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QCD at small nonzero quark chemical potentials

J. B. Kogut and D. Toublan
Loomis Laboratory of Physics, University of Illinois, Urbana-Champaign, Illinois 61801

~Received 25 March 2001; published 2 July 2001!

We study the effects of small chemical potentials associated with the three light quark flavors in QCD. We
use a low-energy effective field theory that solely relies on the symmetries of the QCD partition function. We
find three different phases: a normal phase, a pion superfluid phase and a kaon superfluid phase. The two
superfluid phases are separated by a first order phase transition, whereas the normal phase and either of the
superfluid phases are separated by a second order phase transition. We compute the quark-antiquark conden-
sate, the pion condensate and the kaon condensate in each phase, as well as the isospin density, the strangeness
density, and the mass spectrum.
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I. INTRODUCTION

QCD at non-zero baryon density has recently been
subject of many studies. Our present knowledge of nucl
rich matter is limited to low densities and very high den
ties. In the first regime, we can rely on our good pheno
enological understanding of nuclear interactions in
vacuum. In the second regime, the phenomenon of color
perconductivity and its consequences are becoming b
understood both qualitatively and quantitatively@1–4#. How-
ever we have only a poor grasp of a sample of nuclear ma
that is neither too dilute nor too dense. Unfortunately t
kind of matter is found in many interesting physical system
from supernova explosions and neutron stars to heavy
collisions. In other words, our knowledge of the QCD pha
diagram at non-zero chemical potential is limited to extre
cases, and it is clear that we need a better understandin
its characteristics.

This situation is very different from what we know abo
QCD at non-zero temperature and zero chemical poten
where numerous analytic and numerical studies have ena
us to achieve a qualitative and a quantitative understan
@5#. Unfortunately, the current numerical techniques are u
less in the case of QCD with three colors and fermions in
fundamental representation at non-zero baryon density.
complexity of the measure in the partition function is t
origin of the problem. Special techniques have been de
oped to tackle this problem, but their reach is presently
from QCD @6#. There are however QCD-like theories at no
zero baryon density that do not have this complexity pr
lem. Therefore they can be studied numerically with t
usual techniques: QCD with two colors and fundamental
mions, and QCD with any number of colors and adjoint f
mions. We now have a good understanding of these QC
like theories from analytic and numerical studies@7–13#.
QCD with three colors and two flavors of fundamental fe
mions at non-zero isospin density also has a real meas
and can therefore also be studied with standard nume
algorithms@14#.

In this article we will study the QCD phase diagram f
small chemical potentials associated to each quark flavo
low enough energies, the single most important property
QCD is that chiral symmetry is spontaneously broken in
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vacuum. It implies the existence of light bosonic degrees
freedom, and stringent constraints on the physical obs
ables. This property has been extensively and success
used to study QCD at low energy within an effective theo
solely based on the symmetries of the QCD partition fu
tion, chiral perturbation theory@15,16#. Since the spontane
ous breaking of chiral symmetry is still the most releva
property of QCD at low enough quark chemical potentia
chiral perturbation theory should also enable us to expl
the QCD phase diagram in this domain. This approach
been successfully used for QCD-like theories at non-z
baryon chemical potential and for QCD at non-zero isos
chemical potential@7–9,14#.

We will restrict ourselves to the three light quark flavor
for which this effective theory approach can be used. Th
is however an intrinsic limitation to this approach. Sin
only the octet of Goldstone bosons are kept as the rele
degrees of freedom, high chemical potentials where ot
excitations become relevant cannot be reached. A ra
glance at the hadron spectrum, and in particular the pro
the rho and the omega, shows that we will be able to exp
the domain restricted byumuu,300 MeV, umdu,300 MeV,
and umsu,550 MeV.

Our study extends the analysis of QCD at low isosp
chemical potential that included the up and down quark
vors only @14#. In this analysis, it was found that the pion
form a condensate at high enough isospin chemical poten
Similarly, we will find that for high enough strange chemic
potential, it is energetically favorable for the kaons to form
condensate. A non-trivial phase diagram emerges; there
three distinct phases: a normal phase, a pion condensa
phase and a kaon condensation phase. The superfluid ph
are separated from each other by a first order phase tra
tion, whereas either of them is separated from the nor
phase by a second order phase transition.

