]. (19

_ Definitions of the lattice gauge fieldl,,(x) utilize the na-  p_ 7y is not included in the definition db(z) because it
ive continuum relat|on. betwegn the_ lattice I|n_k varla.blgsis constant i\ and Coulomb gauges. We will also consider
U,(x) and the gauge field variables in the continuum limit

) ) _ R 'momentum space propagators, which are obtained through a
ie., U, (x)=exgdigaA,(x)]. A straightforward definition thus  5e_dimensional Fourier transformation,
is

1 t B. (k)= Nzﬁ_l ikzpy ith k= 2"
AM(X)ZE[UM(X)—UM(X)], (12 i )_aZ:() e"D,,u(2) with k= N, '
which in the continuum limit differs from the continuum n=0,1,... N, /2. (16)

gauge fields byO[ (ag)?] corrections. Hera is the lattice

spacing andg either the 3D or 4D bare gauge coupling. We use the standard definition for the momentum space
Other possible definitions fok,(x), which formally lead to  magnetic propagatdisee, e.g.[33,34)

smaller discretization errors were considered in R&2]. It

was found that up to an overall multiplicative constant, the ~
difference in magnetic and electric propagators, due to dif- Du(k)=
ferent definitions of the gauge field, is much smaller than the

statistical errors. We note that the definiti¢h2) of the _ - o
gauge field assumes that the link variablg is close to the ~We include hereDs; in the definition of the momentum
unit matrix. This seems to be the case for all gauges consiciPace propagators in order to take into account the contribu-
ered except the Coulomb gauge. In the case of CoulomHon of the constant componefiz(z), which only influ-
gauge the gauge fixing procedure does not force the temporehces the zero mode contributian, ,(k=0). The electric

out to be close to the unit matrix. For instance, for links _

averaged over a lattice volume of size?¥k24x 4. we find =Dyo(k). In order to absorb additional cutoff effects in mo-
. ’ mentum space propagators, we find it useful to analyze these
for B4,=2.512(corresponding to 2;) (TrU/2)=0.576(4) um sp propag Ve e It useiy yz

in terms of the momenta=|2 sink/2)| rather than the lat-
Sg?é(;rr \L,Jv:{ r2]> Th%ge:%?rzgp)).o-lr;zsnsge rg:::gezi SEgggjaSe ggl:rget_ice momentd. In the following we will usep instead ok as
a definition for our lattice momenta. For the analysis of the
{TrUo/2)=0.8879(1) andTr U;/2)=0.887 OW.)‘ One can long-distance behavior of these correlation functions, it is
expect that T y/2 gets closer to 1 as the continuum limit is customary and, in fact, quite instructive to considecal
approached. Indeed for the Coulomb gauge on 4x28 masseswhich are defined by
X 8 lattice at=2.74 (also corresponding toT2) we find
(TrUy/2)=0.6256). However, from these numbers, it is D.(2) coslimi(2)(z—N,/2)]
clear that very large values ®f _, i.e., large couplingg,, ! ' z
are necessary to get a meaningful definition of Mefield.
Therefore we will use the 4D Coulomb gauge only to ana-
lyze magnetic propagators.
The lattice gluon propagators thdimension are defined  yye will also use the notatiol=N2N, for the spatial volume in
as 3D and 4D.

3
> D,u(k). (17)
u=1

W[ =

Di(z+1) - cosim;(z)(z+1—N,/2)]’ (18)

1 TABLE I. Couplings and lattice volumes used in the 4D simu-
DW(Z):d_Q az QZ(X3+ Z)QZ(X3)>_ (13) lations of finite temperature SB) gauge theory.
a X3,b

Bs=2.512 Fx16x4

Here QZ(X:;) is a sum over all gauge fields in a hyperplane 122X 24x 4

orthogonal toxs 1gz>< 32x4
20°xX 40X 4

282X 48X 4

Quixg)=a""" > A%(X, X3), (14) 28 56x 4

L 322X 64x4

B4=2.740 16x32x8

with A% (x)=3TIA,(X)o]; X, =(X1,X;) in 3D and x, 282X 48X 8
=(Xg,X1,Xp) in 4D, respectively. Furthermor€) =N2N, is
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FIG. 1. Comparison of 4D and 3D data for the electtaft) and magnetidright) gluon propagator in Landau gauge calculated at
=2T..

with i=E,M. If the propagators decay exponentially startingsimilar conclusion has been reached for the 2D reduced ver-

from some value of, the corresponding local masses will sion of the 3D SW3) gauge theory at finite temperaty&s.

