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QCD at small nonzero quark chemical potentials
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We study the effects of small chemical potentials associated with the three light quark flavors in QCD. We
use a low-energy effective field theory that solely relies on the symmetries of the QCD partition function. We
find three different phases: a normal phase, a pion superfluid phase and a kaon superfluid phase. The two
superfluid phases are separated by a first order phase transition, whereas the normal phase and either of the
superfluid phases are separated by a second order phase transition. We compute the quark-antiquark conden-
sate, the pion condensate and the kaon condensate in each phase, as well as the isospin density, the strangeness
density, and the mass spectrum.
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[. INTRODUCTION vacuum. It implies the existence of light bosonic degrees of
freedom, and stringent constraints on the physical observ-
QCD at non-zero baryon density has recently been thables. This property has been extensively and successfully
subject of many studies. Our present knowledge of nucleonsed to study QCD at low energy within an effective theory
rich matter is limited to low densities and very high densi-solely based on the symmetries of the QCD partition func-
ties. In the first regime, we can rely on our good phenom4ion, chiral perturbation theor}15,16. Since the spontane-
enological understanding of nuclear interactions in theous breaking of chiral symmetry is still the most relevant
vacuum. In the second regime, the phenomenon of color syroperty of QCD at low enough quark chemical potentials,
perconductivity and its consequences are becoming bett@hiral perturbation theory should also enable us to explore
understood both qualitatively and quantitativily-4]. How-  the QCD phase diagram in this domain. This approach has
ever we have only a poor grasp of a sample of nuclear mattdreen successfully used for QCD-like theories at non-zero
that is neither too dilute nor too dense. Unfortunately thisbaryon chemical potential and for QCD at non-zero isospin
kind of matter is found in many interesting physical systemschemical potential7—9,14.
from supernova explosions and neutron stars to heavy ion We will restrict ourselves to the three light quark flavors,
collisions. In other words, our knowledge of the QCD phasefor which this effective theory approach can be used. There
diagram at non-zero chemical potential is limited to extremds however an intrinsic limitation to this approach. Since
cases, and it is clear that we need a better understanding ofily the octet of Goldstone bosons are kept as the relevant
its characteristics. degrees of freedom, high chemical potentials where other
This situation is very different from what we know about excitations become relevant cannot be reached. A rapid
QCD at non-zero temperature and zero chemical potentiaglance at the hadron spectrum, and in particular the proton,
where numerous analytic and numerical studies have enablébe rho and the omega, shows that we will be able to explore
us to achieve a qualitative and a quantitative understandinthe domain restricted by | <300 MeV, |uq4 <300 MeV,
[5]. Unfortunately, the current numerical techniques are useand|u¢ <550 MeV.
less in the case of QCD with three colors and fermions in the Our study extends the analysis of QCD at low isospin
fundamental representation at non-zero baryon density. Thehemical potential that included the up and down quark fla-
complexity of the measure in the partition function is thevors only[14]. In this analysis, it was found that the pions
origin of the problem. Special techniques have been deveform a condensate at high enough isospin chemical potential.
oped to tackle this problem, but their reach is presently faSimilarly, we will find that for high enough strange chemical
from QCD[6]. There are however QCD-like theories at non- potential, it is energetically favorable for the kaons to form a
zero baryon density that do not have this complexity prob-condensate. A non-trivial phase diagram emerges; there are
lem. Therefore they can be studied numerically with thethree distinct phases: a normal phase, a pion condensation
usual techniques: QCD with two colors and fundamental ferphase and a kaon condensation phase. The superfluid phases
mions, and QCD with any number of colors and adjoint fer-are separated from each other by a first order phase transi-
mions. We now have a good understanding of these QCDton, whereas either of them is separated from the normal
like theories from analytic and numerical studigs-13. phase by a second order phase transition.
QCD with three colors and two flavors of fundamental fer- The pion and kaon condensates we will find in our study
mions at non-zero isospin density also has a real measurare very different from the pion and kaon condensates that
and can therefore also be studied with standard numeric@merge in a nucleon rich environmelit7]. In this latter
algorithms[14]. case, the condensation is driven by the attractive meson-
In this article we will study the QCD phase diagram for nucleon interactions. In our case the baryon density is zero,
small chemical potentials associated to each quark flavor. Aand the pion and kaon condensates emerge out of the vacuum
low enough energies, the single most important property ofs soon as it becomes energetically favorable for the system
QCD is that chiral symmetry is spontaneously broken in theo form such condensates in the ground state, just because of
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the charge carried by these modes. vector transformations and contains the octet of Goldstone
We proceed as follows. First we shortly derive the effec-bosons due to spontaneous chiral symmetry breaking:

tive Lagrangian in Sec. Il, and then determine the ground .

