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The dynamical\V=1, SU2) super Yang-Mills theory is studied on the lattice using a new lattice fermion
regulator, domain wall fermions. This formulation even at nonzero lattice spacing does not require fine-tuning,
has improved chiral properties and can produce topological zero-mode phenomena. Numerical simulations of
the full theory on lattices with the topology of a torus indicate the formation of a gluino condensate which is
sustained at the chiral limit. The condensate is nonzero even for small volume and small supersymmetry
breaking mass where zero mode effects due to gauge fields with fractional topological charge appear to play a
role.
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[. INTRODUCTION cutoff. This term unavoidably breaks the chiral symmé#y
and as a result a gluino mass term is no longer forbidden.

It is believed that supersymmetriSUSY) field theories  Since such a term is relevant, fine tuning of the bare fermion
may play an important role in describing the physics beyondnass is necessary as the continuum limit is approached in
the standard model. Nonperturbative studies of these theori@sder to cancel its contribution. Although fine-tuning is not a
are of great interest. First-principles numerical simulationsvelcomed property this method makes it possible to recover
may be able to provide additional information and confirma-the continuum target theory.
tion of existing analytical calculations. Typically first prin-  Therefore, it is possible to simulate numerically thé
ciples numerical simulations of field theories are done within=1 SYM theory using existing lattice “technology” since all
the framework of the lattice regulator. A host of results havethree difficulties can be circumvented. This observation was
been produced in this way for many field theories and mosimade some time agl]. In particular, it was argued that,
notably QCD. Several SUSY theories can also be formulatedsing a standard lattice gauge theory action with a pure
on the lattice and be studied numerically. To be more specifigauge Wilson plaguette term and Wilson fermions in the ad-
consider the problems of putting a SUSY theory on the latjoint representation, numerical simulations could be done.
tice (see, for example, Ref§l-3)): Pioneering work using these methods has already produced

(1) Since space-time is discrete only a subgroup of thevery interesting numerical resulf§,7]. Also, for proposed
Poincaregroup survives and as a result SUSY is broken. Thidattice tests of SYM see Reff8]. For a supersymmetric for-
problem is not severe and is of the same nature as in QCDnulation on the lattice using Kogut-Susskif@] fermions
The symmetry breaking operators that are allowed by theee Ref[10].
remaining symmetries are irrelevant. One can calculate at There are two unwelcomed difficulties in using Wilson
several lattice spacings and then take thea—0 limit. No  fermions. The first has already been mentioned and it is the
fine-tuning is needed. need for fine-tuning. The second is of a technical nature. It

(2) If the SUSY theory under consideration involves sca-turns out that the Pfaffian resulting from the fermionic inte-
lar fields one can have scalar mass terms that break SUSyfation is not positive definitg6] at finite lattice spacing.
since typically they are not forbidden by some symmetry.However, it does become positive definite as the continuum
Since these operators are relevant fine-tuning will be needdimit is approached and therefore as a “cure” only the abso-
in order to cancel their contributions. The four-dimensionallute value of the Pfaffian is usd®,7]. However, this intro-
N=1 super Yang-Mills(SYM) theory does not involve sca- duces nonanalyticities that may make the approach to the
lars and therefore it does not have this problem. continuum limit difficult.

(3) A naive regularization of fermions results in the well ~ Both of these difficulties can be brought under control by
known doubling problen4]. For each fermion species in the using an alternative fermion lattice regulator, domain wall
four-dimensional continuum 16 are generated on the latticéermions (DWFs). The use of DWFs in supersymmetric
with total chirality of zero. This results in the wrong number theories has been explored in the very nice work of R&fs.
of degrees of freedom and therefore breaks SUSY. HoweveRB]. The methods in this paper are along the lines of these
this problem may be possible to treat as in QCD. This is theeferences. Domain wall fermions were introduced in Ref.
case forN'=1 SYM. [11], were further developed in Refisl2] and[13,14]. They

One possible way to remove the unwanted fermion deprovide a new way for treating the unwelcomed chiral sym-
grees of freedom is to add an irrelevant operdttflson  metry breaking that is introduced when the fermion doubler
term [5]) that gives them heavy masses of the size of thespecies are removed. Here a variant of this approach will be
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used[13,14]. For reviews on the subject please see RE5], to the continuum limit. It is possible that in this limit the
and references therein. DWF have already been used for ngluino condensate may vanish. Future work using larger
merical simulations of the two flavor dynamical Schwingercomputer resources could calculate the gluino condensate at
model[16], dynamical QCD[17], quenched QC)18-23,  several lattice spacings and extract the continuum value. But
as well as for simulations of 4-Fermi modé®1]. The use of ~even then, it will never be possible to numerically prove that
DWF in supersymmetric theories has also been explored in #e finite lattice spacing theory is not separated from the
different fashion in Refs[25,26. Furthermore, the use of continuum theory by a phase transition. This problem is not
overlap [12] type fermions has been explored in Refs. Particular to the case at hand but is in the nature of numerical

[12, 27,28, and the use of other related types of fermionsinvestigations. They can provide strong evidence but not un-
has been explored in Ref9,30. questionable proof. Awell known case with S|m|_lar problems
In the lattice DWF formulation of a vector-like theory the 'elates to the question of confinement and chiral symmetry
fermionic fields are defined on a five-dimensional space-tim&réaking in QCD.
lattice using a local action. The fifth direction can be thought ~This paper is organized as follows. In Sec. II, the DWF
of as an extra space-time dimension or as a new internagttice formulation of\/=1 SU2) SYM theory is presented.
flavor space. The gauge fields are introduced in the standatfl Sec. lll, analytical considerations relating to the gluino
way in the four-dimensional space-time and are coupled té"@ss, the Ward identities, and the effects of topology in the
the extra fermion degree of freedom in a diagonal fashionPatterns of chiral symmetry breaking are given. The numeri-
The key ingredient is that the boundary conditions of thecal method§ used in the simulations are discussed in Sec. IV.
Dirac operator along the fifth direction are taken to be free The numerical results are presented in Sec. V and the paper
As a result, although all fermions are heavy, two chiral, ex-S concluded in Sec. VI.
ponentially bound surface states appear on the boundaries

(domain wallg with the plus chirality localized on one wall Il. LATTICE FORMULATION
and the minus chirality on the other. The two chiralities mix _ _ _ _
only by an amount that is exponentially smalllig, where In this section, theV'=1, SU2) SYM lattice action and

L, is the number of lattice sites along the fifth direction, andoperators are presented. The approach is similar in spirit as

form a Dirac spinor that propagates in the four-dimensional© the case of Wilson fermiorj4,6,7]. The DWF formulation

space-time with an exponentially small mass. Therefore, théor this theory is identical to Ref§2] and[3]. It is presented

amount of chiral symmetry breaking that is artificially in- below for the convenience of the reader and in order to es-

duced by the regulator can be controlled by the new parantablish notation.