reach a plateau. We have performed a detailed analysis of propagators cal-
All our 4D simulations have been performed at a temperaculated in Landau gauge in 4D and 3DTat 2T... The latter

ture T=2T.. The values for the 4D couplin@,, corre-  has been simulated at valuestpéorresponding to the meta-

sponding to this temperature, were taken from Ret] and  staple region of the 3D adjoint Higgs model, i.e., f8r

are given in Table | together with the corresponding lattice— 11 h= —0.3773, andk=0.099(see the Appendix for de-

volumes used in our 4D simulations. _ _tails). The 4D simulations have been performedBat 2.74
_ We give the choice of parameters for our 3D simulations,, |aitices given in Table I. In order to compare the propa-
in the next section. The cutoff dependence is discussed fcﬁators obtained from simulations in 3D and 4D we have
the magnetic and electric propagators separately in Sec. I”normalized them to unity at distangd=0. The results are
shown in Fig. 1. As one can see from the figure, the 3D and

D. 3D vs 4D calculations 4D results for the electric as well as for the magnetic propa-

Most of the results we are going to discuss in the follow-9ators, are in excellent agreement. It is interesting to _note
ing section have been obtained through simulations in théhat good agreement between 3D and 4D propagators is al-
dimensiona”y reduced version of the 4D &D_]gauge theory ready found at relatively short distances, although the 3D
at finite temperature. As we do want to compare our resultéffective theory is expected to describe the 4D physics only
obtained in 3D with corresponding results in the 4D theoryat distance T>1. The above result implies that dimensional
obtained at a temperatufE=2T., we should check that reduction works quite well even d@t=2T_. and can be estab-
dimensional reduction yields reliable results at temperatureished by comparing gauge fixed observables. In Fig. 2 we
this close to the critical point. In Refgl3—-15 it was shown compare the electric and magnetic propagators calculated
that the effective theory is capable to describe the longfrom full 4D and effective 3D theories atT2 for the maxi-
distance behavior of some gauge invariant correlators imally Abelian gauge. As one can see from the figure, a good
SU(2) and SU3) gauge theories at these temperatures. Aagreement between 4D and 3D results also exists here, al-

10 . . : : : :
De(2) 3d, 16x32 —EB— 3d, 162x32 —B—
3d, 24,x48  —6— Dw(2 3d, 24748 O
4d, 167x32x8 —@— 4d, 162x32x8 —=—
4d, 24°x48x8 —@— 4d, 24“x48x8 —@—
1im L
ey ] e,
L} ! [ ]

01l ”55 - .iﬁ
Rk N AT

0-01 L L 1 1 1
0 0.5 1 15 2 0 0.5 1 1.5 2

zT zT

FIG. 2. Comparison of 4D and 3D data for the eleciflieft) and magnetiqright) gluon propagator in maximally Abelian gauge
calculated aff =2T...
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Du@ ' " =00 —&— Du(@) " 24%x48x8, A=00 —m—
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FIG. 3. The magnetic propagator ingauges on a £ 32x 8 lattice(left), as well as on 24x 48x 8 and 12x 24X 4 lattices(right) at
T=2T,. Here also the propagator in STALG is shown. The propagators were normalized =D at

though it isa priori not clear in which sense the 3D maxi- netic propagator in 4D finite temperature gauge theory in
mally Abelian gauge corresponds to the 4D maximally Abe-different A gauges including the Coulomb gauge limit. All
lian gauge. The agreement between the magnetic propagatafie A gauges yield identical magnetic propagators. In fact,
in Fig. 2 shows that the two gauges are quite similar. Apne should expect that al gauges do lead to identical
possible reason for this agreement is the decoupling of thgropagators on an infinite spatial lattice. For static configu-
Ao field from the dynamics of spatiallmagneti¢ gauge rations (,A,=0) the gauge condition for tha gauges,
fields, which will be discussed in Sec. Ill. We note, however,)\ﬁvo+aiAi:0 is up to multiplicative factors identical to
that the magnetic propagators calculated in Landau anfls 3p | andau gauge condition. As we have shown that the

B o e et o compr A0 Propagelors I Landa guge can b mapped ot he 3
son of Figs. 1 and 2 and will be analyzed in much rnor(_}propagators, this has to be the case also for the 4D propaga-

detail i ._tors calculated il gauges. The same holds for STALG.
etail in Sec. lll. Also the apparent volume dependence, vis- We al te that i i h i I
ible in these figures, will be discussed later in more detail. € aiso note that magnetic propagalors show strong vo
ume dependence at distance$=1. This effect may be
traced back to the influence of zero mode contributions to the
propagator$45], which are different in different gauges and
give a volume dependent positive contribution to the corre-
In this section we will discuss our numerical results ob-lation functions. Zero mode contributions are most promi-
tained from simulations in three and four dimensions. Thenent in the long-distance behavior of the correlation func-
main purpose of this investigation was to quantify the gaugeions calculated on finite lattices.
dependence of the electric and magnetic gluon propagators In Figure 4 we summarize our results for electric propa-
and analyze to what extent gauge invariant masses can lgators. As in the case of magnetic propagators, electric
extracted from the long-distance behavior of the gluon corpropagators calculated in different 4Dgauges as well as in
relation functions. STALG agree with each other as expected. Contrary to mag-
In Fig. 3, we show results from a calculation of the mag-netic propagators, the electric propagators show no signifi-

