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Precise determination of T, in QCD from scaling
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Existing lattice data on the QCD phase transition are analyzed in renormalized perturbation theory. In
quenched QCD it is found thak. scales for lattices with only three time slices, and thafAys=1.15
+0.05. A preliminary estimate in QCD with two flavors of dynamical quarks shows that this ratio depends on
the quark mass. For realistic quark masses we estimdt&ys= 0.49+0.02. We also investigate the equation
of state in quenched QCD at 1-loop order in renormalized perturbation theory.
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The QCD phase transition temperatufg.) is a funda-  We choose to work in these two schemes, as well ad8e

mental constant of the hadronic world, and will soon be acscheme whose relation to the V scheme has been worked out
cessible to experiments. It has also been the target of mag]. At 2-loop order we can write

lattice computations. Current practice is to expr@ssin
units of the mass of the rho mesa () or the square root of
the string tension (o) [1]. However, in the last few years it
has become clear that the renormalized QCD couptigg
measured on fairly coarse latticE3) yields results compa- ()
rable to those obtained in precision measurements at the

CERNe*e™ collider LEP and in other experimert3]. This . o
prompts us to test the approach to the continuum limit ofThe constank depends on the scheme, being unlty in the E
QCD thermodynamics by testing the constancyl pf Az, sc_heme anq 3'401_8 in the V scheme. The func_m_@s ob-
where Ays is the QCD scale parameter extracted in the'famecj3 by integrating the two-loop beta functigg(g) =
modified minimal subtraction\S) scheme. B9~ 19’ L , _

In the limit when all quark masses are zéw infinite), The QCD phase transition temperature is determined by
QCD has only one dimensionless parameter—the couplin%‘;‘n'”g the bare coupling on lattices with<N (whereN, is
as=g%4m. Quantum corrections transmute it into a momen-\N€ Number of sites in the Euclidean time direction ahd
tum scale. This scale is either given explicitly as the Qcpthat in the spatial directiopsThen,T.=1/a:N,, wherea.is
parameter\, or specified implicitly, as the value of the cou- the lattice spacing at.the coupling where the phgse transition
pling as(x) at scaleu. occurs. Our strategy is to compute the renorm_allzed c_ouplmg

In the lattice regularization of QCD, the value of the lat- @v &t these bare couplings and hence deternhifieys using
tice spacing(a) is determined by the bare coupling Eq. (3), and the known ratio of\ 55 and the scalé\ in any
=6/g2. However, 68 is not a good expansion parameter for ©ther scheme. _ _ _ »
perturbation theory. It is more appropriate to define the cou- " duenched QCD with the usual Wilson action, the criti-
pling through some physically motivated process. In one@l bare couplingg. have been determined forsN;<16
definition, called the V schen{€], as at a scale of 3.4018/ [6]. The main source of systematic uncertainty in the older

is found from the logarithm of the plaquette valugP) data arises from the fact that the thermodynamic likhit
through the formula —oo was not taken. Later da{@—9| have taken this limit,

and we only used these to study scaling. The statistical errors
in these later studies are also much smaller, and hence they
A7 are able to test the scaling hypothesis much more stringently.
—InP= ?O‘V”-_(l-lsg%L 0.07IN¢) vy ] 1) We extractedrg from the plaquette values listed in Ref.
[9] using Egs(1),(2). Values of InP at B; were obtained by
cubic spline interpolation. Statistical errors in the interpo-
In another definition, the E schenjd], the renormalized lated values were found by propagation. We probed system-
coupling at scala is atic errors in the interpolation by the changedg on re-
moval of some of the knot points. The results of our analysis
are shown in Fig. 1T./Ayg is constant down tg, for N,
=3. A large part of the error in this ratio comes from the
errors in the measurement & which, while small, are ex-
ponentiated in\..