eterLg. In the Lg—co limit the chiral symmetry is exact, ~ The N=1, SU2) SYM theory is an S() gauge theory

even at finite lattice spacing, so there is no need for finewith Majorana fermions in the adjoint representation. As

tuning. such, the fermionic path integral results in the analytic
For the first time the approach to the chiral limit has beensquare root of the corresponding Dirac determinant. This

separated from the approach to the continuum limit. Furtherthen is the Pfaffian of an antisymmetric matrix that has the

more, the computing requirement is linearlig. This is to ~ Same determinant as the Dirac operator. On the lattice, the

be contrasted with traditional lattice fermion regulatorsDirac operator can be defined using Wilson’s approach as in

where the chiral limit is approached only as the continuumRefs.[1,6,7 or the DWF approach as in Ref2] and[3].

limit is taken, a process that is achieved at a large computing The partition function is

cost. Specifically, because of algorithmic reasons, the com-

puting cost to reduce the lattice spacing by a factor of 2 s

grows by a factor of 2-%in four dimensions. Therefore, the Z:f [dU]f [dqr]f [ddle™>. @

unique properties of DWF provide a way to bring under

control the systematic chiral symmetry breaking effects usy,

ing today's supercomputers «(X), u=1, 2, 3, 4 is the four-dimensional gauge field in

the fundamental representatiod;(x,s) is a (rea) five-

for performing a numerical simulation of the ful=1 %imensiqnal Majorana figld in the adjoint re_presen'gation, and

SU2) SYM theory using DWF are collected and it is dem- V¥ (x,s) is a (rea) five-dimensional bosonic Pauli Villars
(PV) type field with the same indices as the Majorana firld.

onstrated that they work as expected by performing NUMETS the coordinate in the four-dimensional space-time box with

cal S|mulat|ons of the fu!l theory. Second, the gluino Conde.n'extentL along each of the four directions. The boundary
sate is measured. It is expected that a nonzero gluin

Qonditions along these directions are taken to be periodic for
condensate must forf81—34. However, there are also ar- 9 P

uments that the theory has a phase where a gluino conde"rjlll-I fields. The coordinate of the fifth direction is
g y P 9 =0,1, ... Ls—1, whereLy is the size of that direction and is

sate does no_t forrﬁ35]. In the numerical s_|mulat|ons Per- i ken to be an even number. The act®is given by
formed here it is found that a nonzero gluino condensate is

sustained in the limit of zero gluino mass. This result is at a
finite lattice spacing and therefore SUSY is still broken albeit S=Sc(U)+Se(W,U) + Sp\(P,U). )
by irrelevant operators.
It must be emphasized that in this work due to limited Sg(U) is the pure gauge part and is defined using the stan-
computer resources no attempt has been made to extrapolatard single plaguette action of Wilson:
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Se=B2 | 1-5ReTi{Uy]|, 3  S=— X VXIDe(xsx,s)P(X8), @

p x,x",s,s’

where 3=4/g? andg is the gauge coupling. where D¢ is the DWF Dirac operator in the form of Ref.
The fermion partSg(W,U) is given by [14]. Specifically it is
|
De(X,s;x",8")=08(s—s")D(x,x" )+ D*(s,8")(x—x"), (5)
1 4

D(x,x")= > 2:1 [(1+y )V () 8(x+a—x")+(1- yﬂ)VL(x’)é‘(x’ +a—X)]+(mg—4)8(x—x"), (6)

)
Pré(1—s")—miP 8(Ls—1-s")—86(0—s'), s=0,

D*(s,s')=4 Prdo(s+1-5")+P d(s—1-s")—48(s—s"), 0<s<L¢—1, (7
—miPré6(0—s")+P 6(Ls—2—5")—d(Lg—1-5"), s=Ls—1,

1+ ys
PrL= 5 (8

whereV is the gauge field in the adjoint representation. It iswhere
related to the field in the fundamental representatiofiseg,

for example, Ref[6]) Me(x,s;x’,s')=CRsDg(X,s;x’,s") (14
_ t b
[Vu(X)]ap= ZT'[UM(X)TaUu(X)T ] © is an antisymmetric matrix as can be easily chediZddAs a

and result the fermionic integral gives the anticipated Pfaffian:

V,()=VH(x)=[V, (0], (10 f [dV]e SF=Pfi(Mp). (15)

where T2=1¢? with ¢? the Pauli matrices. In the above

equationsm, is a five-dimensional mass representing theBecause de@R;)=1 one also has that déig)=detDr) and

“height” of the domain wall and it controls the number of therefore,

light flavors in the theory. In order to get one light species in

the free theory one must seklny<<2 [11]. The parameter Pf(Mg) = \de(D¢). (16)

m; explicitly mixes the two chiralities and as a result it con-

trols the bare fermion mass of the four-dimensional effective The Pauli-Villars actiorSey is designed to cancel the con-

the.ory.. The dep(_endence of the bare fermion massipand  ihtion of the heavy fermion§l2]. Viewing the extra di-

L is discussed in S_ec. A mension as an internal flavor spalE?] one can see that

The fermion field¥ is not independent but is related¥d  there arelL,— 1 heavy fermions with masses near the cutoff

by the equivalent of the Majorana condition for this five- and one light fermion. The PV subtraction subtracts lthe

dimensional theory3]: heavy particles. As was pointed in RE2] this amounts to a
_ “double” regularization of the light degree of freedom, first
V=VTCRs, (1) by the lattice and then by the PV field. The form of the PV

subtraction used here is as in Rgf6] and is given by
whereRg is a reflection operator along the fifth direction and

C the charge conjugation operator in Eucledean space which

can be set to Sov= 2 DT(X,5)Me[me=1](x,s;x’,8" )D(X',S).
x,x",s,s’
Therefore, the fermion action can also be written as The integral over the PV fields results in
S=— 3 VxSMexsx sHV(K,S), (13 [ ———— 18)
x,x",s,s’ P (Mg[m;=1])"
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Green’s functions in this work are measured using four-Because the gauge fields are not changing along that direc-
dimensional fermion fields constructed from five- tion the product of transfer matrices simply resultsTirs.
dimensional fermion fields using the projection prescriptionFor L= this is a projection operator that projects the ref-

[14] erence vacuum state to a ground state. The fermion determi-
nant is then the overlap of the reference vacuum state with
x(X)=Pr¥(x,0)+ P W(x,Ls—1), that ground state. In Reff12] it was shown that, as a lattice
— — gauge field configuration changes, from say the zero topo-
X(X)=¥(x,Ls—1)Prt+ ¥ (x,0)P_. (19 logical sector to sector one, an eigenvaloe a degenerate