The pion and kaon condensates we will find in our stu
are very different from the pion and kaon condensates
emerge in a nucleon rich environment@17#. In this latter
case, the condensation is driven by the attractive mes
nucleon interactions. In our case the baryon density is z
and the pion and kaon condensates emerge out of the vac
as soon as it becomes energetically favorable for the sys
to form such condensates in the ground state, just becau
©2001 The American Physical Society07-1
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the charge carried by these modes.
We proceed as follows. First we shortly derive the effe

tive Lagrangian in Sec. II, and then determine the grou
state of the effective theory in Sec. III. Section IV is devot
to the computation of the various condensates relevant to
three different phases as well as the isospin and strange
densities. The mass spectrum is computed in Sec. V. C
cluding remarks and discussion are presented in Sec. V

II. LOW-ENERGY EFFECTIVE LAGRANGIAN

In order to construct the low-energy effective Lagrangia
we need to study the symmetries of QCD. We work
Minkowski space. The fermionic part of the QCD Lagran
ian at non-zero quark chemical potentials is given by

LQCD5c̄D” c1c̄Bngnc2c̄Mc, ~1!

where

c5S u

d

s
D , M5diag~mu ,md ,ms!, ~2!

and

Bn5~2B,0W !,

B5diag~mu ,md ,ms!

5diag~ 1
3 mB1 1

2 m I , 1
3 mB2 1

2 m I , 1
3 mB2mS!. ~3!

One can either use chemical potentials associated with
quark flavors, or chemical potentials associated with bar
number,mB , isospin,m I , and strangeness,mS . In this study,
we will take mu5md[m. When all quark masses an
chemical potentials vanish, the QCD Lagrangian is invari
under SUL(3)3SUR(3)3UV(1). At zero chemical poten
tial, this symmetry is spontaneously broken toSUV(3)
3UV(1). There are therefore eight Goldstone bosons in
spectrum:p0, p1, p2, h0, K1, K2, K0, andK̄0. They are
the relevant degrees of freedom at low energy.

The effective Lagrangian of QCD at low energies a
finite quark chemical potentials in Minkowski space is giv
by

Leff5
F2

4
Tr ¹nS¹nS†1

1

2
G Tr M~S1S†!, ~4!

where SPSU(3), and ¹nS5]nS2 i @Bn ,S#. This is the
usual chiral perturbation theory Lagrangian at lowest or
@15,16#. It contains only the octet of Goldstone bosons due
spontaneous chiral symmetry breaking. The chemical po
tial has been introduced in the same way as a regular ve
source using the usual flavor gauge symmetry@16,7#. Under
a chiral rotation, the quark fields transform as (cL ,cR)
→(VLcL ,VRcR), with VL,RPSU(3)L,R , whereas S
→VRSVL

† . For zero chemical potentialsS is invariant under
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vector transformations and contains the octet of Goldst
bosons due to spontaneous chiral symmetry breaking:

S5US̄U, with U5exp~ iF/A2F !, ~5!

and

F5S p0

A2
1

h0

A6
p1 K1

p2
2

p0

A2
1

h0

A6
K0

K2 K̄0 2
2h0

A6

D , ~6!

with S̄5diag(1,1,1) formB5m I5mS50. The effective La-
grangian is invariant under local chiral transformations.
zero chemical potentials, the masses of the Goldstone bo
are given by the Gell-Mann–Oakes–Renner relation:

mp
2 52Gm/F2

mK
2 5G~m1ms!/F

2 ~7!

mh0
2

52G~m12ms!/3F2

5~4mK
2 2mp

2 !/3.

