PHYSICAL REVIEW D, VOLUME 64, 034501

Infinite volume and continuum limits of the Landau-gauge gluon propagator
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We extend a previous improved action study of the Landau gauge gluon propagator, by using a variety of
lattices with spacings frora=0.17 to 0.41 fm, to more fully explore finite volume and discretization effects.
We also extend a previously used technique for minimizing lattice artifacts, the appropriate choice of momen-
tum variable or “kinematic correction,” by considering it more generally as a “tree-level correction.” We
demonstrate that by using tree-level correction, determined by the tree-level behavior of the action being
considered, it is possible to obtain scaling behavior over a very wide range of momenta and lattice spacings.
This makes it possible to explore the infinite volume and continuum limits of the Landau-gauge gluon propa-
gator.
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[. INTRODUCTION a large volume indicates that finite volume effects are small.
The Landau gauge gluon propagator is again found to be

There has long been interest in the infrared behavior ofnfrared finite, in agreement with earlier studies. The combi-
the gluon propagator as a probe into the mechanism of coriation of an improved action with appropriate tree-level cor-
finement[1] and lattice studies focusing on its ultraviolet rection appears to be a powerful tool. The generalization of
behavior have been used to calculate the running QCD couhese methods to the study of other Green’s functions will be
pling [2]. In this paper we use the propagator as a test-bediscussed in a forthcoming wofk1].
for an improved action and also as a means to investigate a
general tree-level correction technique.

The infrared part of any lattice calculation may be af-
fected by the finite volume of the lattice. Larger volumes We employ the tree-level, mean-field improved gauge ac-
mean either more lattice poinisvith increased computa- tion of Luscher and Weisg8,9]
tional cos} or coarser latticeswith corresponding discreti-

II. THE LANDAU GAUGE GLUON PROPAGATOR

zation errors Improved actions have been shown to be ef- 58 1 .

fective at reducing discretization errors at a given lattice S=3N > Tr[l—E(P#ﬁ PW)]
spacing in studies of the static quark potenti@] and the c P

hadron spectruni4] and have become a necessary part of B 1

finite temperature studig$]. The desire for larger physical — 5 Z Tr( 1- (R, + RLV)]
volumes thus provides strong motivation for using improved 12Ncug rect 2

actions. We study the gluon propagator, in Landau gauge, in
guenched QCOpure SU3) Yang-Mills], using the mean-
field (tadpole improved[6] version of the tree-levet)(a?
Syma(mziE irﬁprof)/ed gaEJg}e actiofi—9]. @) whereP,, andR,, are the usual plaquette and rectangle
To assess the effects of finite lattice spacing, we calculat@Perators
the propagator on a set of lattices from>816 at8=3.75 . )
having a=0.413 fm to 16x32 at f=4.38 having a P.,(x)=U,(0U,(x+w)UL(x+»)Ulx) (2.2
=0.167 fm. To assist us in observing possible finite volume
effects, we add to this set a 1632 lattice at3=3.92 with  gng
a=0.353, which has the very large physical size of 8.65
% 11.30 fnf. Some preliminary results of this work were re- B A -
Sorted in Ref{10]. P y R,.,()=U 00U ,(x+ @)U, (x+ v+ ) U (x-+27)
We will show that a tree-level correction reduces rota-
tional symmetry breaking and dramatically improves the ul-

= ScontT O( 34) +O( azgz), (2.1

XUT(x+2)UT(x)+ U ,(x)U ,(x+ 1)

traviolet behavior of the propagator and thus the approach to < U (x+2,&)UT(x+,&+ MUt (x+ 1)Ul (x)
the continuum limit. For lattices as coarse as 0.17 fm the v # # v
gluon propagator has surprisingly good behavior for the en- 2.3

tire range of available momenta. The infrared behavior of the
gluon propagator is robust even with an extremely coarsand N.=3 is the number of colors. We use the plaquette
lattice spacing of 0.41 fm. Our calculations on a lattice withdefinition for the tadpole factor
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1 1/4 u LM L,u
Upg= N—RETF<PMV> . (24) q/.L: al n#e —7,7.
Cc

(2.12

Our gauge field configurations were generated using th
Cabibbo-Marinari[12] pseudo-heatbath algorithm with ap-
propriate link partitioningd 13].