- . set of eigenvalugsof the corresponding Hamiltonia
In the Ls— e I|_m|t OT the.theory these operators q”ectly changes sign. As a result, the filling level of the ground state
correspond to insertions in the overlap of appropriate Crepecomes different from that of the reference vacuum state.
ation and annihilation operatof&2]. . Then the overlap is zero indicating the presence of an exact
US|_ng Eq_s.(ll) and_(19)_the_MaJorana condition on the ;¢4 mode. This remarkable property is maintained to a good
four-dimensional fermion field is degree even at finite; as was found in Ref.20]. Unfortu-
7=x'C. (20) nately, this property is also the reason for most of the diffi-
culties with DWFs. As the eigenvalue of the Hamiltonidn
Because this is the correct condition for a four-dimensionakhanges sign it crosses zero. In such a configuration the
field one can see that the definition in Ed.1) not only  transfer matrix has an eigenvalue equal to 1 and therefore
produces an antisymmetric fermion matfik- but is also even at ;=< there is no decay along the extra direction, the
consistent with the projection prescription in Ed9) as ex-  two chiralities do not decouple, and chiral symmetry cannot
pected. be restored. Fortunately, configurations for whidthas an
exact zero eigenvaludor a givenmg) are of measure zero
I11. ANALYTICAL CONSIDERATIONS [12,14] and therefore are of no consequence. However, con-
figurations in their neighborhood are not of measure zero and
In this section some analytical considerations are presuch configurations will exhibit very slow decay rates.
sented. In theV'=1 SYM theory, a gluino mass term is the Therefore, in order to restore chiral symmetry, very large
only relevant operator that can break supersymmetry and igalues ofl; may be needed. Since one would expect that the
also the only relevant operator that can bréatkthe classical  neighborhoods of such configurations are suppressed closer
leve) the U1), symmetry. Therefore, the two symmetries to the continuum limit this problem should become less se-
are intimately related to the mechanisms that can introduce gere as that limit is taken. This has been observed in numeri-
bare gluino mass term. These mechanisms depend on tle@l simulations of the Schwinger modgl6], of full QCD
“extra” regulator parametersn, and L. This is discussed [17], and of quenched QCI[18,19,22,23
below. Next the fate of the (@), chiral symmetry and the In the region where it makes sense to parametrize these
effects of topology are presented. The chiral and supersymeffects by a residual mass in an effective action it has been
metric Ward identities are derived in the last subsection. found that

A. The “extra” DWF parameters Mgfr= CoM¢ + Myeg, Mpes= Cq EXP(—Col ), (22

DWFs introduce two extra parameters, the size of the fifth . . .
directionL ¢ and the domain wall height or five-dimensional Where for dynamical QCD at the currently accessible lattice

massmy. These two parameters together with the explicitSpacings the decay .is f_oun_d to l®~0.02 [17]. For
massm; control the bare fermion massy. In the free quenched QCD the situation is better because current com-
off -

- puting resources can simulate lattices with smaller lattice
theory one findg16] spacing. There, a value of~0.1 is found[18,19,23. Also
Meir=Mo(2— M) [Ms+(1—mp)ts], 0<my<2. (21) in these studies the value of was a weakly changing func-
tion of my indicating that for practical purposes there is no
In the interacting theory one would expect thaf as well as  optimal value ofm,.
its range of values will be renormalized. From the above In the case of theV=1 SYM SU2) theory the Hamil-
equation one can see that for the free theory the value dbnian corresponding to the five dimensional transfer matrix
my=1 is optimal in the sense that finile; effects do not has eigenvalues that are doubly degenerate because the fer-
contribute tomg . In the interacting theory one would expect mion fields are in the adjoint representati®8]. Therefore
that there is no such “optimal value” since, in a Heuristic when there is a “topology” change two eigenvalues will
sensem, will fluctuate. For a more detailed analysis pleasehave to cross through zef@s compared to one for funda-
see Ref[36]. Then one would like. g to be large enough so mental fermions This may make this theory harder to study
that the second term in E§21) will be small allowing for  than QCD in the sense that lardeyvalues may be required.
simulations at reasonably small masses and/or for depen®n the other hand, since no massless Goldstone particles are
able extrapolations to the;—0, Lg—oo limit. expected, the sensitivity of the spectrumlonmay be con-
The effects of finitd_; on the chiral symmetry can be best siderably milder. In any case, in this paper the only fermionic
understood in the overlap formalisith2]. In that formalism  observable that will be discussed is the gluino condensate.
a transfer matrixT along the extra direction is constructed. This quantity is known to approach itss—c limit with
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faster decay rates than the onesrip, (for a discussion and Z,. On the other hand, at a finite volume and zero mass a
results for full QCD see Ref.17]; there the decay rate for gluino condensate can form due to the presence of fractional
the chiral condensate was about five times faster than that favinding configurations. Since the volume is finite, this can-
Mred- not be the result of spontaneous symmetry breaking. Instead,
As was discussed above, the rangemgfis renormalized it is similar to symmetry breaking due to topological effects
by the interactions. It has been found that as the lattice spa@s, for example, in one flavor QCD. As pointed out above the
ing increases and one moves away from the continuum limigize ofm; XV X () controls which “scenario” takes place.
this range shrinks in size and for currently accessible spac- On the lattice there is no clear definition of topology. The
ings in QCD that range is abo{it.4, 2.0. As one moves Ppath integral over the SW) group space generates configu-
even farther away from the continuum limit this range canrations of all possible windings. In order for the lattice theory
shrink to zero and then it will not be possible to have lightto be able to reproduce phenomena that relate to topology it
DWF modeq2,39]. However, it must be emphasized that for is essential that the lattice Dirac operator obeys the index
as long as the range of allowed valuesnaf is not of zero  theorem in a statistical sense. This is highly nontrivial since
size the overlap formalism, although it does not specify howit is obviously related to the doubling problem. Traditional
it is approached, guarantees the existence ofthex limit. ~ fermions (Wilson or staggereddo not exhibit exact zero
In this work, my=1.9 and, as it will be shown in Sec. V, the modes at finite lattice spacing. On the other hand, as men-
behavior of the gluino condensate \:s.is consistent with an  tioned in Sec. lllA, DWF at.s= have exact zero modes
exponential ansatz. and at finiteL¢ have robust zero modes to a good approxi-
mation[20]. An approximate form of the index theorem has
been found to be obeyed for fundamental fermions in the
overlap formulation in quenched $2) [41] and in quenched
Fermions in the adjoint representation of the SIU(  SU(3) [42].
gauge group have a Dirac operator with index The index of adjoint fermions in the overlap formulation
in quenched S(2) has been studied in Ref28]. In that
2Ny (23 work it was pointed out that the overlap Dirac operator for
_ . ) i . adjoint fermions in the S(2) gauge group is necessarily
wherev is the winding of the background field configuration. g\ e valued. Then the question posed by the authors of Ref.
Classical instantons have integer winding and they causgg] as whether or not all even values are realized or only
condensation of operators witiN2Majorana fermions. This  y4jyes that are multiples of four are present. The latter case
results in the breaking of the(W), chiral symmetry downto  ¢qrresponds to configurations with instantons. The former
the Z,y symmetry by the corresponding anomaly. The re-case corresponds to fractional winding numbers. Configura-
mainingZ,y symmetry may break spontaneously dowiZo  tjons with fractional winding were found and their presence
[31]. Mechanisms fqr this further breaklng have been eXpersisted as the lattice spacing was decreased.
plorgd for example in Refs[.32—34] where instantons and In this paper DWFs are used at finite, and therefore
fractionally charged objects suc_h as f[orc[8§’] or caloron  gome of the clarity present in tHe,=< case will be lost.
monopole constituent38] were investigated as the source gyever, the full theoryincluding the fermion determinant
of this symmetry breaking. _ o is studied here. Furthermore, it is interesting to see if at a
Since in a toroidal geometry fractional winding numbersgma|| volume and zero mass the gluino condensate still
are possibl¢37], the partition function of the full theory can ¢5-ms and if it does to what extent its value is due to zero

be expressed as mode effects. The numerical results are presented in Sec. V.