The first remarkable property of the effective Lagrangi
~4! is that in the (mB ,m I ,mS) basis,mB completely drops out
of Leff . This is just due to the fact that the effective Lagran
ian contains only the octet of Goldstone bosons due to sp
taneous chiral symmetry breaking. The use of the effec
Lagrangian is therefore limited toumBu,940 MeV, um I u
,770 MeV, andumSu,550 MeV. These estimated bound
come from the masses of the proton, the rho and the om
respectively. This means that the effective Lagrangian is o
valid in the domainumuu,300 MeV, umdu,300 MeV, and
umsu,550 MeV. Therefore in this work, the baryon chem
cal potential will never appear explicitly, and we will wor
with m I andmS . Recall however that all our results are val
for umBu,940 MeV, and that chiral perturbation theory,
its domain of validity, allows us to determine the phase d
gram in thethreequark chemical potentials. For definitenes
we will restrict ourselves tom I ,mS.0, the other quadrants
in the (m I ,mS)-plane are easily derived from our results.

III. GROUND STATE

The ground state of the effective theory is determined
the maximum of the static part of the effective Lagrangia

ThereforeS̄, the maximum of

Lstat52
F2

4
Tr@B,S̄#@B,S̄†#1

1

2
G Tr M~S̄1S̄†!, ~8!

determines the ground state of QCD at non-zero qu
chemical potentials.
7-2
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We will use the following ansatz for the saddle point:

S̄5S 1 0 0

0 cosb 2sinb

0 sinb cosb
D S cosa sina 0

2sina cosa 0

0 0 1
D

3S 1 0 0

0 cosb sinb

0 2sinb cosb
D , ~9!

with a,bP(0,p/2). Notice thatS̄ua505diag(1,1,1) corre-
sponds to the ground state atm I5mS50. Furthermore in the
massless case,

S̄u(a5p/2,b50)5S 0 1 0

21 0 0

0 0 1
D ~10!

is found to be the maximum whenm I.2mS , and

S̄u(a5p/2,b5p/2)5S 0 0 1

0 1 0

21 0 0
D ~11!

is found to be the maximum whenm I,2mS . By noticing

that the condensate is basically given byc̄RS̄cL , it is easy
to see that Eq.~10! corresponds to a pion condensati
phase, and that Eq.~11! corresponds to a kaon condensati
phase. Our ansatz corresponds to an axial rotation to go f
the normal phase to either of the superfluid phases, an
vector rotation to go directly from one superfluid phase
the other. We will show that this ansatz indeed correspo
to a local maximum ofLstat. We will assume that it is the
global maximum.

After our ansatz~9! is introduced into Eq.~8!, the static
part of the effective Lagrangian becomes quite complica

Lstat5
1

32F2
$„21m I

2112m ImS120mS
21~19m I

2120m ImS

112mS
2!cosa…sin2~a/2!22~m I22mS!2

3sin4~a/2!cos~4b!12~m I22mS!~3m I12mS!

3sin2a%1G$m cosa~11cos2b!1mscos2b

1~m1mscosa!sin2b%. ~12!

We first maximizeLstat with respect tob. Remember that we
limit ourselves to the first quadrant in the (m I ,mS) plane:
m I ,mS.0. We find that the maximum, foraÞ0 and b
P(0,p/2), is either atb50 or at b5p/2. Therefore there
are two different phases according to the value ofb. We look
for the maximum ofLstat separately in each case.

~i! b50. The static part of the effective Lagrangian,
maximum, and the saddle point are given by
03400
m
a

s

d:

Lstat52Gmcosa1Gms1
F2

2
m I

2sin2a, ~13!

with H cosa51 for m I,mp

cosa5~mp /m I !
2 for m I.mp ,

~14!

and S̄5S cosa sina 0

2sina cosa 0

0 0 1
D . ~15!

~ii ! b5p/2. The static part of the effective Lagrangian, i
maximum, and the saddle point are given by

Lstat5Gm1G~m1ms!cosa1
F2

2 S 1

2
m I1mSD 2

sin2a, ~16!

withH cosa51 for 1
2 m I1mS,mK

cosa5@mK /~ 1
2 m I1mS!#2

for 1
2 m I1mS.mK ,

~17!

and S̄5S cosa 0 sina

0 1 0

2sina 0 cosa
D . ~18!

