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Supersymmetric solutions to topologically massive gravity and black holes in three dimensions
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~Received 25 September 2000; published 31 May 2001!

We obtain a general class of exact solutions to topologically massive gravity with or without a negative
cosmological constant. In the first case, we show that the solution is supersymmetric and asymptotically
approaches the extremal BTZ black hole solution, while in the latter case it goes to flat space-time.
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The discovery of Ban˜ados-Teitelboim-Zanelli ~BTZ!
black holes@1# enhanced the interest in~112!-dimensional
gravity models considerably. However, it is well known th
general relativity in 112 dimensions has no propagating d
grees of freedom and no Newtonian limit~see, e.g., Ref.@2#,
and the references therein!. A physically interesting modifi-
cation of the~112!-dimensional general relativity that cure
at least some of these deficiencies is provided by the add
of the gravitational Chern-Simons term to the usual Einste
Hilbert term in the action. This theory is usually called top
logically massive gravity~TMG! @3#, whose field equations
include the Cotton tensor, which is the analogue of the W
tensor in three dimensions, in addition to the usual Eins
tensor. With this addition new degrees of freedom are in
duced and one now has a dynamical theory with a mas
graviton. The BTZ metric satisfies the TMG field equatio
in a trivial way as the Cotton tensor vanishes identica
Other known solutions include the ‘‘Go¨del-like’’ Vuorio so-
lution @4# and its generalization to solutions with a consta
twist @5#. Another class of these cosmological-type solutio
is given by the finite action exact solutions of the TMG fie
equations@6# that also provide a classification of homog
neous solutions for Euclidean and Lorentz signatures. E
static solutions are known to exist for spinning point sour
when the spin and the mass of the sources obey a ce
relation@7#. Even though they are not asymptotically anti–
Sitter ~AdS! and it is not known how to define mass an
angular momentum in this case, there also exist soluti
with event horizons@8#. There is another class of solution
~that can be obtained from the more general solution
present here by a certain choice of parameters and by ma
a coordinate transformation! which asymptotically approach
extremal BTZ black holes but are geodesically complete
have no event horizons~unlike what we find for our solu-
tions! @9#.

In fact a solution to the linearized version of TMG for
stationary rotationally symmetric source was found and
was conjectured that there are no asymptotically flat stat
ary solutions in the absence of any sources@10#. Here we
exhibit a general class of exact supersymmetric soluti
that, with an appropriate choice of integration constants, m
have event horizons and asymptotically approach the
tremal BTZ black hole solution. We do emphasize that o
solution is, to our knowledge, the first nontrivial example
a supersymmetric solution to TMG.

We consider the actionI @e,v#5*ML where the Lagrang-
ian 3-form
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L5
1

m S v b
a `dv a

b 1
2

3
v c

a `v b
c `v a

b D1
1

2
R*1 2l*1,

~1!

contains the Einstein-Hilbert term, a negative cosmologi
constantl521/l 2,0 and the gravitational Chern-Simon
term with the coupling constantm, written in terms of Levi-
Civita connection 1-formsv b

a . Thus the variation ofI with
respect to orthonormal coframesea yields

1

m
Ca1Ga1l* ea50, ~2!

where the Einstein 2-formsGa[Gab* eb52 1
2 Rbc* eabc and

the Cotton 2-formsCa[DYa5dYa1v a
b `Yb . We defined

Ya[(Ric)a2 1
4 Rea , in terms of the Ricci 1-forms (Ric)b

[iaR b
a , and the curvature scalarR[ia(Ric)a whereia de-

notes the interior product operator with respect to a fra
vector that acts on the space of forms and create
(p21)-form out of ap-form. HereR b

a 5dv b
a 1v c

a `v b
c

are the curvature 2-forms of the Levi-Civita connecti
1-forms that satisfy Cartan structure equationsdea1v b

a

`eb50. Hodge duality is specified by the oriented volum
element *15e0`e1`e2.

The solutions will be given in terms of the local coord
nates (t,r,f) by the metric tensor

g52e0
^ e01e1

^ e11e2
^ e2, ~3!

where we choose

e05 f ~r!dt, e15dr, e25h~r!@df1a~r!dt#. ~4!

Denoting the derivatives with respect tor by a prime, the
connection 1-forms are found to be

v 1
0 5ae02

1

2
be2, v 2

0 52
1

2
be1, v 2

1 52
1

2
be02ge2,

~5!

where we set the connection coefficients

a[
f 8

f
, b[

a8h

f
, g[

h8

h
. ~6!

The corresponding curvature 2-forms turn out to be

R 1
0 5Ae1`e01Be2`e1, R 2

0 5Ce2`e0,
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R 2
1 5Be0`e11De2`e1, ~7!

where we defined

A[a81a22
3

4
b2, B[

1

2
b81gb, C[ag1

1

4
b2,

D[g81g21
1

4
b2.