B. Chiral symmetry and topology

z(0)=2, €"2,, »v=0+1N,%£2NN,..., (24 C. Ward identities

As discussed in the introduction and in Sec. Ill, the DWF

where# is the vacuum angle and, is the partition function formulation of theA/=1 SU2) SYM theory at theL —x
on the sector with windingv. For the theory with a soft limit is expected to preserve the(l), chiral symmetry(at
breaking by a mass); the interplay of the volume and mass the classical levg¢land break supersymmetry only by irrel-
in the formation of the gluino condensate has been analyzeelvant operators. Since the DWF formulation contains many
in Ref. [40]. The reader is referred to that reference for amore fields than the continuum theory, one may naturally
very nice presentation on the subject. Assuming a mass gaponder what are the SUSY transformations in terms of these
is present in the theory the authors of Ref0] show that fields. In particular, while the continuum theory has a single
non-zero contributions to the gluino condensgig) come  Majorana fermion the DWF lattice theory containgMajo-
almost exclusively from the'=1/N sector ifm; XV X {xx) rana fermions and_g corresponding PV fields. Since all
<1. On the other hand, ifh; X VX {xx)>1 all sectors con- these fields, except for one Majorana fermion, have masses
tribute to a nonzero condensate. near the cutoff, one can expect that the SUSY transforma-

The above considerations result in an unusual picture. Ifions should only transform the gauge field and the light
the infinite volume limit is takertfollowed by the massless Majorana fermion represented by the boundary fjelf Eq.
limit) it is possible that a gluino condensate will form due to(19). Similarly, the chiral symmetry transformations should
spontaneous breaking of the discrete symmety down to  only involve the fieldy. However, one should expect that
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this choice of SUSY and chiral transformations is not uniquewhere a(x) is an infinitesimal real number ang, symbol-
For example, see Refl14] for a different choice of QCD izes the change under the chiral transformation. Then the
chiral transformations that involve all fermion fields in one Ward identity is

half of the fifth direction transforming vectorially and all
fermions in the other half also transforming vectorially but (A ,J,.(X)O(y))=2m(JIs(x) O(y))+2(Ig(x) O(y))
+i(3a0(y)), (32)

with opposite charge. That choice could also be appropriate
here for the chiral transformations, but it may make the
SUSY ones more complicated. : : . _
i . L . - . where the backward difference is defined X)=f(x
As a first step in deriving the Ward identities, the fermi- —f(x— ). The currents are B0 =1()
onic part of the action in Eq4) is rewritten in terms of the '

boundary fieldy: 3,00 =X0) Y5 Y,V () x(x+ ), (33
7SSy (29 350 =X 78x(X), (34
whereSFO does not depend on the fiejdand
JB<x>=§ XO) 75BX,Y) B(Y). (35)
Se == 2 [XOODNOGX ) X(X) = Mex(00) 8(x,X) x(x') , o

X xx! If in the above Ward identity)(y) =Js(y) one gets

—XOOB(X,X ) (X' ) = $(X)BOCX ) x(X)],  (26) A (3,00 35(y)) = 2me(I5(x) Is(Y)) +2(Ja(X)s(¥))
where —2(x(y)x(¥))- (36)

d(xX)=Pr¥(x,Ls— 1)+ P ¥(x,0), In this identity the term with]g will be responsible for pro-
ducing the ABJ anomaly in theg—oc limit. On the other
27 hand, ifLg is kept finite this term is similar to the one for
Wilson fermions which, besides producing the ABJ anomaly,
are the “wrong” projected fields in the sense that they are@lS0 produces a mass redefinition. For an analysis of QCD
defined on the opposite wall from where the correspondingVith DWF at finiteLs see Ref[19].
light mode is localized. If indeed there is localization one As mentioned earlier these chiral transformations are dif-
would expect that in thé—co limit these fields will have ferent than the ones in Ref14]. If the transformations rel-
no overlap with the light mode. The operafby, is the naive ~ €vant for a nonsinglet current in QCD were done on the
part of the four-dimensional Wilson operator in E6) andB fields x, x, one obtains a Ward identity exactly as in Ref.
is the symmetry breaking pa(B is the equivalent oB in  [14] but with the currents\}(x) andJ5,(x) replaced with
Refs.[12,14):

1
L4 AL =5 X005 YA U L (0 X (X+ )
Dy(xX) =5 2 ¥ul V() 80xt+i=X")

H(X)=T(x,00Pr+¥(x,Ls—1)P,

XX+ ) 757, A UL00xX (0], (37)
= VLX) 3(X + =x)], (28) L
. 35400=5 2 [XO0 ysA*BOLY) $(Y)

1
B(x,x")=(5— O(X—x")— = V o) o—X' _
(xX')= (5= Mo} ox=x) =5 20 [Vu()dx+A=x')  B(y) YA B(Y. X)X (0], (39

The derivation of the SUSY Ward identity is similar to the
one for Wilson fermions. One can use the existing calcula-
tions for Wilson fermiong1,7,43 to elucidate the differ-
ences between the two formalisms. Here the derivation in
Ref. [43] will be followed. The symmetry transformations
are as in Ref[43] and commute with parity.

The change of the pure gauge action with respect to the
transformation of the gauge field is of course the same. In

+VI(X)S(X + R —x)]. (29)
These operators have the following properties:
{Dn,¥st=0, DL: —Dy,

[B,ys]=0, B'=BT=B. (30

First the Ward identity corresponding to the1l,, sym-
metry is derived. The symmetry transformations are

opx(X)=ia(X)ysx(x),

Oax(X)=ia(x)x(X)ys, (31)

terms of the symmetry breaking part of the Ward identity it
contributes a term denoted below Bis(x) + X3(x) where

X5, X5 are as in Ref[43]. This term breaks SUSY because
of the explicit breaking of the Lorentz symmetry. Using im-
proved pure gauge lattice actions can alleviate the effects of
this breaking. Such an improvement is not considered here.
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The change of the fermion and Pauli-Villars parts of the As mentioned above the symmetry breaking teta{x)
DWEF action with respect to the transformation of the gauge+ X5(x) is due to the breaking of Lorentz symmetry by the
fields produces terms for dl slices. In particular the varia- lattice. TheX}(x) andX}Y(x) terms break the symmetry as
tion of the fermion matriXD of Eq. (5) with respect to the in Wilson fermions. These terms do not cancel each other
gauge field is exactly! However, one would expect large cancellations of