state of the effective theory in Sec. Ill. Section IV is devoted S=U3SU, with U=expid/\2F), (5

to the computation of the various condensates relevant to the

three different phases as well as the isospin and strangeneasd

densities. The mass spectrum is computed in Sec. V. Con-

cluding remarks and discussion are presented in Sec. VI. 7T_0+ 7}_0 - K+
V2 6
Il. LOW-ENERGY EFFECTIVE LAGRANGIAN 0 0
_ T 7 0
In order to construct the low-energy effective Lagrangian, o= ™ - E + % K ' (6)
we need to study the symmetries of QCD. We work in
Minkowski space. The fermionic part of the QCD Lagrang- B — 27°
ian at non-zero quark chemical potentials is given by K K - %
Loco= WD Y+ yB,y, — yMap, 1)

with 3 =diag(1,1,1) forug=u,=us=0. The effective La-
grangian is invariant under local chiral transformations. At
zero chemical potentials, the masses of the Goldstone bosons
u are given by the Gell-Mann—Oakes—Renner relation:

where

y=|d|, M=diagm,,mg,mg), 2 m2=2Gm/F?

mZ=G(m+mg)/F? (7
and 2
m’o=2G(m+ 2m,)/3F?2

B,=(—B,0),
v=( ) =(4m2—m?2)/3.

B=diag py, pa.its) The first remarkable property of the effective Lagrangian
(4) is that in the g ,u ,us) basis,ug completely drops out

of L¢. This is just due to the fact that the effective Lagrang-
One can either use chemical potentials associated with t ign contain; only the octet of Gc_>ldstone bosons due to spon-
quark flavors, or chemical potentials associated with baryonaneous chiral symmetry breaking. The use of the effective

number isospin,u, , and strangenesg,s. In this stud Lagrangian is therefore limited t{g|<940 MeV, |u)|
°l.ptg s 1SOSPINALY YeNEsAs. Y» <770 MeV, and g <550 MeV. These estimated bounds
we will take m,=myg=m. When all quark masses and

chemical potentials vanish, the QCD Lagrangian is invarialnfr:g;nZ;ri(\)/renI thfhriganiseigmftﬁ;o;%g ci?veer[];) ?22 ti:li ?Sn;?]?a,
under SU(3)X SUg(3)*XUy(1). At zero chemical poten- b Y- grang y

tial, this symmetry is spontaneously broken &,(3) valid in the domair| | <300 MeV, || <300 MeV, and

. : g <550 MeV. Therefore in this work, the baryon chemi-
*Uy(1). There are therefore eight Goldstone bosons in th%:al potential will never appear explicitly, and we will work

spectrum:r®, w*, w, 7° K", K™, K° andK®. They are  ith ,,, andus. Recall however that all our results are valid
the relevant degrees of freedom at low energy. for | ug| <940 MeV, and that chiral perturbation theory, in
~ The effective Lagrangian of QCD at low energies andits domain of validity, allows us to determine the phase dia-
finite quark chemical potentials in Minkowski space is givengram in thethreequark chemical potentials. For definiteness,
by we will restrict ourselves tqu,,us>0, the other quadrants

) in the (u;,ug)-plane are easily derived from our results.

F 1
La=7TIV,EV, 5T+ SGTrME+ST, (@)

=diag s+ 3/, 5B 3 415 MB— M) )

Ill. GROUND STATE

where 2 e SU(3), andV,2=4,2—i[B,,2]. This is the The ground state of the effective theory is determined by
usual chiral perturbation theory Lagrangian at lowest ordethe maximum of the static part of the effective Lagrangian.
[15,14. It contains only the octet of Goldstone bosons due torherefores,, the maximum of

spontaneous chiral symmetry breaking. The chemical poten-
tial has been introduced in the same way as a regular vector o o, L oo

source using the usual flavor gauge symmét,7]. Under Lsta=— ZTr[B,E][B,E I+ §G TrM(E+37), (8

a chiral rotation, the quark fields transform ag (¢R)

— (VL Vryr), with V| reSU(3) r, whereas % determines the ground state of QCD at non-zero quark
—VgEV[ . For zero chemical potentiak is invariant under chemical potentials.

