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Dark matter phase space densities
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The low velocity part of a kinetic equilibrium dark matter distribution has a higher phase space density and
is more easily incorporated in the formation of a low mass galaxy than the high velocity part. For relativisti-
cally decoupling fermiongbosons, this explains ondtwo) orders of magnitude of the observed trend, that
phase space densities in dark matter halo cores are highest in the smallest systems, and loosens constraints on
particle masses significantly. For nonrelativistic decoupling and/or finite chemical potentials even larger effects
may occur. It is therefore premature to dismiss dissipationless particle distributions as dark matter on the basis
of phase space arguments.
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It has recently become clear that the otherwise successful Other effectgbaryons, mergers, phase space dilution dur-
cold dark matte(CDM) model for cosmic structure forma- ing gravitational collapse, particle self-interactions, Jeten
tion has several severe problems, such as predictions dfirther enhance the diversity in observed phase space densi-
cusps in the central density profiles of galaxies, too manyies in galaxy cores, and as demonstrated4iha merging
low-mass subclumps within dark matter halos, and a lack ohierarchy where larger systems are gradually formed by
angular momentum in galaxy disks compared to observaerging of smaller units can explain many of the features
tions. In one way or the other these problems are all relate@0served. But as demonstrated in the following, even in the

to the fact that CDM has no initial velocity spread, and there-2PSence of mergers, a significant spread in primordial phase
fore has an infinite initial density in phase space. Self-SPaceé densities in dark matter cores is predicted, with core

interactions among the dark matter particles have been Su@_entsmes decret§15|ng_]”\1/wth |ncr§taad5|ngf?§capf$ VtGIOC'ty 0]]: the
gested s apossilesouif, nothr suggested ston 1 e, The magrite o e Srect ages o
has been the reintroduction of warm dark matté&/DM) 9 y 1pling,
consisting of particles with a moderate primordial velocity delgenerate”fe:jmmns,lto sgveral o;dﬁrs o;glagmtudehfor non-

. relativistically decoupling bosoné&d hocadditions to these
spread2]. Contrary to CDM, thermal WDM patrticles lead to y pling

. . . . implest distribution functions would allow a further range.
finite core density but apparently require a high mass angy, s there may still be room for a single dissipationless

therefore extremely early decoupling from the primordial gjementary particle explanation of dark matter in dwarf sphe-
plasma 4t° account for tf;e observed core phase space densifygal as well as dwarf spiral galaxi¢s]. Furthermore, the
of 107*Mg/pci(km/s)® in dwarf spheroidal galaxies. natural selection of the highest phase density particles in the
There may also be difficulties explaining the decrease irsmallest systems leads to a significant reduction in the mini-
phase space density by a factor 10-100 for dwarf spirals anghum mass for the particle responsible, loosening the rather
low surface brightness galaxies, and a further factor of lO—strong requirements on the epoch of dark matter decoupling
100 for normal spiral§3,4]. A single particle mass for WDM in the early universe.
would appear to lead to a definite prediction for the central An isotropic gas of particles in kinetic equilibrium has a
halo phase space density because of conservation of fingpatial number density
grained phase space dendibyouville’s theorem).

However, whereas such arguments are correct in terms of n=(g/h3)f 47t (p)p2dp, 1)
the average phase space density, they do not take into ac-
count that, while originally almost uniform in real space, the
fine-grained density is af@xponentially varying function of ~ where h is Planck’s constanty is the number of helicity
position in momentum space. Low momentum particles arstates, and
in denser parts of phase space than high momentum par- _
ticles, and depending on the actual distribution functien- f(p)={exd (E-p)/kT]= 1}~ @
mion or boson, zero or nonzero chemical potential, relativis-
tic or nonrelativistic decoupling the densest part of the is a Fermi-Dirac ¢) or Bose-Einstein {) distribution with
distribution may have a phase space density significantlghemical potentiale. EnergyE is related to momenturp
above average. Furthermore, halo formation should typicalland particle massn via E2=(pc)2+m?c*, wherec is the
include particles from the low momentum end first. A systemspeed of light.
with low gravitational potential like a dwarf spheroidal will A particle species that decouples from the remaining
effectively probe only the densest part of the phase spacgglasma in the early universe at temperatlie redshifts its
distribution, whereas a large spiral galaxy probably containgnomenta in proportion to the expansion of the Universe,
something close to the average phase dengiogsibly di- =ppRp/R, whereR(t) is the cosmic scale factor, and its
luted by mergers, etc. number densityparticle number is conserveeévolves like
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n<R™3. From this it follows that the distribution functioh 10000 ™ T T T T T
at a time after decoupling is related to the distribution at :
decouplingfp [from Eq. (2)],