IIl. NUMERICAL RESULTS ON ELECTRIC
AND MAGNETIC GLUON PROPAGATORS

10 L De(z A=0.10 —a— | 10 L Detz 242x48x8, A=1.0 —&— |
0+ De@ A=0.50 —o— 0 De@ 2A;x48xs, MAG —e—
A=1.00 —a— 129x24x4, )=1.0 —@—
A=2.00 —s— 122x24x4, STALG —e—
1@ -] @ s . B 1M = s @ . 7 i
Y8y § e
] ¥ g
01 F G§$$ 0.1 F ﬁ@@
0.01 | 1 0.01 | 1
0‘001 1 1 1 1 1 1 1 1 0‘001 1 1 1 1 1 1 1 1
0 02 04 06 08 1 12 14 16 0 02 04 06 08 1 12 14 16
zT zT

FIG. 4. The electric propagators in different gauges. Shown is the electric propagator measurés 82x1% (left) and on 24x 48
x 8 and 12x24x 4 (right). The propagators were normalized to 1zat0.
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cant volume dependence. We also note that the cutoff effects TABLE Il. Lattice volumes used at different values 8 in our
seem to be small both for electric and magnetic propagator8D calculations of the magnetic gluon propagator.
(cf. Figs. 3 and &4 The issues of volume and cutoff depen-

dence will be discussed separately for electric and magnetiés=> B3=5.5 B3=6 B3=8 B3=16
propagators in the following two sections. 102% 20 18% 32 75 162% 32 32% 64
16° 242X 48 2£4x48 4G X 96
A. The magnetic gluon propagator 243 28X 56 42X 96
In this section we will discuss in more detail our results30° 32 64°
on magnetic propagators. Previous lattice calculations of th@2® 322x 64 96’
magnetic propagators in hot $2) gauge theory in 40j21]  40° 48
and 3D[8] gave evidence for its exponential decay in coor-48 482X 64
dinate space and thus indicated the existence of a magneti¢® 64
masg 36]. A nonzero magnetic mass was also found in anasg® 96°

lytical approaches based on gap equaf®fi-39 and a non- g4
perturbative analysis of 21 dimensional gauge theop¢0]. 728
Nonetheless, it has been questioned whether a magnetic mags
in non-abelian gauge theories does exit,47. In Ref.

[33], the Landau gauge propagators of 3D pure gauge theo(g , , , )
were studied on fairly large lattices and were found to beBY taking the inverse Fourier transformation of Ej6) one

infrared suppresseédSuch a behavior clearly is in conflict can easily see that the zero modes give a constant contribu-
with the existence of a simple pole mass. In order to furthefion (N,2) *D,,(p=0) to the coordinate space propagator
investigate this problem simulations on larger lattices ard®..(2). In fact, such a contribution does qualitatively ex-
needed to explore the long-distance regime of the correlatioRlain the overall volume dependence of the magnetic propa-
functions. This can be achieved in the 3D reduced theorgators observed in our calculation. The contribution from
which gives a good description of the 4D theory even aiZ€ro momentum mode fluctuations is expected to vanish in
temperatures a few timeE,. We thus concentrate, in the the infinite volume limit. We thus expect that at fixed dis-
following, on a discussioncof results obtained from, our cal—tanCEZT the propagators approach the!r asymptotic, infinite
culations in 3D. In fact, it also has been observed already i (;]I_szm:_r\]/ggueeds t:grzaggoges Sznt%i Is;t';e.ns'ée 'SS'nCLz?Zedé
earlier calculations that the magnetic propagators of the 3 IS 1S 1 P In Fg. 5, Wi W
adjoint Higgs model are very close to the correspondin how the 4D :_:md 3b magnetic propagators calcule}ted n _Lan-
propagators of 3D pure gauge theory. We thus further restric au and maximally Abelian gauges on different size lattices

our analysis of the magnetic propagators to the limit of 3p&t T=2T, " As one can see from the figure the volume de-
pure gauge theory. Where appropriate, we will perform endence is quite different in these two gauges. In the case of

comparison with results obtained from the 3D adjoint Higgs.he Landau gauge, we observe that. th? magnetic propagators
model and the 4D S(2) gauge theory. in coordlnat_e space depay faster with increasing lattice size.
In order to get control over the propagators in the con—In the maximally Abelian gauge, however, the propagator

tinuum as well as in the infinite volume limit, we have per- do?:s not IeXh'b"{/?rgiZ"éga?Le f|n|te-S|i_e dependetnce. |
formed calculations fog;=5, 5.5, 6, 8, and 16 on different or volumesv 1=~ » (N€ magnetic propagator caicu-

lattice volumes. The simulation parameters are summarizelfi‘ted in Landau gauge becomes ne_zgatlvaﬂ')kz. In_Flg. 6
in Table II. we show the large-distance behavior of the coordinate space

