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Infinite volume and continuum limits of the Landau-gauge gluon propagator
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We extend a previous improved action study of the Landau gauge gluon propagator, by using a variety of
lattices with spacings froma50.17 to 0.41 fm, to more fully explore finite volume and discretization effects.
We also extend a previously used technique for minimizing lattice artifacts, the appropriate choice of momen-
tum variable or ‘‘kinematic correction,’’ by considering it more generally as a ‘‘tree-level correction.’’ We
demonstrate that by using tree-level correction, determined by the tree-level behavior of the action being
considered, it is possible to obtain scaling behavior over a very wide range of momenta and lattice spacings.
This makes it possible to explore the infinite volume and continuum limits of the Landau-gauge gluon propa-
gator.
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I. INTRODUCTION

There has long been interest in the infrared behavio
the gluon propagator as a probe into the mechanism of c
finement @1# and lattice studies focusing on its ultraviol
behavior have been used to calculate the running QCD c
pling @2#. In this paper we use the propagator as a test-
for an improved action and also as a means to investiga
general tree-level correction technique.

The infrared part of any lattice calculation may be a
fected by the finite volume of the lattice. Larger volum
mean either more lattice points~with increased computa
tional cost! or coarser lattices~with corresponding discreti
zation errors!. Improved actions have been shown to be
fective at reducing discretization errors at a given latt
spacing in studies of the static quark potential@3# and the
hadron spectrum@4# and have become a necessary part
finite temperature studies@5#. The desire for larger physica
volumes thus provides strong motivation for using improv
actions. We study the gluon propagator, in Landau gauge
quenched QCD@pure SU~3! Yang-Mills#, using the mean-
field ~tadpole! improved@6# version of the tree-level,O(a2)
Symanzik improved gauge action@7–9#.

To assess the effects of finite lattice spacing, we calcu
the propagator on a set of lattices from 83316 at b53.75
having a50.413 fm to 163332 at b54.38 having a
50.167 fm. To assist us in observing possible finite volu
effects, we add to this set a 163332 lattice atb53.92 with
a50.353, which has the very large physical size of 5.63

311.30 fm4. Some preliminary results of this work were r
ported in Ref.@10#.

We will show that a tree-level correction reduces ro
tional symmetry breaking and dramatically improves the
traviolet behavior of the propagator and thus the approac
the continuum limit. For lattices as coarse as 0.17 fm
gluon propagator has surprisingly good behavior for the
tire range of available momenta. The infrared behavior of
gluon propagator is robust even with an extremely coa
lattice spacing of 0.41 fm. Our calculations on a lattice w
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a large volume indicates that finite volume effects are sm
The Landau gauge gluon propagator is again found to
infrared finite, in agreement with earlier studies. The com
nation of an improved action with appropriate tree-level c
rection appears to be a powerful tool. The generalization
these methods to the study of other Green’s functions will
discussed in a forthcoming work@11#.

II. THE LANDAU GAUGE GLUON PROPAGATOR

We employ the tree-level, mean-field improved gauge
tion of Lüscher and Weisz@8,9#

Sl5
5b

3Nc
(
pl

TrH 12
1

2
~Pmn1Pmn

† !J
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12Ncu0
2 (

rect
TrH 12

1

2
~Rmn1Rmn

† !J
5Scont1O~a4!1O~a2g2!, ~2.1!

where Pmn and Rmn are the usual plaquette and rectang
operators

Pmn~x!5Um~x!Un~x1m̂ !Um
† ~x1 n̂ !Un

†~x! ~2.2!

and

Rmn~x!5Um~x!Un~x1m̂ !Un~x1 n̂1m̂ !Um
† ~x12n̂ !

3Un
†~x1 n̂ !Un

†~x!1Um~x!Um~x1m̂ !

3Un~x12m̂ !Um
† ~x1m̂1 n̂ !Um

† ~x1 n̂ !Un
†~x!,

~2.3!

and Nc53 is the number of colors. We use the plaque
definition for the tadpole factor
©2001 The American Physical Society01-1
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u05S 1

Nc
ReTr^Pmn& D 1/4

. ~2.4!

Our gauge field configurations were generated using
Cabibbo-Marinari@12# pseudo-heatbath algorithm with ap
propriate link partitioning@13#.