After some algebra the field equations can be reduced to

2D1
1

l 2
1

1

m FB81Bg1
1

2
b~C2A!G50, ~8!

2B1
1

m F1

2
~D2A2C!81a~D2C!1

3

2
bBG50, ~9!

C2
1

l 2
1

1

m F ~g2a!B1
1

2
b~A2D !G50,

~10!

A2
1

l 2
1

1

m FB81aB1
1

2
b~C1D22A!G50.

~11!

We found it remarkable that the following conditions o
the connection coefficients

a5
k

2
b1

1

l
, g52

k

2
b1

1

l
~12!

~with k251), that follow from the field equations and we
essential for finding the general self-dual solutions of
Einstein-Maxwell-Chern-Simons theory in 112 dimensions
@11#, turn out to yield solutions in the present case as well
fact, the conditions~12! have significance in the following
sense: Any solution of topologically massive gravity is sa
to be supersymmetry preserving provided there exists a n
trivial real 2-spinore satisfying@12#

S 2D1
1

l
G D e50 ~13!

whereG5Gaea andD5d1 1
2 vabsab with sab5 1

4 @Ga ,Gb#.
To see that Eq.~13! in fact implies Eq.~12!, start by taking
e to bee5 êN(r) whereê is a constant spinor and the form
of e is in accord with the fact that our metric functions a
functions of the variabler only. ~Hencee is defined locally.!
Then, Eq.~13! yields

e0NF2aG2ê1S 1

l
2

b

2 DG0ê G1e1F2N8ê1S 1

l
2

b

2 DNG1êG
1e2NF2gG0ê1S 1

l
1

b

2 DG2ê G50. ~14!

For this to be satisfied for a nontrivialN, one finds that
02750
e

n

n-

2aG2ê1S 1

l
2

b

2 DG0ê50, ~15!

2N8ê1S 1

l
2

b

2 DNG1ê50, ~16!

2gG0ê1S 1

l
1

b

2 DG2ê50, ~17!

have to be satisfied simultaneously. Now a suitable se
real G matrices can be chosen as

G05S 0 1

21 0D , G15S 0 1

1 0D , G25G0G15S 1 0

0 21D
~18!

and the constant spinorê can be taken as

ê5S eL

eR
D . ~19!

Substituting these in Eq.~17! one gets

eL5gS 1

l
1

b

2 D 21

eR5S 1

l
1

b

2 Dg21eR ~20!

which gives

g56S 1

l
1

b

2 D52
k

2
b6

1

l
~21!

(k251). Similarly using Eq.~15!, one gets

eL5aS 1

l
2

b

2 D 21

eR5S 1

l
2

b

2 Da21eR ~22!

and

a56S 1

l
2

b

2 D5
k

2
b6

1

l
. ~23!

Hence, choosing the1 sign for the term 1/l in the expres-
sions ~21! and ~23!, Eq. ~12! is obtained. Finally, Eq.~16!
implies

eL52
N8

N S b

2
2

1

l D
21

eR5
N

2N8
S b

2
2

1

l D eR ~24!

or

2
N8

N
56S b

2
2

1

l D ~25!

which determines the spinor functionN in terms ofb to be

N~r!5expF2
k

2E
r

drS b

2
2

1

l D G . ~26!
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Hence any solution satisfying Eq.~12! will also preserve
supersymmetry. It should be noted, however, that with
above assumption only the extremal BTZ solution can
recovered asumu→`.

The curvature components are now greatly simplified a
they are given by

A5U1
1

l 2
, B5kU, C5

1

l 2
, D5

1

l 2
2U, ~27!

where

U52
1

2
b21

k

l
b1

k

2
b8. ~28!

Equations~8!–~11! are satisfied simultaneously providedU
satisfies

U82kbU1S 1

l
1km DU50. ~29!

By setting V5k(b/U) in Eq. ~29!, we arrive at the linear
first order ordinary differential equation

V81S 1

l
2km DV52. ~30!

This is easily integrated and

V5
2

1/l 2km
@11b0e2(1/l 2km)r#

for some integration constantb0. Hence, going back to the
definition of U ~28! and substituting forV, we obtain a dif-
ferential equation forb as

b81bS 2

l
2

~1/l 2km!

11b0e2(1/l 2km)rD 2kb250. ~31!

Settingv51/b, one finds

v81S ~1/l 2km!

11b0e2(1/l 2km)r
2

2

l D v1k50. ~32!