Given that the gauge linkdg ,(x) are expressed in terms
of the continuum gluon fields as

%he range ofq is determined by the fact that our lattices
have an even number of points in each direction and that we
use periodic boundary conditions. In the continuum, the sca-
lar propagator is related to the full propagator by

q,uqv

U ,(x) = PeldS a0+ atiat (2.5 D2%(a)= ( 5°°D(g?) (213

the dimensionless lattice gluon fiekd,(x) may be obtained
from in Landau gauge.
Landau gauge is a smooth gauge that preserves the Lor-
entz invariance of the theory, so it is a popular choice. We
A (X+'“/2)_ {U (%)= U (X)}racetess (2.6 work in Landau gauge for ease of comparison with other
studies, and because it is the simplest covariant gauge to
which is accurate ta@(az). This is, of course, only one of implement on the lattice. All configurations were gauge fixed
many possible ways to calculate the gluon field on the latticeby maximizing an©O(a?) improved Landau gauge fixing
In Eq. (2.6), A, is calculated at the midpoint of the link to functional using conjugate gradient Fourier accelerafid}
remove O(a) terms. Note that we have also included theas described in Ref16].
tadpole factor to improve the normalization.
We calculate the gluon propagator in coordinate space IIl. TREE-LEVEL CORRECTION

Dab(x y)= (Aa Ab(y)> (2.7 One thing that is known about the gluon propagator is its
perturbative, asymptotic behavior. In the spirit of improve-
using Eq.(2.6). To improve statistics, we use translational ment, we can use this knowledge to augment our lattice re-
invariance and calculate sults and make better contact with the continuum. In the
continuum, agp®— o, the propagator has the form

D2%(y) 2 A2(X)AY(X+Y) ). (2.9

1
D(p)=— (3.0
The quantity that will be of interest to us is the scalar part of p

the propagator in momentum space, so first we take the trace
over color components up to logarithmic corrections. A well known artifact of the

lattice is that for a free massless boson with an unimproved
action the lattice propagator has the form

— aa
mw>mﬂgoww 2.9
then sum over the Lorentz componéri$ the Fourier trans- bl 4 . d#a ' (32
form - > sir| ——
ac u
D(q)— E > €YD, (y) (2.10 It has been argued, in RdfL7] and elsewhere, that the cor-
woy rect momentum variable to use when examining the gluon
and propagator on the lattice, with the Wilson action, is not Eq.
(2.12, buf
1
D(0)=- 2 2 DY), (2.1 2 g,a
Ng % % q,= —Sin—. (3.3
a2
Ny is the number of space-time dimensions and the available
momentum valuesj, are given by It has been observed that this choice ensures that the propa-
gator takes its asymptotic form at large lattice momenta
[17,18.

The Landau gauge condition in momentum spaggd ,,(q)
=0 places a constraint on the Lorentz components of the propaga-
tor so that, for non-zero momentum, there &fg—1 degrees of 2Many authors have andE| defined the other way around, but in
freedom[14]. this context our terminology is more natural.
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The improved action Eq(2.1) together with the gluon TABLE |. Details of the lattices used to calculate the gluon

field defined in Eq(2.6) has the(’)(az) improved tree-level propagator. Lattices 1w and 1i have the same dimensions and ap-
behavior[7,8] proximately the same lattice spacing, but were generated with the
Wilson and improved actions respectively. Lattice 6 was generated

4 a a 1 a a with the Wilson action.
D Xa)=— > [sinZ(L +—sin4(L>}, (3.4 —— ——
az @ 2 3 2 Dimensions B a(fm) Volume (fm* Configurations
. . 16x32 570 0.179 2.8K5.73 100
;nodmvgﬁnzvnl":l vlilsr?atl)zlgsfs)gr%)aiﬂdagig)n tql';) Ztglghg]s?zzotrtzgcrtwon-' l'x32 438 0.166 26#5.28 100
perturbative aspects of the propagator, we divide it by it gxlzg 23: 8'3?2 gi ;'gg 188
perturbative, I result. Hence, all figures are plotted 3X ' : 633< :
againstq®D(q?), which is expected to approach a constant” 1?(32 892 035 5. 2 11.30 100
up to logarithmic corrections ag— o. We will see that this 12x24 410 0270  3.24<6.48 100
32%x64 6.00 0.099 3.18<6.34 75

also makes for a stringent test of the ultraviolet behavior of
the propagator. We will work with the momentum variables

defined as for momenta,q, sufficiently small compared to the cutoff,
- mla. Dg(Q; ) is independent o& for sufficiently fine lat-
qW= zsincm (3.5 tices; i.e., in the scaling regime. The renormalization con-
®oa 2 ' stantZs(u,a) is determined by imposing a renormalization
condition at some chosen renormalization sqalee.g.,
and
1
| 2 \/ n2< a,ua 1. 4( a,ua) DR(q)|q2:M2_ Mz' (3.9)
9.=5 Vs 5 + S| =5/ (3.6

The renormalized gluon propagator can be computed both

for the Wilson and improved actions respectively. A similar "onperturbatively on the lattice and perturbatively in the

momentum variable was used in the study of the gluorfontinuum for choices of the renormalization point in the
propagator in Ref[19]. ultraviolet. It can then be related to the propagator in other

In the language of continuum physics continuum renormalization schemes such as the modified
minimal subtraction schemes).

