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Supersymmetric Yang-Mills theory on the lattice with domain wall fermions
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The dynamicalN51, SU~2! super Yang-Mills theory is studied on the lattice using a new lattice fermion
regulator, domain wall fermions. This formulation even at nonzero lattice spacing does not require fine-tuning,
has improved chiral properties and can produce topological zero-mode phenomena. Numerical simulations of
the full theory on lattices with the topology of a torus indicate the formation of a gluino condensate which is
sustained at the chiral limit. The condensate is nonzero even for small volume and small supersymmetry
breaking mass where zero mode effects due to gauge fields with fractional topological charge appear to play a
role.
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I. INTRODUCTION

It is believed that supersymmetric~SUSY! field theories
may play an important role in describing the physics beyo
the standard model. Nonperturbative studies of these theo
are of great interest. First-principles numerical simulatio
may be able to provide additional information and confirm
tion of existing analytical calculations. Typically first prin
ciples numerical simulations of field theories are done wit
the framework of the lattice regulator. A host of results ha
been produced in this way for many field theories and m
notably QCD. Several SUSY theories can also be formula
on the lattice and be studied numerically. To be more spec
consider the problems of putting a SUSY theory on the
tice ~see, for example, Refs.@1–3#!:

~1! Since space-time is discrete only a subgroup of
Poincare´ group survives and as a result SUSY is broken. T
problem is not severe and is of the same nature as in Q
The symmetry breaking operators that are allowed by
remaining symmetries are irrelevant. One can calculate
several lattice spacingsa and then take thea→0 limit. No
fine-tuning is needed.

~2! If the SUSY theory under consideration involves sc
lar fields one can have scalar mass terms that break S
since typically they are not forbidden by some symme
Since these operators are relevant fine-tuning will be nee
in order to cancel their contributions. The four-dimension
N51 super Yang-Mills~SYM! theory does not involve sca
lars and therefore it does not have this problem.

~3! A naive regularization of fermions results in the we
known doubling problem@4#. For each fermion species in th
four-dimensional continuum 16 are generated on the lat
with total chirality of zero. This results in the wrong numb
of degrees of freedom and therefore breaks SUSY. Howe
this problem may be possible to treat as in QCD. This is
case forN51 SYM.

One possible way to remove the unwanted fermion
grees of freedom is to add an irrelevant operator~Wilson
term @5#! that gives them heavy masses of the size of
0556-2821/2001/64~3!/034510~15!/$20.00 64 0345
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cutoff. This term unavoidably breaks the chiral symmetry@4#
and as a result a gluino mass term is no longer forbidd
Since such a term is relevant, fine tuning of the bare ferm
mass is necessary as the continuum limit is approache
order to cancel its contribution. Although fine-tuning is no
welcomed property this method makes it possible to reco
the continuum target theory.

Therefore, it is possible to simulate numerically theN
51 SYM theory using existing lattice ‘‘technology’’ since a
three difficulties can be circumvented. This observation w
made some time ago@1#. In particular, it was argued that
using a standard lattice gauge theory action with a p
gauge Wilson plaquette term and Wilson fermions in the
joint representation, numerical simulations could be do
Pioneering work using these methods has already produ
very interesting numerical results@6,7#. Also, for proposed
lattice tests of SYM see Ref.@8#. For a supersymmetric for
mulation on the lattice using Kogut-Susskind@9# fermions
see Ref.@10#.

There are two unwelcomed difficulties in using Wilso
fermions. The first has already been mentioned and it is
need for fine-tuning. The second is of a technical nature
turns out that the Pfaffian resulting from the fermionic int
gration is not positive definite@6# at finite lattice spacing.
However, it does become positive definite as the continu
limit is approached and therefore as a ‘‘cure’’ only the abs
lute value of the Pfaffian is used@6,7#. However, this intro-
duces nonanalyticities that may make the approach to
continuum limit difficult.

Both of these difficulties can be brought under control
using an alternative fermion lattice regulator, domain w
fermions ~DWFs!. The use of DWFs in supersymmetr
theories has been explored in the very nice work of Refs.@2,
3#. The methods in this paper are along the lines of th
references. Domain wall fermions were introduced in R
@11#, were further developed in Refs.@12# and@13,14#. They
provide a new way for treating the unwelcomed chiral sy
metry breaking that is introduced when the fermion doub
species are removed. Here a variant of this approach wil
©2001 The American Physical Society10-1
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FLEMING, KOGUT, AND VRANAS PHYSICAL REVIEW D 64 034510
used@13,14#. For reviews on the subject please see Ref.@15#,
and references therein. DWF have already been used fo
merical simulations of the two flavor dynamical Schwing
model @16#, dynamical QCD@17#, quenched QCD@18–23#,
as well as for simulations of 4-Fermi models@24#. The use of
DWF in supersymmetric theories has also been explored
different fashion in Refs.@25,26#. Furthermore, the use o
overlap @12# type fermions has been explored in Re
@12, 27,28#, and the use of other related types of fermio
has been explored in Refs.@29,30#.

In the lattice DWF formulation of a vector-like theory th
fermionic fields are defined on a five-dimensional space-t
lattice using a local action. The fifth direction can be thoug
of as an extra space-time dimension or as a new inte
flavor space. The gauge fields are introduced in the stan
way in the four-dimensional space-time and are coupled
the extra fermion degree of freedom in a diagonal fashi
The key ingredient is that the boundary conditions of
Dirac operator along the fifth direction are taken to be fr
As a result, although all fermions are heavy, two chiral, e
ponentially bound surface states appear on the bound
~domain walls! with the plus chirality localized on one wa
and the minus chirality on the other. The two chiralities m
only by an amount that is exponentially small inLs , where
Ls is the number of lattice sites along the fifth direction, a
form a Dirac spinor that propagates in the four-dimensio
space-time with an exponentially small mass. Therefore,
amount of chiral symmetry breaking that is artificially in
duced by the regulator can be controlled by the new par
eter Ls . In the Ls→` limit the chiral symmetry is exact
even at finite lattice spacing, so there is no need for fi
tuning.

For the first time the approach to the chiral limit has be
separated from the approach to the continuum limit. Furth
more, the computing requirement is linear inLs . This is to
be contrasted with traditional lattice fermion regulato
where the chiral limit is approached only as the continu
limit is taken, a process that is achieved at a large compu
cost. Specifically, because of algorithmic reasons, the c
puting cost to reduce the lattice spacing by a factor o
grows by a factor of 28 – 10 in four dimensions. Therefore, th
unique properties of DWF provide a way to bring und
control the systematic chiral symmetry breaking effects
ing today’s supercomputers.

The purpose of this paper is twofold. First, the techniqu
for performing a numerical simulation of the fullN51
SU~2! SYM theory using DWF are collected and it is dem
onstrated that they work as expected by performing num
cal simulations of the full theory. Second, the gluino cond
sate is measured. It is expected that a nonzero glu
condensate must form@31–34#. However, there are also a
guments that the theory has a phase where a gluino con
sate does not form@35#. In the numerical simulations per
formed here it is found that a nonzero gluino condensat
sustained in the limit of zero gluino mass. This result is a
finite lattice spacing and therefore SUSY is still broken alb
by irrelevant operators.