When integrated, this yields

b5
1

v
5k

2/l 1b2~1/l 1km!e(1/l 2km)r

11b1e2r/ l1b2e(1/l 2km)r
~33!

for integration constantsb2[2/@lb0(1/l 1km)# and b1. Fi-
nally the metric functions are found to be

f 5 f 0e2r/ l@11b1e2r/ l1b2e(1/l 2km)r#21/2, ~34!

h5h0@11b1e2r/ l1b2e(1/l 2km)r#1/2, ~35!

a52a01k
f 0

h0
e2r/ l@11b1e2r/ l1b2e(1/l 2km)r#21,

~36!
02750
e
e

d

wherea0 , f 0, andh0 are some new integration constants.
Depending on the values of the integration constantsb1

and b2 ~of course as well as onl and m), one might have
singularities in these metric functions. It is not difficult t
verify that for 11b2.b1.0, the metric functiongtt
changes sign for somer0P@0,̀ ). However, an analysis a
the one given in Ref.@1# cannot be given here since, at th
very starting point, it is impossible for one to invert the fun
tional relationr 5h(r) and to rewrite the metric in terms o
r. That step is crucial for one to convert the metric into t
well studied form of the BTZ~and hence the AdS! metric
and make use of the vast literature on that subject. Then
ask what else can be done and for that we go back to the
solution and analyze the quasilocal mass and the ang
momentum. We refer the reader to Ref.@11# for a discussion
of how these quantities can be found in this AdS ba
ground. For the quasilocal angular momentum, we have

j ~r !5kh 0
2 w~r !, ~37!

where w(r)[2/l 1b2(1/l 1km)e(1/l 2km)r and again one
finds that one has to invertr 5h(r) so thatw can be written
as a function ofr. Similarly the quasilocal energy turns ou
to be

E~r !5
h 0

2

2r
w~r !5

k

2r
j ~r !, ~38!

whereas the quasilocal mass is

m~r !5a0 j ~r !5ka0h 0
2 w~r !. ~39!

The total angular momentumJ and the total massM are
defined by the limitsJ[ j (r )ur→` and M[m(r )ur→` , re-
spectively. To see what can be said aboutJ andM, we first
start by examininga(r ). Depending on the values ofl and
m, a either goes to2a0 or 2a01k f0 /(h0b1) as r→`.
Hence fora to vanish asymptotically asr→`, a0 should be
chosen either as 0 or ask f0 /(h0b1). When 1/l .km, a0
50 and henceM50 whereasJ→`. For 1/l ,km, J is finite
andJ52kh 0

2 / l . Thena05k f0 /(h0b1) andM5a0J is finite
as well. Askm→`, this solution approaches the extrem
BTZ solution. To see this, use the freedom to choose
radial coordinate and replacer by r 5h(r). So now e1

5g(r )dr for some functiong and

g[
dr

dr
5

lr

~r 22h 0
2 !

, f 5
f 0h0

b1
S r

h 0
2

2
1

r D ,

a52a01
k f0

h0b1
S 12

h 0
2

r 2 D .

Comparing with the BTZ solution@1,2#, it is easily seen that
choosingJ52h 0

2 / l , M5J/ l , k51, a051/l and (f 0 /b1)
5h0 / l , one gets the extremal BTZ solution. It is well know
that the BTZ solution is quite similar to the Kerr solution
311 dimensions@1#. Since both our solution and the ex
tremal BTZ solution are supersymmetric@12# ~just like the
1-3
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extremal Kerr solution in 311 dimensions!, it is perhaps not
surprising that one gets the extremal BTZ solution in
limit.

In the absence of a cosmological constant, the solu
has to be reanalyzed since simply setting 1/l 50 in the above
expressions does not give the desired limiting solution.
this case,V is now

V5
22

km
~11b0ekmr!, ~40!

whereas the equation forv becomes

v82
km

11b0ekmr
v1k50. ~41!

Integrating this, one finds

b5
1

v
5

m~11b0ekmr!

12mb0~v01kr!ekmr
~42!

for some integration constantv0. The new metric functions
are finally found to be

f 5 f 0@e2kmr2mb0~v01kr!#21/2, ~43!

h5h0@e2kmr2mb0~v01kr!#1/2, ~44!
J.

02750
e

n

n

a52a01k
f 0

h0
@e2kmr2mb0~v01kr!#21,

~45!

where f 0 , h0, and a0 again denote some integration co
stants. For this case, all the nontrivial components of
curvature 2-formsR b

a are proportional toU, as can be easily
seen by examining Eqs.~7! and~27!. By using Eqs.~40! and
~42! in the definition ofU5k(b/V), we find that

U52
m2

2

1

12mb0~v01kr!ekmr
. ~46!

If km.0, then asr→`, U→0 and henceR b
a →0, which

implies that this solution asymptotically approaches fl
space. However, we checked that it is not accessible to
earization about flat space in the sense of Ref.@4#.

In summary, we have obtained a solution to the topolo
cally massive gravity model with a negative cosmologic
constant. We have shown that it asymptotically approac
the extremal BTZ solution, and depending on the integrat
constants, has event horizons. Moreover it does go to
space as one sets the cosmological constant to zero.

We thank Professors S. Deser and Yu. N. Obukhov
enlightening discussions.
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