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Low-lying fermion modes, topology, and light hadrons in quenched QCD
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Department of Physics, University of Colorado, Boulder, Colorado 80309

~Received 21 December 2000; published 10 July 2001!

We explore the properties of low lying eigenmodes of fermions in the quenched approximation of lattice
QCD. The fermion action is a recently proposed overlap action and has exact chiral symmetry. We find that
chiral zero-eigenvalue modes are localized in space and their positions correlate strongly with the locations~as
defined through the density of pure gauge observables! of instantons of the appropriate charge. Nonchiral
modes are also localized with peaks that are strongly correlated with the positions of both charges of instan-
tons. These correlations slowly die away as the fermion eigenvalue rises. Correlators made of quark propaga-
tors restricted to these modes closely reproduce ordinary hadron correlators at small quark mass in many
channels. Our results are in qualitative agreement with the expectations of instanton liquid models.

DOI: 10.1103/PhysRevD.64.034512 PACS number~s!: 11.15.Ha, 12.38.Aw, 12.38.Gc
t i
e

hi
ir

th
r
s-
he
fo

an
v
o
o

b
fe

ar
n

u

-
re

g
r
re
is

le
i

he
n
re
in
d

all
w
-
ro

airs
en-
ing
suc-

is

act

licit
u-
g-
of

the

rlap

iral
s:
the
of

o do
sis

for
y
one
be

ller
ake

an
tially
osi-
ile
of

are
or-
I. INTRODUCTION

Is there a particular physical mechanism in QCD tha
responsible for chiral symmetry breaking? If so, what oth
qualitative or quantitative features of QCD depend on t
mechanism? The leading candidate for the source of ch
symmetry breaking is topological~instanton! excitation of
the gauge field, which couples to the quarks through
associated fermion zero modes~or near-zero modes, afte
mixing! leading to chiral symmetry breaking via the Bank
Casher@1# relation. An elaborate phenomenology built on t
interactions of fermions with instantons is said to account
many of the low energy properties of QCD~for a review, see
Refs.@2,3#!.

Lattice simulations can in principle address this issue,
indeed this is a large and active area of research. Howe
nearly all results, be they from pure gauge operators or fr
fermions, are contaminated by one kind of lattice artifact
another, which clouds the picture.

The problem is that, typically, pure gauge topological o
servables depend on the operator used. The dominant
tures of the QCD vacuum seen in any lattice simulation
just ultraviolet fluctuations, as they would be for any qua
tum field theory. To search for instantons~or other objects!,
one must invent operators that filter out long distance str
ture from this uninteresting noise. Some quantities@such as
the topological susceptibility inSU(3) gauge theory# are
less sensitive to filtering, but some~such as the size distribu
tion of topological objects! are more so, and most results a
controversial~see Ref.@4# for a recent summary!.

Perfect action topological operators@5,6# offer a math-
ematically consistent definition for the pure gauge topolo
cal charge, but the implementation of such an operato
prohibitively expensive for QCD. Even if there is a pu
gauge definition of topology, the situation is still that what
important is what the fermions experience. Here the prob
is that until recently, all lattice fermion actions were contam
nated by chiral-symmetry sensitive artifacts. T
dimension-5 operator which eliminates doubling in Wilso
type actions breaks chiral symmetry and spreads the
eigenmodes of the Dirac operator over a finite range, mak
the connection between what would otherwise be zero mo
0556-2821/2001/64~3!/034512~14!/$20.00 64 0345
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and instantons problematic. In principle, even domain w
fermions at finite values of the fifth dimension would sho
similar artifacts ~although in practice they are much re
duced!. Staggered fermions generally do not have ze
eigenmodes in the presence of instantons@7#: the modes split
into imaginary pairs and one must try to separate the p
that would be zero modes from the true non-chiral eig
modes. At small lattice spacing the chiral symmetry break
problems are reduced and some studies seem to grapple
cessfully with lattice artifacts, but the whole situation
rather unsatisfactory@8#.

The discovery of lattice actions that implement an ex
chiral symmetry without doubling@9# allows one to revisit
these questions in a theoretically clean context. One exp
realization of such an action is the overlap action of Ne
berger@10#. It obeys the simplest version of the Ginspar
Wilson @11# relation. So far there have been many studies
aspects of quenched QCD with overlap actions built from
usual Wilson fermion action in four dimensions@12–19#.
The results we will present here are based on a new ove
action recently described by one of us@20#.

The advantage of studying questions relevant to ch
symmetry on the lattice with an overlap action is obviou
the action itself is chiral. Real-eigenvalue eigenmodes of
Dirac operator are true chiral zero modes. No fine tuning
parameters or post-processing of lattice data is required t
measurements at or close to the chiral limit. All analy
becomes much simpler.

The main disadvantage of the overlap is its expense:
the action of Ref.@20#, about a factor of 100 more costl
than the clover action to do any calculation that can be d
with the clover action. However, overlap calculations can
used to ‘‘validate’’ simpler measuring techniques on sma
lattices, and the simpler techniques can then be used to m
measurements on large lattices.