Given that the gauge linksUm(x) are expressed in term
of the continuum gluon fields as

Um~x!5Peig*0
1Am(x1atm̂)dt, ~2.5!

the dimensionless lattice gluon fieldAm(x) may be obtained
from

Am~x1m̂/2!5
1

2igu0
$Um~x!2Um

† ~x!% traceless ~2.6!

which is accurate toO(a2). This is, of course, only one o
many possible ways to calculate the gluon field on the latt
In Eq. ~2.6!, Am is calculated at the midpoint of the link t
removeO(a) terms. Note that we have also included t
tadpole factor to improve the normalization.

We calculate the gluon propagator in coordinate spac

Dmn
ab~x,y![^Am

a ~x!An
b~y!&, ~2.7!

using Eq.~2.6!. To improve statistics, we use translation
invariance and calculate

Dmn
ab~y!5

1

V K (
x

Am
a ~x!An

b~x1y!L . ~2.8!

The quantity that will be of interest to us is the scalar part
the propagator in momentum space, so first we take the t
over color components

Dmn~y!5
1

Nc
221

(
a

Dmn
aa~y!, ~2.9!

then sum over the Lorentz components1 of the Fourier trans-
form

D~ q̂!5
1

Nd21 (
m

(
y

eiq̂•yDmm~y! ~2.10!

and

D~0!5
1

Nd
(
m

(
y

Dmm~y!. ~2.11!

Nd is the number of space-time dimensions and the availa
momentum values,q̂, are given by

1The Landau gauge condition in momentum space,qmDmn(q)
50 places a constraint on the Lorentz components of the prop
tor so that, for non-zero momentum, there areNd21 degrees of
freedom@14#.
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2
,
Lm

2 G . ~2.12!

The range ofq̂ is determined by the fact that our lattice
have an even number of points in each direction and that
use periodic boundary conditions. In the continuum, the s
lar propagator is related to the full propagator by

Dmn
ab~q!5S dmn2

qmqn

q2 D dabD~q2! ~2.13!

in Landau gauge.
Landau gauge is a smooth gauge that preserves the

entz invariance of the theory, so it is a popular choice.
work in Landau gauge for ease of comparison with oth
studies, and because it is the simplest covariant gaug
implement on the lattice. All configurations were gauge fix
by maximizing anO(a2) improved Landau gauge fixing
functional using conjugate gradient Fourier acceleration@15#
as described in Ref.@16#.

III. TREE-LEVEL CORRECTION

One thing that is known about the gluon propagator is
perturbative, asymptotic behavior. In the spirit of improv
ment, we can use this knowledge to augment our lattice
sults and make better contact with the continuum. In
continuum, asp2→`, the propagator has the form

D~p!5
1

p2
~3.1!

up to logarithmic corrections. A well known artifact of th
lattice is that for a free massless boson with an unimpro
action the lattice propagator has the form

D~ q̂!5
1

4

a2 (
m

sin2S q̂ma

2
D . ~3.2!

It has been argued, in Ref.@17# and elsewhere, that the co
rect momentum variable to use when examining the glu
propagator on the lattice, with the Wilson action, is not E
~2.12!, but2

qm[
2

a
sin

q̂ma

2
. ~3.3!

It has been observed that this choice ensures that the pr
gator takes its asymptotic form at large lattice mome
@17,18#.

a-
2Many authors haveq andq̂ defined the other way around, but i

this context our terminology is more natural.
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INFINITE VOLUME AND CONTINUUM LIMITS OF TH E . . . PHYSICAL REVIEW D 64 034501
The improved action Eq.~2.1! together with the gluon
field defined in Eq.~2.6! has theO(a2) improved tree-level
behavior@7,8#

D21~ q̂!5
4

a2 (
m

H sin2S q̂ma

2
D 1

1

3
sin4S q̂ma

2
D J , ~3.4!

and we will use Eqs.~3.2! and ~3.4! to obtain the correct
momentum variable for each action. To emphasize the n
perturbative aspects of the propagator, we divide it by
perturbative, 1/q2 result. Hence, all figures are plotte
againstq2D(q2), which is expected to approach a consta
up to logarithmic corrections asq2→`. We will see that this
also makes for a stringent test of the ultraviolet behavior
the propagator. We will work with the momentum variabl
defined as

qm
W[

2

a
sin

q̂ma

2
, ~3.5!

and

qm
I [

2

a
Asin2S q̂ma

2
D 1

1

3
sin4S q̂ma

2
D , ~3.6!

for the Wilson and improved actions respectively. A simi
momentum variable was used in the study of the glu
propagator in Ref.@19#.

In the language of continuum physics

p2D~p2!5
1

11P~p2!
5

D~p2!