More detailed results are shown in the right-hand panel of
*Electronic address: sgupta@tifr.res.in Fig. 1. Small scaling violations at these couplings, seen in
1P is defined to be one third of the real part of the trace of themeasurements dt=0, have been attributed to finite lattice

product of four link matrices taken in order around a plaquette. spacing errorgd10]. On replacing the scaling functioR

aA=kR(1/47Bgay), Where R2(x)=exp —x)xP1 183,

3
ae=—(1-P). @

0556-2821/2001/68)/0345075)/$20.00 64 034507-1 ©2001 The American Physical Society



SOURENDU GUPTA PHYSICAL REVIEW D 64 034507

5r o Bare g+~ | Nt=4 =
Nf=0 @~ Nt=12 Nt=6 -
o Nf=2 2 —— Nt=8 —o— -
25k Bisd 5 Continuum ——
2 ° Ni=8
3, 2 o 1 B
'_
®
Nt=6
15¢ J
Nt=4
—e—
) i é L Ni=3 ~
1+ A . —o— T 7 S N
b | T T s o5 3 3.5 :
0 2 4 6 8 10 12 14 . - . - - T
Ny Td Aws c

FIG. 2. (E—3P)/T* for a QCD plasma evaluated as a function
of T/T. at different lattice spacings whemgs sets the scale. The
continuum curve is not continued into the region where finite vol-
ume effects may be important. Errors on the continuum extrapola-
tion are roughly similar to those &t,=8.

FIG. 1. The panel on the left shows /Ays as a function of\,
in the V scheme. FoN;=0 we show tests of scaling for both the
bare lattice coupling andy,. For the former the errors come only
from the determination of the critical coupling, whereas for the
latter they also include errors in the determination7dfFor Ny
=2 with m/T.=0.1 andN;=4 with m/T.=0.08 only the latter is
shown. The panel on the right shows detailsTef/ Az for N¢
=0 in theMS scheme.

between the spatiali€s) and temporal i(=t) plaguettes
and their zero temperature counterpBst. E is defined by

the formula
in Eq. (3) by R(ay)=R(ay)[1+c,a%+c4a%], where a E JA—A ,
=R(ay)/R(a?) andad is determined aB=6, it was found F:6N0Nt Amas —(CsAstCiAY|. )

[11] that data ona+o could be quantitatively described
down to 8=5.4. As shown in the figure, in thelS-scheme
we can fit a constant value of./Awg using the critical
couplings determined for8N,;=< 14 with good confidence—
x%=0.6 for 4 degrees of freedom. The statistical error in this

estimate is about 1%. Taking into account the variation be-

tween values obtained in different schemes, and for fits with A=
N{=3 or 4, we quote

The anisotropy coefficients, andc; are known to 1-loop
order [13]. A measure of deviations from ideal gas behavior

E—3P
T4

= 12N Nf(cl+c))(A+Ay), (6)

which can be combined ﬂith Ed5) to give the pressure.
Tc=(1.15£0.09Ays (quenched QCR (4 The sum ruleg®(c,+c!)=A(g) [13], allows us to evaluate
A beyond 1-loop order. In fact, part of the finecorrections

This error estimate now includes not only the statistical ercan be incorporated inta by_ evaluatmgﬁ(g) us_ng In-
rors but also the systematic uncertainties above. Since e>§-tead OfR Hov,vever,.we aVO.Id this approach, since we need
periments cannot access a quenched theory, the valligof to usec, andc; consistently in Eqs(5),(6). In the. following
in MeV units is hard to pin down. When comparing different yve use only the 1-loop results for these coefficients and work
estimates, in MeV units, of the same scale in quenched QCI# the MS scheme. _
this universal problem should be borne in mifsete Fig. 2 Raw dgta orPos, at a range of couplings measured on
Here we convertT, into physical units using the value NiX(4N)” lattices N=4, 6, and 8 are tabulated in Ref.
Awms~250 MeV as a mean of the values obtained in differ-[8]. We have used these to evaluate thermodynamic quanti-
ent schemes ifiL1] by assuming/o=465 MeV. This gives ties onl_y forT<4T., because the f|_n|te spatla_l volumes of
T,~285+10 GeV, in reasonable agreement with other estifhe lattices used may cause spzatlal'decom‘.mement2 above
mates, such as that found in a recent study using an RGTc- As expectedA varies as Ny at fixedT, i.e., asa”.
improved actior{12].