In this paper we study the low lying eigenmodes of
overlap action. We observe that these modes show a spa
peaked structure: chiral zero modes correlate with the p
tions of the appropriately charged topological objects wh
nonchiral modes correlate with the positions of both signs
topological charge. Next we show that, when the quarks
sufficiently light, these eigenmodes contribute in an imp
©2001 The American Physical Society12-1
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THOMAS DEGRAND AND ANNA HASENFRATZ PHYSICAL REVIEW D64 034512
FIG. 1. Squared pion mass~diamonds and oc-
tagons! and quark mass from the PCAC relatio
~squares! from the planar overlap action. Pane
~b! merely blows up the small quark mass data
panel~a!. The four lighter mass values are from
the 123324 lattices. Diamonds show pion mass
extracted from a fit to the pseudoscala
pseudoscalar correlator, and octagons show
pion mass extracted from a fit to the difference
the pseudoscalar-pseudoscalar and scalar-sc
correlators. See Sec. IV for further discussion.
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tant way to ordinary hadron correlators~as used, for ex-
ample, in a spectroscopy calculation!, just as the instanton
phenomenology would expect them to do. As the quark m
grows heavier, these modes become less important e
though manifestations of chiral symmetry breaking persis
spectroscopy and matrix elements.

The study of topology most similar to ours is the inves
gation of the deconfined phase ofSU(2) gauge theory by
Edwardset al. @15#.

In Sec. II we give a brief summary of our simulations, a
then in Sec. III we describe our observations of the prop
ties of low-lying eigenmodes of the Dirac operator. In S
IV we examine the relevance of these modes to hadro
correlators. We summarize our results in Sec. V.

II. SIMULATION PARAMETERS

The overlap action used in these studies@20# is built from
an action with nearest and next-nearest neighbor coupli
The action uses APE-blocked links@21#: Our definition of
this blocking is

Vm
(n)~x!5Pro jSU(3)H ~12a!Vm

(n21)~x!1~a/6!

3 (
nÞm

@Vn
(n21)~x!Vm

(n21)~x1 n̂ !Vn
(n21)~x1m̂ !†

1Vn
(n21)~x2 n̂ !†Vm

(n21)~x2 n̂ !

3Vn
(n21)~x2 n̂1m̂ !#J , ~1!

with Vm
(n)(x) projected back ontoSU(3) after each step, an

Vm
(0)(n)5Um(n) the original link variable. Here we chos

a50.45 and performed 10 smearing steps. The mas
overlap Dirac operator for bare quark massmwill be denoted
asD(m). Eigenmodes of the massless overlap Dirac oper
D(0) are constructed from eigenmodes of the massless
mitian Dirac operatorH(0)5g5D(0), using an adaptation o
a conjugate gradient algorithm of Bunket al. and Kalkreuter
and Simma@22#. The code makes extensive use of mu
mass conjugate gradient matrix inverters@23#.

The data set used in this analysis uses the Wilson ga
action at a couplingb55.9, or a nominal lattice spacing o
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a.0.11 fm. It consists of 20 124 configurations and 20
123324 configurations. Data collection took about thr
months on the Colorado 29~give or take a few! node Be-
owulf cluster.

We have done an exploratory spectroscopy calculation
these data sets, at four values of the light quark mass.
also computed the spectrum at four heavier quark masse
the 124 set. We show two sets of results, simply to demo
strate how un-exceptional our measurements are. Figu
shows the squared pion mass~from two correlators!. The
ratio of the axial vector (A05c̄g0g5c) matrix element to
the pseudoscalar (P5c̄g5c) matrix element gives the so
called PCAC~partial conservation of axial vector coupling!
quark mass~in lattice regularization!

2mq5

(
yW

^]0A0~yW ,y0!C~0,0!&

(
yW

^P~yW ,y0!C~0,0!&

~2!

and this is also shown in Fig. 1.
As expected with a chiral action, no additive mass ren

malization for the quark mass is observed.~The squared pion
mass extracted from the correlator of two pseudoscalar

FIG. 2. Spectroscopy from the planar overlap action: cross
pseudoscalar mesons; squares, vector mesons; octagons, nuc
diamonds, deltas. The four lighter mass values are from the3

324 lattices.
2-2
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FIG. 3. Histograms of the number density o
the imaginary part of the nonzero eigenmodes
the overlap Dirac operator.~a! Lowest 10 modes
on 124 lattices;~b! lowest 20 modes on 123324
lattices.
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rents does not extrapolate to zero linearly at small bare qu
mass, though the mass extracted from the difference of
scalar correlator and the pseudoscalar correlator does.
might be a quenched approximation-finite volume artifact,
we discuss in Sec. IV.!