It must be emphasized that in this work due to limit
computer resources no attempt has been made to extrap
03451
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to the continuum limit. It is possible that in this limit th
gluino condensate may vanish. Future work using lar
computer resources could calculate the gluino condensa
several lattice spacings and extract the continuum value.
even then, it will never be possible to numerically prove th
the finite lattice spacing theory is not separated from
continuum theory by a phase transition. This problem is
particular to the case at hand but is in the nature of numer
investigations. They can provide strong evidence but not
questionable proof. A well known case with similar problem
relates to the question of confinement and chiral symme
breaking in QCD.

This paper is organized as follows. In Sec. II, the DW
lattice formulation ofN51 SU~2! SYM theory is presented
In Sec. III, analytical considerations relating to the glui
mass, the Ward identities, and the effects of topology in
patterns of chiral symmetry breaking are given. The num
cal methods used in the simulations are discussed in Sec
The numerical results are presented in Sec. V and the p
is concluded in Sec. VI.

II. LATTICE FORMULATION

In this section, theN51, SU~2! SYM lattice action and
operators are presented. The approach is similar in spir
to the case of Wilson fermions@1,6,7#. The DWF formulation
for this theory is identical to Refs.@2# and@3#. It is presented
below for the convenience of the reader and in order to
tablish notation.

The N51, SU~2! SYM theory is an SU~2! gauge theory
with Majorana fermions in the adjoint representation.
such, the fermionic path integral results in the analy
square root of the corresponding Dirac determinant. T
then is the Pfaffian of an antisymmetric matrix that has
same determinant as the Dirac operator. On the lattice,
Dirac operator can be defined using Wilson’s approach a
Refs.@1,6,7# or the DWF approach as in Refs.@2# and @3#.

The partition function is

Z5E @dU#E @dC#E @dF#e2S. ~1!

Um(x), m51, 2, 3, 4 is the four-dimensional gauge field
the fundamental representation,C(x,s) is a ~real! five-
dimensional Majorana field in the adjoint representation, a
C(x,s) is a ~real! five-dimensional bosonic Pauli Villars
~PV! type field with the same indices as the Majorana fieldx
is the coordinate in the four-dimensional space-time box w
extent L along each of the four directions. The bounda
conditions along these directions are taken to be periodic
all fields. The coordinate of the fifth direction iss
50,1, . . . ,Ls21, whereLs is the size of that direction and i
taken to be an even number. The actionS is given by

S5SG~U !1SF~C,U !1SPV~F,U !. ~2!

SG(U) is the pure gauge part and is defined using the s
dard single plaquette action of Wilson:
0-2
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SG5b(
p

S 12
1

2
Re Tr@Up# D , ~3!

whereb54/g2 andg is the gauge coupling.
The fermion partSF(C,U) is given by
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SF52 (
x,x8,s,s8

C̄~x,s!DF~x,s;x8,s8!C~x8,s8!, ~4!

where DF is the DWF Dirac operator in the form of Re
@14#. Specifically it is
DF~x,s;x8,s8!5d~s2s8!D” ~x,x8!1D”'~s,s8!d~x2x8!, ~5!

D” ~x,x8!5
1

2 (
m51

4

@~11gm!Vm~x!d~x1m̂2x8!1~12gm!Vm
† ~x8!d~x81m̂2x!#1~m024!d~x2x8!, ~6!

D”'~s,s8!5H PRd~12s8!2mf PLd~Ls212s8!2d~02s8!, s50,

PRd~s112s8!1PLd~s212s8!2d~s2s8!, 0,s,Ls21,

2mf PRd~02s8!1PLd~Ls222s8!2d~Ls212s8!, s5Ls21,

~7!

PR,L5
16g5

2
, ~8!
:

-

t
off

t
V

whereV is the gauge field in the adjoint representation. It
related to the field in the fundamental representation by~see,
for example, Ref.@6#!

@Vm~x!#a,b52Tr@Um
† ~x!TaUm~x!Tb# ~9!

and

Vm~x!5Vm* ~x!5@Vm
21~x!#T, ~10!

where Ta5 1
2 sa with sa the Pauli matrices. In the abov

equationsm0 is a five-dimensional mass representing t
‘‘height’’ of the domain wall and it controls the number o
light flavors in the theory. In order to get one light species
the free theory one must set 0,m0,2 @11#. The parameter
mf explicitly mixes the two chiralities and as a result it co
trols the bare fermion mass of the four-dimensional effect
theory. The dependence of the bare fermion mass onm0 and
Ls is discussed in Sec. III A.

The fermion fieldC̄ is not independent but is related toC
by the equivalent of the Majorana condition for this fiv
dimensional theory@3#:

C̄5CTCR5 , ~11!

whereR5 is a reflection operator along the fifth direction a
C the charge conjugation operator in Eucledean space w
can be set to

C5g0g2 . ~12!

Therefore, the fermion action can also be written as

SF52 (
x,x8,s,s8

CT~x,s!MF~x,s;x8,s8!C~x8,s8!, ~13!
e

ch

where

MF~x,s;x8,s8!5CR5DF~x,s;x8,s8! ~14!

is an antisymmetric matrix as can be easily checked@2#. As a
result the fermionic integral gives the anticipated Pfaffian

E @dC#e2SF5Pf~MF!. ~15!

Because det(CR5)51 one also has that det(MF)5det(DF) and
therefore,

Pf~MF!5Adet~DF!. ~16!

The Pauli-Villars actionSPV is designed to cancel the con
tribution of the heavy fermions@12#. Viewing the extra di-
mension as an internal flavor space@12# one can see tha
there areLs21 heavy fermions with masses near the cut
and one light fermion. The PV subtraction subtracts theLs
heavy particles. As was pointed in Ref.@2# this amounts to a
‘‘double’’ regularization of the light degree of freedom, firs
by the lattice and then by the PV field. The form of the P
subtraction used here is as in Ref.@16# and is given by

SPV5 (
x,x8,s,s8

FT~x,s!MF@mf51#~x,s;x8,s8!F~x8,s8!.

~17!

The integral over the PV fields results in

E @dF#e2SPV5
1

Pf~MF@mf51# !
. ~18!
0-3
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FLEMING, KOGUT, AND VRANAS PHYSICAL REVIEW D 64 034510
Green’s functions in this work are measured using fo
dimensional fermion fields constructed from fiv
dimensional fermion fields using the projection prescript
@14#

x~x!5PRC~x,0!1PLC~x,Ls21!,

x̄~x!5C̄~x,Ls21!PR1C̄~x,0!PL . ~19!

In the Ls→` limit of the theory these operators direct
correspond to insertions in the overlap of appropriate c
ation and annihilation operators@12#.

Using Eqs.~11! and ~19! the Majorana condition on the
four-dimensional fermion field is

x̄5xTC. ~20!

Because this is the correct condition for a four-dimensio
field one can see that the definition in Eq.~11! not only
produces an antisymmetric fermion matrixMF but is also
consistent with the projection prescription in Eq.~19! as ex-
pected.