D tree~p2!
~3.7!

where P(p2) is the scalar vacuum polarization. In th
asymptotic region, 1/@11P(p2)#→1 up to logarithmic cor-
rections. We argue that it is the lattice version
D(p2)/D tree(p2) that will most rapidly approach its con
tinuum form as the lattice spacing is reduced and we w
later graphically demonstrate this. The essential point is
at large momenta the lattice gluon propagator will experie
asymptotic freedom just as in the continuum, i.e., the ul
violet propagator will approach its tree-level form. Thus
the lattice we expect to findD(p2)/D tree(p2)→1 for largep2

even though the ultraviolet lattice artifacts in bothD(p2) and
D tree(p2) may themselves be large. We will refer to this pr
cedure for minimizing ultraviolet lattice artifacts astree-level
correction. This philosophy is similar to that applied in re
cent studies of the quark propagator@20#. In figures where
q2D(q2) is plotted vsq, the ‘‘q’’ in q2D(q2) ~plotted on the
y-axis! is always the same as theq that is used on the x-axis
whereq5q̂, qW or qI as described in the text.

The bare, dimensionless lattice gluon propagatorD(qa)
is related to the renormalized continuum propaga
DR(q;m) by

a2D~qa!5Z3~m,a!DR~q;m!, ~3.8!
03450
n-
s

t

f

r
n

f

ll
at
e
-

r

for momenta,q, sufficiently small compared to the cutof
p/a. DR(q;m) is independent ofa for sufficiently fine lat-
tices; i.e., in the scaling regime. The renormalization co
stantZ3(m,a) is determined by imposing a renormalizatio
condition at some chosen renormalization scalem, e.g.,

DR~q!uq25m25
1

m2
. ~3.9!

The renormalized gluon propagator can be computed b
nonperturbatively on the lattice and perturbatively in t
continuum for choices of the renormalization point in t
ultraviolet. It can then be related to the propagator in ot
continuum renormalization schemes such as the modi
minimal subtraction scheme (MS).

IV. RESULTS

A. Analysis overview

The gluon propagator has been calculated on seven di
ent lattices, the details of which are listed in Table I. No
that the first two are labeled ‘‘1w’’ and ‘‘1i.’’ These have th
same number of lattice points at almost the same spa
~hence approximately the same physical volume!, but 1w
was generated with the standard, Wilson gauge action, w
1i used theO(a2) improved action~2.1!. Lattice 6 was gen-
erated with the Wilson action and used to study the glu
propagator in Ref.@18#. A value for the tadpole factor ha
been obtained forb56.0 of u050.878 and this has bee
used to normalize the propagator with respect to the o
lattices. It will be used here for comparison purposes as
finer than the other lattices. Configurations on lattices 2
were generated with theO(a2) improved action. All of the
propagators are plotted in physical units, where the scale
been determined by the static quark potential with a str
tension ofAs5440 MeV. Details of this calculation may b
found in Ref.@21#.

Data points that come from momenta lying entirely alo
a spatial Cartesian direction are indicated with a square w
points from momenta entirely in the temporal direction a
marked with a triangle. As the time direction is longer th
the spatial ones any difference between squares and trian

TABLE I. Details of the lattices used to calculate the gluo
propagator. Lattices 1w and 1i have the same dimensions and
proximately the same lattice spacing, but were generated with
Wilson and improved actions respectively. Lattice 6 was genera
with the Wilson action.

Dimensions b a ~fm! Volume ~fm4! Configurations

1w 163332 5.70 0.179 2.87335.73 100
1i 163332 4.38 0.166 2.64335.28 100
2 103320 3.92 0.353 3.53337.06 100
3 83316 3.75 0.413 3.30336.60 100
4 163332 3.92 0.353 5.653311.30 100
5 123324 4.10 0.270 3.24336.48 100
6 323364 6.00 0.099 3.18336.34 75
1-3
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may indicate that the propagator is affected by the finite v
ume of the lattice. Data points from momenta entirely on
four-diagonal are marked with a diamond. Systematic se
ration of data points taken on the diagonal from those
other directions indicates violation of rotational symmetry

In the continuum, the scalar function is rotationally i
variant. Although the hypercubic lattice breaks O~4! invari-
ance, it does preserve the subgroup of discrete rotations Z~4!.
In our case, this symmetry is reduced to Z~3! as one dimen-
sion will be twice as long as the other three in each of
cases studied. We exploit this discrete rotational symmetr
improve statistics through Z~3! averaging. This is best ex
plained through a simple example. Consider the propag
at momentumq5(3,2,1,4)~say!. Z~3! symmetry means tha

D~3,2,1,4!5D~2,3,1,4!5D~2,1,3,4!5D~1,2,3,4!