Results for spectroscopy are shown in Fig. 2. With
small data set, the noise in the baryon channels become
large for a stable mass fit at small quark mass. Makin
naive extrapolation of the rho mass to the chiral limit a
fixing the lattice spacing from the physical value of its ma
would indicate a lattice spacing of about 0.13 fm, as oppo
to a value of 0.11 fm from the Sommer parameter, using
interpolating formula of Ref.@24#. We will ~somewhat arbi-
trarily! use the lattice spacing from the Sommer paramete
convert lattice numbers into dimensionful ones through
the rest of the paper.

On the 124 lattices we calculated the ten lowes
eigenvalue eigenmodes ofD(0) on each configuration@more
properly, we calculated the ten smallest eigenvalue mode
H(0)2 in the chiral sector of the minimum eigenvalue, a
reconstructed the degenerate eigenstate of opposite chi
when one was present#. On one configuration we found th
lowest twenty eigenmodes. On the 123324 lattices we found
the lowest twenty eigenmodes. Histograms of the num
density of the imaginary part of the nonzero eigenmodes
function of their value are shown in Fig. 3 for the two da
sets. The smallest nonzero eigenmodes in both sets ha
value of about 0.002 in lattice units, and the largest ones
about 0.3–0.35. With a nominal lattice spacing of 0.11 f
this corresponds to eigenmodes in physical units rang
from 3.6 MeV to 640 MeV. To set the scale, a calculation
the chiral condensate with the same action in Ref.@20# gives

^c̄c& of roughly ~280 MeV! 3, and the lightest quark mass
which we have performed spectroscopy,amq50.01, corre-
sponds to a quark mass of about 18 MeV.

We measured the topological charge density@which we
denote asQ(x)] using an operator described in our previo
work @25#. This operator is built of a sum of two perimete
ten loops, twisted in four dimensions to provide a latti
approximation to TrFmn(x)F̃mn(x). The links in the loops are
built of APE-smeared links, and the operator can be tuned
the choice ofa ~0.45 in this study! andN ~mostly set to 10!.
As a demonstration of the efficiency of the operator, we
amined a set of smooth single instanton configurations, v
ing the radiusr of the instanton. Our results are shown
Fig. 4. Without smearing the topological chargeQ
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5*d4xQ(x) decreases slowly from one to zero over a wi
range of instanton radii as the instanton disappears from
lattice, while at large smearing levels it cuts off sharply. T
fermion spectrum should~and does! possess a single, chira
zero mode for as long as the fermion couples to the ins
ton. When the instanton radius shrinks to some minim
value, the fermion cannot see the instanton and the z
mode disappears. This behavior is also plotted in Fig. 4.
see that thea50.45, N510 gauge observable has a simil
response to that of our fermion action@which is also built of
~0.45,10! blocked links#.

III. PROPERTIES OF LOW-LYING EIGENMODES

We begin by comparing the bulk quantities of our co
figurations. The Atiyah-Singer index theorem relates the
pological charge and the number of exact fermionic z
modes of a configuration,Qtop5n12n2 . This relation does
not hold exactly in our case as our definition ofQtop does not
produce a value for the topological charge which is an in
ger, nor which is precisely the same as what the ferm
observable experiences. Yet the number of zero modes

FIG. 4. Comparison of topological charge on a set of smo
single instanton configurations of varying instanton radiusr. Octa-
gons show the number of zero modes of the overlap fermion, w
the other symbols show the topological charge measured by
pure gauge observable with various amounts of APE smearing
2-3
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THOMAS DEGRAND AND ANNA HASENFRATZ PHYSICAL REVIEW D64 034512
the net topological charge are strongly correlated, as see
Fig. 5.

An accurate measurement of the topological susceptib
x5^Q2&/V requires large statistics. Nevertheless, the go
agreement of the topological charge with the number of
mion zero modes justifies gauge measurements ofx. Nearly
all groups @4# measure a value close tox1/4

5180–200 MeV. With our limited data set~on the 124 lat-
tices! and taking the lattice spacing from the Sommer para

FIG. 6. The weight with which the most prominent 5 instanto
and 2 anti-instantons couple to the first 20 eigenmodes of a typ
124 configuration. In the shaded region the background fluctuati
are too strong to distinguish topological modes; therefore, that
gion in the graph is excluded. Observe that the first three mo
~the chiral modes! couple only to the instantons, while the rest
the modes are distributed over both instantons and anti-instant

FIG. 5. Topological charge as measured by the pure gauge
servable versus the number of fermion zero modes for our ense
of configurations. Diamonds show 10 APE smearings for the ga
observable; bursts, 20 smearing steps.
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eter we findx1/45224617 MeV using the fermionic zero
modes to determine the topological charge. This error
purely statistical and includes no uncertainty due to the
tice spacing.

Next, we examine the spatial distributions of the eige
modes themselves. To do this, we compute the local ch
densityv(x)5^c(x)ug5uc(x)& for each eigenmodec(x) of
the Dirac operatorD. A glance at contour plots of this quan
tity reveals a rich structure of bumps. A pattern recogniti
program which recognizes the bumps reveals that the lo
tions of maxima of different eigenmodes are strongly cor
lated, and that they are strongly correlated with the positi
of maxima ofQ(x), the pure gauge observable. The~chiral!

al
s
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FIG. 7. Chirality correlation function for a 124 configuration
with 3 zero modes~shown as solid lines!, showing the additional 17
lowest non-chiral mode pairs~shown as dotted lines!. The height of
the correlator at the origin decreases more or less monotonic
with the size of the eigenvalue of the mode.