, , , , heavy modes. The terms Xﬁ(x,s) that are proportional to
SuDe(x,x";8,8") (M) =6(s=8") 6yD(x,x"). (39 the Wilson parameter involve fields that couple to the light
modes by an amount that is exponentially smalLin One
) L o would expect these terms to be nearly canceled by the cor-
the fifth direction. Furthermorél>(x,x’) is the same as the responding Pauli-Villars terms resulting in exponentially

varlayt())n of theh Wilson operl;ator.k.Thereforef, rt_]hlswva(rjla};[jlon small contributions. The remaining terms that involve fields
fig/nmel{[teer;? the symmetry breaking part of the Ward | en'away from the relevant domain walls should also yield simi-
lar cancellations. As a result the only terms that should make
significant contributions should be the ones that involve
XE(x)= > X5 (x,8) (40)  fields of the “correct” chirality near the domain walls. These
s few terms would couple to the light modes and be further
regularized by the corresponding Pauli-Villars terms. Clearly
this analysis of cancellations is heuristic. A detailed calcula-
tion using, for example, perturbation theory or transfer ma-
xZV(X)=2 Xf{v(x,s), (41) trix methods would be interesting but it is beyond the scope
s of this paper.
. . ) Finally, the symmetry breaking terd§;(x) involves the
where X;(x,s) is asX, in Ref. [43] except that the four- fielq 4(x) that is expected to have no overlap with the light
dimensional Wilson fermion flejjs that have their spin indi- mode in theL c— oo limit. If L is finite then DWFs are simi-
ces contracted are replaced H§(x,s), ¥(x,s) while the lar to Wilson fermions and an analysis as in Réfl should
other Wilson fermion field is replaced by(x). Similarly  indicate that this term is responsible for the same mass re-
X5V(x,s) is as X, in Ref. [43] except that the four- definition as the one in the chiral Ward identity.
dimensional Wilson fermion fields that have their spin indi-
ces contracted are replaced by the Pauli-Villars fields IV. NUMERICAL METHODS
®T(x,5)CRs, ®(x,5), the other Wilson fermion field is re-
placed byy(x) and the sign of the second term ¥, is As can be seen from Sec. Il th&=1 SU2) SYM
minus instead of plus due to the commutativity of the Pauli-theory can be simulated as a theory with 0.5 flavors of Dirac
Villars fields. fermions in the adjoint representation. An efficient and popu-
The change of the action with respect to the fermion field@r algorithm that can be used to simulate any number of
transformations can be partially deduced from the correflavors is the hybrid molecular dynami¢s (HMDR) algo-
sponding Wilson fermion calculation. Since this transforma-ithm of Ref.[44]. Because of the Grassmann nature of fer-
tion only involves the actio: in Eq.(26), one can observe mions these algorithms need to invert the mabix of Eq.
that the first two terms of that action are identical with the(5)' That matrix is no.t .Herm|t|an..Th|s IS a problem since
action of naive fermionéWilson fermions withr = 0). These some of the more_gfﬂment inversion algorithms require the
will contribute identical terms as thre=0 part of the Wilson matrix to be Hermitian. However, because
action. They contribute to the divergence of the SUSY cur- _nt
rent and to the mass term of the Ward identity given below. 7sRDeRYs=De 43
Finally, the transformation of the last term of the act&nx one has that

in Eq. (26) is easy to calculate and is denoted Xy(x):

One sees tha#Dr is independent ofm; and is diagonal in

and

defDg]?=def DD/ ]. (46)
Xq(x)= = P3,(X)0,,B2(x,x") ¢°(X'). (42)

Then one can invert the Hermitian matiix-D/ and then
This term is closely related t&,; of Ref.[43]. use the HMDR algorithm to take the appropriate power so
The Ward identity is that the desired number of flavors is simulated. This method
is adopted here and the 0.25 power is taken in order to go

(A,S,(x)0(y))=mi(Dg(x)O(y))+(Xs(x)O(y)) from a theory with two Dirac fermions to a theory with one

—(850(Y)), (43) Majorana fermion. In other words, the fermion determinant

that is used in the simulation is

where the supersymmetric curre8f, and the quantityDg
are as in Ref[43]. The symmetry breaking tert{g(x) is
also similar to the one in Ref43]:

(defDeD}])%%=|def{D¢]|*%=defD(1%%  (47)

Xs(X) = Xq(X) +Xo(X) +X3(xX) + X5 (x) = X5 (x). (44) We thank Y. Shamir for pointing this out to us.
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where in the last equality use was made of the fact that for  0.10
non-negativem; defD¢] is also non-negativg2]. This ap-
proach was also taken in R¢7] for Wilson fermions. For an
approach that uses Wilson fermions and the multibosonic
algorithm[45] instead of the HMDR algorithm see R¢6].
However, as mentioned earlier in the case of Wilson fermi-
ons the last equality in Eq47) is not true for all gauge field
configurations. 0.06
The HMDR algorithm uses molecular dynamics methods A
in order to produce the correct statistical ensembles. Becaus=
the molecular dynamics step si#& is finite discretization
errors are introduced. There are two ways one can deal witt
this problem. One is to simulate at various valuessofind
then extrapolate té7=0. Another method is to usér small
enough so that the errors are negligible when compared witt g0z
the statistical errors.
In order to ensure this, one can simulate the two Dirac
flavor theories at the same parameters and s&megor the
two flavor theory, one has a local action and therefore, at the ~ 9-00
end of the evolution, one can employ a Metropolis accept- 2.0 2.5
reject step. Then the finitér errors are “converted” to a A
nonideal acceptance rate and in effect they are reflected in FiG. 1. The magnitude of the Wilson lifw/) in an & lattice.
the final statistical errors. This is the exact hybrid MonteThe diamonds are from the quenched theory. The cross is from the
Carlo ® (HMC®) algorithm of Refs[46,44]. Therefore the dynamical theory ag= 2.3 with L =24, m;=0.0 andm,=1.9.
acceptance rate is an indication of the size of the fiaite
errors in the HMD integration. By simulating the two Dirac ~ The CG stopping condition for all simulations was set to
flavor theory with(HMC®) one can sebr so that the accep- 10~ for the evolution and to 1T for the calculation ofy.
tance rate is high, say90%. Since the coefficient of the The number of CG iterations varied betweerl00 for my
finite &7 errors is proportional to the number of flavors one =0.08,L.=12 and 250 fom;=0.0, L = 24.
would expect that for 0.25 flavors the errors would be small  The 8 volume simulations were done with=2.3. The
and at the few percent level. value of 8 was chosen so that one is not close to the point
The only fermion observable measured in this work is thewhere the box size becomes too small and a thermal transi-
gluino condensate. By inserting appropriate source terms afon takes place, but also not too deep in the strong coupling
in Ref.[7] the gluino condensate was measured as the trao@gime where the finité ; effects become severe. The tran-
of D¢ * with spin and fifth-direction indices restricted as dic- sition point of the N,=8 quenched theory is a3
tated by Eq(19). The trace was calculated using a standard=2.5115(40)[47]. In Fig. 1 the magnitude of the fundamen-
stochastic method. All inversions in this work were donetal Wilson line(/W|) measured in quenched simulations in an
using the conjugate gradiet€G) algorithm. An even-odd 8% volume is plotted vg3. In the quenched theory this is an
preconditioned form of the matriDEDF was inverted. For order parameter. As can be seen from that figure, a rapid
more details on the numerical algorithms and methods emerossover takes place aroupd2.5. In the same figure the