5D~1,3,2,4!5D~3,1,2,4! ~4.1!

so we calculate the propagator for each of these value
momentum, and then average the results.

FIG. 1. Uncorrected gluon propagator from lattice 1wb

55.70,163332, Wilson action!, plotted as a function ofq̂. The
dramatic ‘‘fanning’’ is caused by finite spacing errors which quick
destroy the signal at large momenta.

FIG. 2. Uncorrected gluon propagator from lattice 1i (b

54.38,163332, improved action!, plotted as a function ofq̂. Lat-
tice artifacts are reduced by the improved action, but are still la
03450
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e
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e
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B. Tree-level correction and rotational symmetry

The ‘‘raw’’ gluon propagator from lattices 1w and 1i i
shown in Figs. 1 and 2 respectively. Both of these have b
plotted as functions ofq̂, Eq. ~2.12!, for all available mo-
menta, and both show severe ultraviolet noise. We may t
some comfort from the observation that the signal degra
tion is not as bad in the improved case where the finite sp
ing errors do not exceed the infrared peak and the UV ta
generally flatter. However, neither result looks at all satisf
tory at large momenta. No data cuts or tree-level correct
have yet been used.

The most obvious way to deal with this noise is to app
an ultraviolet cut, considering only momenta out to half
the Brillouin zone. For each of the four Cartesian directio

q̂<
p

2a
. ~4.2!

We refer to this as the ‘‘half-cut’’ and in Fig. 3 and Fig. 4 w
see that this removes the worst of the artifacts. The t

e.

FIG. 3. Uncorrected gluon propagator from lattice 1w (b

55.70,163332, Wilson action!, plotted as a function ofq̂ with the
momentum ‘‘half-cut’’ applied.

FIG. 4. Uncorrected gluon propagator from lattice 1i (b

54.38,163332, improved action!, plotted as a function ofq̂ with
the momentum ‘‘half-cut’’ applied. The improved propagator h
different normalization to the Wilson case due to a difference in
Z3 renormalization constant.
1-4
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propagators show plausible asymptotic behaviors, but th
are still clear signs of lattice artifacts and we have lost a
of data in the ultraviolet. While neither of these shortcomin
is a significant problem for studies of the infrared, we w
show that something as crude as the half-cut is not neces
and we can do much better at minimizing lattice artifacts

We have already argued the case for applying a tree-l
correction through the use of the alternative momentum v
ables derived from the tree-level behavior of the actions. T
effect of doing this is seen in Fig. 5 and Fig. 6, where t
Wilson propagator has been plotted as a function ofqW

@qWD(qW) vs qW# and the improved propagator as a fun
tion of qI @qID(qI) vs qI# for all momenta of the Brillouin
zone. Comparing these to Figs. 1 and 2, we see an exce
restoration of rotational symmetry all the way to the edge
the Brillouin zone. This is especially true of the improve
action case in Fig. 6. The propagators also appear to be
proaching their asymptotic, perturbative values. Later, m
mentum cuts will be applied to the data to further elimina

FIG. 5. Uncut gluon propagator from lattice 1w (b55.70,163

332, Wilson action!, plotted as a function ofqW for all momenta.
The tree-level correction has greatly reduced discretization er
from those seen in Fig. 1.

FIG. 6. Uncut gluon propagator from lattice 1i (b54.38,163

332, improved action!, plotted as a function ofqI for all momenta.
The combination of improved action and tree-level correction
produced a remarkably clean signal over the entire range of ac
sible momenta. This figure should be compared with Fig. 2,
with Fig. 5 for the Wilson action at a similar lattice spacing.
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lattice artifacts, but for the moment it is interesting to ke
all data, as they provide insight into the behavior of latti
simulations.

Both Figs. 5 and 6 are consistent with the study of R
@17#, but the discrepancy between diagonal and Cartes
points in Fig. 5 is a clear sign of rotational symmetry brea
ing in the unimproved case. With the Wilson action, the qu
ity of the data is suffering from the coarseness of the latti
As we might hope, the improved propagator in Fig. 6 sho
excellent agreement between diagonal and Cartesian po
and the data is generally less spread. The propagator f
the improved action has better rotational symmetry at
same lattice spacing. Less easy to understand is the s
suppression of the temporal points~triangles! in the Wilson
case, Fig. 5. The time axis of this lattice~as with all the
lattices considered here! is twice as long as the other thre
axes, so different values for the points along the long a
would normally be interpreted as a finite volume effect, y
there is no sign of it in the improved case~which has ap-
proximately the same physical volume!. There is a difference
between the improved and unimproved cases in the am
tudes of the propagators, but this is accounted for by ren
malization and will be discussed below.