III. ANALYTICAL CONSIDERATIONS

In this section some analytical considerations are p
sented. In theN51 SYM theory, a gluino mass term is th
only relevant operator that can break supersymmetry an
also the only relevant operator that can break~at the classical
level! the U~1!A symmetry. Therefore, the two symmetrie
are intimately related to the mechanisms that can introdu
bare gluino mass term. These mechanisms depend on
‘‘extra’’ regulator parametersm0 and Ls . This is discussed
below. Next the fate of the U~1!A chiral symmetry and the
effects of topology are presented. The chiral and supers
metric Ward identities are derived in the last subsection.

A. The ‘‘extra’’ DWF parameters

DWFs introduce two extra parameters, the size of the fi
directionLs and the domain wall height or five-dimension
massm0 . These two parameters together with the expl
massmf control the bare fermion massmeff . In the free
theory one finds@16#

meff5m0~22m0!@mf1~12m0!Ls#, 0,m0,2. ~21!

In the interacting theory one would expect thatm0 as well as
its range of values will be renormalized. From the abo
equation one can see that for the free theory the value
m051 is optimal in the sense that finiteLs effects do not
contribute tomeff . In the interacting theory one would expe
that there is no such ‘‘optimal value’’ since, in a Heurist
sense,m0 will fluctuate. For a more detailed analysis plea
see Ref.@36#. Then one would likeLs to be large enough so
that the second term in Eq.~21! will be small allowing for
simulations at reasonably small masses and/or for dep
able extrapolations to themf→0, Ls→` limit.

The effects of finiteLs on the chiral symmetry can be be
understood in the overlap formalism@12#. In that formalism
a transfer matrixT along the extra direction is constructe
03451
-

-

l

-

is

a
the

-

h

t

e
of

d-

Because the gauge fields are not changing along that d
tion the product of transfer matrices simply results inTLs.
For Ls5` this is a projection operator that projects the re
erence vacuum state to a ground state. The fermion dete
nant is then the overlap of the reference vacuum state w
that ground state. In Ref.@12# it was shown that, as a lattic
gauge field configuration changes, from say the zero to
logical sector to sector one, an eigenvalue~or a degenerate
set of eigenvalues! of the corresponding HamiltonianH
changes sign. As a result, the filling level of the ground st
becomes different from that of the reference vacuum st
Then the overlap is zero indicating the presence of an e
zero mode. This remarkable property is maintained to a g
degree even at finiteLs as was found in Ref.@20#. Unfortu-
nately, this property is also the reason for most of the di
culties with DWFs. As the eigenvalue of the HamiltonianH
changes sign it crosses zero. In such a configuration
transfer matrix has an eigenvalue equal to 1 and there
even atLs5` there is no decay along the extra direction, t
two chiralities do not decouple, and chiral symmetry can
be restored. Fortunately, configurations for whichH has an
exact zero eigenvalue~for a givenm0! are of measure zero
@12,14# and therefore are of no consequence. However, c
figurations in their neighborhood are not of measure zero
such configurations will exhibit very slow decay rate
Therefore, in order to restore chiral symmetry, very lar
values ofLs may be needed. Since one would expect that
neighborhoods of such configurations are suppressed c
to the continuum limit this problem should become less
vere as that limit is taken. This has been observed in num
cal simulations of the Schwinger model@16#, of full QCD
@17#, and of quenched QCD@18,19,22,23#.

In the region where it makes sense to parametrize th
effects by a residual mass in an effective action it has b
found that

meff5c0mf1mres, mres5c1 exp~2c2Ls!, ~22!

where for dynamical QCD at the currently accessible latt
spacings the decay is found to bec2'0.02 @17#. For
quenched QCD the situation is better because current c
puting resources can simulate lattices with smaller latt
spacing. There, a value ofc2'0.1 is found@18,19,22#. Also
in these studies the value ofc2 was a weakly changing func
tion of m0 indicating that for practical purposes there is
optimal value ofm0 .

In the case of theN51 SYM SU~2! theory the Hamil-
tonian corresponding to the five dimensional transfer ma
has eigenvalues that are doubly degenerate because th
mion fields are in the adjoint representation@28#. Therefore
when there is a ‘‘topology’’ change two eigenvalues w
have to cross through zero~as compared to one for funda
mental fermions!. This may make this theory harder to stud
than QCD in the sense that largerLs values may be required
On the other hand, since no massless Goldstone particle
expected, the sensitivity of the spectrum onLs may be con-
siderably milder. In any case, in this paper the only fermio
observable that will be discussed is the gluino condens
This quantity is known to approach itsLs→` limit with
0-4
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SUPERSYMMETRIC YANG-MILLS THEORY ON THE . . . PHYSICAL REVIEW D 64 034510
faster decay rates than the ones inmres ~for a discussion and
results for full QCD see Ref.@17#; there the decay rate fo
the chiral condensate was about five times faster than tha
mres!.

As was discussed above, the range ofm0 is renormalized
by the interactions. It has been found that as the lattice s
ing increases and one moves away from the continuum l
this range shrinks in size and for currently accessible sp
ings in QCD that range is about@1.4, 2.0#. As one moves
even farther away from the continuum limit this range c
shrink to zero and then it will not be possible to have lig
DWF modes@2,39#. However, it must be emphasized that f
as long as the range of allowed values ofm0 is not of zero
size the overlap formalism, although it does not specify h
it is approached, guarantees the existence of theLs→` limit.
In this work,m051.9 and, as it will be shown in Sec. V, th
behavior of the gluino condensate vs.Ls is consistent with an
exponential ansatz.

B. Chiral symmetry and topology

Fermions in the adjoint representation of the SU(N)
gauge group have a Dirac operator with index

2Nn ~23!

wheren is the winding of the background field configuratio
Classical instantons have integer winding and they ca
condensation of operators with 2N Majorana fermions. This
results in the breaking of the U~1!A chiral symmetry down to
the Z2N symmetry by the corresponding anomaly. The
mainingZ2N symmetry may break spontaneously down toZ2
@31#. Mechanisms for this further breaking have been
plored for example in Refs.@32–34# where instantons and
fractionally charged objects such as torons@37# or caloron
monopole constituents@38# were investigated as the sourc
of this symmetry breaking.

Since in a toroidal geometry fractional winding numbe
are possible@37#, the partition function of the full theory can
be expressed as

Z~u!5(
n

einuZn , n50,61/N,62/N,..., ~24!

whereu is the vacuum angle andZn is the partition function
on the sector with windingn. For the theory with a soft
breaking by a massmf the interplay of the volume and mas
in the formation of the gluino condensate has been analy
in Ref. @40#. The reader is referred to that reference fo
very nice presentation on the subject. Assuming a mass
is present in the theory the authors of Ref.@40# show that
non-zero contributions to the gluino condensate^x̄x& come
almost exclusively from then51/N sector ifmf3V3^x̄x&
!1. On the other hand, ifmf3V3^x̄x&@1 all sectors con-
tribute to a nonzero condensate.