Finally, in order to find the maximum of the static part
the effective Lagrangian in the whole quadrantm I ,mS.0,
we have to compare the value ofLstat for a50, for b50 and

cosa5(mp /mI)
2, and for b5p/2 and cosa5@mK /( 1

2mI

1mS)#
2. The orientation of the condensate for a given p

(m I ,mS) is determined by the maximum ofLstatat this point.
We find three different phases:

~1! Normal phase: m I,mp andmS,mK2 1
2 m I :

cosa51, any bP~0,p/2!. ~19!

~2! Pion condensation phase: m I.mp and mS,@2mp
2

1A(mp
2 2m I

2)214mK
2 m I

2#/2m I :

cosa5S mp

m I
D 2

, b50. ~20!

~3! Kaon condensation phase: mS.mK2 1
2 m I and mS

.@2mp
2 1A(mp

2 2m I
2)214mK

2 m I
2#/2m I :

cosa5S mK

1
2 m I1mS

D 2

, b5p/2. ~21!

The curvemS5(2mp
2 1A(mp

2 2m I
2)214mK

2 m I
2)/2m I is a

first order phase transition curve, because the pion and k
condensates compete on this curve. The phase diagram i
first quadrant and its obvious extension to the wh
(m I ,mS)-plane are given in Fig. 1 formp5140 MeV, and
7-3
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FIG. 1. Phase diagram in the (m I ,mS) plane. The solid lines are second order phase transitions, whereas the dotted curves are fir
phase transitions. The intersection of the three phase transition curves on the left figure is at (m I ,mS)5(mp ,mK2mp/2).
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mK5500 MeV. They are very similar to the phase diagra
of QCD-like theories at finite baryon and isospin densit
@9#.

IV. CONDENSATES AND CHARGE DENSITIES

We will show in the next section thatS̄ given by Eqs.~9!,
~19!, ~20!, ~21! is indeed a local maximum of the static pa
of the effective Lagrangian. We will assume that it is t
global maximum. But first we investigate the properties
the ground state described by Eqs.~9!, ~19!, ~20!, ~21! in the
three phases by looking at different observables. The qu
antiquark condensates,^q̄q& for q5u,d,s, the pion conden-
sate,^d̄g5u1H.c.&, the kaon condensate,^s̄g5u1H.c.& are
obtained by inserting the appropriate sources into the ef
tive Lagrangian@8#, or more directly by noticing that the
vacuum expectation value of an operator bilinear in

quark fields is basically given bŷc̄RS̄cL& ~10!,~11!. The
isospin density,nI5]Leff /]m I , and the strangeness densi
nS5]Leff /]mS are easily obtained from the static part of t
effective Lagrangian.

~1! Normal phase, m I,mp andmS,mK2 1
2 m I :

^ūu&5^d̄d&5^s̄s&5G[^q̄q&0

^d̄g5u1H.c.&5^s̄g5u1H.c.&50 ~22!

nI5nS50.

~2! Pion condensation phase, m I.mp and mS,@2mp
2

1A(mp
2 2m I

2)214mK
2 m I

2#/2m I :
03400
s

f

k-

c-

e

^ūu&5^d̄d&5Gcosa5^q̄q&0mp
2 /m I

2

^s̄s&5G5^q̄q&0

^d̄g5u1H.c.&5G sina5^q̄q&0A12mp
4 /m I

4 ~23!

^ s̄g5u1H.c.&50

nI5F2m I~12mp
4 /m I

4!

nS50.

~3! Kaon condensation phase, mS.mK2m I /2 and mS

.@2mp
2 1A(mp

2 2m I
2)214mK

2 m I
2#/2m I :

^ūu&5^s̄s&5G cosa5^q̄q&0mK
2 /~ 1

2 m I
21mS!2

^d̄d&5G5^q̄q&0

^d̄g5u1H.c.&50 ~24!

^s̄g5u1H.c.&5G sina5^q̄q&0A12mK
4 /~ 1

2 m I1mS!4

nI5
1
2 F2~ 1

2 m I1mS!@12mK
4 /~ 1

2 m I1mS!4#

nS5F2~ 1
2 m I1mS!@12mK

4 /~ 1
2 m I1mS!4#.