It has been pointed out in Re#5] that zero modes can propagator calculated in 4D and 3D on lattices with similar

give sizeable contributions to gluon correlation functions. In3D lattice volutme. A fs'm"jf biagwor of t_kllﬁ coordinate
terms of the lattice gauge fields, the zero mode contributiorfPaC€ Propagator was found in otiegauges. 1he propaga-
§8rs calculated in MAG, however, stay positive for all lattice

is defined as the expectation value of the average gauge fie : o . X
sizes and distances accessible in our calculation, i.e., up to
1 zT~5.
¢2=§ > A%(X). (19 As was mentioned above, the magnetic propagators in the
X 3D adjoint Higgs model are not very sensitive to the pres-
pgnce of the adjoint Higgs field. This is illustrated in Fig. 7
where we compare magnetic propagators in momentum
space calculated in the 3D adjoint Higgs model with corre-
sponding results obtained in the pure gauge theory at the
_ same value ofB;. This also shows that the effect of the
Dw(p=0)=ad92 <(¢i)2). (20 adjoint Higgs field on the magnetic propagator decreases
a with increasing temperature. In fact, for temperature
=10T., we find no visible effect of the adjoint Higgs field
on the magnetic propagators. In what follows, we will, there-
2Similar results were found in 4D SN) gauge theory at zero fore, mainly discuss the magnetic propagators in the limit of
temperaturg43,44. pure gauge theory.

The zero mode contribution is apparent in the momentu
space propagators where one finds from @) for vanish-
ing momentum
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FIG. 5. Volume dependence of the magnetic propagator in coordinate space calculated in (leftidand maximally Abeliar(right)
gauges. The propagators were normalized to 2=a@. Shown are the results from 3D simulationsBat=8 and 4D simulations, which are
compared at similar values of the physical volume in unit§bfThese volumes correspond to lattices of siz&X182x 8, 24X 48x 8, and
16°X32x 4 in 4D and to 16x32, 24x 48, 3Zx 64, and 48x 64 in 3D. ThegB, values for our 4D simulations are given in Table I.

In Fig. 8 we show the momentum space magnetic propaless singular thap ™2 in 4D andp ™! in 3D [46]. It has been
gators in Landau gauge obtained from 3D pure gauge theorfurther argued that it is likely to vanish at zero-momentum in
at B8;=5 andpB;=8. For momentzp>0.69§ the propagators the thermodynamic limif47]. These considerations were
in units of g3 are volume andB; independent. For small also extended to the case of magnetic propagators in gauge
momenta, however, they are strongly volume and £§0 theories at finite temperatw{élS]. We have analyzed this
dependent. One can clearly see, that for large volumes, tHguestion by performing studies of the volume dependence of
propagators reach a maximum at nonzero momentum anthe zero momentum propagator. The data fny(0) are
start decreasing with decreasing momenta. This is a direghown in Fig. 10 for differeni3; values. ForB;=5 and
consequence of the negative propagators in coordinate spagg=8, the data have been fitted to the ansatz
found in the Landau gauge faT=2.

The volume dependence of the magnetic propagator in f)M(O)gg‘:a(Vgg)*er b. (21)
momentum space is strongestpat 0. On the other hand, at

Bs=5 one can see that the value of the propagator in thgye have performed fits with=0 andb>0. In the first case
vicinity of its maximum is essentially volume independent, o nave obtained rather largé values[typically the value

for the three largest volumes. A similar behavior of the mo- ¥%/(DOF) was between 4 and 16or both ;=5 and
mentum space propagator was found in otherauges. This 5 _ g The ‘three parameter fits give a reasonably gebd

is demonstrated by Fig. 9. Note that although the propagatay,, both B values. Using the whole range
is a gauge dependent quantity the position of the peak seems 3

to be gauge independent in the class\ajauges considered

here. 7r b )9 4 g —a |
The existing rigorous bound on the infrared behavior of ¢ | z' s g e
the gluon propagator in momentum space implies that it is i3
54
e @
0.14 | B=8, 48°x64 —B— - 4r
Dy(2) 4d, 32°x64x4 —B— '
012 | & ] sl
0.1 b ol .-
0.08 | ] 1 R
| r »
006 @ 1 o , .t wemsesacnemns
0.04 = 1 0 05 1 15 2 25 3
0.02 | L ] plgs°
0 E'i H i gbim f‘ %&‘i‘ﬂ FIG. 7. Momentum space magnetic propagator obtained from
-0.02 . . . '] Eh . ‘ ‘ . 3D pure gauge theory and the adjoint Higgs model with couplings
1 15 2 25 3 835 4 45 5 corresponding to temperature§ 2and 3T.. Shown are the mag-
2T netic propagators in pure gauge theory3at8 (a), in a 3D adjoint

Higgs model aj3;=8, x=0.09, anch= —0.4846 corresponding to
FIG. 6. Large-distance behavior of the magnetic propagator irthe temperature B, (b), in pure gauge theory 8=5.5(c) and in
coordinate space calculated in Landau gauge. The propagators weae3D adjoint Higgs model gB8=5.5, x=0.099, andh=—0.7528
normalized to 1 agz=0. corresponding to the T, (d).
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0 0.5 1 1.5 2 2.5 3 0.001
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FIG. 8. The momentum space magnetic propagatoBst5 FIG. 10. Volume dependence &fy(0) at different values of