2
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We will use the following ansatz for the saddle point: F2
L= 2GmCOSa+GmS+7,u|25in2a, (13
1 0 0 cosae sina O
s=|0 cosB —sing —sinae cosa O cosa=1 for w;<m,
. ith

0 sing cospB 0 0 1 w cosa=(m_/u)? for w>m,,
14
1 0 0 4

x| 0 cosp sing |, (9) cosa sina O

0 -sinB cosB and S=| —sina cosa 0O (15)

_ 0 0 1
with @, B (0,7/2). Notice that3|,-,=diag(1,1,1) corre-
sponds to the ground stateat= us=0. Furthermore in the

(il) B=7/2. The static part of the effective Lagrangian, its
massless case,

maximum, and the saddle point are given by

0 10 L= GM+G( ) i 2 ifa, (16)
— ta— GM+G(M+mg)cosa+ — | s 4+ us| Sifa,
3(a=mrp-0p=| ~1 0 (10 ° ° 2\2
0 O
cosa=1 for 3u,+us<mg
is found to be the maximum whem,>2us, and with{ cosa=[my/(u + ue)]? 17
0 0 1 for $u,+us>mg,
Siammi2p=mzy=| 0 1 0 (11) _
1.0 0 B cosa 0 sina
and X= 0 1 0 (18

is found to be the maximum when,<2us. By noticing —sina 0 cosa
that the condensate is basically given {2, ¢, , it is easy
to see that Eq(10) corresponds to a pion condensation Finally, in order to find the maximum of the static part of
phase, and that Eq11) corresponds to a kaon condensationthe effective Lagrangian in the whole quadrant,us>0,
phase. Our ansatz corresponds to an axial rotation to go fromve have to compare the value 6§ for «=0, for =0 and
the normal phase to either of the superfluid phases, and @sa=(m, /)% and for B==/2 and cosr=[mc/(i
vector rotation to go directly fr_om one s_uperfluid phase tO+Ms)]2- The orientation of the condensate for a given pair
the other. We W|II show that this qnsatz indeed cqrr.espond@l g is determined by the maximum @, at this point.
to a local maximum ofLg,,. We will assume that it is the \\e find three different phases:
global maximum.

After our ansatZ9) is introduced into Eq(8), the static
part of the effective Lagrangian becomes quite complicated:

(1) Normal phaseu,<m. and us<myg— 3 u,:

cosa=1, any Be(0,7/2). (19
(2) Pion condensation phases,>m, and us<[—m>

V(M= uf) 2+ ami ui 12

1
Lstat= E{(Zlﬂf"' 12u st 20ug+ (19uf+ 20w us
2 H _ _ 2
+12u%)cosa)sin?(al2) — 2( w, — 2 us) m

2
COSa=(—7T) ,  B=0.

(20
My

X sin*(a/2)cod48) +2( ) —2us) (3 +2s)

X sirfa}+ G{m cosa(1+ cogB)+mscos 3

+ (M+ mcosa)sir?B}. (12
We first maximizeL,; with respect tg3. Remember that we
limit ourselves to the first quadrant in the(,us) plane:
M ,4s>0. We find that the maximum, for+0 and 8
e (0,7/2), is either atB=0 or at 8= w/2. Therefore there

(3) Kaon condensation phaseus>mg—3u, and ug

>[=m2+ (M7= ud)+amiufli2u:

2

m
< |, p=ml.

cosa= (21

Mt us

The curveps=(—m2+ (M2 — u?)2+4mz u?)/2u, is a

are two different phases according to the valugoie look  first order phase transition curve, because the pion and kaon

for the maximum ofL,, separately in each case. condensates compete on this curve. The phase diagram in the
(i) B=0. The static part of the effective Lagrangian, its first quadrant and its obvious extension to the whole

maximum, and the saddle point are given by (1 ,g)-plane are given in Fig. 1 fom_=140 MeV, and
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FIG. 1. Phase diagram in the(,ug) plane. The solid lines are second order phase transitions, whereas the dotted curves are first order
phase transitions. The intersection of the three phase transition curves on the left figurg is@) € (m,. ,my—m_/2).

m¢ =500 MeV. They are very similar to the phase diagram
of QCD-like theories at finite baryon and isospin densities

[9]. (ss)=G=(qq)o

(uu)=(dd)=Geosa=(qa)om?/u?