FIG. 8. The correlator of Fig. 7, scaled by the value of t
correlator at the origin. Chiral modes are shown as solid lines, w
the nonchiral modes are shown as dotted lines.
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LOW-LYING FERMION MODES, TOPOLOGY, AND . . . PHYSICAL REVIEW D64 034512
zero modes are spread over maxima ofQ(x) that have the
opposite sign@v(x) is negative on instantons whereQ(x) is
positive#. The volume integral ofv(x) is zero for the non-
chiral modes. These modes have both positive and nega
peaks. The locations of these peaks correlate with the ap
priate sign peaks ofQ(x). As long as the individual peak
are well separated we can fit the chiral density in terms
single instanton modes

v~x!5(
i

civr
0~x2xi !1h~x!, ~3!

wherevr
0(x) is the ~classical! chiral density of a single in-

stanton of radiusr and locationx50, andh(x) represents

FIG. 9. Mixed topological charge-chirality correlation functio
for a typical configuration. The correlators for the three chi
modes are averaged, as are the correlators for groups of nonc
modes~organized by increasing fermion eigenvalue!.

FIG. 10. Mixed topological charge-chirality correlation functio
for the configuration of Fig. 9, scaled to its value at the orig
Chiral modes are solid; nonchiral ones, dotted.
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the part of the chiral density not associated with well se
rated instantons. The coefficientsci.0 for anti-instantons
andci,0 for instantons.

We consider one 124 configuration in detail. This configu
ration has topological chargeQ53 according to both the
gauge observables and the fermionic definition. After
APE steps the instanton pattern recognition code identifie
instantons and 5 anti-instantons on the gauge configura
After an additional 10 APE steps the gauge configuration
considerably smoother, and we can identify only 4 of t
instantons and 2 of the anti-instantons, although the in
grated topological charge is still 3. Obviously the patte
recognition algorithm misinterprets some object~s!.

The chiral density functionv(x) peaks at the same loca
tions asQ(x). It couples strongly to all the objects foun

l
iral

.

FIG. 11. Mixed topological charge-chirality correlation functio
averaged over all the nonchiral modes on all 124 configurations in
the data set.

FIG. 12. Chirality autocorrelation function averaged over all t
nonchiral modes on all configurations in the data set. The lo
curve corresponds to 124 lattices; the upper one to 123324 lattices.
2-5
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THOMAS DEGRAND AND ANNA HASENFRATZ PHYSICAL REVIEW D64 034512
after 20 APE steps, 4 instantons and 2 anti-instantons,
picks up a fifth instanton found after 10 but not 20 smooth
steps. With smaller weights it peaks at other locations
well, possibly identifying nearby pairs. The different eige
modes couple to the different topological objects with va
ing weights. In Fig. 6 we show the weight relative to t
background fluctuations,

wi5
ci

A^h2&
, ~4!

FIG. 13. The same data as Fig. 12, but scaled byr 3 to expose
the large distance tail. The solid curve corresponds to 124 lattices;
the dotted one to 123324 lattices.
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with which the most prominent 5 instantons and 2 an
instantons couple to the first 20 eigenmodes.A^h2& is the
average of the local chiral densityv(x)2 for space-time
points that are not associated with any topological obje
@see Eq.~3!#. In order to identify a mode we require that i
weight is at least five times above background,wi.5; there-
fore the shaded region in the graph is excluded. Obse
from the figure that the first three modes~the chiral modes!
couple only to the instantons, while the rest of the modes

FIG. 14. Instanton number density vs size, extracted from
fermion chirality density function, and converted to physical un
using a nominal lattice spacing ofa50.11 fm.
r-

s
s.
ro
FIG. 15. Saturation of the pseudoscalar co
relator by low-lying eigenmodes ofH(0)2. ~a!
amq50.01 (p/r.0.34); ~b! amq50.02 (p/r
.0.50); ~c! amq50.04 (p/r.0.61); ~d! amq

50.06 (p/r.0.64). Squares ~connected by
lines! show the full hadron correlator. Octagon
show the contribution from the lowest 20 mode
Diamonds show the contribution from the ze
modes.
2-6
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FIG. 16. Saturation of the pseudoscalar co
relator by low-lying eigenmodes ofH(0)2 at
amq50.02 (p/r.0.50). Squares~connected by
lines! show the full hadron correlator. Octagon
show the contributions from the lowestN modes,
where in~a! N54, in ~b! N58, in ~c! N512, in
~d! N516.
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distributed over both instantons and anti-instantons. M
modes couple with weights 10–20 to several topological
jects, but occasionally the mode overwhelmingly couples
a single topological object. For example the third chi
mode couples very strongly to one of the instantons, I2. I
the smallest topological object identified on the configu
tion, with a radiusr/a.2.0, but it is not obvious to us tha
that explains the unusually large coupling.