The above considerations result in an unusual picture
the infinite volume limit is taken~followed by the massles
limit ! it is possible that a gluino condensate will form due
spontaneous breaking of the discrete symmetryZ2N down to
03451
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Z2 . On the other hand, at a finite volume and zero mas
gluino condensate can form due to the presence of fractio
winding configurations. Since the volume is finite, this ca
not be the result of spontaneous symmetry breaking. Inst
it is similar to symmetry breaking due to topological effec
as, for example, in one flavor QCD. As pointed out above
size ofmf3V3^x̄x& controls which ‘‘scenario’’ takes place

On the lattice there is no clear definition of topology. T
path integral over the SU(N) group space generates config
rations of all possible windings. In order for the lattice theo
to be able to reproduce phenomena that relate to topolog
is essential that the lattice Dirac operator obeys the in
theorem in a statistical sense. This is highly nontrivial sin
it is obviously related to the doubling problem. Tradition
fermions ~Wilson or staggered! do not exhibit exact zero
modes at finite lattice spacing. On the other hand, as m
tioned in Sec. III A, DWF atLs5` have exact zero mode
and at finiteLs have robust zero modes to a good appro
mation@20#. An approximate form of the index theorem ha
been found to be obeyed for fundamental fermions in
overlap formulation in quenched SU~2! @41# and in quenched
SU~3! @42#.

The index of adjoint fermions in the overlap formulatio
in quenched SU~2! has been studied in Ref.@28#. In that
work it was pointed out that the overlap Dirac operator
adjoint fermions in the SU~2! gauge group is necessaril
even valued. Then the question posed by the authors of
@28# was whether or not all even values are realized or o
values that are multiples of four are present. The latter c
corresponds to configurations with instantons. The form
case corresponds to fractional winding numbers. Configu
tions with fractional winding were found and their presen
persisted as the lattice spacing was decreased.

In this paper DWFs are used at finiteLs and therefore
some of the clarity present in theLs5` case will be lost.
However, the full theory~including the fermion determinant!
is studied here. Furthermore, it is interesting to see if a
small volume and zero mass the gluino condensate
forms and if it does to what extent its value is due to ze
mode effects. The numerical results are presented in Se

C. Ward identities

As discussed in the introduction and in Sec. III, the DW
formulation of theN51 SU~2! SYM theory at theLs→`
limit is expected to preserve the U~1!A chiral symmetry~at
the classical level! and break supersymmetry only by irre
evant operators. Since the DWF formulation contains ma
more fields than the continuum theory, one may natura
wonder what are the SUSY transformations in terms of th
fields. In particular, while the continuum theory has a sin
Majorana fermion the DWF lattice theory containsLs Majo-
rana fermions andLs corresponding PV fields. Since a
these fields, except for one Majorana fermion, have mas
near the cutoff, one can expect that the SUSY transform
tions should only transform the gauge field and the lig
Majorana fermion represented by the boundary fieldx of Eq.
~19!. Similarly, the chiral symmetry transformations shou
only involve the fieldx. However, one should expect tha
0-5
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this choice of SUSY and chiral transformations is not uniq
For example, see Ref.@14# for a different choice of QCD
chiral transformations that involve all fermion fields in on
half of the fifth direction transforming vectorially and a
fermions in the other half also transforming vectorially b
with opposite charge. That choice could also be appropr
here for the chiral transformations, but it may make t
SUSY ones more complicated.

As a first step in deriving the Ward identities, the ferm
onic part of the action in Eq.~4! is rewritten in terms of the
boundary fieldx:

SF5SF0
1SFx

, ~25!

whereSF0
does not depend on the fieldx and

SFx
52(

x,x8
@ x̄~x!D” N~x,x8!x~x8!2mf x̄~x!d~x,x8!x~x8!

2x̄~x!B~x,x8!f~x8!2f̄~x!B~x,x8!x~x8!#, ~26!

where

f~x!5PRC~x,Ls21!1PLC~x,0!,

f̄~x!5C̄~x,0!PR1C̄~x,Ls21!PL ~27!

are the ‘‘wrong’’ projected fields in the sense that they a
defined on the opposite wall from where the correspond
light mode is localized. If indeed there is localization o
would expect that in theLs→` limit these fields will have
no overlap with the light mode. The operatorD” N is the naive
part of the four-dimensional Wilson operator in Eq.~6! andB
is the symmetry breaking part~B is the equivalent ofB in
Refs.@12,14#!:

D” N~x,x8!5
1

2 (
m51

4

gm@Vm~x!d~x1m̂2x8!

2Vm
† ~x8!d~x81m̂2x!#, ~28!

B~x,x8!5~52m0!d~x2x8!2
1

2 (
m51

4

@Vm~x!d~x1m̂2x8!

1Vm
† ~x8!d~x81m̂2x!#. ~29!

These operators have the following properties:

$D” N ,g5%50, D” N
† 52D” N ,

@B,g5#50, B†5BT5B. ~30!

First the Ward identity corresponding to the U~1!A sym-
metry is derived. The symmetry transformations are

dAx~x!5 ia~x!g5x~x!,

dAx̄~x!5 ia~x!x̄~x!g5 , ~31!
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wherea(x) is an infinitesimal real number anddA symbol-
izes the change under the chiral transformation. Then
Ward identity is

^DmJm~x!O~y!&52mf^J5~x!O~y!&12^JB~x!O~y!&

1 i ^dAO~y!&, ~32!

where the backward difference is defined asDm f (x)[ f (x)
2 f (x2m). The currents are

Jm~x!5x̄~x!g5gmVm~x!x~x1m!, ~33!

J5~x!5x̄~x!g5x~x!, ~34!

JB~x!5(
y

x̄~x!g5B~x,y!f~y!. ~35!

If in the above Ward identityO(y)5J5(y) one gets

Dm^Jm~x!J5~y!&52mf^J5~x!J5~y!&12^JB~x!J5~y!&

22^x̄~y!x~y!&. ~36!

In this identity the term withJB will be responsible for pro-
ducing the ABJ anomaly in theLs→` limit. On the other
hand, if Ls is kept finite this term is similar to the one fo
Wilson fermions which, besides producing the ABJ anoma
also produces a mass redefinition. For an analysis of Q
with DWF at finiteLs see Ref.@19#.

As mentioned earlier these chiral transformations are
ferent than the ones in Ref.@14#. If the transformations rel-
evant for a nonsinglet current in QCD were done on
fields x̄, x, one obtains a Ward identity exactly as in Re
@14# but with the currentsAm

a (x) andJ5q
a (x) replaced with

Am
a ~x!5

1

2
@ x̄~x!g5gmlaUm~x!x~x1m!

1x̄~x1m!g5gmlaUm
† ~x!x~x!#, ~37!

J5q
a ~x!5

1

2 (
y

@ x̄~x!g5laB~x,y!f~y!

1f̄~y!g5laB~y,x!x~x!#. ~38!

The derivation of the SUSY Ward identity is similar to th
one for Wilson fermions. One can use the existing calcu
tions for Wilson fermions@1,7,43# to elucidate the differ-
ences between the two formalisms. Here the derivation
Ref. @43# will be followed. The symmetry transformation
are as in Ref.@43# and commute with parity.