- —oain o 4 4
IV. CONDENSATES AND CHARGE DENSITIES (dysut+H.c)=Gsina=(qq)oy1—mi/ui (23

We will show in the next section that given by Eqs(9), <§y5u+ H.c)=0
(19), (20), (21) is indeed a local maximum of the static part
of the effective Lagrangian. We will assume that it is the
global maximum. But first we investigate the properties of
the ground state described by E(®), (19), (20), (21) in the
three phases by looking at different observables. The quark-
antiquark condensate&jq) for g=u,d,s, the pion conden- (3) Kaon condensation phaseus>myg—u,/2 and ug
sate,(dysu+ H.c), the kaon condensatésysu+H.c) are  >[—ma+\(m5— ul)?+4mgulli2u, :

obtained by inserting the appropriate sources into the effec-

tive Lagrangian[8], or more directly by noticing that the
vacuum expectation value of an operator bilinear in the

quark fields is basically given byygs ¢, ) (10),(11). The
isospin densityn,=dLes/du,, and the strangeness density,
Ns= dLex/ s are easily obtained from the static part of the
effective Lagrangian.

(1) Normal phaseu;<m_ and ws<my— 3 u, :

n=F2u(1-m}/ )

ns=0.

(uu)=(ss)=G cosa=(qq)omg/ (3 uf + ps)?
<Ed> =G= <EQ>0

(dysu+H.c)=0 (24)

<;75U+ H.c)=Gsina= <EQ>0\/1_ mﬁl(%ﬂl +ups)?
<UU>: <Ed> = <§$>: GE(H@O n=3F2(3 i+ o[ 1—mgl (3 1+ o) ]

Ns=F2(3 1+ e[ 1—mg/ (3 + pe)*l.

(dysu+H.c)=(sysu+H.c)=0 (22
The isospin and strangeness densities in the superfluid
phases just above the second order phase transition curves
n=ng=0. can be reproduced within a semi-classical analysis of a dilute

Bose gas in the Bose-Einstein condensation pf@lsén the
kaon superfluid phase, the strangeness density is naturally
found to be twice as big as the isospin density, since a kaon
carries twice as much strangeness than isospin.

(2) Pion condensation phas:,>m, and ,us<[—m37
V(M2 — wf)+ ami ufli2u,
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FIG. 2. The figure on top is the phase diagram in the first quadrant ofithgug) plane. The light solid horizontal line corresponds to
uns=200 MeV, the value we use throughout the other figures depicted underneath. In these last six figures, the criticajuyadti¢hef
second order phase transition is depicted by a solid vertical line. The different condensates are shown in the next five figures. The isospin
density(solid curve and the strangeness densitiashed curveare shown together in the last figure.

The different condensates and charge densities as a func- =2 1
tion of , and for a constants are depicted in Fig. 2, for Lef=— ZTF[B,E][B,ETH 5G TrTM(E+37)
ms=200 MeV, and in Fig. 3, fous=460 MeV. In the first
case we encounter only two phasesiaschanges, whereas F2 L F2 +
in the second case we encounter the three different phases o 3,29, 2"+i 7TrB[E 002 ]. (25)

found above asu, changes. As expected, the condensates

and charge densities are continuous across the second order . ) o
phase transition and discontinuous across the first order onéhe fourth term in Eq(25) may involve a term quadratic in
The different phases and the nature of the different phasée Goldstone fieldé5). In the superfluid phases, the original

transitions are clearly distinguished by the observables wéoldstone fields are mixefB]. Since the usual Goldstone
study. manifold changes as the normal phase is left, the original