Out of curiosity the gluon propagator from lattice 1i h
also been examined as a function ofqW, which we have
already argued to be inappropriate. Not surprisingly, t
leads to a ‘‘propagator’’ that suffers badly from lattice ar
facts. We have not included a figure here, but the resul
propagator droops strongly in the ultraviolet. This is clearl
poor choice of momentum variable for this action as e
pected on the basis of our tree-level correction. For best
sults at finite lattice spacing, the correct momentum varia
is determined by the appropriate tree-level behavior, wh
in turn is defined by the choice of action and gluon fie
definition. For the rest of this report it shall be implicit th
when discussing quantities from the Wilson action,qW is
used, andqI is used with the improved action.

C. Lattice spacing dependence

At this point it is interesting to explore the effect of ma
ing the lattice coarser. Figures 7, 8 and 9 show the un

rs

s
s-
d

FIG. 7. Gluon propagator from lattice 5 atb54.10, which has
spacinga.0.27 fm on 123324. This has the same physical volum
as lattice 3 of Fig. 9. The propagator is shown for all momenta~no
data cuts! after tree-level correction.
1-5
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tree-level corrected propagator on progressively coarser
tices (a50.27, 0.35 and 0.41 fm respectively!. Consider the
most extreme case, shown in Fig. 9. This very coarse lat
has spacinga50.41 fm, which is more than twice as coar
as the previous lattices. Any sign of a perturbative tail h
been lost, as the UV cutoff has been lowered, but the infra
behavior remains. There is no sign of any qualitative chan
which appears to indicate that even on such a coarse la
we are not losing information vital to the infrared physics
the gluon propagator.

This gives us great confidence in the use of improv
actions on coarse lattices for the probing of nonperturba
physics. This is the motivation for creating lattice 4 ata
50.35 on a very large volume. Figure 10, which shows
results from this large lattice, shows no signs of signific
finite volume artifacts when compared with Fig. 8 which h
the same lattice spacing, but a smaller volume.

D. Data cuts

Having identified possible lattice artifacts, cuts may
applied to clean up the data, making it easier to draw c

FIG. 8. Gluon propagator from lattice 2, the smaller lattice
b53.92 which has spacinga.0.35 fm on a 103320 lattice. Finite
volume errors are just detectable as indicated by momenta alon
time axis~filled triangles! falling below the rest of the data. Tree
level correction has been used, but no data cuts have been ap

FIG. 9. Gluon propagator from lattice 3 atb53.75, which has
spacinga.0.41 fm on 83316. The propagator is shown for a
momenta~no data cuts! after tree-level correction. This propagat
is consistent with that obtained on much finer lattices.
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clusions about continuum physics. Data at large mome
will of course be most susceptible to finite lattice spaci
errors. We choose to prefer data from momentum points n
the four-diagonal, as this evenly samples all Cartesian di
tions, i.e., for a given momentum squared (q2) it has the
smallest values of each of the Cartesian componentsqm .
This should minimize finite lattice spacing artifacts.

We calculate the distanceDq̂ of a momentum vectorq̂
from the diagonal using

Dq̂5uq̂usinu q̂ , ~4.3!

where the angleu q̂ is given by

cosu q̂5
q̂•n̂

uq̂u
, ~4.4!

and n̂5 1
2 (1,1,1,1) is the unit vector along the diagonal.

this way we ignore data points that are potentially most
fected by hypercubic artifacts. We call this cut thecylinder
cut @17#. From this point on, we exclude points greater th
two spatial momentum units3 from the four-diagonal. Fur-
thermore, the point at zero four-momentum has been
from all the following plots ofq2D(q). On any finite lattice,
D(0) must be finite, henceq2D(q)50 for q50. This point
is therefore trivial when plottingq2D(q). When the scalar
function, D(q), itself is considered we can make a study
D(0) by considering it on lattices of differing volumes an
then making an infinite volume extrapolation. We will pe
form this extrapolation below.

E. Action dependence

Once again we compare the gluon propagator gener
with the Wilson action to that generated with the improv

3A spatial momentum unit is 2p/aLs whereLs is the number of
lattice sites in the spatial directions (Ls5Lx5Ly5Lz).

t

the

ied.