The isospin and strangeness densities in the super
phases just above the second order phase transition cu
can be reproduced within a semi-classical analysis of a di
Bose gas in the Bose-Einstein condensation phase@8#. In the
kaon superfluid phase, the strangeness density is natu
found to be twice as big as the isospin density, since a k
carries twice as much strangeness than isospin.
7-4
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FIG. 2. The figure on top is the phase diagram in the first quadrant of the (m I ,mS) plane. The light solid horizontal line corresponds
mS5200 MeV, the value we use throughout the other figures depicted underneath. In these last six figures, the critical value ofm I at the
second order phase transition is depicted by a solid vertical line. The different condensates are shown in the next five figures. T
density~solid curve! and the strangeness density~dashed curve! are shown together in the last figure.
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The different condensates and charge densities as a f
tion of m I and for a constantmS are depicted in Fig. 2, for
mS5200 MeV, and in Fig. 3, formS5460 MeV. In the first
case we encounter only two phases asm I changes, wherea
in the second case we encounter the three different ph
found above asm I changes. As expected, the condensa
and charge densities are continuous across the second
phase transition and discontinuous across the first order
The different phases and the nature of the different ph
transitions are clearly distinguished by the observables
study.

V. CURVATURES AND MASS SPECTRUM

In this section we will prove thatS̄ given by Eqs.~9!,
~19!, ~20!, ~21! is indeed a local maximum of the static pa
of the effective Lagrangian. We compute the masses of
different excitations in the three phases. In order to obt
these masses, we have to expand the whole effective
grangian up to second order in the Goldstone fields. T
general form of the effective Lagrangian reads
03400
nc-

es
s
der
e.

se
e

e
in
a-
e

Leff52
F2

4
Tr@B,S#@B,S†#1

1

2
G Tr M~S1S†!

1
F2

4
Tr ]nS]nS†1 i

F2

2
Tr B@S†,]0S#. ~25!

The fourth term in Eq.~25! may involve a term quadratic in
the Goldstone fields~6!. In the superfluid phases, the origin
Goldstone fields are mixed@8#. Since the usual Goldston
manifold changes as the normal phase is left, the orig
octet of Goldstone bosons is not an appropriate set of c
dinates for the new Goldstone manifold. We will deno
these new appropriate fields by a ‘‘tilde.’’ We choose them
that the kinetic term in the Lagrangian is canonical. Furth
more, the linear derivative term in Eq.~25! mixes these new
fields. Therefore the mass spectrum is not directly given
the curvatures of the static part of the Lagrangian at
maximum. Whenn-fields are mixed, the inverse propagat
that appears in the effective Lagrangian is an3n matrix, and
the masses are given by the zeros of its determinant in thp0

2

plane. A secular equation has therefore to be solved. It
7-5
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FIG. 3. The figure on top is the phase diagram in the first quadrant of the (m I ,mS) plane. The light solid horizontal line corresponds
mS5460 MeV, the value we use throughout the other figures depicted underneath. In these last six figures, the critical value ofm I at the
second order phase transition is depicted by a solid vertical line, and the critical value ofm I at the first order phase transition is depicted
a dotted vertical line. The different condensates are shown in the next five figures. The isospin density~solid curve! and the strangenes
density~dashed curve! are shown together in the last figure. The difference between the second and first order phase transitions
clearly seen in these observables.
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nth order equation inp0
2 when n fields are mixed by the

linear derivative term in Eq.~25!. These equations can b
explicitly solved, but the explicit solutions are cumbersom
and rather useless expressions. Therefore we will only g
which fields are mixed by the linear derivative term in E
~25!, and solve the secular equation explicitly in the simp
cases only. The labels of the different mixed states will
given according to the usual Goldstone mode they co
spond to at the second order phase transition with the no
phase. We study each phase separately, and summariz
results for the mass spectrum in a few figures.