octet of Goldstone bosons is not an appropriate set of coor-
dinates for the new Goldstone manifold. We will denote
V. CURVATURES AND MASS SPECTRUM these new appropriate fields by a “tilde.” We choose them so
o that the kinetic term in the Lagrangian is canonical. Further-
In this section we will prove thak given by Egs.(9),  more, the linear derivative term in E(R5) mixes these new
(19), (20), (21) is indeed a local maximum of the static part fields. Therefore the mass spectrum is not directly given by
of the effective Lagrangian. We compute the masses of théhe curvatures of the static part of the Lagrangian at the
different excitations in the three phases. In order to obtairmaximum. Whem-fields are mixed, the inverse propagator
these masses, we have to expand the whole effective Ldbhat appears in the effective Lagrangian i>an matrix, and
grangian up to second order in the Goldstone fields. Théhe masses are given by the zeros of its determinant ipéhe
general form of the effective Lagrangian reads plane. A secular equation has therefore to be solved. It is a
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FIG. 3. The figure on top is the phase diagram in the first quadrant ofithgug) plane. The light solid horizontal line corresponds to
us=460 MeV, the value we use throughout the other figures depicted underneath. In these last six figures, the criticajuyadti¢hef
second order phase transition is depicted by a solid vertical line, and the critical valyeabthe first order phase transition is depicted by
a dotted vertical line. The different condensates are shown in the next five figures. The isospin (@efidityurve and the strangeness
density (dashed curveare shown together in the last figure. The difference between the second and first order phase transitions are very

clearly seen in these observables.

nth order equation irp3 when n fields are mixed by the
linear derivative term in Eq(25). These equations can be
explicitly solved, but the explicit solutions are cumbersome
and rather useless expressions. Therefore we will only give
which fields are mixed by the linear derivative term in Eq.
(25), and solve the secular equation explicitly in the simple
cases only. The labels of the different mixed states will be
given according to the usual Goldstone mode they corre-
spond to at the second order phase transition with the normal
phase. We study each phase separately, and summarize our

results for the mass spectrum in a few figures.

A. Normal phase

m,o=m,o= \/m

m +=m_— u

m_ -=m_+ u,

K+ =Mk— 24~ fis (26)
Mg-=My+ 201+ s

Myo=Mg+ 2 41— Ks

_ 1
Mgo=Mg— 31t Us.

For w;<m, and us<mg—3u,, With the Goldstone The effect of the chemical potentials is just to shift the mass
fields defined in Eq(6), we find that there is no mixing of a state by its charges times the chemical potentials:
induced by the linear derivative term in the quadratic part of—E—1u,—Sug, wherel andSare the isospin and strange-

the effective Lagrangian. The various masses read

ness of that state.
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B. Pion condensation phase

For wy>m and us<[-m% 7% 3% K" K are given by the zeros in tHe plane of
+ (M2 — w2+ ami wi]/2u, , we find that there is mixing -
between some of the fields defined in E@), namely 3ESHt to 0 0
(7, %t 7)), and'(KﬂK’,KO,KO). We find that the dif- th LE21t,, Ety 0
ferent masses are given by de ., (30
, 0 Etly; 1E2  Etg
m’;r[):/-lq T 12
0 0 Et34 i E +t44
1
m%o=F(4mﬁ,u,2—Zmi,u|2+6mf7+7,u|4 where
My
1
— 2
+[48MS (uf—ml) + ' (4mg + ) 1™~ 2 cosa K
—4m? uf(24mg — 43uf) L
_ 2 2
—4mZ (4 + uf) M) tz= 5 m (M)
mZ,=0 27

ty=— & (2m2+micosa) (31)

1
: 1
m;—:6M|2 (Amguf—2m2uf+6mi+7uf e — ﬁ(%/'“ + ugsing
—[48m(puf—m) + i (Amg+ p)? o

4 2 2 2 tgs=—i(z uy+ ps)COSa
— 4m7 p i (24my — 43uf) o

ta4= 5[ — Mi.cos

—4mZ pi(Amg+ )M, 44= 3[ —micosa

- + (3t pg)’cos],
and the masses &*,K~,K% K are given by the zeros on
the E plane of and cosy=[my /(3 +ug) % as given in Eq(21). One of the

modes, theK ", is massless. The massesmf, 7 ,K° K°

1p2
;E°+s;  Es Es; 0 are given by the zeros on theplane of
Es, 1E2+s 0 Ess
def ’ . ' L _ , 1E24y,  Eu Eus 0
s E“+s S,
% Lo ’ Eu} 1E2+u; O ~Eug
0 Es! Es,  1E2+s, de T :
2 (28) EU3 0 %E2+ Uy EUS
0 —Eu} Eul 1E2+
where : ° : e (32)
$1= 3 [~ mg—iuf+udt i (5p +ps)cosal where
S,=i(ust+ 5 uCOSa) (29 1 2, 2 1
2= HKsT 24 Ui=4 —2mZt ui— 2 st 2 5 Mt s |COSa
S3=3uSina , L
i
Upy=—|3u—2ust2| s+ cos
S4:i(,U/S_%[.L|COSC¥), 2 4|: M Ms Zlul Ms a
and cosy=(m,/u)? as given in Eq(20). U= 3 (3 m+ pg)Sina (33