e
-

0.08

0.04

ployed to DWF simulations see Refd.6,17]. value of (W) from a simulation of the dynamical theory at
B=2.3 is also showricross. The quenched and dynamical
V. NUMERICAL RESULTS values are very similar indicating that gt 2.3 the dynami-

cal theory is in a phase that “confines” fundamental sources.
Therefore, the box size is large enough to avoid finite tem-
In all simulations the domain wall height was chosen toperature effects that would of course spoil SUSY. Using the
be my=1.9. As mentioned in the previous section, the finitequenched theory as a guide thé gimulations were done at
Srerrors were kept to the few percent level by using a smal3=2.1 since the quenched transitionNy=4 is known to
or. For all simulations the step size was setto=0.01 and  take place ap3=2.2986(6)[47]. At =2.1 the lattice spac-
the trajectory length ta=0.5. In order to confirm that this ing is larger than apB=2.3. However, the lattice sizes are
choice introduces finite step size errors that are small consmall and do not allow a reliable measurement of the lattice
pared to the statistical errors an HMCsimulation for two  spacing. According to Ref48], 8=2.1-2.3 is in the begin-
Dirac flavors was run fot ;=12 andm;=0.04. It produced ning of the weak coupling regime. Then if one uses the weak
an acceptance rate 6¢90% suggesting that the finitér  coupling form in Ref[48] one finds that the lattice spacing
errors of the 0.5 flavor theory are small. Furthermore, arat 8=2.1 is about a factor of 2 larger than the onegat
HMDR simulation was also run for two Dirac flavors using =2.3.
the exact same parameters. The value of the gluino conden- In order to estimate the necessary number of thermaliza-
sate obtained from these two simulations was the samton sweeps two simulations were run on ahl8ttice atB
within statistical errors. =2.3,Ls=12, andm;=0.04. The first simulation used an

A. Simulation parameters
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0.015 —r—7—717 [ —— L —— L —— TABLE I. The values of(xy) for the 8 simulations at8
B ] =2.3,my=1.9.
I _
0.014 I— ; 7 Ls my (xx)
i 12 0.00 0.00902)
N 12 0.02 0.0105@)
0.013 _ 12 0.04 0.0122(%)
7 12 0.06 0.0137@Y
153 | ] 12 0.08 0.0151@®)
0.012 ' | .Z ] 16 0.00 0.0069%)
n Al . 16 0.02 0.0086%)
C ' TR (k) ] 16 0.04 0.01026})
L l ? - 16 0.06 0.0118@)
0.011 ] 16 0.08 0.01324)
- B 20 0.00 0.0058%)
B ] 20 0.02 0.00734.0)
0.010 | | | | | | | 1 | | | | | | | | | | 20 004 00089(77)
0 100 200 300 400 20 0.06 0.0107(B)
configuration # 20 0.08 0.0122B)
FIG. 2. The gluino condensate values generated by the computer 24 0.00 0.00516)
starting from an ordered initial configuratig¢solid line) and from a 24 0.02 0.0069H)
dis-ordered initial configuratiofdotted ling. Thex axis is the con- 24 0.04 0.0082(77)
figuration number and corresponds to “computer time.” This is 24 0.06 0.00998)
from a simulation of the full theory on arf‘8attice at3=2.3 with 24 0.08 0.0114@®)

Ls=12, m;=0.04, andmy=1.9.

initial configuration with all gauge links set to the identity This functional form is approximate but it is expected to be
(ordered and the other used an initially random configura-yalid close enough to the continuum and has been found to
tion (disorderedl The evolutions in “computer time” are pe consistent in simulations of the Schwinger mddé] and
shown in Fig. 2. As can be seen, the two ensembles corsf QCD even at relatively large lattice spacin(see, for

verged after about 100 sweeps. This number of thermalizasxample, Ref[17]). The data and fit are shown in Fig. 4 and
tion sweeps was then used in all other simulations whichhe results of the fit are given in Table IV.

were started from an ordered initial configuration. The num- i) For fixedm, the data foilL =12, 16, 20, 24 were fit to
ber of measurements after thermalization for all simulationghe form of Eq.(49). The data and fits are shown in Fig. 5
is about 200 with measurements done in every trajectonand the results of the fit are given in Table IV. Then the
The gluino condensate was measured with a single “hit"extrapolated values, were fit to the form of Eq(48). The

stochastic estimator. data and fit are shown in Fig. 6 and the results of the fit are
in Table 111
B. The gluino condensate at the chiral limit (iii ) Additional simulations were done fon;=0 andLg

In order to be able to extrapolate to the chiral limit, cor- =12, 16, 20, 24. The data were fit to the form of E49).
responding td— o andm;=0, the massn; and the size of The data and fits are shown in Fig. 7 and the results of the fit

the fifth directionL¢ was varied. The results of all simula- &€ in Table IV.

tions are given in Tables | and II. Three different methods Themi—0 andL,—c extrapolated values of the gluino
were used to analyze the data and calculate the gluino cosondensate for each one of the above three methods are sum-

densate in the chiral limit. marized in Table V. As can be seen, all values are consistent
(i) For fixedLy, the data form,=0.08, 0.06, 0.04, 0.02 Within the statistical errors. This suggests that the systematic
were fit to a function errors inherent to the limited statistics and to fits onto func-
bo+bymy. (48) TABLE II. The values of(xy) for the 4" simulations atg
=2.1,my=1.9.
This functional form is valid providedn; is small enough. —
Otherwise, higher order terms must also be included. The Ls m (xx)
data and fits are shown in Fig. 3 and the results of the fits are 16 0.00 0.0074@4)
given in Table Ill. Then the extrapolated valugswere fit to o4 0.00 0.00474.0)
a form 32 0.00 0.0035(7)
40 0.00 0.00308.1)
CotCqexp(—Cyly). (49
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‘ — ——— . .
- s (b) L.=16
0.015 — — — —
: 0.010
A
153 -
VvV 0.010 — — — —
r 0.008
0005~ | | L. | | 2
0.00 0.05 0.10 0.00 0.05 0.10 |\>/<
\ T T \ T T
L (c) L,=20 | L (d) L,=24 ]
0.015 — — — —
i 0.006
A
153 - 1 f 1
VvV 0.010 — — — —
r 1 r ooog—L U vl T T T T T T
0.005 — — —
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0.00 0.05 0.10 0.00 0.05 0.10 L
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FIG. 4. The extrapolated values of the fits in Fig. 3Lys The

FIG. 3. The gluino condensate ws; for various values of ¢ o -AHd
fit is to the function in Eq(49).

from the dynamical theory on an“8attice at 3=2.3 andm,
=1.9. The fits are to the function in E¢8).