This analysis leads us to investigate the extraction of ther-
modynamic quantities in the QCD plasma using renormal- 2at this order the coefficients remain unchanged in going from the
ized perturbation theory. Failure of scaling would then be dattice schemeg?=6/3, in which they have been computed, to the
direct signal for lattice artifacts such as power corrections invs or v scheme, but change in the E scheme. In the absence of a
a. We examine the energy densifiy) and the pressureP(). two-loop computation, we have evaluated the renormalized cou-
These can be written in terms of the differentg="P,— P, plings at the scale appropriate to the plaquette.
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7 - . . : . the region around the peak af> The speed of sound in the

;Tn;‘f"'ed SV”‘b‘I:SI e a QCD plasma ¢,) is slightly lower than the ideal gas value
6 - open symbols /‘/_,A—"’;__ R (c2=1/3) at 4T, (but consistent with it within errojsand
sl B R S pat o falls to c2~0.1+0.025, at 1.5,.

Our attempt to measure the pressure using perturbatively
determined coefficients may seem mysterious when current
practice has converged on the use of an “integral” method
[8]. As we have mentioned, these two methods agree within
error bars forT>2T, but differ nearT.. The integral
method, by construction, gives a continuous pressure across

Nt=6 —m~

Nt=8 o | T.. However, if true, this is important information and needs
Continuum — independent verification. The latent heat density at the phase
. . transitionAQ/Tg‘:AS/Tg’, whereAS is the jump in the en-
2 T 3 4 tropy density afT.. In general this is not the same as the

change in the energy or enthalpy density at the phase transi-
FIG. 3. E/T* and ®/T* for a QCD plasma evaluated as ex- tion. These contain an extra term due to the change in spe-
plained in the text, using the data of RES]. The dashed curves are Cific volume at fixed pressure or the change in pressure at

smooth cubic spline fits. The dotted horizontal line is the ideal gadixed volyme. In a}quenched Iatticg Simulation, t_hf"-' change in
result in the continuum limit. volume is negligible when changing by an infinitesimal

amount acrosS ;. As a result, the pressure should change

. . iscontinuously aff .. This is analogous to boiling water in
.Thls power c_orrectlon can be removed through t_he use Og closed vessgl—ttcwe pressure jun?ps at the phfgse transition.
improved actiong14]. A shows a peak al~1.1T; in the  g,;0h 5 jump in pressure is related to the change in specific
cqntmuum limit. HO\_/vever, the Iocatpry .of the pe'aI.< IS uncer-yqjume, and hence the slope of the phase boundary in the
tain becguse there'ls. no unique def|n|t|'on"rgfa.t finite vol- (P,T) plane through the Clausius-Clapeyron equation. This
umes. Different definitions, which all coincide in the thermo- physics is missed when the integral method is used to extract
dynamic limit, give different values of the pseudocritical the pressure. This issue is currently being investigated in a
point on finite volume systemisl5]. Using coarse lattices, |attice simulation whose results will be reported elsewhere.
we have estimated that i8U(3) theory for Ng=4N; this While the observation of scaling on coarse lattices is in-
inherent uncertainty in the critical coupling may be as muchteresting in quenched QCD, the real pay off would be in the
as6B8~0.005-0.01: much larger than the statistical error forstudy of finite temperature QCD with dynamical light
any given definition of the critical point. For similar reasons quarks. Since there are inherent difficulties with simulating
the value ofA at the peak cannot be reliably extracted with- QCD with dynamical massless quarks, all lattice studies have
out taking into account finite volume effects. In the rangeused quarks with mass>0. In such theories, scaling
1.3T,<T=4T,, finite volume corrections are expected to beshould be tested at fixet/ Ays (or equivalently, fixed ratio
small. For suchr, A is monotonically decreasing. However, of mand any hadronic mass schle _
many quantities of interest can be extracted only riear Measurements g in QCD with four flavors of dynami-

The results of a finite size scaling study which does this willc@! Staggered quarks have been performed\ier 4, 6[16]
be reported elsewhere. and 8[17]. This last measurement was done with T,

We have also evaluated/T* and found that it scales to — 9-08- The simulations at small&, were done at several
the continuum limit asazzlthz. In the temperature range values ofm, enabling us 1o fingg, at m'T.=0.08 by inter-

where finite volume effects are strona. the large valud of polation. Plaquette values were taken from a recent finite