The change of the pure gauge action with respect to
transformation of the gauge field is of course the same
terms of the symmetry breaking part of the Ward identity
contributes a term denoted below byX2(x)1X3(x) where
X2 , X3 are as in Ref.@43#. This term breaks SUSY becaus
of the explicit breaking of the Lorentz symmetry. Using im
proved pure gauge lattice actions can alleviate the effect
this breaking. Such an improvement is not considered he
0-6
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The change of the fermion and Pauli-Villars parts of t
DWF action with respect to the transformation of the gau
fields produces terms for allLs slices. In particular the varia
tion of the fermion matrixDF of Eq. ~5! with respect to the
gauge field is

dUDF~x,x8;s,s8!~mf !5d~s2s8!dUD” ~x,x8!. ~39!

One sees thatdDF is independent ofmf and is diagonal in
the fifth direction. FurthermoredD” (x,x8) is the same as the
variation of the Wilson operator. Therefore, this variati
contributes to the symmetry breaking part of the Ward id
tity the terms

X4
F~x!5(

s
X4

F~x,s! ~40!

and

X4
PV~x!5(

s
X4

PV~x,s!, ~41!

where X4
F(x,s) is as X4 in Ref. @43# except that the four-

dimensional Wilson fermion fields that have their spin in
ces contracted are replaced byC̄(x,s), C(x,s) while the
other Wilson fermion field is replaced byx(x). Similarly
X4

PV(x,s) is as X4 in Ref. @43# except that the four-
dimensional Wilson fermion fields that have their spin in
ces contracted are replaced by the Pauli-Villars fie
FT(x,s)CR5 , F(x,s), the other Wilson fermion field is re
placed byx(x) and the sign of the second term inX4 is
minus instead of plus due to the commutativity of the Pa
Villars fields.

The change of the action with respect to the fermion fi
transformations can be partially deduced from the co
sponding Wilson fermion calculation. Since this transform
tion only involves the actionSFx

in Eq. ~26!, one can observe
that the first two terms of that action are identical with t
action of naive fermions~Wilson fermions withr 50!. These
will contribute identical terms as ther 50 part of the Wilson
action. They contribute to the divergence of the SUSY c
rent and to the mass term of the Ward identity given belo
Finally, the transformation of the last term of the actionSFx

in Eq. ~26! is easy to calculate and is denoted byX1(x):

X1~x!52Prs
a ~x!srsBab~x,x8!fb~x8!. ~42!

This term is closely related toX1 of Ref. @43#.
The Ward identity is

^DmSm~x!O~y!&5mf^Ds~x!O~y!&1^XS~x!O~y!&

2^dSO~y!&, ~43!

where the supersymmetric currentSm and the quantityDS
are as in Ref.@43#. The symmetry breaking termXS(x) is
also similar to the one in Ref.@43#:

XS~x!5X1~x!1X2~x!1X3~x!1X4
F~x!2X4

PV~x!. ~44!
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As mentioned above the symmetry breaking termX2(x)
1X3(x) is due to the breaking of Lorentz symmetry by th
lattice. TheX4

F(x) andX4
PV(x) terms break the symmetry a

in Wilson fermions. These terms do not cancel each ot
exactly.1 However, one would expect large cancellations
heavy modes. The terms inX4

F(x,s) that are proportional to
the Wilson parameter involve fields that couple to the lig
modes by an amount that is exponentially small inLs . One
would expect these terms to be nearly canceled by the
responding Pauli-Villars terms resulting in exponentia
small contributions. The remaining terms that involve fiel
away from the relevant domain walls should also yield sim
lar cancellations. As a result the only terms that should m
significant contributions should be the ones that invo
fields of the ‘‘correct’’ chirality near the domain walls. Thes
few terms would couple to the light modes and be furth
regularized by the corresponding Pauli-Villars terms. Clea
this analysis of cancellations is heuristic. A detailed calcu
tion using, for example, perturbation theory or transfer m
trix methods would be interesting but it is beyond the sco
of this paper.

Finally, the symmetry breaking termX1(x) involves the
field f(x) that is expected to have no overlap with the lig
mode in theLs→` limit. If Ls is finite then DWFs are simi-
lar to Wilson fermions and an analysis as in Ref.@1# should
indicate that this term is responsible for the same mass
definition as the one in the chiral Ward identity.

IV. NUMERICAL METHODS

As can be seen from Sec. II theN51 SU~2! SYM
theory can be simulated as a theory with 0.5 flavors of Di
fermions in the adjoint representation. An efficient and pop
lar algorithm that can be used to simulate any number
flavors is the hybrid molecular dynamicsR ~HMDR! algo-
rithm of Ref. @44#. Because of the Grassmann nature of f
mions these algorithms need to invert the matrixDF of Eq.
~5!. That matrix is not Hermitian. This is a problem sinc
some of the more efficient inversion algorithms require
matrix to be Hermitian. However, because

g5RDFRg55DF
† ~45!

one has that

det@DF#25det@DFDF
† #. ~46!

Then one can invert the Hermitian matrixDFDF
† and then

use the HMDR algorithm to take the appropriate power
that the desired number of flavors is simulated. This meth
is adopted here and the 0.25 power is taken in order to
from a theory with two Dirac fermions to a theory with on
Majorana fermion. In other words, the fermion determina
that is used in the simulation is

~det@DFDF
† # !0.255udet@DF#u0.55det@DF#0.5, ~47!

1We thank Y. Shamir for pointing this out to us.
0-7
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FLEMING, KOGUT, AND VRANAS PHYSICAL REVIEW D 64 034510
where in the last equality use was made of the fact that
non-negativemf det@DF# is also non-negative@2#. This ap-
proach was also taken in Ref.@7# for Wilson fermions. For an
approach that uses Wilson fermions and the multiboso
algorithm@45# instead of the HMDR algorithm see Ref.@6#.
However, as mentioned earlier in the case of Wilson fer
ons the last equality in Eq.~47! is not true for all gauge field
configurations.

The HMDR algorithm uses molecular dynamics metho
in order to produce the correct statistical ensembles. Bec
the molecular dynamics step sizedt is finite discretization
errors are introduced. There are two ways one can deal
this problem. One is to simulate at various values ofdt and
then extrapolate todt50. Another method is to usedt small
enough so that the errors are negligible when compared
the statistical errors.

In order to ensure this, one can simulate the two Di
flavor theories at the same parameters and samedt. For the
two flavor theory, one has a local action and therefore, at
end of the evolution, one can employ a Metropolis acce
reject step. Then the finitedt errors are ‘‘converted’’ to a
nonideal acceptance rate and in effect they are reflecte
the final statistical errors. This is the exact hybrid Mon
Carlo F ~HMCF! algorithm of Refs.@46,44#. Therefore the
acceptance rate is an indication of the size of the finitedt
errors in the HMD integration. By simulating the two Dira
flavor theory with~HMCF! one can setdt so that the accep
tance rate is high, say'90%. Since the coefficient of th
finite dt errors is proportional to the number of flavors o
would expect that for 0.25 flavors the errors would be sm
and at the few percent level.