There is no qualitative difference between the lowest a
highest non-chiral modes: they couple to the same se
topological objects with slightly decreasing magnitude. T
volume of this configuration is about 4 fm4, so according to
the instanton-liquid model one would expect around 4 w
defined objects. Indeed the pattern recognition code ide
fies about half a dozen topological objects, yet every one
the lowest 20 eigenmodes shows strong coupling to them
there is no reason to believe that the situation will chang
we consider the next 10 or 20 eigenmodes. They all coupl
the same set of topological modes in addition to no
topological, ‘‘spin-wave’’ modes. As the eigenvalue i
creases, the coupling to the topological modes decre
while the spin wave mode coupling increases, until it is
longer possible to actually separate the topological mo
from the background. The 123324 configurations show a
similar pattern but with more topological objects, as is e
pected in a larger volume.

To further quantify these observations, we construct
autocorrelation function of chirality

Cv,v~r !5
1

VE d3xv~x!v~r 1x! ~5!
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and the correlation function of chirality with topologica
charge

Cv,Q~r !5
1

VE d3xv~x!Q~r 1x!. ~6!

Let us first considerCv,v(r ) on the sameQ53 configura-
tion as above, shown in Fig. 7. We show the autocorrela
for each of the lowest 20 modes, chiral and nonchiral. T
peak at smallr indicates that the chirality is localized. Th
three solid lines correspond to the three chiral zero mod
The very large autocorrelator corresponds to the third ch
mode, which has an unusually large coupling to one of
instantons, I2 in Fig. 6. The amount of localization of a mo
dies away slowly as the eigenvalue of the mode increa
@The autocorrelation function of the zero modes does not
to zero becausev(x) integrates to unity, while*v(x)50 for
the nonchiral modes.# However, the size of the localized re
gion does not depend too much on the magnitude of
eigenvalue. We can see that by normalizing the autocorr
tor by its value at the origin, in Fig. 8.

Similar features are seen for the mixed correlator. Wh
the topological charge is large, there alsov(x) peaks. Higher
modes gradually decorrelate with topological charge. Nev
theless, the size of the correlated region depends only we
on the eigenvalue. Compare Figs. 9 and 10.

Now we combine all the lattices in our data set and av
age our correlation functions over all the nonchiral mod
The correlation function for the chirality with the topologic
charge and the autocorrelation function of the chirality a
shown in Figs. 11 and 12.~There really are error bars in
2-7
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FIG. 17. Saturation of the difference of pse
doscalar and scalar correlators by the 20 lo
lying eigenmodes ofH(0)2. Squares~connected
by lines! show the full hadron correlator. Octa
gons show the contribution from the lowest 2
modes. ~a! amq50.01 (p/r.0.34); ~b! amq

50.02 (p/r.0.50); ~c! amq50.04 (p/r
.0.61); ~d! amq50.06 (p/r.0.64).
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these pictures.! The chirality autocorrelation function i
slightly broader than the mixed correlator, which is not s
prising as the fermionic zero mode wave function falls
more slowly than the topological charge density. Figure
actually has two curves: one corresponds to the 124, the other
to the 123324 data set. The two curves are almost indist
guishable except at large distances where, due to the pe
icity of the lattice, the 124 curve falls somewhat below th
other. From the falloff of the correlator one can estimate
typical size of the instantons to be about three lattice sp
ings or 0.3 fm. The fermionic wave functions are sligh
larger than that. One would expect to see finite size effe
when the lattice size is comparable to the diameter of
wave function, about 1 fm.

All of these features are exactly what one would exp
based on the instanton liquid model of the QCD vacuum@2#:
The ~degenerate! chiral modes are on the appropriate char
instantons, coupling to all of them. The nonchiral modes
made of a superposition of peaks, each peak centered o
instanton or an anti-instanton, and interpolating among th

If the chirality correlator was ‘‘lumped,’’ and interpolate
between opposite sign peaks on instantons and a
instantons, one would also expect thatCv,v(r ) would go
negative at larger, as an instanton peak~one sign of chiral-
ity! would anti-correlate with a nearby anti-instanton pe
~opposite chirality!. Figure 13 multiplies the autocorrelato
by the phase space factor ofr 3 and exposes this behavio
Similar negative correlation was observed using the p
gauge topological charge operator in Ref.@26#.

Finally, we can determine a size distribution of the top
logical objects seen by the fermions. We do this by identi
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ing peaks in the distribution ofv(x), and fitting the peak
shape to the shape expected from a fermionic zero mo
The radius of the peak is directly related to the instan
radiusr. This is basically the same procedure that is used
identify instantons with the pure gauge local charge distri
tion Q(x). It suffers from the same limitations—a bum
must stand out from the background high enough to be s
and must not die away too quickly. The first constraint mea
that large objects will be lost~larger instantons have a fla
profile!; the second constraint means that small instant
will also not be seen. The resulting distribution is shown
Fig. 14, where we have converted our result to physical u
using a nominal lattice spacing ofa50.11 fm. The distribu-
tion peaks aroundr50.3 fm. This value is quite similar to
that from a pure gauge calculation by one of us@25#, consid-
erably smaller than that of two other pure gauge calculati
@27,28#, and quite consistent with the expectations of insta
ton liquid phenomenology@2,29#.