FIG. 10. Gluon propagator from lattice 4, the larger lattice
b53.92, which has spacinga.0.35 fm on a 163332 lattice pro-
viding the largest physical volume of any in this study. Tree-le
correction has been used, but no data cuts have been applied.
1-6
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INFINITE VOLUME AND CONTINUUM LIMITS OF TH E . . . PHYSICAL REVIEW D 64 034501
action after tree-level correction, this time applying the c
inder cut. To make the comparison in Fig. 11, we note t
there is of course a small difference in normalization. This
the difference in theZ3 renormalization between the Wilso
and improved propagators. As the relative renormalizatio
q2 independent, the unimproved propagator has been m
plied by a relative renormalization of 1.09 to make dire
comparison possible. This factor is deduced by adjusting
vertical scales of the two data sets until they agreed. Ap
from the superior performance of the improved propaga
which has already been discussed, the two actions prod
the same result.

We push our results further by comparing the improv
b54.38 propagator with that from lattice 6~Wilson action!,
which is finer (a50.1 fm!, has more points (323364) and is
a little larger. Both data sets are cylinder cut, and each
tree-level corrected according to its action. The relat
renormalization has been determined to
Z3(improved)/Z3(Wilson)51.08. It can be seen from Fig
12 that not only are the two propagators consistent, but
the ultraviolet performance of lattice 1i is remarkable. T
propagator from Ref.@17# had the momentum half-cut ap
plied, whereas our improved propagator with lattice spac
a50.17 fm is shown for the entire Brillouin zone. We ha
calculated the propagator over the same range of momen
Ref. @17#, despite using a much coarser lattice.

F. Scaling analysis

Next, we consider the propagator on the coarser latti
Figure 13 shows the propagator from lattices 1i, 2, 3 and
Examining Figs. 11 and 13 we see that the Wilsonb55.7
and improvedb54.10 andb54.38 results all agree well
which suggests that these are ‘‘fine enough’’ lattices. We
that theb53.75 andb53.92 propagators do not quite lin
up with the others, but instead the UV tail rises slightly
the lattice becomes coarser. This is an indication of a los
scaling. The lattices atb53.92 and b53.75 having a
50.35 and 0.41 fm respectively are too coarse for the tr

FIG. 11. Comparison of the gluon propagator from lattices 1w
b55.70 and 1i atb54.38. Data has been cylinder cut and tre
level correction has been applied. We have determi
Z3(improved)/Z3(Wilson)51.09 by matching the vertical scales o
the data.
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level correction to completely correct the entire Brillou
zone, which is not surprising. We have placed extraordin
demands on our simulations by examining them near
cutoff. The conclusion is that such coarse lattices should
half-cut. Nevertheless, the propagators all agree in the in
red. Now that we have an understanding of the depende
of lattice propagator on the lattice spacing, we can study
effect of the finite volume.

G. Volume dependence

Results from lattices 2 and 4 have already been repo
in Ref. @10# and are presented again here for completen
and ease of comparison. They have the same lattice spa

t
-
d

FIG. 12. Comparison of the gluon propagator from the fin
improved lattice~lattice 1i, b54.38) and the finest Wilson lattice
~lattice 6,b56.0). Data has been cylinder cut and the appropri
tree-level corrections have been applied. The data from lattice
half-cut whereas lattice 1i displays the full Brillouin zone. We ha
determinedZ3(improved)/Z3(Wilson)51.08 by matching the ver-
tical scales of the data.

FIG. 13. Comparison of the gluon propagator from lattices
(b54.38), 2 (b53.92, small!, 3 (b53.75), and 5 (b54.10),
which have a variety of lattice spacings. Data has been cylinder
and tree-level correction has been applied. Data from the two fi
improved lattices~0.17 and 0.27 fm! are consistent. A clear viola
tion of scaling is seen in the coarsest two lattices~0.35 and 0.41
fm!, where the spacing is too coarse for tree-level correction
completely restore the full Brillouin zone behavior.
1-7
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FRÉDÉRIC D. R. BONNETet al. PHYSICAL REVIEW D 64 034501
but different numbers of lattice points, and hence differ
physical volumes. The gluon propagator has been calcul
on each lattice, and the results compared in Fig. 14. The
propagators are consistent in this figure, despite the fact
one lattice has sides 60% longer in all four directions. T
shows that finite volume effects are small compared to
statistical errors. The turn over seen in the gluon propag
in lattice studies is certainly not a finite volume effect. No
that 5.653311.30 fm4 is a very large volume by the stan
dards of present day lattice studies, and gives us an unp
edented look at the behavior of QCD in the deep infrare

Figure 15 shows the cylinder-cut data for the scalar fu
tion D(q2) for each of the improved lattices. This plot pro
vides a dramatic demonstration of lattice artifacts. In t
way of plotting our results, the five lattices appear in ve
good agreement in the ultraviolet and through intermed

FIG. 14. Comparison of the gluon propagator from lattices 2 a
4, which have the same lattice spacing (a50.35 fm!, but different
lattice volumes. Notice that one lies directly over the other, des
having very different volumes. Data has been cylinder cut and t
level correction has been applied.