(open symbolsand ;=8 (filled symbols calculated in the Landau B3. The lines represent fits with the ansatz given in &4).
gauge.

enough to the corresponding infinite volume limit. Therefore
of volumes one findsa=51(11)pb=2.06(15), andz  we have performed additional calculations of the magnetic
=0.34(3) with y?/DOF=1.8 for B3=5 anda=52(9)b  propagators aB;=6 and on 72. The lattice volumes 60
=2.08(33) andz=0.31(3) with y?/DOF=1.8 for B3=8. 72%, and 96 at 8;=5, 6, and 8 correspond to the same

Although the volume dependence Bf,(0) seems to bg,  Pphysical volume. Moreover, for small momerma<0-59§,
independent, the value of the exponets well as the value the values of the propagators at approximately the same val-
of BM(O) in the infinite volume limit, strongly depends on U€S of momenta, are avallable_. In this region pf mom.en.ta we
the range of volumes used in the fit. For example by fittinghave performed an extrapolation to the continuum limit fit-

the data onBM(O) for Bs=5, and using lattice volumes ting data at differenB; with the ansata+ b/B5. The result
from 30° to 96°, one getsa=281(139)b=2.52(56), andz

of this analysis is summarized in Fig. 11. As one can see
; ) X from this figure the general structure of the propagator, in

=0.55). In order to flrmly~determ|ne the funcNtlonaI form particular tr?e existengce of a maximum at norF:zeFr)ogmomen-
of the volume dependence bfy (0) and the valu®y(0) i tum, is preserved in the continuum limit, although the vol-
the infinite V0|ume ||m|t, Slmu|atI0nS on even |arger |att|CeS ume dependence of the momentum Space propagator rap|d|y
are necessary. 5 increases with decreasing momentum iég2=<0.5.

In order to confirm the infrared suppressionf(p) and
the existence of a maximum id,,(p) at nonzero momen-
tum, we have analyzed in more detail the interplay between
infinite volume and continuum limit. We have seen that the Let us now turn to a discussion of the electric gluon
propagators are infrared suppressed for large enough vopropagator. The volume dependence of the electric propaga-
umes aiB;=>5 and 8. However, the magnitude of the propa-tor turns out to be quite different from the magnetic ones.
gator at small momenta shows a clgardependence. There- The electric propagators show exponential decay at large dis-
fore, it is important to estimate the behavior of the magnetidances in all gauges considered.
propagator in the continuum limit. We have seen thaBat In Fig. 12 the Landau gauge electric propagators in mo-
=5, the magnetic propagator on a’@@ttice is already close mentum space are shown fér=2T, andT=9200T,. In the

B. The electric gluon propagator

~ ' ' T Ag=1.0 —5— ~ ' 8 B=5 —=—
5 | DuP)gg* 15=2.0 —o— | 6  Du(p)gs® o0 E=§ —e—
o © =01 —a— - 723: B=6 .
afo © e b 96°, =8 —=—
= 4 v extrapolation —&—
@ z & % m
3 a®a o @ B X
I B 386 °g
2 ¢ 8 1 2 mp
6 = 8 1 Q@w%
1 3 1 .
8¢ 8 ¥ Soneng
@@g@ . . ) D aBay
0 . . . St tetr . 0
0 0.5 1 15 2 25 0 0.5 1 \ 1.5 2
p/gs” P/gg
FIG. 9. The momentum space magnetic propagat@;at5 on FIG. 11. The Landau magnetic propagator at different values of
the 72 lattice in different\ gauges. B3 and the continuum extrapolation.
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FIG. 12. The Landau gauge electric propagator in momentum spack, dte2t) and T=9200T . (right).

latter case we performed the analysis only in the 3D effectiveact in the discussion of the gauge dependence of the electric
theory atx=0.03, 8= 16, andh=—0.2085. As one can see Screening mass.
from the figure, the volume dependence of the electric propa- Since the electric propagators show exponential decay at
gators is indeed quite different from the volume dependencéarge distances in all gauges considered, it is natural to ask
of the magnetic propagators. In particular, the electric propawhether the electric masses extracted from them are gauge
gators show no sign of infrared suppression. For fixed latticéndependent. There is a formal proof that poles of finite tem-
geometry, i.e., fixed ratidN/N,, the volume dependence of perature propagators are gauge independent to any order of
the zero mode contribution seems to approscH, as ex-  perturbation theory5]. However, as discussed in Sec. |, the
pected for the propagator of a massive particle. MoreoverDebye mass is not calculable in perturbation theory beyond
the infinite volume limit is almost reached on the largestleading order. Therefore it is not clear whether the arguments
lattices used in our simulations. We find a similar volumeof Ref.[5] apply for electric screening mass. In terms of the
dependence also in other gauges. effective 3D theory, the screening of static electric fields is
Since we are interested in extracting the screening mad¢lated to propagation of the adjoint scalar field. Since the
from the electric propagator it is also important to address$3D theory is confining, the adjoint scalar field is not a physi-
the question of volume dependence of the electric mass. 162l state(the physical states are some bound sjatewd
Fig. 13 the local electric masses in Landau gauge are showtherefore there is no physical principle that guarantees its
for different lattice volumes fop;=16, h=—0.2085, and mass to be gauge invariant. Guided by the analogous prob-
x=0.03. As one can see from the figure, the value of thdem in 3D scalar QED, it was conjectured in Rp#9] that
plateau(which in fact determines the screening masses-  the large-distance behavior of the high-temperature non-
sentially volume independent, although there is some volumébelian electric propagator is dominated by a brunch cut
dependence in the local masses at short distances. Thus tpi@gularity. Although this is different from the simple pole
screening masses can be estimated even from the small&tained in leading-order perturbation theory, this still leads