A. Normal phase

For m I,mp and mS,mK2 1
2 m I , with the Goldstone

fields defined in Eq.~6!, we find that there is no mixing
induced by the linear derivative term in the quadratic part
the effective Lagrangian. The various masses read
03400
e
e

.

e
-
al
our

f

mp05mp

mh05mh05A~4mK
2 2mp

2 !/3

mp15mp2m I

mp25mp1m I

mK15mK2 1
2 m I2mS ~26!

mK25mK1 1
2 m I1mS

mK05mK1 1
2 m I2mS

mK̄05mK2 1
2 m I1mS .

The effect of the chemical potentials is just to shift the ma
of a state by its charges times the chemical potentialsE
→E2Im I2SmS , whereI andSare the isospin and strange
ness of that state.
7-6
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B. Pion condensation phase

For m I.mp and mS,@2mp
2

1A(mp
2 2m I

2)214mK
2 m I

2#/2m I , we find that there is mixing
between some of the fields defined in Eq.~6!, namely
(p0,h0,p1,p2), and (K1,K2,K0,K̄0). We find that the dif-
ferent masses are given by

mp̃0
2

5m I
2

mh̃0
2

5
1

6m I
2
„4mK

2 m I
222mp

2 m I
216mp

4 17m I
4

1@48mp
6 ~m I

22mp
2 !1m I

4~4mK
2 1m I

2!2

24mp
4 m I

2~24mK
2 243m I

2!

24mp
2 m I

4~4mK
2 1m I

2!#1/2
…

mp̃1
2

50 ~27!

mp̃2
2

5
1

6m I
2
„4mK

2 m I
222mp

2 m I
216mp

4 17m I
4

2@48mp
6 ~m I

22mp
2 !1m I

4~4mK
2 1m I

2!2

24mp
4 m I

2~24mK
2 243m I

2!

24mp
2 m I

4~4mK
2 1m I

2!#1/2
…,

and the masses ofK̃1,K̃2,K̃0,K̃̄0 are given by the zeros o
the E plane of

detS 1
2 E21s1 Es2 Es3 0

Es2
† 1

2 E21s1 0 Es3

Es3
† 0 1

2 E21s1 Es4

0 Es3
† Es4

† 1
2 E21s1

D ,

~28!

where

s15 1
2 @2mK

2 2 1
4 m I

21mS
21m I~

1
2 m I1mS!cosa#

s25 i ~mS1 1
2 m Icosa! ~29!

s35 1
2 m Isina

s45 i ~mS2 1
2 m Icosa!,

and cosa5(mp /mI)
2, as given in Eq.~20!.

C. Kaon condensation phase

For mS.mK2m I /2 and mS.@2mp
2

1A(mp
2 2m I

2)214mK
2 m I

2#/2m I , we find that there is mixing
between some of the fields defined in Eq.~6!, namely
03400
(p0,h0,K1,K2), and (p1,p2,K0,K̄0). The masses of
p̃0,h̃0,K̃1,K̃2 are given by the zeros in theE plane of

detS 1
2 E21t11 t12 0 0

t12
† 1

2 E21t22 Et23 0

0 Et23
† 1

2 E2 Et34

0 0 Et34
† 1

2 E21t44

D , ~30!

where

t1152
1

2 cosa
mK

2

t125
1

2A3
~mK

2 2mp
2 !

t2252 1
6 ~2mp

2 1mK
2 cosa! ~31!

t2352
1

A3
~ 1

2 m I1mS!sina

t3452 i ~ 1
2 m I1mS!cosa

t445
1
2 @2mK

2 cosa

1~ 1
2 m I1mS!2cos2a#,

and cosa5@mK /( 1
2mI1mS)#

2, as given in Eq.~21!. One of the

modes, theK̃1, is massless. The masses ofp̃1,p̃2,K̃0,K̃̄0

are given by the zeros on theE plane of

detS 1
2 E21u1 Eu2 Eu3 0

Eu2
† 1

2 E21u1 0 2Eu3

Eu3
† 0 1

2 E21u4 Eu5

0 2Eu3
† Eu5

† 1
2 E21u4

D ,

~32!