The only fermion observable measured in this work is
gluino condensate. By inserting appropriate source term
in Ref. @7# the gluino condensate was measured as the t
of DF

21 with spin and fifth-direction indices restricted as di
tated by Eq.~19!. The trace was calculated using a stand
stochastic method. All inversions in this work were do
using the conjugate gradient~CG! algorithm. An even-odd
preconditioned form of the matrixDF

†DF was inverted. For
more details on the numerical algorithms and methods
ployed to DWF simulations see Refs.@16,17#.

V. NUMERICAL RESULTS

A. Simulation parameters

In all simulations the domain wall height was chosen
be m051.9. As mentioned in the previous section, the fin
dt errors were kept to the few percent level by using a sm
dt. For all simulations the step size was set todt50.01 and
the trajectory length tot50.5. In order to confirm that this
choice introduces finite step size errors that are small c
pared to the statistical errors an HMCF simulation for two
Dirac flavors was run forLs512 andmf50.04. It produced
an acceptance rate of'90% suggesting that the finitedt
errors of the 0.5 flavor theory are small. Furthermore,
HMDR simulation was also run for two Dirac flavors usin
the exact same parameters. The value of the gluino con
sate obtained from these two simulations was the sa
within statistical errors.
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The CG stopping condition for all simulations was set
1026 for the evolution and to 1028 for the calculation ofx̄x.
The number of CG iterations varied between'100 for mf
50.08,Ls512 and 250 formf50.0, Ls524.

The 84 volume simulations were done withb52.3. The
value of b was chosen so that one is not close to the po
where the box size becomes too small and a thermal tra
tion takes place, but also not too deep in the strong coup
regime where the finiteLs effects become severe. The tra
sition point of the Nt58 quenched theory is atb
52.5115(40)@47#. In Fig. 1 the magnitude of the fundamen
tal Wilson line^uWu& measured in quenched simulations in
84 volume is plotted vsb. In the quenched theory this is a
order parameter. As can be seen from that figure, a ra
crossover takes place aroundb52.5. In the same figure the
value of ^uWu& from a simulation of the dynamical theory a
b52.3 is also shown~cross!. The quenched and dynamica
values are very similar indicating that atb52.3 the dynami-
cal theory is in a phase that ‘‘confines’’ fundamental sourc
Therefore, the box size is large enough to avoid finite te
perature effects that would of course spoil SUSY. Using
quenched theory as a guide the 44 simulations were done a
b52.1 since the quenched transition atNt54 is known to
take place atb52.2986(6)@47#. At b52.1 the lattice spac-
ing is larger than atb52.3. However, the lattice sizes ar
small and do not allow a reliable measurement of the lat
spacing. According to Ref.@48#, b52.122.3 is in the begin-
ning of the weak coupling regime. Then if one uses the we
coupling form in Ref.@48# one finds that the lattice spacin
at b52.1 is about a factor of 2 larger than the one atb
52.3.

In order to estimate the necessary number of thermal
tion sweeps two simulations were run on an 84 lattice atb
52.3, Ls512, andmf50.04. The first simulation used a

FIG. 1. The magnitude of the Wilson line^uWu& in an 84 lattice.
The diamonds are from the quenched theory. The cross is from
dynamical theory atb52.3 with Ls524, mf50.0 andm051.9.
0-8
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SUPERSYMMETRIC YANG-MILLS THEORY ON THE . . . PHYSICAL REVIEW D 64 034510
initial configuration with all gauge links set to the identi
~ordered! and the other used an initially random configur
tion ~disordered!. The evolutions in ‘‘computer time’’ are
shown in Fig. 2. As can be seen, the two ensembles c
verged after about 100 sweeps. This number of thermal
tion sweeps was then used in all other simulations wh
were started from an ordered initial configuration. The nu
ber of measurements after thermalization for all simulatio
is about 200 with measurements done in every traject
The gluino condensate was measured with a single ‘‘h
stochastic estimator.

B. The gluino condensate at the chiral limit

In order to be able to extrapolate to the chiral limit, co
responding toLs→` andmf50, the massmf and the size of
the fifth directionLs was varied. The results of all simula
tions are given in Tables I and II. Three different metho
were used to analyze the data and calculate the gluino
densate in the chiral limit.

~i! For fixed Ls , the data formf50.08, 0.06, 0.04, 0.02
were fit to a function

b01b1mf . ~48!

This functional form is valid providedmf is small enough.
Otherwise, higher order terms must also be included.
data and fits are shown in Fig. 3 and the results of the fits
given in Table III. Then the extrapolated valuesb0 were fit to
a form

c01c1 exp~2c2Ls!. ~49!

FIG. 2. The gluino condensate values generated by the comp
starting from an ordered initial configuration~solid line! and from a
dis-ordered initial configuration~dotted line!. Thex axis is the con-
figuration number and corresponds to ‘‘computer time.’’ This
from a simulation of the full theory on an 84 lattice atb52.3 with
Ls512, mf50.04, andm051.9.
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This functional form is approximate but it is expected to
valid close enough to the continuum and has been foun
be consistent in simulations of the Schwinger model@16# and
of QCD even at relatively large lattice spacings~see, for
example, Ref.@17#!. The data and fit are shown in Fig. 4 an
the results of the fit are given in Table IV.

~ii ! For fixedmf the data forLs512, 16, 20, 24 were fit to
the form of Eq.~49!. The data and fits are shown in Fig.
and the results of the fit are given in Table IV. Then t
extrapolated valuesc0 were fit to the form of Eq.~48!. The
data and fit are shown in Fig. 6 and the results of the fit
in Table III.

~iii ! Additional simulations were done formf50 andLs
512, 16, 20, 24. The data were fit to the form of Eq.~49!.
The data and fits are shown in Fig. 7 and the results of th
are in Table IV.

The mf→0 andLs→` extrapolated values of the gluin
condensate for each one of the above three methods are
marized in Table V. As can be seen, all values are consis
within the statistical errors. This suggests that the system
errors inherent to the limited statistics and to fits onto fun

ter

TABLE I. The values of^x̄x& for the 84 simulations atb
52.3, m051.9.

Ls mf ^x̄x&

12 0.00 0.00902~4!

12 0.02 0.01052~4!

12 0.04 0.01223~5!

12 0.06 0.01370~4!

12 0.08 0.01519~3!

16 0.00 0.00694~7!

16 0.02 0.00863~5!

16 0.04 0.01026~4!

16 0.06 0.01183~4!

16 0.08 0.01324~4!

20 0.00 0.00588~5!

20 0.02 0.00735~10!

20 0.04 0.00897~7!

20 0.06 0.01071~3!

20 0.08 0.01221~3!

24 0.00 0.00516~6!

24 0.02 0.00691~4!

24 0.04 0.00827~7!

24 0.06 0.00992~3!

24 0.08 0.01142~3!

TABLE II. The values of ^x̄x& for the 44 simulations atb
52.1, m051.9.