1 D(p)
1+11(p?) D"4p?)

p?D(p?) = (3.7) IV. RESULTS

A. Analysis overview

where H(_pz) is the scalarzvacuum polarization. In the  The gluon propagator has been calculated on seven differ-
asymptotic region, T4+ 11(p“)]—1 up to logarithmic cor-  ent |attices, the details of which are listed in Table I. Note
rections. We argue that it is the lattice version ofthat the first two are labeled “1w” and “1i.” These have the
D(p?)/D"*qp?) that will most rapidly approach its con- same number of lattice points at almost the same spacing
tinuum form as the lattice spacing is reduced and we Wi”(hence approximately the same physical volunsut 1w
later graphically demonstrate this. The essential point is thaf,zg generated with the standard, Wilson gauge action, while
at large momenta the lattice gluon propagator will experiencg ,sed the®(a?) improved action(2.1). Lattice 6 was gen-
asymptotic freedom just as in the continuum, i.e., the ultraprated with the Wilson action and used to study the gluon
violet propagator will approach its tree-level form. Thus on propagator in Ref[18]. A value for the tadpole factor has
the lattice we expect to finB (p®)/D"*{p®)—1 for largep”  heen obtained fo=6.0 of u,=0.878 and this has been
even though the ultraviolet lattice artifacts in b@p”) and  ysed to normalize the propagator with respect to the other
D'*qp?) may themselves be large. We will refer to this pro- |attices. It will be used here for comparison purposes as it is
cedure for minimizing ultraviolet lattice artifacts ase-level  finer than the other lattices. Configurations on lattices 2—5
correction This philosophy is similar to that applied in re- \yere generated with thé(a?) improved action. All of the
cent studies of the quark propagaztdﬂ].zln figures where  propagators are plotted in physical units, where the scale has
q°D(g?) is plotted vsq, the “g”in q°D(q°) (plotted onthe  peen determined by the static quark potential with a string
y-axis) is always the same as tiethat is used on the x-axis, tensjon of\/o=440 MeV. Details of this calculation may be

whereq=q, q" or q' as described in the text. found in Ref.[21].
The bare, dimensionless lattice gluon propag&éga) Data points that come from momenta lying entirely along
is related to the renormalized continuum propagatora spatial Cartesian direction are indicated with a square while
Dgr(q;u) by points from momenta entirely in the temporal direction are
marked with a triangle. As the time direction is longer than
a’D(qa)=2Z3(u,a)Dr(q; 1), (3.8 the spatial ones any difference between squares and triangles
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FIG. 1. Uncorrected gluon propagator from lattice 18 ( FIG. 3. Uncorrected gluon propagator from lattice 1y (
=5.70,16x 32, Wilson actioi, plotted as a function ofl. The  =5.70,16x 32, Wilson actiol, plotted as a function af with the

dramatic “fanning” is caused by finite spacing errors which quickly momentum “half-cut” applied.
destroy the signal at large momenta.
B. Tree-level correction and rotational symmetry

may indicate that the propagator is affected by the finite vol- The “raw” g|u0n propagator from lattices 1w and 1i is

four-diagonal are marked with a diamond. Systematic SeP&;0tted as functions off, Eq. (2.12, for all available mo-

r?;c]lon d(')f d?ta p_0|3_ts :aken ?r][ the f‘"a?otf‘a' flrom tho?e : enta, and both show severe ultraviolet noise. We may take
other directions Indicates viofation ot rotational SYmmetry. - g, e comfort from the observation that the signal degrada-

I.n ttheAﬁgntmlrJ]utr;:, thhe scall:;r f:"j[tc.t'onb IS rkotatpnally N tion is not as bad in the improved case where the finite spac-
variant. ough the hypercubic lattice breakéAiinvari- ing errors do not exceed the infrared peak and the UV tail is

ance, it does preserve the subgroup of discrete rotatiof)s Z generally flatter. However, neither result looks at all satisfac-

Ir.' our _(Tlaze,tth!s symrlnetry IS {ﬁduct?]d tﬁlas one dlrr?e?-th tory at large momenta. No data cuts or tree-level correction
sion will be twice as long as the other three in each o ave yet been used.

cases studied. We exploit this discrete rotational symmetry to The most obvious way to deal with this noise is to apply
improve statistics through (@) averaging. This is best ex- an ultraviolet cut, considering only momenta out to half of

plained through a simple example. Consider the propagat%e Brillouin zone. For each of the four Cartesian directions,
at momentung=(3,2,1,4)(say. Z(3) symmetry means that

