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Supersymmetric solutions to topologically massive gravity and black holes in three dimensions
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We obtain a general class of exact solutions to topologically massive gravity with or without a negative
cosmological constant. In the first case, we show that the solution is supersymmetric and asymptotically
approaches the extremal BTZ black hole solution, while in the latter case it goes to flat space-time.
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The discovery of Baados-Teitelboim-Zanelli(BTZ) 1, y 2 . . ) 1
black holes[1] enhanced the interest i1+ 2)-dimensional L=—| 0*,/N\dw atzo AN AT Y Vi R S
gravity models considerably. However, it is well known that 1)

general relativity in 2 dimensions has no propagating de-

grees of freedom and no Newtonian linsee, e.g., Ref2], contains the Einstein-Hilbert term, a negative cosmological
and the references thergir physically interesting modifi- constant\=—1/2<0 and the gravitational Chern-Simons
cation of the(1+2)-dimensional general relativity that cures term with the coupling constant, written in terms of Levi-

at least some of these deficiencies is provided by the additio@ivita connection 1-forms»?,. Thus the variation of with

of the gravitational Chern-Simons term to the usual Einsteinfespect to orthonormal coframes8 yields

Hilbert term in the action. This theory is usually called topo-
logically massive gravitfTMG) [3], whose field equations
include the Cotton tensor, which is the analogue of the Weyl
tensor in three dimensions, in addition to the usual Einstein
tensor. With this addition new degrees of freedom are introwhere the Einstein 2-form,=G,x €= — 3R e, and
duced and one now has a dynamical theory with a massivehe Cotton 2-form&,=DY,=dY,+ wba/\Yb. We defined
graviton. The BTZ metric satisfies the TMG field equationsY,=(Ric),— ; Re,, in terms of the Ricci 1-formsRic),

in a trivial way as the Cotton tensor vanishes identically.=(,R? , and the curvature scal@®= .,(Ric)® where., de-
Other known solutions include the “@lel-like” Vuorio so-  notes the interior product operator with respect to a frame
lution [4] and its generalization to solutions with a constantvector that acts on the space of forms and creates a
twist [5]. Another class of these cosmological-type solutiong(p—1)-form out of ap-form. Here R% =do? + 0? N\,

is given by the finite action exact solutions of the TMG field gre the curvature 2-forms of the Levi-Civita connection
equations[6] that also provide a classification of homoge- 1-forms that satisfy Cartan structure equatiahe+ w3,

neous solutions for Euclidean and Lorentz signatures. Exagh gb— g Hodge duality is specified by the oriented volume
static solutions are known to exist for spinning point source$|ement *1= e/ el/\e2.

when the spin and the mass of the sources obey a certain The solutions will be given in terms of the local coordi-
relation[7]. Even though they are not asymptotically anti-denates ¢, p, 4) by the metric tensor

Sitter (AdS) and it is not known how to define mass and

angular momentum in this case, there also exist solutions g=—-e0e’+elwel+e’we?, ®)
with event horizong8]. There is another class of solutions

(that can be obtained from the more general solution weévhere we choose

present here by a certain choice of parameters and by making

a coordinate transformatipnvhich asymptotically approach e’=f(p)dt, e'=dp, e’=h(p)[d¢+a(p)dt]. (4
extremal BTZ black holes but are geodesically complete an‘ﬂ)enoting the derivatives with respect goby a prime, the
have) Fo] event horizon@nlike what we find for our solu- connection 1-forms are found to be ’
tions) [9].

In fact a solution to the linearized version of TMG for a o . o 1, 1, )
stationary rotationally symmetric source was found and it® ;= a€"— Eﬁe W= 5,39 o W= 5,39 —yes,
was conjectured that there are no asymptotically flat station- (5)
ary solutions in the absence of any sourf&8]. Here we
exhibit a general class of exact supersymmetric solutiongvhere we set the connection coefficients
that, with an appropriate choice of integration constants, may

1
= Cat GatA"ea=0, 2

have event horizons and asymptotically approach the ex- o _ah o h 6

tremal BTZ black hole solution. We do emphasize that our a=F. B=— v= 6)

solution is, to our knowledge, the first nontrivial example of

a supersymmetric solution to TMG. The corresponding curvature 2-forms turn out to be
We consider the actiol e,w]= [\yL where the Lagrang-

ian 3-form M Rol:Ael/\eO+ Bez/\el, R02: Cez/\eo,
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RL,=Be’\e'+De?/\et, (7) . (1 B\,