Ls mf ^x̄x&

16 0.00 0.00743~14!

24 0.00 0.00474~10!

32 0.00 0.00351~7!

40 0.00 0.00308~11!
0-9
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FLEMING, KOGUT, AND VRANAS PHYSICAL REVIEW D 64 034510
tions that represent the data only for a limited range
small. Furthermore, it suggests that the fitting functions u
are consistent~please see Sec. V D for more discussion
the validity of these fitting functions!.

C. The telltale signals of topology in numerical simulations

In order to investigate the issues discussed in Sec. I
the gluino condensate was also calculated in a smalle4

lattice volume atb52.1. It was measured only formf50
and method~iii ! above was used to extrapolate to theLs
→` limit. The data and fit are shown in Fig. 8 and the
results are given in Table IV. The 84 data from Fig. 7 are
presented again in this figure to aid comparison. The va
has decreased indicating that scaling is violated. Howe
without more simulations at other lattice spacings and v
umes one cannot conclude much from this result. Theb
52.1 coupling is in the strong coupling region and furth
more the 44 lattice volume is rather small.

However, it is interesting to notice that the parameterV
3^x̄x&Ls→`'8.4 ~a factor of 12 coming from the norma

ization of ^x̄x& has been included!. Sincemf50 the effec-
tive massmeff gets its value from finiteLs effects. AsLs is

FIG. 3. The gluino condensate vsmf for various values ofLs

from the dynamical theory on an 84 lattice at b52.3 and m0

51.9. The fits are to the function in Eq.~48!.

TABLE III. The results of the linear fits presented in the vario
figures to the functionb01b1mf .

Figure b0 b1 x2/NDF

3~a! 0.00904~5! 0.0772~8! 3.6
3~b! 0.00717~6! 0.0767~10! 3.8
3~c! 0.00585~9! 0.0799~13! 3.5
3~d! 0.00538~5! 0.0755~8! 2.2

6 0.00455~21! 0.0704~37! 2.6
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increasedmeff becomes small. From analysis ofmeff in strong
coupling QCD @17# one would roughly guess thatmeff
,0.1. Then@meff3V3^x̄x&Ls→`#,1. In that case, the analysi
of Ref. @40# can be followed and one would expect the val
of the condensate in the 44 lattice to be mostly supported b
configurations with total winding of61

2. Indeed, this can be
seen from Fig. 9. In that figure the evolutions in ‘‘comput
time’’ are shown. The ‘‘spikes’’ in the evolution are appare
and they become more pronounced and less frequent asLs is
increased~and in effectmeff is decreased!. This is exactly
how the effect of zero modes for small@meff3V3^x̄x&Ls→`#

would present itself in a numerical simulation of the dynam
cal theory. As the fermion mass is made smaller,^x̄x& is
expected to receive most of its value from sectors with win
ing 61

2. However, in these sectors the fermion determinan
very small because of the zero mode. Since the probab
for the algorithm to generate a gauge field configuration
proportional to the fermion determinant one would exp
that these sectors will be visited less and less frequently
the effective mass is decreased. When these sectors are
ited the value ofx̄x will be very large~spikes! in order to

FIG. 4. The extrapolated values of the fits in Fig. 3 vsLs . The
fit is to the function in Eq.~49!.

TABLE IV. The results of the exponential fits presented in t
various figures to the functionc01c1 exp(2c2Ls).

Figure c0 c1 c2 x2/NDF

4 0.00444~21! 0.023~3! 0.135~13! 3.9
5~a! 0.01034~16! 0.021~1! 0.123~8! 6.2
5~b! 0.00857~19! 0.019~1! 0.111~8! 1.1
5~c! 0.00700~25! 0.022~2! 0.119~10! 0.6
5~d! 0.00611~16! 0.025~3! 0.143~12! 2.9

7 0.00432~22! 0.025~3! 0.141~13! 1.4
8 0.00268~19! 0.026~4! 0.107~12! 0.4
0-10
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SUPERSYMMETRIC YANG-MILLS THEORY ON THE . . . PHYSICAL REVIEW D 64 034510
compensate for the infrequent sampling. In this way the p
ence of the zero mode in the observable ‘‘balances’’ the p
ence of the zero mode in the determinant. As the mas
made smaller one would have to increase the size of
statistical sample in order to include enough of these incre
ingly ‘‘rare’’ but very large fluctuations. For similar results i
the Schwinger model and QCD see Refs.@16,20#.

A histogram of the values ofx̄x is presented in Fig. 10
~solid line!. For smallLs the effective mass is larger andx̄x
is distributed with a symmetric looking distribution aroun

FIG. 5. The gluino condensate vsLs for various values ofmf

from the dynamical theory on an 84 lattice at b52.3 and m0

51.9. The fits are to the function in Eq.~49!.

FIG. 6. The extrapolated values of the fits in Fig. 5 vsmf . The
fit is to the function in Eq.~48!.
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the mean value. However, forLs540 the effective mass is
smaller and the distribution has a more pronounced ‘‘ta
towards larger values. In order to investigate this further
merical simulations at exactly the same parameters, but w
out the fermion determinant~quenched theory! were done.
The histograms from these simulations are shown in
same figure for comparison~dotted lines!. One can observe
that the absence of the fermion determinant had the effec
shifting the distributions to higher values. This is expect
since configurations with small eigenvalues that produ
larger values ofx̄x are not suppressed anymore and are p
duced more frequently. Also, one can observe that the n
ber of configurations withx̄x larger than'0.007 that ap-
peared as spikes in Fig. 9 have now increased in num
These observations lend support to the presence of s
near-zero eigenvalues. Furthermore, configurations w
fractional topological charge have already been found
quenched SU~2! simulations at similar couplings@28#. It
would be very interesting to calculate the index for the co
figurations of Fig. 9 using the methods of Ref.@28# and see
to what extent there is a correlation between fractional to
logical charge and the observed spikes. This correla
should be exact atLs→` but it will be obscured at finiteLs
by the presence of nonzeromeff . This investigation is beyond
the scope of this work.

FIG. 7. The gluino condensate vsLs from the dynamical theory
on an 84 lattice atb52.3, mf50.0, andm051.9. The fit is to the
function in Eq.~49!.

TABLE V. The mf→0, Ls→` extrapolated values of̂x̄x& us-
ing the three different extrapolation methods described in the te

Method ^x̄x&(mf→0,Ls→`)

~i! 0.00444~21!

~ii ! 0.00455~21!

~iii ! 0.00432~22!
0-11
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Furthermore, it should also be noted that on the 84 lattice
there are no visible spikes up toLs524. This can be seen in
Fig. 11. Presumably this is because the product@meff3V
3^x̄x&Ls→`# is probably much larger than in the 44 lattice.

Again, this statement is not exact since the value ofmeff was
not measured.

These results are consistent with the discussion in S
III B. However, since even withmf50, anLs extrapolation is

FIG. 8. The gluino condensate vsLs from the dynamical theory
on a 44 lattice atb52.1, mf50.0, andm051.9 ~crosses!. The 84

data of Fig. 7 are also plotted for comparison~diamonds!. The fits
are to the function in Eq.~49!.