D(3,2149=D(2,3,1,49=D(2,1,3,4=D(1,2,39 qs=—. 4.2

=D(1,3,2,4=D(3,1,2,4 4.
We refer to this as the “half-cut” and in Fig. 3 and Fig. 4 we

see that this removes the worst of the artifacts. The two
so we calculate the propagator for each of these values of

momentum, and then average the results. 5.5
50 - s
6 T T 45 | i
4.0 - . s
ST il 35 F -
%30t -
4T i Q25 1
&;’ o 20 — -
;53 i | 15 F s
o ’ a
2 L - 1.0 —
05 s
1 - 0.0 ' ' '
0 1 2 3 4
0 | 1 1 q (GeV)
0 2 4 6 8 .
g (GeV) FIG. 4. Uncorrected gluon propagator from lattice 18 (

=4.38,16x 32, improved actioy plotted as a function ofj with
FIG. 2. Uncorrected gluon propagator from lattice 18 ( the momentum “half-cut” applied. The improved propagator has
=4.38,16x 32, improved actio) plotted as a function otﬁ Lat- different normalization to the Wilson case due to a difference in the
tice artifacts are reduced by the improved action, but are still largeZ; renormalization constant.
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FIG. 5. Uncut gluon propagator from lattice 1y8€5.70,16 FIG. 7. Gluon propagator from lattice 5 gt=4.10, which has

X 32, Wilson actiol, plotted as a function off¥ for all momenta.  spacinga=0.27 fm on 13x 24. This has the same physical volume
The tree-level correction has greatly reduced discretization erroras lattice 3 of Fig. 9. The propagator is shown for all moménta
from those seen in Fig. 1. data cuty after tree-level correction.

propagators show plausible asymptotic behaviors, but ther@ttice artifacts, but for the moment it is interesting to keep

are still clear signs of lattice artifacts and we have lost a Iof"‘II data, as they provide insight into the behavior of lattice

. . . : . simulations.
of data in the ultraviolet. While neither of these shortcomings Both Figs. 5 and 6 are consistent with the study of Ref.

|shav\ls[[gr]]n|t1‘|carr:]t %?nblem fcr)rdstudlet‘?1 OLtTE mtfzarr?dt, r\1Ne will 17], but the discrepancy between diagonal and Cartesian
showthat something as crude as the hall-cut IS Not NECessatyin;s i, Fig. 5 is a clear sign of rotational symmetry break-
and we can do much better at minimizing Iatt|_ce artifacts. ing in the unimproved case. With the Wilson action, the qual-
We have already argued the case for applying a tree-levely"of the data is suffering from the coarseness of the lattice.
correction through the use of the alternatlve momentum variag ye might hope, the improved propagator in Fig. 6 shows
ables derived from the tree-level behavior of the actions. Th@ycellent agreement between diagonal and Cartesian points,
effect of doing this is seen in Fig. 5 and Fig. 6, where theand the data is generally less spread. The propagator from
Wilson propagator has been plotted as a functiong¥f  the improved action has better rotational symmetry at the
[4¥D(q") vs q"] and the improved propagator as a func- same lattice spacing. Less easy to understand is the slight
tion of g' [q'D(q") vs '] for all momenta of the Brillouin  suppression of the temporal poiritsiangles in the Wilson
zone. Comparing these to Figs. 1 and 2, we see an excelleoése, Fig. 5. The time axis of this latticas with all the
restoration of rotational symmetry all the way to the edge oflattices considered herés twice as long as the other three
the Brillouin zone. This is especially true of the improved axes, so different values for the points along the long axis
action case in Fig. 6. The propagators also appear to be apould normally be interpreted as a finite volume effect, yet
proaching their asymptotic, perturbative values. Later, mothere is no sign of it in the improved casehich has ap-
mentum cuts will be applied to the data to further eliminateproximately the same physical volum&here is a difference
between the improved and unimproved cases in the ampli-
6 : | | [ tudes of the propagators, but this is accounted for by renor-
malization and will be discussed below.

5F : Out of curiosity the gluon propagator from lattice 1i has
also been examined as a function @¥, which we have
4 r 7 already argued to be inappropriate. Not surprisingly, this
& leads to a “propagator” that suffers badly from lattice arti-
:9’3 i 7 facts. We have not included a figure here, but the resulting
“2 propagator droops strongly in the ultraviolet. This is clearly a

poor choice of momentum variable for this action as ex-
. pected on the basis of our tree-level correction. For best re-
sults at finite lattice spacing, the correct momentum variable
0 ‘ ! ‘ ‘ ‘ is determined by the appropriate tree-level behavior, which

0 1 2 3 4 5 6 in turn is defined by the choice of action and gluon field
g (GeV) definition. For the rest of this report it shall be implicit that
when discussing quantities from the Wilson actiopi! is
used, andy' is used with the improved action.