C. Kaon condensation phase uy= % (_4mﬁ+ 2,U~|2_4,U~|Ms_ ,u,,2003a+ 4MgCOSa’)

For ws> My — /2 and ws>[—m2 _ .
+ (M2 — ud)2+ami ufl/2u, , we find that there is mixing _h 1
between some of the fields defined in E@), namely Us= 7| ~3m+2ust 2| 5t us|coSa,
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FIG. 4. The masses of the eight pseudo-Goldstone bosons are shown here as a funetitor gfs=200 MeV. In these two figures,
the critical value ofu, at the second order phase transition is depicted by a solid vertical line.

and cosv=[my /(3 +ug) >, as given in Eq(21). domain |u/ <300 MeV, |uq4 <300 MeV, and |ug
The spectrum is depicted as a function @f for ug <550 MeV. But thiswhole domain can be reached within
=200 MeV in Fig. 4, and foug=460 MeV in Fig. 5, the chiral perturbation theory.
corresponding condensates and densities are given in Fig. 2 We have found a non-trivial phase diagram. There are
and in Fig. 3, respectively. The masses are continuous acrofizree distinct phases: a normal phase, a pion superfluid
the second order phase transition lines, as they should, amthase, and a kaon superfluid phase. The two superfluid
they are in general discontinuous across the first order phagghases are separated by a first order phase transition curve,
transition curves, as they might. In each superfluid phasevhereas each of them is separated from the normal phase by
there is one single massless Goldstone mode. Stig(3) a second order phase transition curve. The observables that
X Uy(1) symmetry that leaves the quark-antiquark condenwe have analyzed show a typical behavior for such a phase
sate invariant is further broken by the new condensates in théiagram. The behavior of the different condensates at the
superfluid phasedJ,(1) symmetry is broken by the pion second order phase transitions is very similar to what has
condensate, andg(1) is broken by the kaon condensate. been found in QCD-like theorid$,9]. The number densities
just above the second order phase transition curves can be
VI. CONCLUSIONS u_nderstood fro_m a dilute gas appro_xim_a?[(aft. The excit_a-
tion spectrum in the normal phase is trivial, and there is one
In this article we have explored part of the phase diagranmassless mode in each superfluid phase that is due to further
of QCD at non-zero quark chemical potentials and zero temspontaneous symmetry breaking by the unusual condensates,
perature. We have used a low-energy effective theory basegimilar to what as been observed in QCD-like theofies9].
on the symmetries of the QCD partition function, chiral per- Our study extends the analysis of QCD at non-zero isos-
turbation theory. The quark chemical potentials have beepin chemical potential done by Son and Stephalicll. We
introduced into the effective Lagrangian as a usual vectorecover all their results on the pion condensate, the isospin
external source via a flavor gauge symmetry. Because weumber density and the mass spectrum farg|<my
only kept the octet of the Goldstone bosons as relevant de- m_/2=430 MeV, where kaon condensation can become
grees of freedom, which is only justified for small enoughenergetically more favorable, dependingmn(cf. Figs. 1, 2,
chemical potentials, our analysis is intrinsically limited to the 4).

Masses ’ Masses '
(MeV) 1250 (MeV) 1250 ~ /
1000 1000 é’—

750 5 750 .

'10 / \
500 . 500 :
as0t T {/ 250

100 200. 300 400 500 B K+ 100 200. 300 400 500
1 (MeV) o1 (MeV)

FIG. 5. The masses of the eight pseudo-Goldstone bosons are shown here as a funetitor gfs=460 MeV. In these two figures,
the critical value ofy, at the second order phase transition is depicted by a solid vertical line, and the critical valpatdhe first order
phase transition is depicted by a dotted vertical line.
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Finally, at low energy and within the effective theory ap- theory technique we have used in this article is therefore very
proach we have used, it would be interesting to study mattewell suited to study more general problems of this kind.
that is not only made out of quarks and gluons, but also
electrons and neutrinos. The inclusion of the electro- ACKNOWLEDGMENTS
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