IV. WHAT DO THESE EIGENMODES DO?

In the last section we demonstrated that the low lyi
eigenmodes of the Dirac operator are strongly correla
with the topological structure in the QCD vacuum. But a
these modes relevant to any physical processes? Phenom
logical instanton models predict that light quarks propag
in the vacuum by hopping between oppositely charged to
logical objects, and therefore the lightest hadron propaga
are dominated by the low lying fermion modes. There a
three obvious classes of observables to investigate: ordi
hadronic correlators, point-to-point correlators, and disc
2-8
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FIG. 18. Comparison of the correlator
needed to compute the PCAC quark mass a
f p : the ~absolute value of the! pseudoscalar
source—axial vector sink correlators of the n
merator of Eq.~2!. Squares~connected by lines!
show the full hadron correlator. Octagons sho
the contribution from the lowest 20 modes.~a!
amq50.01 (p/r.0.34); ~b! amq50.02 (p/r
.0.50); ~c! amq50.04 (p/r.0.61); ~d! amq

50.06 (p/r.0.64).
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nected~hairpin! diagrams. We have chosen to focus on t
first class, since they directly probe the behavior of QCD
large distances and are relevant to most measuremen
hadronic matrix elements.~The latter observables are obv
ously targets for future study.!

We constructed sets of quark propagators on the3

324 data set at several values of the quark mass via a u
calculation, and built complementary sets of propagator
which the quark propagator was approximated by a m
sum over the lowestN ~2 to 20! modes. In both cases w
used a Coulomb-gauge Gaussian source and projected
point sink of the correlator onto zero momentum. We w
compare the correlators at lattice quark massamq50.01,
0.02, 0.04, and 0.06, corresponding to a pseudoscalar/ve
meson mass ratio of about 0.34, 0.50, 0.61 and 0.64.

Approximating the quark propagator by a truncated mo
sum is obviously uncontrolled, and we would not advoc
doing it in a real calculation. However, it serves as a na
realization of an instanton liquid model.

First, we must make a digression to discuss the effec
the exact zero modes. There are hadron correlators which

TABLE I. PCAC quark mass and pseudoscalar decay cons
from full propagators and from 20-mode truncations.

amq Full mq 20-modemq Full a fp 20 modef p

0.01 0.009~1! 0.011~2! 0.092~8! 0.100~12!

0.02 0.020~1! 0.017~2! 0.091~4! 0.100~6!

0.04 0.041~1! 0.032~2! 0.092~2! 0.085~5!

0.06 0.062~1! 0.046~2! 0.093~2! 0.085~10!
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sensitive to zero modes and ones which are not@30#. Since
the zero modes are chiral, the zero mode quark propagat
proportional to (16g5) and inversely proportional to 1/mq .
Because of its Dirac structure it couples to the pseudosca
pseudoscalar~Ps-Ps! and scalar-scalar~S-S! correlators. At
small quark mass it makes an ever larger contribution
these correlators, dominating them in the chiral limit in fin
volumes. This contribution is a quenched approximat
finite-volume lattice artifact: quenched, because the z
mass limit of full QCD has no zero modes, and a finit
volume effect because the number of zero modes comp
to the number of nonchiral modes is volume-dependent.
example, in the Gell-Mann–Oakes-Renner~GMOR! relation,
the volume-averaged point-to-point Ps-Ps correla
(x^p(x)p(0)&/V has a contributionQ/(mq

2V) in addition to
a volume-independent piece from the nonchiral modes. T
piece actually scales like 1/AV becausê Q2&.V. The axial
current autocorrelator can have ‘‘mixed’’ contributions~one
quark propagating through a zero mode and the other qu
through nonzero modes!, and the zero modes can be com
pletely decoupled from the pseudoscalar channel by con
ering the difference of a Ps-Ps and S-S correlator.

Since the overall 1/mq coefficient allows the zero mode
to dominate some correlators, a conventional extraction
masses from exponential decay whenmq is much smaller
than the eigenvalue of the first nonzero mode would giv
prospective pion mass that is independent of the quark m
~because it is related to the correlations inherent in the z
modes!. We believe that this artifact might be related to t
flattening of the pion mass seen in the Ps-Ps correlato
amq50.04 and 0.06 in Fig. 1. From this correlator, the low

nt
2-9
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FIG. 19. Comparison of the full vector meso
correlator~squares! with the correlator built from
the lowest 20 eigenmodes ofH(0)2 ~octagons!.
~a! amq50.01 (p/r.0.34); ~b! amq50.02
(p/r.0.50); ~c! amq50.04 (p/r.0.61); ~d!
amq50.06 (p/r.0.64).
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est four points give a lattice squared pion mass of (amp)2

50.018(4) at zero bare quark mass. The pion mass extr
lated from the difference between Ps-Ps and S-S correla
shown in the figure as octagons, extrapolates to (amp)2

50.008(5) at zero quark mass.
The vector current,g ig5 axial current, and the nucleo

and delta all have no coupling to the zero modes.
We find from our data that at small quark mass the l

modes saturate the hadron correlators at large time sep
tions. As more modes are added, the saturation extend
lower and lower times. This effect decreases as the qu
mass rises.