FIG. 6. Uncut gluon propagator from lattice 18 4.38,16
% 32, improved actioy) plotted as a function af' for all momenta.
The combination of improved action and tree-level correction has
produced a remarkably clean signal over the entire range of acces-
sible momenta. This figure should be compared with Fig. 2, and At this point it is interesting to explore the effect of mak-
with Fig. 5 for the Wilson action at a similar lattice spacing. ing the lattice coarser. Figures 7, 8 and 9 show the uncut,

C. Lattice spacing dependence
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FIG. 8. Gluon propagator from lattice 2, the smaller lattice at FIG. 10. Gluon propagator from lattice 4, the larger lattice at
B=3.92 which has spacing=0.35 fm on a 18X 20 lattice. Finite ~ 8=3.92, which has spacing=0.35 fm on a 18x 32 lattice pro-
volume errors are just detectable as indicated by momenta along theding the largest physical volume of any in this study. Tree-level
time axis(filled triangles falling below the rest of the data. Tree- correction has been used, but no data cuts have been applied.
level correction has been used, but no data cuts have been applied.

clusions about continuum physics. Data at large momenta
afiill of course be most susceptible to finite lattice spacing

most extreme case, shown in Fig. 9. This very coarse Iattic?hrrors' We choose to prefer data from momentum points near
has spacin@=0.41 fm, which is more than twice as coarse e four-diagonal, as this evenly samples all Cartesian direc-

as the previous lattices. Any sign of a perturbative tail had'ons: 1-€., for a given momentum squqretqiz)( it has the
been lost, as the UV cutoff has been lowered, but the infraregMallest values of each of the Cartesian compongpts
behavior remains. There is no sign of any qualitative change! NiS should minimize finite lattice spacing artifacts.
which appears to indicate that even on such a coarse lattice We calculate the distanc&q of a momentum vectoq
we are not losing information vital to the infrared physics of from the diagonal using
the gluon propagator. o

This gives us great confidence in the use of improved Aq:|q|sinaa, 4.3
actions on coarse lattices for the probing of nonperturbative
physics. This is the motivation for creating lattice 4at where the anglé; is given by
=0.35 on a very large volume. Figure 10, which shows the

tree-level corrected propagator on progressively coarser |
tices @=0.27, 0.35 and 0.41 fm respectivelfConsider the

results from this large lattice, shows no signs of significant q-n
finite volume artifacts when compared with Fig. 8 which has costy=—=—, (4.9
the same lattice spacing, but a smaller volume. |al

D. Data cuts andn=1(1,1,1,1) is the unit vector along the diagonal. In

bethis way we ignore data points that are potentially most af-
fected by hypercubic artifacts. We call this cut thydinder
cut[17]. From this point on, we exclude points greater than

Having identified possible lattice artifacts, cuts may
applied to clean up the data, making it easier to draw con

6 . two spatial momentum unitsfrom the four-diagonal. Fur-
thermore, the point at zero four-momentum has been cut

51 7 from all the following plots ofg?D(q). On any finite lattice,

A ¢ D(0) must be finite, hencg?D(q)=0 for q=0. This point

is therefore trivial when plottingi?D(q). When the scalar

0

function, D(q), itself is considered we can make a study of

%
=3 r : oo ) o
@ o D(0) by considering it on lattices of differing volumes and

oL " i then making an infinite volume extrapolation. We will per-

form this extrapolation below.
1 [ -
E. Action dependence
O | | | | | A
0 1 2 3 4 5 8 Once again we compare the gluon propagator generated

q (GeV) with the Wilson action to that generated with the improved

FIG. 9. Gluon propagator from lattice 3 gt=3.75, which has
spacinga=0.41 fm on §x16. The propagator is shown for all
momenta(no data cutsafter tree-level correction. This propagator A spatial momentum unit is 2/aLs wherel is the number of
is consistent with that obtained on much finer lattices. lattice sites in the spatial directiont=L,=L,=L,).
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FIG. 11. Comparison of the gluon propagator from lattices 1w at FIG. 12. Comparison of the gluon propagator from the finest
B=5.70 and 1i ai3=4.38. Data has been cylinder cut and tree- improved lattice(lattice 1i, 3=4.38) and the finest Wilson lattice
level correction has been applied. We have determinedlattice 6,3=6.0). Data has been cylinder cut and the appropriate
Z(improved) Z;(Wilson)=1.09 by matching the vertical scales of tree-level corrections have been applied. The data from lattice 6 is
the data. half-cut whereas lattice 1i displays the full Brillouin zone. We have

determinedZg(improved)/Z;(Wilson)=1.08 by matching the ver-

action after tree-level correction, this time applying the cyl-t'CaI scales of the data.