: i lue luated 9. h gf las | temperature simulation at fixed/T. [18]. Since it is known
gives a negative value 1o evaluated using ne formufas in thatA; s/Py are less than 0.1%, even néflar, we have used
Egs. (5),(6). As we have argued already, an evaluation of :

oo : ) (Ps+Py)/2 to determinexg. The difference oixg measured
thermodynamics in this range Gf requires better control ,qjngp” and 7P, is taken as an estimate of its error. We used
over finite volume effects. However, the problem of negativeEq_ (3) to set the scaleT,/Ags, when determined through
pressures is also avoided if the continuum limifok found  ihe pare coupling, char?ges fr,om 8.2 to 4.7 in going from

by combining E/T* and A in the limit a=0. This gives N,=4 to 8. As shown in Fig. 1, whem,, is used, 2-loop
nearly vanishing® in the region of the peak ia. scaling works much better.

In Fig. 3 we show our estimates of the continuum limit of  The phase transition in 2-flavor QCD has been studied in
E andP in the range 1.B.<T=<4T., where finite volume greater detai(see Ref[1] for a recent compilation of data
effects are small. At . our estimate of the energy density is
about 15% lowerand the pressure about 19% loyénan
for an ideal gas. At this temperaturej our eStlm_ate_E ahd . However, note that our use of the 1-loop expressiong foand
P are about 5% lower than the earlier determination Wh'crbt’ , and the consequent inability to make an optimal choice of scale
used the integral methd@]. While statistically insignificant s the largest uncertainty in this method 6% 1.5T, . Such uncer-
at present, this difference is due entirely to the treatment ofainties can be reduced by appropriate 2-loop computations.
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1.75[ 'Staggéred: '\lgfl\gié'\i%:ﬁ“iml ' ] pends on h.ow m.any active flavors are pres;ant at the scale
Improved Wilson: Ni=4 upder consideration. The world _averagg% (at scales
1.50 = $ ; high enough for 5 active flavords 219753 [3]. At lower
scales, with only three active flavor 32=343"3% using
1951 = _ the prescription of Ref.3] to match across flavor thresholds.
Lﬁ + ® The physical value oT is obtained by extrapolating to
')1.00 | —’?F | the real-world value oMp/A%. This is done by fitting a
B straight line to the data including staggered and improved
. Wilson quarks[21]. We have taken the two sets of data to-
0 = 1 gether since they both have cutoff effects of ordér The
Physical value —m— extrapolation gives
0.50 g E
% 4 5 5 3 70 T./Ays=0.487+-0.023 and
Mp/Avs
T,=167+9"1; (N;=2 QCD. @

FIG. 4. T./Aws plotted againsM , / Ais and extrapolated to the

physical value. The band shows thed errors on the best fit line  The error in the ratio above reflects only the statistical errors
to the measurements. in various measurements. The first erroiTinis purely from

Measurements o8, using dynamical staggered quarks existextrapolaﬂon and the second set from the errorsAc%.

for N,<12 [19,20. Earlier simulations with Wilson quarks Since they come from independent sources, it is possible to
(which have ordera lattice artifacty showed that pion add them in quadrature. This result is consistent with a recent
masses were rather high compared to those obtained wiffstimate usindg>(4) critical indices to scald as the pion
staggered quarks. This problem becomes less acute on usifigfSS IS taken to its physical val{i22]. However, there are
improved actions for Wilson quarks, and finite temperatureposs'bly large systematic uncertainties. Currently the least

simulations have now been performed with such improved"’e” understood problem is whether extrapolating one had-

actions[21,27). There have also been some studies with dofOn mMass to its measured value also takes all other hadron

main wall fermions. masses to their correct values. Until this issue is settled, all
We have fixeda, and set the scale using published eStimates off . must be considered preliminary.