—CYF26+ I——E Foé':O, (15)
where we defined
1 B
3 1 1 e |22 P

AEal+a2_ ZIBZ' BEEB/+,YB, CEa,y_,r_ZBZ, 2N’ e+ I Z)erf—o, (16)

1 (1 B L.
DE,yr+,y2+ZB2 _’)/F06+ I—+E FzEZO, (17)

After some a|gebra the field equations can be reduced to have to be satisfied SimultaneOUSIy. Now a suitable set of
realI" matrices can be chosen as

1 1 1 ]
—-D+—+—|B'+By+=B(C—A)|=0, (8) 0 1 0 1 1 0
|2 7’ 2 | = = = =
FO _1 0 ’ Fl 1 0 ’ FZ Forl O _1
B+1 1(D A—-C)' + a(D C)+3,BB 0 9) "o
_B+ZlZ(D-A— a(D— e =0,
mi2 2 and the constant spin@r can be taken as
c-1.1 B+2B(A-D)|=0 e=| " 19
2t | (T @Bt 5 B(A-D) =0, =) (19
(10)
Substituting these in Eq17) one gets
A+ 2B Bt S p(C+D—2A)|=0 1 B\t (1B
12 n aBr A |0 €L=7(|—+§ ER=(|—+§ Y ler (20)
(13)
We found it remarkable that the following conditions on Which gives
the connection coefficients
S ] T 21
ko1 K 1 v=ETT TR )
a=sBty y==5Bt ¢ (12)

(k?=1). Similarly using Eq(15), one gets
(with k?=1), that follow from the field equations and were 1
essential for finding the general self-dual solutions of the B :a(i_ﬁ) 6 :(1 ﬁ)a—lé (22)
Einstein-Maxwell-Chern-Simons theory in+2 dimensions L I 2 R R
[11], turn out to yield solutions in the present case as well. In
fact, the conditiong12) have significance in the following and
sense: Any solution of topologically massive gravity is said

to be supersymmetry preserving provided there exists a non- o=+ 1 _ E _ Eﬁ+} 23)
trivial real 2-spinore satisfying[12] o2, 277
1 Hence, choosing the- sign for the term 1/in the expres-
2D+ |_F €=0 (13 sions(21) and (23), Eqg. (12) is obtained. Finally, Eq(16)
implies
whereI'=T ,e? and D=d+ % ©?°0,p, With o5p=2[T4,T}].
To see that Eq(13) in fact implies Eq.(12), start by taking N (g 1|7t N (B 1
€ to be e=eN(p) wheree is a constant spinor and the form =237 =55 laT I_) €Rr (24)
e . . . 2N
of € is in accord with the fact that our metric functions are
functions of the variable only. (Hencee is defined locally).
Then, Eq.(13) yields
N’ B 1
1 1 - _Z
&N| — al e+ I——g)roe +el 2N"e+ T—?)ere} Zﬁ—i<§ |) (25
1 B which determines the spinor functidhin terms of 8 to be
+e?N| — yIpe+ T3 I',e|=0. (14
N(p)= X f "ap| 21 26
For this to be satisfied for a nontrivia\l, one finds that (p)=exg =3 | del5 7] (26)
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Hence any solution satisfying Eq12) will also preserve
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wherea,, fy, andhg are some new integration constants.

supersymmetry. It should be noted, however, that with the Depending on the values of the integration constahts
above assumption only the extremal BTZ solution can beand 8, (of course as well as ohand u), one might have

recovered agu|— .

singularities in these metric functions. It is not difficult to

The curvature components are now greatly simplified andrerify that for 1+ 8,>8,>0, the metric functiong;;

they are given by

1
AU+, B=kU, C=55, D=—-U, (27
where
U 1, k k | 28
=SB TBT A (28)

Equations(8)—(11) are satisfied simultaneously provided
satisfies

1
U’ —kBU+| T +ku |U=0. (29)

By settingV=Kk(B/U) in Eq. (29), we arrive at the linear
first order ordinary differential equation

V' + (30

1
l——k/,L)VZZ.