inder cut. To make the comparison in Fig. 11, we note that

there is of course a small difference in normalization. This igevel correction to completely correct the entire Brillouin
the difference in th&, renormalization between the Wilson Zone, which is not surprising. We have placed extraordinary
and improved propagators. As the relative renormalization i§lémands on our simulations by examining them near the
g2 independent, the unimproved propagator has been multkutoff. The conclusion is that such coarse Iatnce; shou]d be
plied by a relative renormalization of 1.09 to make directhalf-cut. Nevertheless, the propagators all agree in the infra-
comparison possible. This factor is deduced by adjusting théed- Now that we have an understanding of the dependence
vertical scales of the two data sets until they agreed. Apar@f lattice propagator on the lattice spacing, we can study the
from the superior performance of the improved propagatoréffect of the finite volume.

which has already been discussed, the two actions produce

the same result. G. Volume dependence
We push our results further by comparing the improved  Regyits from lattices 2 and 4 have already been reported
$3=4.38 propagator with that from lattice(8Vilson action, i Ref.[10] and are presented again here for completeness

which is finer @=0.1 fm), has more points (3x64) and is _and ease of comparison. They have the same lattice spacing,
a little larger. Both data sets are cylinder cut, and each is

tree-level corrected according to its action. The relative

renormalization has  been  determined to be :2 | ' |
Zs(improved)Z;(Wilson)=1.08. It can be seen from Fig. 4'5 | g=3.75 i
12 that not only are the two propagators consistent, but that ' oy el
the ultraviolet performance of lattice 1i is remarkable. The 40 F f=4.38 )
propagator from Ref[17] had the momentum half-cut ap- — 35 ]
plied, whereas our improved propagator with lattice spacing = 30 W I
- . . . . N o5 | .. N
a=0.17 fm is shown for the entire Brillouin zone. We have  *%. i
calculated the propagator over the same range of momentaas 20 [ % 7
Ref.[17], despite using a much coarser lattice. L5 1
1.0 .
F. Scaling analysis 0.5 r* ‘ | | | ‘ I
Next, we consider the propagator on the coarser lattices. 00 0 1 2 3 4 5 6
Figure 13 shows the propagator from lattices 1i, 2, 3 and 5. q (Gev)

Examining Figs. 11 and 13 we see that the Wilgér 5.7 FIG. 13. Comparison of the gluon propagator from lattices 1i
and improvedB=4.10 andB=4.38 results all agree well, (B=4.38), 2 (3=3.92, small, 3 (8=3.75), and 5 B=4.10)
which suggests that these are “fine enough” lattices. We seich have a variety of lattice spacings. Data has been cylinder cut
that the3=3.75 andB=3.92 propagators do not quite line anq tree-level correction has been applied. Data from the two finest

up with the others, but instead the UV tail rises slightly asimproved latticeg0.17 and 0.27 fmare consistent. A clear viola-
the lattice becomes coarser. This is an indication of a l0ss afon of scaling is seen in the coarsest two latti¢@85 and 0.41

scaling. The lattices ap3=3.92 and §=3.75 havinga  fm), where the spacing is too coarse for tree-level correction to
=0.35 and 0.41 fm respectively are too coarse for the treeeompletely restore the full Brillouin zone behavior.
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FIG. 14. Comparison of the gluon propagator from lattices 2and  FIG. 16. Comparison of the lattice gluon propagator with that
4, which have the same lattice spacirgg=0.35 fm), but different  optained from perturbation theory, in the ultraviolet to intermediate
lattice volumes. Notice that one lies directly over the other, despitgegime. The continuum expressions are tree-lével, 1/9° appro-

having very different volumes. Data has been cylinder cut and treepriately scalejiand the three-loop expression used in R2f.
level correction has been applied.

but different numbers of lattice points, and hence differenfMomenta. When plotted in this way, we can see that below
physical volumes. The gluon propagator has been calculated 900 MeV the propagators do begin to differ due to finite
on each lattice, and the results compared in Fig. 14. The twgolume effects. As the volume increases, the low momenta
propagators are consistent in this figure, despite the fact thakata points drop, until we can see the infrared flatten off. The
one lattice has sides 60% longer in all four directions. Thisgrouping of points around 400 MeV suggest that we have,
shows that finite volume effects are small compared to thdor the two largest lattices, results indicative of the infinite
statistical errors. The turn over seen in the gluon propagatorolume limit. At ~250 MeV, the results for the two largest
in lattice studies is certainly not a finite volume effect. Note|attices (both 8=3.92) are consistent, and in particular the
that 5.65x11.30fnf is a very large volume by the stan- fact that the small difference between them is produced by
dards of present day lattice studies, and gives us an unpreguch a large difference in volume gives us confidence in the
edented look at the behavior of QCD in the deep infrared. results. For comparison, the tree-level, perturbative expres-
Figure 15 shows the cylinder-cut data for the scalar funcsjon D(g2)=1/q2 is also shown, suitably normalized.