plaquette values for staggered quarks at several bare quark VW& end with a small application of our measurements of

masse$20,23. T./Aws for Ny=2 shown in Fig. 1 are based T/ Aygs. This .addre.sses the question of the temperature

on the subset of the data which uses staggered quarks &nge where dimensional reductiébR) is expected to be

m/T.=0.1. In contrast to the near constancy of this ratio ag/alid. Perturbative matching of thé>0 four dimensional

shown in the figureT./A s computed from the same data theory with DR fixes the effective couplings in the latter
using the bare lattice definition af falls from 3.9 to 2.8 in  [24l- There is good numerical evidence that $&(3) pure

going fromN,=4 to 8. To extend this test to other values of 92uge theory agrees with its DR version for 2T [25]. If
m/T, we have to interpolate between plaquette values fothe value of the strong coupling were the determining factor
various quark masses. An upper limit for the error in this
procedure is the actual change7mnbetween extreme values
of the quark masses at which they are measured. This varie
between a few parts in a thousandzat 5.26 to about 2% at
B=6. This uncertainty irP translates into a similar magni-
tude of uncertainty ifT./Ays and is much smaller than the
change when using B/ across a similar range of quark __
masses. Excellent scaling @f./Awys is seen also for other 5 02}
values ofm/T,. °
In order to obtain a physically relevant value Bf, it is
necessary to extrapolafie./ Ays to measured values of the b NG
hadron masses. It would be most interesting to perform this r
extrapolation in the quark or pion masses. However, this
needs control over the critical exponents of the theory—a ¢4

0.3

task we do not attempt here. Instead we choose to extrapolat > T
T, to the physical region in terms &4, [23]. There are two ¢
reasons for this. First, the rati./M , is known to be nearly FIG. 5. ag at 2-loop order in the\;=0 andN;=2 theories at

constant. SecondlyM, is quite sensitive to finite lattice he scale optimized for the three-dimensional gauge coupling in
spacing effects. The linearity of the plot ®f /Ays against  dimensionally reduced theories, shown as a function of the tempera-
M, /Aws in Fig. 4 then indicates that, for the chosen data setiure. The bands arise from the quoted errors in the measurement of
finite lattice spacing effects iM , are under reasonable con- T./Ays. This plot is used to limit the validity of dimensional re-
trol. The value ofAs also needs to be specified. This de- duction forN;=2 as explained in the text.

034507-4



PRECISE DETERMINATION OFT. IN QCD FROM SCALING PHYSICAL REVIEW D 64 034507

in the agreement, then this would imply that fdi; strong interaction thermodynamics obey QCD scaling rela-
=0, agis small enough at®. to trust this expansion. If for tions very well and allow some continuum physics to be
N¢=2 no other physics becomes more important, then thextracted on fairly coarse lattice§, can be measured with
matching should be equally reliable when the coupling is agrecision of about 4%, taking into account both statistical
small. Now we ask for the temperature at whie§ in the  errors as well as systematic uncertainties such as renormal-
N¢=2 theory takes on the value that it had af.2for Nt jzation scheme dependence. Simulations including dynami-
=0. Using the values of ./ As already extracted, we are in ca| quarks, when extrapolated to physical values of ghe
a position to do this. The optimal scale choice tas has  meson mass give statistical errors of about 497 jfiA s .
been investigated in Ref24]. This depends, of course, on Rengrmalized perturbation theory at 1-loop order seems to
Ny gm(jj thCehquar_ltlty fﬁr Wh'clh thehl?egwfba_t"?” thecr)]ry 'ShOp'be able to give a good account of the pressure, energy den-
timized. oosing the scale which optimizes the three; ;
dimensional gaugge coupling we find thg dependence Hf tsrlgt ?r?]d the speeq of sound_ for> 15T, leading to hopes
I . proved actions and higher loop orders can yield con-
onT shown in Fig. 5. This tells us that fé;=2 DR can be tinuum physics at small expense. A study of finite volume

used _o_nly forT>65_I’c. Using scales_ optimized for other effects on thermodynamics closerTg will be reported else-
guantities, and varying the computation of the strong cou-

pling from 2-loop to 3-loop order, we find that the lower where.
limit of the range of validity of DR folN;= 2 varies between It is a pleasure to thank Urs Heller for making available
6T, and 8r.. the full results of the fits reported in Refll], and Rajiv

In summary, we demonstrated that the lattice data orfsavai for many discussions.
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