A. Pseudoscalar and scalar correlators

The most dramatic effects are seen in the pseudosc
and scalar channels. At our lowest mass~pseudoscalar/vecto
meson mass ratio of about 0.34! the saturation seems com
plete, and at higher masses it is less so. In Fig. 15 we c
pare the full propagator and theN520 truncated propagato
for the pseudoscalar channel. Twenty eigenmodes satu
the propagator even at our heaviest quark mass,amq50.06.
While the chiral modes themselves do not saturate the pr
gator~also shown in Fig. 15!, at low mass, only a few mode
are needed. Results on varying the number of modes use
saturate the pseudoscalar correlator atamq50.02 are shown
in Fig. 16. At amq50.02 8–12 modes saturate the propag
tor. This is in agreement with instanton models that sugg
that the number of relevant modes is about the same as
03451
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number of instantons on the lattice. With an instanton den
of one per fm4 on our 123324'8 fm4 lattices we indeed
expect about 8 instantons per lattice. Results for the o
quark masses are similar though the number of mo
needed to saturate the propagator rises to about 12–16 m
at p/r.0.64. Saturation of the pseudoscalar-scalar diff

FIG. 20. Comparison of the full axial vector meson correla
with the correlator built from the lowest twenty eigenmodes
H(0)2, at bare quark mass 0.04. Squares are the full correla
octagons, 20-eigenmode truncation.
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FIG. 21. Comparison of the full nucleon cor
relator~squares! with the correlator built from the
lowest 20 eigenmodes ofH(0)2 ~octagons!. ~a!
amq50.01 (p/r.0.34); ~b! amq50.02 (p/r
.0.50); ~c! amq50.04 (p/r.0.61); ~d! amq

50.06 (p/r.0.64).
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ence correlator~to which zero modes do not contribute! is
shown in Fig. 17.

To orient the reader, keeping the lowest ten eigenmo
amounts to keeping only eigenmodes of the Dirac oper
whose imaginary part is less than about 350 MeV.

We also looked at the simplest quantities related to ch
symmetry that we can extract from our data, the PCAC qu
mass and the pseudoscalar decay constant. The sam
merator is used in the lattice measurement of the PC
quark mass@Eq. ~2!# and the pseudoscalar decay const
f PS.^puA0u0&. Overlap fermions satisfy the GMOR relatio
mode by mode. This is not the case for the PCAC relati
although one would expect that a chiral theory would a
respect it. What do low eigenmode truncations give for th
quantities?

The numerators of the relevant correlators are shown
Fig. 18. The sourceC(0,0) is a Gaussian source (g5). This
picture plus Fig. 15 serve to show that the average pseu
scalar correlator is reproduced using only the lowest ferm
modes in the quark propagator, even at shortt. By longer t,
the axial current matrix element is also saturated by the
lying modes. Thus both the PCAC quark mass andf p will be
correctly computed using these truncated propagator
small quark mass—as a straightforward fit shows~see Table
I!. Note that byamq50.06 the 20-mode PCAC quark ma
deviates from the full calculation. This quark mass is ab
one fifth of the value of the largest eigenmode kept in
mode sum.

B. Vector and axial vector correlators

We observe that the vector meson correlator satur
only at a much larger time separation than the pseudosc
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correlator. This is not very surprising based on instan
model phenomenology@2#. The two quarks of the vecto
meson have to couple to two different instantons to pro
gate chirally. That requires a propagation distance ab
twice the instanton size; at shorter distances the quarks o
vector meson propagate like free particles, independen
the instanton modes of the Dirac operator. This is shown
Fig. 19.

The signal in the axial vector channel is much noisier, a
if the mode sum and the full propagators resemble e
other, it is only after our signal has disappeared into
noise. At lowt the low mode correlator even has the oppos
sign to the full correlator. Compare Fig. 20.

C. Baryon correlators

Both baryon signals~proton and delta! become increas-
ingly noisy at small quark mass. However, it appears that
low-lying fermionic modes do a better job of saturating t
nucleon correlator than the delta correlator. Compare F
21 and 22.