FIG. 15. Comparison of the gluon propagator generated with
improved action on five different lattices. We find good agreem
down toq.500 MeV. At the lowest accessible momenta the d
points drop monotonically with increasing volume, but the low
point ~on the largest lattice! shows signs of having converged to i
infinite volume value. For comparison with perturbation theory
plot of the continuum, tree-level gluon propagator~i.e., 1/q2 appro-
priately scaled! has been included.
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momenta. When plotted in this way, we can see that be
;500 MeV the propagators do begin to differ due to fin
volume effects. As the volume increases, the low mome
data points drop, until we can see the infrared flatten off. T
grouping of points around 400 MeV suggest that we ha
for the two largest lattices, results indicative of the infin
volume limit. At ;250 MeV, the results for the two larges
lattices ~both b53.92) are consistent, and in particular th
fact that the small difference between them is produced
such a large difference in volume gives us confidence in
results. For comparison, the tree-level, perturbative exp
sion D(q2)51/q2 is also shown, suitably normalized.

It is interesting to note that the disagreement in the pro
gators above 1 GeV or so revealed in Fig. 13 is hidden by
scale of the vertical axis in Fig. 15. Multiplication of th
propagator byq2 is required to amplify this region and criti
cally examine the extent to which lattice spacing artifacts
removed byO(a2) improvement terms. A failure to do thi
could lead to incorrect conclusions being drawn on the
fectiveness of improvement in the gluon propagator. Thu
is always best to plotq2D(q2) versusq2, when the hypercu-
bic artifacts are of interest.

H. Asymptotic behavior

For further comparison with perturbation theory, we ha
chosen to show the gluon propagator from 1.5 to 5.5 GeV
Fig. 16. In this window, the transition from perturbative
nonperturbative physics can be clearly seen. As well as
lattice gluon propagator and the tree-level, continuum pro
gator, we show a perturbative, three-loop calculation@22#.
We used parameters obtained from Ref.@2#, where at the
renormalization point,m55.48 GeV, the strong coupling
constant was found to bea(m)50.255. That was a quenche
calculation, so this number should not be compared dire
with experiment. The data agree very well with three-lo
perturbation theory down toq.2.5 GeV. Below 2 GeV we
see that three-loop perturbation theory begins to fail.

d

te
e-

n
t

a
t

FIG. 16. Comparison of the lattice gluon propagator with th
obtained from perturbation theory, in the ultraviolet to intermedi
regime. The continuum expressions are tree-level~i.e., 1/q2 appro-
priately scaled! and the three-loop expression used in Ref.@2#.
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INFINITE VOLUME AND CONTINUUM LIMITS OF TH E . . . PHYSICAL REVIEW D 64 034501
I. Propagator at zero four-momentum

Values for the gluon propagator at zero four-moment
are shown in Table II for each of the lattices created in t
investigation. Statistical errors are given in parentheses.
renormalization condition of Eq.~3.9! is enforced at the
renormalization pointm54.0 GeV, which sets the scale fo
D(q2). We see that as the volume of the lattice increas
D(0) becomes smaller. In Fig. 17 we plot the infrared b
havior of the renormalized gluon propagator for five lattic
and we include the points calculated at zero momentum
this plot. We see that the infrared behavior is quite smo
and reasonably consistent for our two largest volume latt
(b53.92, small and large!. Figure 18 illustrates the dat
with a linear fit in the inverse volume according to

D~0!5c
1

V
1D`~0!. ~4.5!