_ o increasedn.s becomes small. From analysismof in strong
tions that represent the data only for a limited range areoupling QCD [17] one would roughly guess thaneg

small. Furthermore, it suggests that the fitting functions used<0.1. Ther{ MerX VX (X)L _]<1. In that case, the analysis
S

are cons_lsten(please_s_ee Sec. .VD for more discussion ONof Ref. [40] can be followed and one would expect the value
the validity of these fitting functions

of the condensate in the* 4attice to be mostly supported by
configurations with total winding of- 3. Indeed, this can be
seen from Fig. 9. In that figure the evolutions in “computer
In order to investigate the issues discussed in Sec. |1l Bime” are shown. The “spikes” in the evolution are apparent
the gluino condensate was also calculated in a smalter 42nd they become more pronounced and less frequen{ ias
lattice volume at3=2.1. It was measured only fan;=0 increased(and in effectm is decreased This is exactly
and method(iii) above was used to extrapolate to the how the effect of zero modes for smather < VX (XX ]
—oo limit. The data and fit are shown in Fig. 8 and the fit would present itself in a numerical simulation of the dynami-
results are given in Table IV. The*&ata from Fig. 7 are cal theory. As the fermion mass is made smallgry) is
presented again in this figure to aid comparison. The valuexpected to receive most of its value from sectors with wind-
has decreased indicating that scaling is violated. Howeveing =3. However, in these sectors the fermion determinant is
without more simulations at other lattice spacings and volvery small because of the zero mode. Since the probability
umes one cannot conclude much from this result. he for the algorithm to generate a gauge field configuration is
=2.1 coupling is in the strong coupling region and further-proportional to the fermion determinant one would expect
more the 4 lattice volume is rather small. that these sectors will be visited less and less frequently as
However, it is interesting to notice that the parameter the effective mass is decreased. When these sectors are vis-
x(YX)LSHx~8.4 (a factor of 12 coming from the normal- ited the value ofyx will be very large(spikes in order to

ization of (xx) has been includedSincem;=0 the effec-
tive massmgg gets its value from finitdg effects. AsLg is

C. The telltale signals of topology in nhumerical simulations

TABLE IV. The results of the exponential fits presented in the
various figures to the functiooy+ ¢, exp(—c,Ly).

TABLE lIl. The results of the linear fits presented in the various

figures to the functiory+bym; . Figure Co Cy Ca x*INpe

. ; 4 0.0044421)  0.0233)  0.13513) 3.9
Figure b by X"/Nor 5@ 00103416 0.0211)  0.1238) 6.2
3(a) 0.009045) 0.07728) 3.6 5b) 00085719  0.0191)  0.1118) 1.1
3(b) 0.007176) 0.076710) 3.8 50 00070825  0.0242)  0.11910) 06
3(0) 0.005859) 0.079913) 35 5d)  0.0061116) 0.0253)  0.14312) 2.9
3(d) 0.005385) 0.07558) 2.2 7 0.0043222)  0.0253)  0.14%13) 1.4

6 0.0045%21) 0.070437) 26 8 0.0026819  0.0264)  0.10712) 0.4
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FIG. 5. The gluino condensate \s for various values ofny FIG. 7. The gluino condensate kg from the dynamical theory
from the dynamical theory on an*8attice at 8=2.3 andm, on an g _Iattlce atB=2.3,m;=0.0, andmy=1.9. The fit is to the
=1.9. The fits are to the function in E¢9). function in Eq.(49).

compensate for the infrequent sampling. In this way the prest-he mean value. However, far,=40 the effective mass 'S
ence of the zero mode in the observablé “balances” the pre s_maller and the distribution has a more prono_unced i
. . towards larger values. In order to investigate this further nu-
ence of the zero mode in the determinant. As the mass i
made smaller one would have to increase the size of th
statistical sample in order to include enough of these increa
ingly “rare” but very large fluctuations. For similar results in
the Schwinger model and QCD see Ré¢f5,20.
A histogram of the values of y is presented in Fig. 10
(solid line). For smallL¢ the effective mass is larger andy

is distributed with a symmetric looking distribution around

Merical simulations at exactly the same parameters, but with-
Sut the fermion determinar(guenched theojywere done.
Sthe histograms from these simulations are shown in the
same figure for comparisofuotted line$. One can observe
that the absence of the fermion determinant had the effect of
shifting the distributions to higher values. This is expected
since configurations with small eigenvalues that produce
larger values ofyy are not suppressed anymore and are pro-
duced more frequently. Also, one can observe that the num-
’ ' ‘ ' ‘ ber of configurations withyy larger than~0.007 that ap-

- = peared as spikes in Fig. 9 have now increased in number.
These observations lend support to the presence of small
near-zero eigenvalues. Furthermore, configurations with
fractional topological charge have already been found in
0.010 — — quenched S(2) simulations at similar couplingg28]. It
would be very interesting to calculate the index for the con-
figurations of Fig. 9 using the methods of REZ8] and see

to what extent there is a correlation between fractional topo-
- . logical charge and the observed spikes. This correlation
should be exact dts— but it will be obscured at finitd g

by the presence of nonzena . This investigation is beyond
the scope of this work.

<xx>

0.005 — —

n _ TABLE V. The m;—0, Ls— extrapolated values dfyyx) us-
ing the three different extrapolation methods described in the text.

| I R B T N | Method <YX>(mf_’01Ls_>°°)
0.00 0.05 0.10 -
m, (i) 0.0044421)

(i) 0.0045%21)

FIG. 6. The extrapolated values of the fits in Fig. 5vs. The (iii) 0.0043%222)

fit is to the function in Eq(48).
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0.010

<xx>

0.005

0.000 1 1 1 1 1 1 1 1 1

10 20 30

FIG. 8. The gluino condensate 15 from the dynamical theory
on a 4 lattice at@=2.1, m=0.0, andmy=1.9 (crosses The &
data of Fig. 7 are also plotted for comparis@iamond$. The fits

are to the function in Eq49).

Furthermore, it should also be noted that on thdagtice
there are no visible spikes up kq=24. This can be seen in
Fig. 11. Presumably this is because the produug;xV
X(YX)LS%] is probably much larger than in the 4attice.

Again, this statement is not exact since the valuengf was

not measured.

40
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occurrences

occurrences

e
o
©

FIG. 10. The histogram of the values of the gluino condensate
from Fig. 9 (solid lineg. The dotted lines are from an identical set
of simulations, except that the fermion determinant has been set to
1 (quenched theojy The time evolutions for the quenched simula-
tions are not shown in this paper. The area under the curves is
normalized to one. All sets have 300 data points.

essentially an extrapolation from nonzero masses these re-
sults are not necessarily the results of a simulation at exactly
L=co. Itis still possible that if such a simulation were done

These results are consistent with the discussion in Sea@ne could have found that the gluino condensate is zero. This

[l B. However, since even witm;= 0, anL ¢ extrapolation is

0.020

0.015

135 0.010

0.005

P S R R

100 200 300 100

0.020\..|....|\... L

200

300

(¢) L,=32

0.015 [

12 0010 f

0.005

R N R LR

100 200 300 100
configuration #

200

configuration #

300

could happen since in a finite volume and zero mass the

0.020 T T | I B | T T T

0.015 — —

135 0.010 — —

0.005 —

0.000 ] | ] | ] | ] |
100 200 300

configuration #

FIG. 9. The gluino condensate values generated by the computer FIG. 11. The gluino condensate values generated by the com-

for the full theory on a 4 lattice at 3=2.1 with m;=0.0, mq
=1.9, and for various values &f;. Thex axis is the configuration

number and corresponds to “computer time.”

puter for the full theory on an‘8lattice at3=2.3 with m;=0.0,
my=1.9, andL,=24. Thex axis is the configuration number and
corresponds to “computer time.”
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TABLE VI. The results of the power law fits in the data of Figs.
7 and 8 to the functioml,+ dngz.