. 2 . . .
tion D(q°) for each of the improved lattices. This plot pro- ¢ s interesting to note that the disagreement in the propa-

vides a dra_matic demonstration_of Iatt!ce artifacts. _In thisgators above 1 GeV or so revealed in Fig. 13 is hidden by the
way of plotting our results, the five lattices appear in very

: . . - Jscale of the vertical axis in Fig. 15. Multiplication of the
good agreement in the ultraviolet and through 'ntermed'at?)ropagator byg? is required to amplify this region and criti-

cally examine the extent to which lattice spacing artifacts are

“ . ' ' ' ' removed byO(a?) improvement terms. A failure to do this
. 4 pme3s could lead to incorrect conclusions being drawn on the ef-
R0 . e 7 fectiveness of improvement in the gluon propagator. Thus it
. ¢ $=352 sman is always best to plag?D(q?) versusg?, when the hypercu-
15 T i treeevel | bic artifacts are of interest.
o
=4
10 I H. Asymptotic behavior
5 F . For further comparison with perturbation theory, we have
chosen to show the gluon propagator from 1.5 to 5.5 GeV, in
0 ! ! I ; Fig. 16. In this window, the transition from perturbative to

0.0 0.5 1.0 1.5
q (GeV)

2.0 2.5

3.0

nonperturbative physics can be clearly seen. As well as the
lattice gluon propagator and the tree-level, continuum propa-

FIG. 15. Comparison of the gluon propagator generated with apator, we show a perturba_tlve, three-loop calculafiag].
improved action on five different lattices. We find good agreement//€ Useéd parameters obtained from Rie], where at the
down toq=500 MeV. At the lowest accessible momenta the data"€normalization point,..=5.48 GeV, the strong coupling
points drop monotonically with increasing volume, but the lowestconstant was found to he(u) =0.255. That was a quenched
point (on the largest lattigeshows signs of having converged to its calculation, so this number should not be compared directly
infinite volume value. For comparison with perturbation theory, awith experiment. The data agree very well with three-loop
plot of the continuum, tree-level gluon propagatice., 1/g> appro-  perturbation theory down tq=2.5 GeV. Below 2 GeV we
priately scalegihas been included. see that three-loop perturbation theory begins to fail.
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TABLE II. The value of gluon propagator at zero four- 11.0
momentum for each of the lattices created in this investigation, in
order of increasing volume. The raf@dimensionlessand physical 105
values are given. In obtaining the physical values we have set the 10.0
renormalization conditiorD(u?)=1/u? at u=4.0 GeV. An esti- &
mate of the uncertainty in the last figure is given in parentheses. % 95
S
Lattice  Dimensions S D(0) D(0) Volume = 90
2 4 =
(GeV ) (fm?) S g5
1i 16°x 32 438 32.08 10.4(2 97.2 8.0
1w 16x32 570 24.05 10.0(2 135 '
> 1224 410 1083 90Q 220 7'3000 0 oloz 00104 0 oloe 0 oloa oo|10 0.012
3 8%x16 375 431  89(2 237 ’ ' UV (fmY) ' '
2 1820  3.92 5.71) 8.6(2) 300
4 16°% 32 3.92 541 8.2(2 2038 FIG. 18. Values for the gluon propagator at zero four-

momentum,D(0), plotted as a function of the inverse lattice vol-
ume. The solid line represents a linear fit to the lattice results. The
fit indicates the largest volume results are very close to the infinite
|. Propagator at zero four-momentum volume limit andD(0)=7.95(13) GeV 2 in the infinite volume

Values for the gluon propagator at zero four-momenturdimit.
are shown in Table II for each of the lattices created in this
investigation. Statistical errors are given in parentheses. Thiée hypothesis that the gluon propagator is finite in the infra-
renormalization condition of Eq(3.9) is enforced at the red. It is also clear that the results of our largest physical
renormalization poiniu=4.0 GeV, which sets the scale for volume lattice are very close to the infinite volume limit.
D(g?). We see that as the volume of the lattice increases, Note that a complete systematic extrapolation to the infi-
D(0) becomes smaller. In Fig. 17 we plot the infrared be-hite volume limit remains to be carried out in the future.
havior of the renormalized gluon propagator for five latticesldeally, one performs a number of calculations at fixed vol-
and we include the points calculated at zero momentum itme and various lattice spacings and then performs a con-
this plot. We see that the infrared behavior is quite smootiinuum limit extrapolation for that fixed volume. This con-
and reasonably consistent for our two largest volume latticeihuum limit extrapolation would be done for each of a