We find a reasonable fit with parameter valuesc
5245(22) fm4 GeV22 and D`(0)57.95(13) GeV22,
where D`(0) is the infinite volume limit of the zero
momentum gluon propagator. Figure 18 strongly suppo

TABLE II. The value of gluon propagator at zero fou
momentum for each of the lattices created in this investigation
order of increasing volume. The raw~dimensionless! and physical
values are given. In obtaining the physical values we have se
renormalization conditionD(m2)51/m2 at m54.0 GeV. An esti-
mate of the uncertainty in the last figure is given in parenthese

Lattice Dimensions b D~0! D~0! Volume
(GeV22) (fm4)

1i 163332 4.38 32.0~8! 10.4 ~2! 97.2
1w 163332 5.70 24.0~5! 10.0 ~2! 135
5 123324 4.10 10.6~3! 9.0 ~2! 220
3 83316 3.75 4.3~1! 8.9 ~2! 237
2 103320 3.92 5.7~1! 8.6 ~2! 300
4 163332 3.92 5.4~1! 8.2 ~2! 2038

FIG. 17. The renormalized gluon propagator is shown in
infrared region, including the points at zero four-momentum, fr
five lattices.
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the hypothesis that the gluon propagator is finite in the inf
red. It is also clear that the results of our largest physi
volume lattice are very close to the infinite volume limit.

Note that a complete systematic extrapolation to the i
nite volume limit remains to be carried out in the futur
Ideally, one performs a number of calculations at fixed v
ume and various lattice spacings and then performs a c
tinuum limit extrapolation for that fixed volume. This con
tinuum limit extrapolation would be done for each of
variety of lattice volumes and then finally an infinite volum
extrapolation performed on those results. This procedure
responds to the axiomatic field theory prescription of tak
the continuum limit before the infinite volume limit. Give
this caution, the finite precision of this study, and the fa
that the linear ansatz above may be incorrect, we can
completely exclude the possibility that the deep infrared~i.e.,
below ;350 MeV) behavior ofD(q2) may very slowly de-
crease toward zero as the infinite volume limit is taken.

It is interesting to compare our results with a recent c
culation of the gluon propagator in Laplacian gauge@23#,
which is expected to be free of gauge ambiguity. In th
gauge, the propagator takes its perturbative, Landau-ga
value in the asymptotic region and is also infrared finite. T
Laplacian gauge propagator is seen to have a behavior s
lar to that seen here.

V. CONCLUSIONS

The gluon propagator has been calculated on a set of
tices with anO(a2) mean-field improved action, inO(a2)
mean-field improved Landau gauge. Tree-level correct
has been shown to reduce rotational symmetry breaking
dramatically improve the ultraviolet behavior of the prop
gator.

For b>4.10 (a<0.27 fm) the tree-level corrected im
proved propagator displays scaling over the entire Brillo
zone. Atb54.38 (a50.166 fm), the gluon propagator ha
excellent behavior for the entire range of available mome

n

he

e

FIG. 18. Values for the gluon propagator at zero fou
momentum,D(0), plotted as a function of the inverse lattice vo
ume. The solid line represents a linear fit to the lattice results.
fit indicates the largest volume results are very close to the infi
volume limit andD(0)57.95(13) GeV22 in the infinite volume
limit.
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FRÉDÉRIC D. R. BONNETet al. PHYSICAL REVIEW D 64 034501
in the Brillouin zone, reproducing the anticipated UV beha
ior of perturbation theory to three-loops.

The infrared behavior of the gluon propagator is rob
even with a lattice spacing of 0.41 fm. Calculation on
lattice with a large volume indicates that finite volume e
fects are small. In particular, the turn over observed in p
vious studies of the Landau gauge gluon propagator is n
finite volume artifact. We conclude that the propagator
almost certainly infrared finite, in agreement with earl
studies. A significant volume dependence is revealed onl
the smallest non-trivial momenta. An extrapolation ofD(0)
via a linear ansatz inversely proportional to the physical
tice volume provides a reasonable fit. Moreover, results fr
our largest volume lattice reside very close to the infin
volume limit. We have probed the approach to the infin
volume limit by first determining a range ofb in which the
propagator scales forq,0.7 GeV on similar finite volumes
Physically large volumes are accessed by decreasinb
within the scaling range on large lattices. A more compl
study of the infinite volume limit should be undertaken in t
near future.

The tree-level corrected results from ourb53.92 (a
50.353 fm) 163332 lattice with a physical volume o
’’
ar

,’’

. D

,

G

s
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5.653311.3052038 fm4 may be regarded as an excelle
estimate of the infinite volume, continuum limit Landa
gauge gluon propagator forq,0.7 GeV. The tree-level cor
rected results from ourb54.38 (a50.166 fm) results pre-
sented here are an excellent estimate of the infinite volu
continuum limit of the Landau-gauge gluon propagator
q.0.7 GeV. We have seen that these two sets of d
smoothly match in the intermediate regime (q;0.7 GeV)
and are entirely consistent with each other in this region. T
possible effects of lattice Gribov copies remains a very
teresting question and we plan to extend this study to Lap
ian gauge and other related gauge-fixing schemes in the
future.
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