This is easily integrated and

2
- —(U—kp)p
\% 1/|—k,u[1+'8°e ]

for some integration constayty. Hence, going back to the

definition of U (28) and substituting fol/, we obtain a dif-
ferential equation foB as

, 2 (1N —kpu) 5
B +'8(|__—1+,80e‘(1"‘k“)9 —kpc=0. (31
Settingw=1/8, one finds
M-k 2
| Mk 2} el @2
1+B0e—(1/|—ku)p |

When integrated, this yields

1 20+ By(N+kp)eM ke
B=—=k 2011 (U1 —ku) (33
© 14 pe?ely get ki

for integration constant@,=2/18,(1/1+ku)] and B4. Fi-
nally the metric functions are found to be
f= f0e2p/|[1+ﬂ162p/| JrIBZe(ln—kM)p]—l/z, (34)

h=ho[1+ B, + B et ~kmr1i2 (35

f
a=—ap+ kh_0e2p/|[1+ﬁle2p/|+B2e(l/|—k,u,)p]—l7
0
(36)

changes sign for someg,e[0,). However, an analysis as
the one given in Ref{1] cannot be given here since, at the
very starting point, it is impossible for one to invert the func-
tional relationr =h(p) and to rewrite the metric in terms of

r. That step is crucial for one to convert the metric into the
well studied form of the BTZ(and hence the AdSmetric

and make use of the vast literature on that subject. Then we
ask what else can be done and for that we go back to the full
solution and analyze the quasilocal mass and the angular
momentum. We refer the reader to Rgf1] for a discussion

of how these quantities can be found in this AdS back-
ground. For the quasilocal angular momentum, we have

j(r=kh%e(r), (37)

where ¢(p)=2/+ B,(1N +ku)eM k)P and again one
finds that one has to invert=h(p) so thate can be written
as a function ofr. Similarly the quasilocal energy turns out
to be

2

AL LY 38
(N=5-eM)=570(r), (39
whereas the quasilocal mass is

m(r)=aoj (1) =kagh?oe(r). (39

The total angular momenturd and the total mas$/ are
defined by the limitsl=j(r)|,_.. and M=m(r)|,_.., re-
spectively. To see what can be said abd@nd M, we first
start by examininga(r). Depending on the values dfand

n, a either goes to—ag or —ag+kfy/(hoB1) asr—o.
Hence fora to vanish asymptotically as—, ay should be
chosen either as 0 or dsfy/(hgB;1). When 1I>ku, ag
=0 and hencé/ =0 whereasl—«. For 11 <k, J is finite
andJ=2kh20/I. Thenag=kfy/(hgB1) andM =a,J is finite

as well. Asku—oe, this solution approaches the extremal
BTZ solution. To see this, use the freedom to choose the
radial coordinate and replage by r=h(p). So now et
=g(r)dr for some functiong and

o

g:_p: Ir f:foho r.t
r(r2—h%)’ Bi\nh% 1)’

kfo, h?,
a=—agt ——| 1— —|.
0 hOBl( r2

Comparing with the BTZ solutiofil,2], it is easily seen that
choosingd=2h?y/I, M=J/l, k=1, a,=1/ and (fo/3,)
=hg/l, one gets the extremal BTZ solution. It is well known
that the BTZ solution is quite similar to the Kerr solution in
3+1 dimensiong[1]. Since both our solution and the ex-
tremal BTZ solution are supersymmetfit2] (just like the
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extremal Kerr solution in 31 dimensiony it is perhaps not fo
surprising that one gets the extremal BTZ solution in the a=—ag+ kh—[e_k"p—,uﬁo(wo+ kp)]1™t,
limit. ° (45)
In the absence of a cosmological constant, the solution
has to be reanalyzed since simply setting=10 in the above where fy, ho, anda, again denote some integration con-
expressions does not give the desired limiting solution. INsiants. For this case, all the nontrivial components of the

this caseV is now curvature 2-form&R?, are proportional tdJ, as can be easily
9 seen by examining Eqé7) and(27). By using Eqs(40) and
V= m(1+,80ekf‘”), (40) (42 in the definition ofU=k(B/V), we find that
whereas the equation fes becomes U= — ,u_2 1 (46)
Ky 21— pPo(wo+kp)ekrr
'— ——w+k=0. (47
1+ Boekrr If ku>0, then asp—o, U—0 and hencer?®,—0, which
_ _ _ implies that this solution asymptotically approaches flat
Integrating this, one finds space. However, we checked that it is not accessible to lin-
1 14 ggku earization about flat space in the sense of R&f.
B=—= p(1+ Boe™") (42) In summary, we have obtained a solution to the topologi-

cally massive gravity model with a negative cosmological
constant. We have shown that it asymptotically approaches
for some integration constanaty. The new metric functions the extremal BTZ solution, and depending on the integration
are finally found to be constants, has event horizons. Moreover it does go to flat
space as one sets the cosmological constant to zero.

©  1— pBo(wotkp)er

f=fole P — uBo(wo+kp)] 2 (43
We thank Professors S. Deser and Yu. N. Obukhov for

h=ho[e " — uBo(wo+kp)]*?, (44)  enlightening discussions.
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