lattice for these values of the parameters. We will use thigo an exponential decay of the electric propagators in coor-
dinate space with a gauge invariant screening mass. Thus it

is also clear that the question of gaug®dependence of the

16| ;gi;gg e ] electric screening mass is in general nontrivial.
me(2)/T 32§><64 —e— We have studied the gauge dependence of the electric
1al 32°%96 +—O— propagators for two sets of parameters of the 3D effective
n theory x=0.03,h=-0.2085,8;=16 and x=0.03,h=
® —0.1510, ang3;= 24 both corresponding to the temperature
12T % s B T=9200T,. In this investigation, lattices with spatial vol-
'i ? : I ? " ume 16x 32, 24X 48, and 32x96 were used. From stud-
13 ies of the Landau gauge propagators we know that electric
masses foB;=16 can be reliably extracted already from a
08 16°x 32 lattice. We have investigated electric propagators in
: : : : : different gauges introduced in Sec. IIB. FBg=16, most
0 0.5 1 1‘_? 2 25 3 simulation were performed on a 2632 lattice. For calcu-
Z

lations with \; gauges, we also used a?3296 lattice. For

FIG. 13. Local electric masses in Landau gaugefer16,h  B3=24, propagators in all gauges except the maximally
= —0.2085, and=0.03. The solid line is the value of the electric Abelian gauge, were measured on &826 lattice. Due to

mass obtained from an exponential fit of the electric propagatothe large number of iterations required for fixing the maxi-
calculated on a 3% 96 lattice. The dashed lines indicate the un- mally Abelian gauge, propagators were measured only on a
certainty in its value. 242X 48 lattice atB;=24.
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2 "3g=05 - can be observed, though the local masses have quite different
me(2)/T Ag=1.0 —o— z dependence.
18f ¢ Ag3=2.0 —a— -
16 Coull\cjlr‘{mé) —e— IV. CONCLUSIONS
[ & We have invgstigated electric and magnetic gluon propa-
4w g . i I I gators in the high-temperature phase of(3Upure gauge
: : : = el g4 theory in different gauges. The propagators were calculated
121 4 @ * oy 7 il directly in full 4D theory and also in 3D effective theory. It
* g ! @ § & & I was shown that the effective theory can describe the electric
17 1 and magnetic propagators remarkably well down to tempera-
T ture T=2T,.. We find that electric propagators can safely be
0.8 o 05 ; 15 " e 5 extrapolated to the infinite volume limit. Within the statisti-

cal accuracy of our present analysis and the class of gauges
considered here, its long distance behavior is gauge indepen-

FIG. 14. The local electric masses calculated ofX3®6 for x dent and yields a gauge independent electric screening mass,
=0.03, h=—0.1510 andB;=24 in A5 gauges, in a 3D Coulomb which is compatible with earlier determinations.
gauge €¢€;=1) and in maximally Abelian gauge. The solid line is ~ The magnetic propagator, however, has a complicated
the value of the electric mass obtained from an exponential fit of thezolume and gauge dependent infrared structure, which is not
electric propagator in the Landau gauge calculated on’ax88  compatible with a simple pole mass. While it still shows a
lattice for =16, h=—0.2085, and=0.03. The dashed lines in- simple exponential decay at large distances in the maximally
dicate the uncertainty in its value. Abelian gauge, it starts getting negative fof=2 in a class

of A gauges, which includes the Landau gauge. This leads to

Our main results fo3;=24 are summarized in Fig. 14, the infrared suppression of the propagator in momentum
where local electric screening masses in Coulomb, maxispace and is incompatible with a simple pole in the magnetic
mally Abelian, and\3 gauges are shown. As one can seegluon propagator as it was deduced from earlier studies
from the figure, local masses are strongly gauge dependent g 20,21,36 which were limited to shorter distances and
short distances. FaT=2 they, however, approach a pla- smaller lattices. Nonetheless, we find in all gauges that mag-
teau, which is gauge independent within the statistical accunetic correlators are screened at large distances.
racy reached in our calculation.