FIG. 9. The gluino condensate values generated by the comp
for the full theory on a 44 lattice at b52.1 with mf50.0, m0

51.9, and for various values ofLs . Thex axis is the configuration
number and corresponds to ‘‘computer time.’’
03451
c.

essentially an extrapolation from nonzero masses these
sults are not necessarily the results of a simulation at exa
Ls5`. It is still possible that if such a simulation were don
one could have found that the gluino condensate is zero. T
could happen since in a finite volume and zero mass

ter

FIG. 10. The histogram of the values of the gluino condens
from Fig. 9 ~solid lines!. The dotted lines are from an identical s
of simulations, except that the fermion determinant has been s
1 ~quenched theory!. The time evolutions for the quenched simul
tions are not shown in this paper. The area under the curve
normalized to one. All sets have 300 data points.

FIG. 11. The gluino condensate values generated by the c
puter for the full theory on an 84 lattice atb52.3 with mf50.0,
m051.9, andLs524. Thex axis is the configuration number an
corresponds to ‘‘computer time.’’
0-12
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effects of spontaneous symmetry breaking are absent an
zero mode effects alluded to above may not be sufficien
sustain a nonzero vacuum expectation value. This type
simulation is possible and can be done using the ove
formalism@12# or exact Neuberger fermions@2#. However, if
one is to maintain exact chiral symmetry these methods
demand large computing resources.

D. The fine print

Perhaps the largest uncertainty in the analysis presente
the previous subsections has to do with the assumptio
exponential decay as in Eq.~49!. For small enough lattice
spacings and large enoughLs this behavior is expected to b
true. All data presented in this work were well represented
this ansatz. However, as with any numerical investigati
one can never completely disprove all other possibiliti
While such an exercise over all possible functions wo
clearly be fruitless there are some alternative forms that m
be reasonable to consider since they are based on anal
considerations.

Far form the continuum limit, the approach to the chi
limit may become power law@42# or even completely disap
pear@2,39#. In order to explore the possibility of power law
behavior themf50 data for the 84 and 44 volumes were fit
to the form

d01d1Ls
d2. ~50!

The results of the fit are given in Table VI~the fits are not
presented in any of the figures!. As can be seen from tha
table thex2/NDF of these fits is significantly larger than th
one of the corresponding exponential fits to the same da

Another possibility is decay to zero with two differen
exponential decay rates. Such a behavior was found to
consistent with investigations of the two flavor Schwing
model @16# for a quantity that is expected to vanish in th
chiral limit. There it was argued that the fast decay rate
due to fluctuations within a given topological sector wh
the slow decay rate is due to the presence of topology ch
ing configurations. Therefore, formf50 one could try to fit
the largest threeLs points to the form

e0 exp~2e1Ls!. ~51!

The results of the fit for the 84, b52.3, mf50, and Ls
516, 20, 24 points as well as for the 44, b52.1,mf50, and
Ls524, 32, 40 points are shown in Table VII. The fit to th
84 data is acceptable. However, the fit to the 44 data has a
rather largex2/NDF. Because this fit is for largerLs than the
84 fit one would expect that if there were a second expon
tial decaying to zero its effect would be more pronounced

TABLE VI. The results of the power law fits in the data of Fig
7 and 8 to the functiond01d1Ls

d2.

Figure d0 d1 d2 x2/NDF

7 0.000~2! 0.063~19! 20.78~20! 11
8 20.016~21! 0.043~12! 20.23~24! 35
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the 44 fit. Therefore, the largex2/NDF of the 44 fit suggests
that the presence of a second exponential decaying to ze
not likely. This could be made more precise if simulatio
with larger Ls values for the 84 and 44 lattices were done.
However, such simulations are beyond the computing
sources of this project. Also, the analysis in Ref.@36# sug-
gests functional forms with more parameters. It would
interesting to fit to these forms but that would require mo
data points and better statistics both of which are also
yond the computing resources of this project.

Finally, the SUSY breaking by the irrelevant terms m
have non-negligible effects at the lattice spacings stud
here. Although it was found that the chiral condensate
nonzero at the chiral limit in two lattice spacings, this is n
enough to estimate its value in the continuum limit.

VI. CONCLUSIONS

The formulation ofN51, SU~2! supersymmetric Yang-
Mills theory on the lattice with domain wall fermion
~DWFs! has several advantages over more traditional lat
fermion regulators. Even at nonzero lattice spacing the ch
limit can be taken by lettingLs→`, whereLs is the number
of sites along the fifth auxiliary direction. Since in that lim
there is no gluino mass term, supersymmetry is broken o
by irrelevant operators and there is no need for fine-tuni
Also, in that limit the theory has exact zero modes on no
trivial topological backgrounds.

However, even at finiteLs , where numerical simulations
are done, these properties are maintained to a good de
allowing extrapolations to theLs→` limit. Furthermore, the
Pfaffian resulting from the integration of Majorana fermio
is positive definite at finiteLs , nonzero lattice spacing an
for any background gauge field configuration. As a res
one can unambiguously interpret it as a probability meas
to be used by the numerical simulation for importance sa
pling. This property also allows the use of standard num
cal algorithms where any number of flavorsNf can be simu-
lated. By contrast, Wilson fermions have this positivi
property only at the continuum limit.

In this work, the fullN51, SU~2! supersymmetric Yang-
Mills theory was numerically simulated on the lattice usi
DWFs. The gluino condensatêx̄x& was measured. Thes
simulations did not present any unexpected technical d
culties.

A finite value ofLs breaks chiral symmetry and induces
small gluino mass. In addition, an explicit gluino massmf
was used to provide extra control. Severalmf andLs values
were used~all corresponding to positive gluino mass! and the
value of^x̄x& was extrapolated to the chiral limit using thre

TABLE VII. The results of the exponential fits without a con
stant using the functione0 exp(2e1Ls).

Lattice b mf Ls e0 e1 x2/NDF

84 2.3 0.0 16,20,24 0.0125~5! 0.037~2! 2.8
44 2.1 0.0 24,32,40 0.0094~7! 0.030~2! 9.1
0-13
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different methods. All methods gave consistent results in
cating small systematic effects and suggesting that the fu
tions used for the fits are consistent. These simulations w
done on a lattice with 84 lattice sites.

Additional simulations on a lattice with 44 lattice sites but
approximately double the lattice spacing were done. Ag
extrapolations to the chiral limit gave a nonzero^x̄x&. In this
lattice @mass3volume3^x̄x&#,1. Then analytical consider
ations suggest that the value of^x̄x& must come mostly from
topological sectors with fractional topological charge
61

2. Indeed, as the mass was made smaller unusually l
values~spikes! were observed in the statistical sample ofx̄x
indicating the singular contribution of these sectors.

The spectrum of the theory is of great interest but it w
not possible to measure on the small lattices considered h
Also, the gluino condensate was measured only on two
ferent lattice spacings and therefore it was not possible
s

.

.
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extrapolate to the continuum limit where comparisons w
analytical results would be possible. Future work would e
plore these very interesting topics.
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