f(p)=fo(PRIRy). ®) 1o -

f(p) even keeps an equilibrium shape after decoupling in
two regimes[6], namely, ultrarelativistic decouplingE(
~pC, T:TDRD/R, ,U/:,U/DRD/R), with

fr(p)={exd (pc—u)/kT]£1} 4, (4)

and nonrelativistic decouplinE — u~p2/2m— win, ki
=u—mc= uyinp(Rp/R)?, T=Tp(Rp/R)?], s0

fn(p) ={exd (p?/(2m) = win) [kT]=1} 71 (5)

The distribution of fine-grained phase space density is
conserved in time(Liouville’s theoren). This fact is ex-
pressed by Eq3), and it means that the phase space distri-
bution at decoupling can be directly related to measurements

of dark matter phase densities today. Applied to conservation g 1. phase space density of dark matter particles in units of

of the maximum phase space density this was the basis f@he mean density as a function of fraction of particlEs,Upper

the Tremaine-Gunn limit on dark matter fermion magséds  (lower) solid curves are fermions wittm— up)/Tp=0 andm/Tp

later generalized to bosorfehere no maximum existy ~ —0 (). Lower (upped dotted curves are for bosons in the same

means of the average phase space def8jty limits. Dashed curves are for fermions and bosons alike in the limits
Recently Hogan and Dalcant$8] reconsidered the issue (m—up)/Tp—= for m/Tp—0 (upped and m/Tp—o (lowen).

of the primordial average phase space density compared wiffully degenerate fermions if(— xp)/Tp— —) have no amplifi-

observations of dark matter phase space densities in hatmtion factor, i.e.q/qx=1.

cores. From the distribution function they calculated

q/ax

100 1

the mass density=mn, and pressure For a degenerate fermion with relativistic decoupl[figit
(M—pu)/kTp——] this gives Orpgeg=4m5¥%3%2
— 3 2 3h 3 4 J—
P=(g/h )f p/(3E)fd"p~(g/h )f pY(3mc)4mdp  _ 90128415, s6—0/9.0128415 s, in general, a measure of
) 5 the average occupation number in a phase space distribution
=mn(v<)/(3c), (in units of g/¥). For a zero chemical potential fermion the

formi h lculati i th L ) corresponding average values for relativistic and nonrela-
performing the calculation in the nonrelativistic regime, syistic decoupling(in the latter case a zero chemical poten-
whereE~mc® andp=mu. This leads to the following ex- tial means w,=0) are Qrro=0.4868039 and dyro

pression for the phase space denSltylefined by =1.9223, whereas the similar numbers for bosonsgaig

e |2 =0.9071055 andjyg,= 21.521. Notice the larger values for
p  mig f(p)pdp bosons that express the fact that bosons have a higher frac-
QE( 2>3/2= h3 41 o (6)  tion of low momentum, high phase space density particles
v

than fermions.
So far only average characteristics of the distributions
i o have been discussed, but it turns out to be quite interesting to
Hogan and Dalcantof®] use this expression in the form g4y the whole distribution of phase densities. Figure 1
(units with#i=c=1) shows these distributions in a plot qfp)/qgy as a function
Qx= qxgxMx (7)  of the fraction of particles with momentum less thautcal-
culated at decoupling, but the distribution is conserved in
for particle typeX, wheregyx=0.0019625 for a relativisti- time by Liouvilles theorem Here qyx is given in Eg.(8)
cally decoupling,u=0 fermion, andqyx=0.036335 for a integrating from O tee, whereagy(p) is defined by the same
relativistically decouplingT=0, u>m degenerate fermion, equation, but integrating only from 0 tp [10]. The ratio
where theq values come from taking the complete integralstherefore illustrates the amplification of phase space density
over the distribution function. relative to the average for a given dark matter distribution
For the remainder of this investigation we return to di- function if only the densest parts of phase space are utilized,
mensional units and keep factors/fandc. In these units  for instance, in formation of a galaxy halo.
5/2 Notice that relativistically decoupling fermions show an
ff(p)pzdp order of magnitude amplification, whereas two orders of
_ (8) magnitude can be gained for relativistically decoupling
4 bosons and several orders of magnitude for nonrelativisti-
U f(p)p dp} cally decoupling b
y decoupling bosons.

ff(p)p“dp

dx=Qxh’m~*g~'=4x
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100QF T T The value ofg, , depends on the epoch of decoupling.
For standard neutrino decoupling &ffp~1 MeV, g,p
=43/4. But much higher values df, , are possible for ear-
lier decoupling, withg, p~50 above the quark-hadron phase
e transition temperatur& T~ 100 MeV, g, p~100 abovekT
100k i ~200 GeV, and even higher values possible earlier on.