We also have performed simulations on &%@2 lattice
for B3=16 using Coulomb gauges with) =0.1, 10, as well

as\; gauges withh;=0.1, 10, and a maximally Abelian  Thjs work was supported by the TMR network Finite
gauge. The corresponding results for local electric massefemperature Phase Transition in Particle Phyéis Con-
are shown in Fig. 15. Again, within statistical accuracy, Noyact No. ERBFMRX-CT-970122and by the DFG under
gauge dependence of the plateau of the local electric massggant No. Ka 1198/4-1. Our calculations have been partially
performed at the HLRS in Stuttgart and tHeQ)? in Pader-

zT
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1.5 1 APPENDIX
1.4 ] 1 - ,
13 i & We will discuss here the procedure we followed to fix the
' O | s i couplings of the 3D adjoint S@2) Higgs models. Two dif-
12 & ¢ o o ? b 1 ferent approaches were proposed for fixing the parameters
1.1 e ° 1 appearing in Eq(2), the usual perturbative dimensional re-
1 1 duction [12,9] and nonperturbative matching analyzed in
09 . . . . Ref.[8]. Here we have used both approaches.
0 0.5 1 1.5 2 The lattice gauge couplings is related to the dimension-
zT ful 3D continuum gauge couplingﬁ by the standard relation
FIG. 15. The local electric masses calculated Xer0.03, h=
—0.2085, ang3;= 16 on 16x 32 lattice. Shown are the local elec- 4
tric masses calculated ity gauges forc;=0.1 (a) andc;=10 (b), '83_93761' (A1)

in \; gauges forn;=0.1 (c) and \;=10 (d) and the maximally

Abelian gaugee). The solid line is the value of the electric mass __ ) ) . . o
obtained from an exponential fit of the electric propagator in the! NiS relation basically determines the lattice spacing

Landau gauge calculated on a 2326 lattice B=16, h= terms. of the dimensionful couplingg. The Higgs self-
—0.2085, andk=0.03. The dashed lines indicate the uncertainty incoupling and the 3D gauge couplings are related to the renor-
its value. malized gauge coupling(x) of SU(2) gauge-theory in the
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modified minimal subtraction N|S) scheme. The corre- one-loop formula in thé1S scheme withu~7.0555. In Ref.
sponding relations were calculated in Rdf2] to a two-loop  [14], the screening masses extracted from gauge invariant
level. correlators were calculated in the effective 3D theory and
To fix the temperature scale, one needs to choose theompared with the corresponding results from 4D simula-
renormalization scalg, which fixes the temperature depen- tions[18,19. A rather good agreement between the screen-
dence of the 4D gauge coupling. For this we will use infor-ing masses calculated in 3D effective and full 4D theories
mation on the temperature dependence of the spatial stringas found. However, the 3D gauge coupling constants in
tension. The analysis of Ref50] showed that the spatial Ref. [14] were considerably larger than ours which would
string tension can be well described in terms of 3D effectiveoverestimate the spatial string tension by 30%. Nevertheless
theory. Furthermore, it was observed that the temperaturthis contradiction can easily be resolved by noticing that the
dependence of the spatial string tension of finite temperaturset of parameters corresponding f®.5n Ref.[14], namely,
SU(2) gauge theory can well be described by a simple forx=0.104 andy=0.242, would roughly correspond to the
mula 0.334(14y%(T)T [51] with g(T) given by the one- temperature Z. in our approach. Using the results from Ref.
loop renormalization-group relation. The string tension of[14] for these values ok andy and the value ogé(ZTC)
the pure 3D SIR) gauge theory was found to be 0.335(12) =2.89T, we get for the two smallest screening masses the
[52]. The string tension of the 3D adjoint $&) theory has  values m(0})=2.90(3) andm(0")=3.91(8) (for details
been calculated in Refl14]. Within statistical errors, it about the classification of different gauge invariant screening
turned out to be independent of the scalar couplings aneéhasses, see RdfL4]). These numbers should be compared
equal to the string tension of the pure @Jgauge theory. with those obtained in the 4D simulation in Ré19] at T
Based on these observations we have fitted the data on thepT_  m(0")=3.06(12) andm(0~)=4.06(12). Thus, it
spatial string tension from Ref51] using 0.335(295 with  seems that with our present choice of the parameters, the
one-loop level couplingg; and the relatioriT,=1.06Axs  effective 3D theory could describe all static quantities mea-
from Ref.[21]. The fit yieldsu = 18.86T. We have also fitted sured so far in lattice simulations. We also note that in the
the data for the spatial string tension using the two-loop forcase of(2+1)-dimensional gauge theory at finite temperature
mula forg% from Ref.[12]. However, it turned out that the it has been shown that the spatial string tension and gauge
simple one-loop formula fits the 4D data on spatial stringinvariant screening masses can be simultaneously well de-
tension much better. Based on these observations the 38ribed by the effective 2D theofg5]. In 2+1 dimensions,
gauge couplingy and the Higgs self-coupling were chosen the situation is simplified by the fact that the gauge coupling
according to the one-loop version of formulé13 and has no renormalization scale dependence due to the super-