TABLE VII. The results of the exponential fits without a con-
stant using the functiory exp(—e,Ly).

Figure do dy d, X?/Npg Lattice B my Ls € e X%/ Npe
7 0.00@2) 0.06319) —0.7820) 11 g4 23 0.0 16,20,24 0.0125 0.03712) 2.8
8 —0.01621) 0.04312 —0.2324) 35 4% 21 00 243240 0.009% 0.0302) 9.1

effects of spontaneous symmetry breaking are absent and the, 4 it Therefore, the larga?/Np of the 4* fit suggests

zs;?amogeniﬁggtrsc’) %ggueudnfoeibgztea&iyV”;Lge_ﬁ#g'?erg t(;t:fiat the presence of a second exponential decaying to zero is
P ' yp ot likely. This could be made more precise if simulations

simulation is possible and can be done using the overlaev. )
) : ; ith larger L values for the 8 and 4" lattices were done.
formalism[12] or exact Neuberger fermiof2]. However, if . ! X
one is to maintain exact chiral symmetry these methods Wilﬁowever, Su‘?h S|rr_1ulat|ons are beyond_ the computing re-
sources of this project. Also, the analysis in Ré&6] sug-

demand large computing resources. gests functional forms with more parameters. It would be
interesting to fit to these forms but that would require more
data points and better statistics both of which are also be-

Perhaps the largest uncertainty in the analysis presented yond the computing resources of this project.
the previous subsections has to do with the assumption of Finally, the SUSY breaking by the irrelevant terms may
exponential decay as in E¢49). For small enough lattice have non-negligible effects at the lattice spacings studied
spacings and large enougl this behavior is expected to be here. Although it was found that the chiral condensate is
true. All data presented in this work were well represented byronzero at the chiral limit in two lattice spacings, this is not
this ansatz. However, as with any numerical investigationgnough to estimate its value in the continuum limit.
one can never completely disprove all other possibilities.
While such an exercise over all possible functions would
clearly be fruitless there are some alternative forms that may
be reasonable to consider since they are based on analytical The formulation of V= 1, SU2) supersymmetric Yang-
considerations. _ o ~ Mills theory on the lattice with domain wall fermions
~ Far form the continuum limit, the approach to the chiral p\wFg) has several advantages over more traditional lattice
limit may become power la42] or even completely disap-  fermion regulators. Even at nonzero lattice spacing the chiral
pear[g,39]. In order to explore the possibility of power Iaw limit can be taken by letting.— %, whereL is the number
behavior them;=0 data for the 8 and 4' volumes were fit o sjtes along the fifth auxiliary direction. Since in that limit
to the form there is no gluino mass term, supersymmetry is broken only
by irrelevant operators and there is no need for fine-tuning.
Also, in that limit the theory has exact zero modes on non-
trivial topological backgrounds.

However, even at finité g, where numerical simulations
are done, these properties are maintained to a good degree

D. The fine print

VI. CONCLUSIONS

do+d,L22. (50)
The results of the fit are given in Table Vthe fits are not
presented in any of the figunesAs can be seen from that

2 . . . e
table thex“/Npg of these fits is significantly larger than the allowing extrapolations to the,—s > limit. Furthermore, the

one of the corresponding exponential fits to the same data'Pfaffian resulting from the integration of Majorana fermions
Another possibility is decay to zero with two different . . ng o 9 4 .
positive definite at finitd_g, nonzero lattice spacing and

i . i
exponential decay rates. Such a behavior was found to bf%r any background gauge field configuration. As a result,

consistent with investigations of the two flavor SchwingerOne can unambiauously interpret it as a probability measure
model [16] for a quantity that is expected to vanish in the 9 y Interpt . pre y
to be used by the numerical simulation for importance sam-

chiral limit. There it was argued that the fast decay rate is

due to fluctuations within a given topological sector while pling. This property also allows the use of standard numeri-

the slow decay rate is due to the presence of topology chan
ing configurations. Therefore, fans=0 one could try to fit
the largest thre¢ ¢ points to the form

epexp—eqly). (51

The results of the fit for the 8 8=2.3, m=0, and L,
=16, 20, 24 points as well as for thé,48=2.1,m;=0, and
Ls=24, 32, 40 points are shown in Table VII. The fit to the

al algorithms where any number of flavddg can be simu-
ated. By contrast, Wilson fermions have this positivity
property only at the continuum limit.

In this work, the full V=1, SU2) supersymmetric Yang-
Mills theory was numerically simulated on the lattice using
DWFs. The gluino condensatgy) was measured. These
simulations did not present any unexpected technical diffi-
culties.

A finite value ofL ¢ breaks chiral symmetry and induces a

8% data is acceptable. However, the fit to thtdhata has a small gluino mass. In addition, an explicit gluino mass
rather largey?/Npr. Because this fit is for largdr, than the ~ was used to provide extra control. SeveralandL ¢ values
84 fit one would expect that if there were a second exponenwere usedall corresponding to positive gluino massd the
tial decaying to zero its effect would be more pronounced invalue of(y x) was extrapolated to the chiral limit using three
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different methods. All methods gave consistent results indiextrapolate to the continuum limit where comparisons with
cating small systematic effects and suggesting that the fun@nalytical results would be possible. Future work would ex-
tions used for the fits are consistent. These simulations wenglore these very interesting topics.
done on a lattice with 8lattice sites.

Additional simulations on a lattice with*4attice sites but
approximately double the lattice spacing were done. Again,
extrapolations to the chiral limit gave a nonzéggy). In this This research was supported in part by NSF under Grant
lattice[ mass<volumex {yx)]<1. Then analytical consider- No. NSF-PHY96-05199J.K. and P.\J. All numerical simu-
ations suggest that the value(gfy) must come mostly from lations were done on an 18 GFlops part of the QCDSP su-
topological sectors with fractional topological charge of percomputer at Columbia University and on the 6 GFlops
+1. Indeed, as the mass was made smaller unusually larg@CDSP supercomputer at Ohio State University. We would
values(spikes were observed in the statistical sampleygf  like to thank N. Christ and R. Mawhinney for providing us
indicating the singular contribution of these sectors. with the Columbia University resource and G. Kilcup for

The spectrum of the theory is of great interest but it wasproviding us with the Ohio State University resource. Also,
not possible to measure on the small lattices considered herae would like to thank Y. Shamir and T. Schaefer for useful
Also, the gluino condensate was measured only on two difcomments. P.V. would like to thank D. B. Kaplan, A. Kovner,
ferent lattice spacings and therefore it was not possible té\. Nyffeler, and E. Weinberg for enlightening discussions.
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