where

u15
1

4 F22mp
2 1m I

222m ImS12m I S 1

2
m I1mSD cosa G

u25
i

4 F3m I22mS12S 1

2
m I1mSD cosa G

u35 1
2 ~ 1

2 m I1mS!sina ~33!

u45 1
8 ~24mK

2 12m I
224m ImS2m I

2cosa14mS
2cosa!

u55
i

4 F23m I12mS12S 1

2
m I1mSD cosaG ,
7-7



,

J. B. KOGUT AND D. TOUBLAN PHYSICAL REVIEW D64 034007
FIG. 4. The masses of the eight pseudo-Goldstone bosons are shown here as a function ofm I for mS5200 MeV. In these two figures
the critical value ofm I at the second order phase transition is depicted by a solid vertical line.
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and cosa5@mK /( 1
2mI1mS)#

2, as given in Eq.~21!.
The spectrum is depicted as a function ofm I for mS

5200 MeV in Fig. 4, and formS5460 MeV in Fig. 5, the
corresponding condensates and densities are given in F
and in Fig. 3, respectively. The masses are continuous ac
the second order phase transition lines, as they should,
they are in general discontinuous across the first order p
transition curves, as they might. In each superfluid ph
there is one single massless Goldstone mode. TheSUV(3)
3UV(1) symmetry that leaves the quark-antiquark cond
sate invariant is further broken by the new condensates in
superfluid phases:UI(1) symmetry is broken by the pio
condensate, andUS(1) is broken by the kaon condensate.

VI. CONCLUSIONS

In this article we have explored part of the phase diagr
of QCD at non-zero quark chemical potentials and zero te
perature. We have used a low-energy effective theory ba
on the symmetries of the QCD partition function, chiral p
turbation theory. The quark chemical potentials have b
introduced into the effective Lagrangian as a usual vec
external source via a flavor gauge symmetry. Because
only kept the octet of the Goldstone bosons as relevant
grees of freedom, which is only justified for small enou
chemical potentials, our analysis is intrinsically limited to t
03400
. 2
ss
nd
se
e

-
he

-
ed
-
n
r
e

e-

domain umuu,300 MeV, umdu,300 MeV, and umsu
,550 MeV. But thiswhole domain can be reached withi
chiral perturbation theory.

We have found a non-trivial phase diagram. There
three distinct phases: a normal phase, a pion superfl
phase, and a kaon superfluid phase. The two super
phases are separated by a first order phase transition c
whereas each of them is separated from the normal phas
a second order phase transition curve. The observables
we have analyzed show a typical behavior for such a ph
diagram. The behavior of the different condensates at
second order phase transitions is very similar to what
been found in QCD-like theories@8,9#. The number densities
just above the second order phase transition curves ca
understood from a dilute gas approximation@8#. The excita-
tion spectrum in the normal phase is trivial, and there is o
massless mode in each superfluid phase that is due to fu
spontaneous symmetry breaking by the unusual condens
similar to what as been observed in QCD-like theories@7–9#.

Our study extends the analysis of QCD at non-zero is
pin chemical potential done by Son and Stephanov@14#. We
recover all their results on the pion condensate, the isos
number density and the mass spectrum forumSu,mK
2mp/25430 MeV, where kaon condensation can beco
energetically more favorable, depending onm I ~cf. Figs. 1, 2,
4!.
,
FIG. 5. The masses of the eight pseudo-Goldstone bosons are shown here as a function ofm I for mS5460 MeV. In these two figures
the critical value ofm I at the second order phase transition is depicted by a solid vertical line, and the critical value ofm I at the first order
phase transition is depicted by a dotted vertical line.
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Finally, at low energy and within the effective theory a
proach we have used, it would be interesting to study ma
that is not only made out of quarks and gluons, but a
electrons and neutrinos. The inclusion of the elect
magnetic interaction and of the weak interaction into ch
perturbation theory has already been achieved in the vac
@18#, and its generalization to non-zero quark chemical
tential seems to be rather straightforward. The effect
ys

.

J

B

o

to

.

.

03400
er
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-
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m
-
e

theory technique we have used in this article is therefore v
well suited to study more general problems of this kind.
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