(2.15 from [12] renormalizability of the theory.
Generally we have used the nonperturbatively determined
95=0%(w)T, (A2)  values forh [8]. However, in some cases, the propagators
were also calculated for values bfgiven by perturbative
g2(w) dimensional reduction. The bare Higgs mass parameter
X="3 7 (A3)  could be related to the mass parameterm3 /g3 of the
continuum adjoint Higgs modé¢lL2]
with 1« =18.86T. In Ref.[8] the parameterg3 and x were 16 3.17591144+5x)
chosen according to two-loop formulas from REf2] and h=—y-
m=27T. We have checked that differences between the 3 B3
present choice and that used in Rf] are about 10%. In 1 3
Ref. [14] the parameters of the effective theory were also —TZ[(ZOX— 10x2)(ln§ﬁ3+ 0.09| +8.7+ 11.6(},
calculated using the two-loop formulas from Rgf2], how- B3
ever, the 4D gauge coupling constant was determined from a (A4)

TABLE Ill. Numerical values for the couplingh and continuum mass parametg=m3,/g3 of the
effective 3D theory in our simulations and the corresponding values of the temperature. | and Il denote two
sets ofh values taken from Ref8]. The last two columns give the couplihgand mass parametgobtained
from the perturbative relations EA4) and Eq.(A5).

X T/T, B3 | Il Pert

h y h y h y
0.099 2.0 11 —-0.3773 0.2274
0.090 2.8 16 —0.2611 0.3556  —0.2622 0.4007 —0.2700 0.2755
0.070 9.0 16 —0.2528 0.4408  —0.2490 0.5009 —0.2588 0.3470
0.050 72.1 16 —0.2365 0.5914 -0.2314 0.6721  —0.2437 0.4756
0.030 9200 16  —0.2085 0.9279  —0.2006 1.0544 —-0.2181 0.7758
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238 - - - - The electric propagators show exponential decay at large
26 | 1 distances. Therefore it is possible to extract screening masses
24 from them. The procedure of extracting the screening masses
ool % | from the propagators was described in R&i. In Figure 16
ol ‘} | we compare the electric screening masses extracted from the
ST e ’—é Landau gauge pr t in the 3D adjoint Hi del
g sl N ] gauge propagators in the 3D adjoint Higgs mode
e i calculated on 32<64 and 32x 96 lattices with the corre-
16 f e 1 sponding results from 4D S@) gauge theory21]. The pa-
141 T~ T rameters of the effective theory were chosen according to
12} T % Table 1.
1 : : : . As one can see from the figure, the agreement between
1 10 100 1000 10000

the masses obtained from 4D and 3D simulation is rather
T, good. The electric mass shows some dependende &ior
relatively low temperaturesT(<50T;) the best agreement
FIG. 16. The electric screening masses in units of the temperawith the 4D data for the electric mass is obtained for values
ture. Shown are the electric masseg for the first(filled circles  of h corresponding to two-loop dimensional reduction and
and the secon¢bpen circlegset ofh. The line represents the fit for lying in the metastable region. This fact motivated our
the temperature dependence of the electric mass from 4D simulghoice of the parameters of the effective theorff at2T, in
tions. The open triangles are the values of the electric mass for thgec. |II. For higher temperatures, however, practically no
h values obtained from the perturbative reduction in the metastablgistinction can be made between the three choicds of
region (the last column in Table 1)l Some data points at the tem- Before closing the discussion on the choice of the param-
peratureél ~ 70T, andT~9000T . have been shifted in the tempera- gters of the effective 3D theory, let us compare our proce-
ture scale for better visibility. dure of fixing the parameters of the effective theory with that
proposed in Ref[9]. In Ref. [9] the gauge coupling was
fixed by matching the data on Polyakov loop correlators de-
termined in lattice simulation to the corresponding value cal-
culated in lattice perturabtion theory. The resulting gauge
<. (A5) couplings turned out to be considerably smaller than the cor-
g§ 97X responding ones used in our analysis, e.g., Ter2T, it
gave g2=1.43 while our procedure giveg?(2T.)=2.89.
From Eqgs.(A4) and (A5) we have calculated values of  The scalar couplings were fixed according to the one-loop
corresponding to the one-loop level dimensional reductionperturbation theory9]. Using this procedure, the authors of
In this case simulation was performed in the metastabléref. [9] obtained a good description of the Polyakov loop
brunch of the broken phagsee Ref[12] for details. correlator in terms of the 3D effective theory, however, the
Numerical values for the couplings of the 3D effective spatial Wilson loop, whose large distance behavior deter-
action, used in most of our calculations, are summarized imines the spatial string tension was not well described in the
Table Il together with the corresponding values TofT. . reduced 3D theory. The reason for this is the fact that the
For other values of3; used in our calculations, we have value of the Polyakov loop correlator is cutoff dependent
calculated the coupling from Eq. (A4) using they values  and, therefore, it is not very useful for extracting the renor-
from Table IlI. malized coupling.

with mpq being the tree-levelfrom the point of view of the
effective theory Debye mass. At the one-loop level one has
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