These features are in complete agreement with sim
instanton-based phenomenology@2#: In the instanton liquid,
different flavor quarks can travel together from instanton
instanton, exchanging their flavor and flipping their spin.
pseudoscalar and scalar meson channels, the quantum
bers of the quarks allow this kind of propagation. Nucleo
contain a spin-zeroud diquark which can also propagate
this way. The lower the value of the eigenmode, the mor
couples to instantons, and so the low eigenmodes domi
the correlator. Vector mesons, however, lack first order
stanton interactions but do interact in second order. The
2-11
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FIG. 22. Comparison of the full delta cor
relator~squares! with the correlator built from the
lowest 20 eigenmodes ofH(0)2 ~octagons!. ~a!
amq50.01 (p/r.0.34); ~b! amq50.02 (p/r
.0.50); ~c! amq50.04 (p/r.0.61); ~d! amq

50.06 (p/r.0.64).
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quarks in the delta are all inj 51 states and cannot exper
ence first-order interactions either.

According to the calculations in Refs.@31# and @2#, the
important parameter of the instanton liquid phenomenolo
is the tunneling amplitude between instantons and a
instantons,

^uTIAu2&5
2p2

3Nc

N

V
r2, ~7!

and with a mean instanton size ofr.1/3 fm and density
N/V.1 fm24, uTIAu.90 MeV. The quark propagator fo
quark massm in the zero-mode zone has a denominator
roughly T1 im and one might expect that, whenm becomes
comparable toTIA , replacing the full propagator by a sum
over instantons might be a bad approximation. A lattice re
lated bare quark mass of about 100 MeV would corresp
roughly toma.0.06, which is actually the place where w
observe that the lowest modes~whose values are less tha
640 MeV! begin not to saturate any correlator.

Our remarks apply only to long distance correlation fun
tions, not to short distance point-to-point correlators, nor
vacuum-to-vacuum diagrams~hairpins!, neither of which we
have yet investigated. Point-to-point correlators look at Q
at short to intermediate distances and the results from th
simulations cannot be compared directly with ours. None
less, Ivanenko and Negele@32# have tried to saturate th
pseudoscalar and vector point to point correlators with l
lying eigenmodes. With 128 modes both correlators can
saturated.
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Venkataraman and Kilcup@33# studied long distance cor
relators on dynamical lattices. They found that the pion c
relator ~at a pseudoscalar/vector meson mass ratio of 0
from the data set of Ref.@34#! could not be saturated by th
32 lowest modes. Their lattice volume is somewhat lar
than ours, and their action is less chiral which can expl
why their findings are different.

Several groups@33,35# have reported that pseudoscal
hairpins are saturated by low eigenmodes.

Finally, we @36# and Kovacs@37# have tried to study the
effects of instantons in chiral symmetry breaking by isolati
the instantons in a gauge configuration and reconstructin
pure multi-instanton configuration. Ordinary hadron spe
troscopy using some standard~nonchiral! action is then com-
puted on these configurations. The vector channel~especially
as seen by Ref.@37#! is dominated by a very low mass exc
tation even at higher quark masses. These results qua
tively resemble the picture of the low mode correlators
Figs. 15 and 19.

V. CONCLUSIONS

Instantons seem to be responsible for most chiral sym
try breaking in quenched QCD on the lattice, with a latti
spacing near 0.11 fm. The lowest-eigenvalue eigenmode
the Dirac operator have structure that is strongly correla
with the locations of instantons and anti-instantons. Lo
lying nonchiral modes make a large contribution to lig
quark mass hadron propagators in channels where insta
liquid phenomenology would predict they would. Our litt
instanton liquid calculation indicates that the instanton p
2-12



o

th
c
u

y
m
m

ee
ill
e
u-

vi
th
ua
ra

ge
io
fa

or-
the

liq-
as
ore

ict

rks
ect

ed
ak
de-
g
ent

LOW-LYING FERMION MODES, TOPOLOGY, AND . . . PHYSICAL REVIEW D64 034512
ture should break down at larger quark masses, as we
serve.

Of course, there is no reason for instantons to be
whole story. While on even smoother lattices one expe
that instantons will be equally important, in the strong co
pling limit chiral symmetry is broken in QCD without an
recourse to instantons@38#. Some vestige of this mechanis
of chiral symmetry breaking might persist to the continuu
limit. Also, Fig. 14 shows that the mean instanton size s
by our fermions is about 0.3 fm. A larger lattice spacing w
compromise these objects. One might expect a differ
physical picture of chiral symmetry breaking in lattice sim
lations in that case.

Note also that instantons cannot account for the beha
of the pion at larger quark mass. From Fig. 1 we see that
linear relation between the squared pion mass and the q
mass persists to well above a pseudoscalar/vector mass
of 0.8, where the light modes we have identified no lon
saturate the pion correlator. One would still say that the p
exhibits pseudo-Goldstone boson behavior in spite of the
in
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-
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y
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that the low lying modes become progressively less imp
tant. One might imagine that more modes might saturate
correlator. However, the qualitative features of instanton
uid phenomenology are supposed to involve only about
many modes as there are instantons, so the need for m
than a few modes in our simulation volume begins to confl
with this phenomenology.

Nevertheless, in the real world, the up and down qua
are light. Our work suggests strongly that instantons aff
their dynamics.
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