£ The value ofg, p not only determines th&-v relation,
but also crucially impacts on the total mass density contribu-
tion of the particle in question and thereby determines its
potential as a dark matter candidate. For the case of relativ-
istic decoupling ((M—wp)/Tp=0, M/Ty—0) fermions
contribute to the cosmic density,

q/qx

Qyh?=0.057 m_c2 / (11)
X " 1 eV gg*D!

0 R 4 6 8 where h is now the Hubble parameter in units of 100
X kms ! Mpc™?, and a similar expressiamultiplied by 4/3)
applies for bosons.
It is interesting to note that an explanation of the highest
phase space densities measured, those in dwarf spheroidals

Another way of illustrating the amplification effect is Of order 10 *Mgpc™3(km/s)%, for ag=1 boson requires a
shown in Fig. 2, where amplification is plotted as a functionParticle mass of only 224 e\309 eV if the densest 1%
natural integration variable in the calculations. For particlegiverage occupation numbgnasses are reduced by a factor
that are nonrelativistic at the epoch of galaxy formafignx 2~ if g=2). Such masses are not in conflict with esti-

is related to particle spead at that time by mates of cosmic density for reasonably high valueg,of
» m& R andx can indeed be low enough for reasonable valueg,of
g

X=— —' 9 (9)  toselectonly the densest part of phase space for dwarf sphe-
¢ kTp Rp roidals with typical velocity dispersions below 10 km/s.

For fermions withg=2, the high-phase space density se-

tion expected for formation of dwarf spheroidals reduces

warm dark matter particle mass limits from 669 eV to 383

eV, again loosening constraints g [11].

Even stronger effects may occur in a nonrelativistic de-
coupling regimeupper dotted curve in Fig.),lor one might
consider adding extra features to the dark matter distribution
functions such as a small amount of Bose-Einstein conden-
sation in the zero momentum, the infinite phase density part

FIG. 2. As in Fig. 1, but as a function of the dimensionless
momentumx.

The occurrence of a phase space amplification factor %c
low momenta is a natural consequence of &). The fine-
grained occupation numbeand therefore also the coarse-
grained phase space occupajidras a maximum ap=0
equal tof ;.= {exd(m&—uw)/kT]+1} "1, which is 1 for de-
generate fermion§(mc— up)/kTp— —), 0.5 for fermi-
ons decoupling when nc®— up)/kTp=0, diverges for
bosons in the same limit, and equals [gxp—mc)/kTp] for
fermions and bosons in the limitm(c®— up)/kTp— . of a boson distribution.

Quantitatively, the amplification factor for a relativistically Such “fine-tuning” may further loosen constraints on dis-
decoupling fermion behaves Ilkel%266:6x/16) to first or-  gjnationless dark matter, but even without it, part of the ob-
derinx (Fig. 2), or 9.26(1-0.69F ") expressed in terms of gerved trend for the core phase space density to decrease
the fraction of fermionsFg (Fig. 1). The similar limits for  \ith increasing gravitational potential when going from
bosons are 19.59 (1~ 7x/30), or 8.9% 5 *~4.57(notice  dwarf spheroidal to dwarf spiral galaxies is naturally ex-
that these factors diverge for smalbr Fg). plained by the selection of low-momentum dark matter par-

Using entropy conservation in the cosmic expansRy, ticles described herf5]. At the same time constraints on
and Rp entering the equation forx are related by WDM particle masses and decoupling epochs are signifi-
g*gTigRS=g* DT";DR%, whereg, counts the total number cantly reduced. These considerations should be taken into
of effective particle degrees of freedom at the given epochaccount and tested in detailed numerical simulations of dark
Today and at galaxy formatiog,, =43/11. Introducing the matter halo formation, which are needed to settle the ques-
redshift of galaxy formatiorz, via T,4=(1+2,)T,o, Wwhere  tion of whether dissipationless particles may after all account
the present photon temperatureTiso=2.726 K, x can be for the dark matter in galaxies.
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