(B=3.92, small and large Figure 18 illustrates the data variety of lattice volumes and then finally an infinite volume
with a linear fit in the inverse volume according to extrapolation performed on those results. This procedure cor-

responds to the axiomatic field theory prescription of taking
1 the continuum limit before the infinite volume limit. Given

D<O):C\7+D°°(O)' 4.9 this caution, the finite precision of this study, and the fact
that the linear ansatz above may be incorrect, we cannot
completely exclude the possibility that the deep infraiies,
below ~350 MeV) behavior oD(g?) may very slowly de-
crease toward zero as the infinite volume limit is taken.

It is interesting to compare our results with a recent cal-
ulation of the gluon propagator in Laplacian gaygs],
which is expected to be free of gauge ambiguity. In that

We find a reasonable fit with parameter values
=245(22) frf GevV'? and D.(0)=7.95(13) GeV?,

where D.(0) is the infinite volume limit of the zero-
momentum gluon propagator. Figure 18 strongly support%

12 L gauge, the propagator takes its perturbative, Landau-gauge
oL 1! 5 %gggg | value in the asymptotic regior_1 and is also infrared finit_e. The_
5 § s B=392 small Laplacian gauge propagator is seen to have a behavior simi-
N ° =59 big | lar to that seen here.
wif,
n w .
Zer e 7 V. CONCLUSIONS
=
4 + M'ﬁa - The gluon propagator has been calculated on a set of lat-
Sdy, tices with an®(a?) mean-field improved action, i®(a?)
2 | et mean-field improved Landau gauge. Tree-level correction
has been shown to reduce rotational symmetry breaking and
0 ) dramatically improve the ultraviolet behavior of the propa-
—0.10.0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1.0 gator.
q (GeV)

For f=4.10 @=<0.27 fm) the tree-level corrected im-

FIG. 17. The renormalized gluon propagator is shown in theproved propagator displays scaling over the entire Brillouin
infrared region, including the points at zero four-momentum, fromzone. At 3=4.38 (a=0.166 fm), the gluon propagator has
five lattices. excellent behavior for the entire range of available momenta
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in the Brillouin zone, reproducing the anticipated UV behav-5 65*x 11.30=2038 fnf may be regarded as an excellent
ior of perturbation theory to three-loops. estimate of the infinite volume, continuum limit Landau-
The infrared behavior of the gluon propagator is robustgauge gluon propagator for<0.7 GeV. The tree-level cor-
even with a lattice spacing of 0.41 fm. Calculation on arected results from oug=4.38 (a=0.166 fm) results pre-
lattice with a large volume indicates that finite volume ef-sented here are an excellent estimate of the infinite volume,
fects are small. In particular, the turn over observed in precontinuum limit of the Landau-gauge gluon propagator for
vious studies of the Landau gauge gluon propagator is not §>0.7 GeV. We have seen that these two sets of data
finite volume artifact. We conclude that the propagator issmoothly match in the intermediate regimg~0.7 GeV)
almost certainly infrared finite, in agreement with earlier and are entirely consistent with each other in this region. The
studies. A significant volume dependence is revealed only giossible effects of lattice Gribov copies remains a very in-
the smallest non-trivial momenta. An extrapolationdf0)  teresting question and we plan to extend this study to Laplac-

via a linear ansatz inversely proportional to the physical latian gauge and other related gauge-fixing schemes in the near
tice volume provides a reasonable fit. Moreover, results fromyture.

our largest volume lattice reside very close to the infinite
volume limit. We have probed the approach to the infinite
volume limit by first determining a range ¢ in which the
propagator scales far<0.7 GeV on similar finite volumes. P.O.B. would like to acknowledge helpful conversations
Physically large volumes are accessed by decreaging with Urs Heller and correspondence with Phillippe Boucaud.
within the scaling range on large lattices. A more completeThis work was supported by the Australian Research Council
study of the infinite volume limit should be undertaken in theand by grants of supercomputer time on the CM-5 made
near future. available through the South Australian Centre for Parallel

The tree-level corrected results from o=3.92 @  Computing. The work of P.O.B. was supported in part by
=0.353 fm) 16x32 lattice with a physical volume of DOE contract DE-FG02-97ER41022.
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