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We explore the possibility of generalizing the locally localized gravity model in five space-time dimensions
to arbitrary higher dimensions. In a space-time with a negative cosmological constant, there are essentially two
kinds of higher-dimensional cousins which not only take an analytic form but also are free from the naked
curvature singularity in a whole bulk space-time. One cousin is a trivial extension of five-dimensional model,
while the other one is in essence in higher dimensions. One interesting observation is that in the latter model,
only the anti—de Sitter (Adg brane is physically meaningful, whereas de Sitter,jdghd Minkowski (M)
branes are dismissed. Moreover, for the AdBane in the latter model, we study the property of localization
of various bulk fields on a single brane. In particular, it is shown that the presence of the brane cosmological
constant enables a bulk gauge field and massless fermions to confine to the brane only by a gravitational
interaction. We find a novel relation between the mass of the brane gauge field and the brane cosmological
constant.
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I. INTRODUCTION ity on a brane. However, it is well known that in the original
Randall-Sundrum model it is very difficult to localize the
In recent years, an idea that our world is a 3-brane emgauge field§7—-10] and the massless fermions, those are,
bedded in a higher-dimensional space-time, with some of thepin-1/2 massless Dirac spinfit1-14 and spin-3/2 mass-
extra dimensions being macroscopically large, has attractedl@ss gravitind 15], on a brane by a gravitational interaction.
lot of attention as a resolution of the hierarchy problem, su- Recently, there has been an interesting development
persymmetry breaking, the cosmological constant problemyhich circumvents simultaneously the two disadvantages
and so on. In particular, Randall and Sundrum have found aentioned abovgl6—21]. The models deal with a single or
solution to the five-dimensional Einstein equations with atwo positive tension anti—de Sitter Ag®rangs) in a five-
Minkowski flat 3-brane in AdS and have shown that the dimensional anti-de Sitter space-time AdSvhere four-
effects of four-dimensional gravity on the brane are repro-dimensional gravity is induced on the Agd8rane owing to
duced without the need to compactify the fifth dimensionthe localization of a massive and normalizable bound state
[1,2]. (This model was generalized to the case of many[17]. Moreover, it was shown that all the standard model
branes in Refd.3,4].) particles are localized on the Ag®rane only through the
One disadvantage of the Randall-Sundrum mddglis  gravitational interactiofi20]. For instance, the appearance of
the presence of a brane with negative tension. Although thigero-mode with dependence of a fifth dimension supplies us
brane is located at a fixed point 8t/Z, orbifold in such a with a novel mechanism for the localization of the bulk
way that the fluctuation modes associated with the branegauge field on the brane. Even if nature seems to favor a
which are necessarily physical ghost modes, do not appea¥inkowski brane M with zero cosmological constant rather
the existence of the negative tension brane violates the wedkan an Adg with negative cosmological constant, it is im-
energy theorem in the bullg]. possible to rule out the possibility that our world might have
Another disadvantage in the Randall-Sundrum model i1 very tiny negative cosmological constant which is consis-
related to the localization of bulk fields on a brdBé In the  tent with the present observations. Interestingly enough, in
conventional brane world scenario, the standard model gaugbe AdS, brane model the existence ofheasslessphoton”
and matter fields are assumed to be localized on our branen a brane demands that the brane cosmological constant
whereas gravity freely propagates in a bulk space-time. Butust be small in Planck units enough not to violate experi-
this assumption is quite unnatural since we tacitly discrimi-ment[20].
nate gravity from the other fields. Since the graviton corre- The aim of this paper is to generalize this interesting
sponds to the fluctuation mode of the space-time geometry, inodel to higher dimensions. Such a generalization is of
automatically sees the whole structure of the space-time antburse of importance from the viewpoint of an underlying
consequently lives in the bulk space-time. The physicallffundamental theory in higher dimensions such as ten-
plausible setup is then to treat the standard model gauge amfimensional superstring theory.
matter fields on an equal footing with gravity and consider We will regard the branes agobal defects with the num-
all the local fields as the fields living in the bulk space-time.ber p of longitudinal dimensions in a higher-dimensional
From this context, we can regard the Randall-Sundrunspace-time withD bulk dimensions anch extra transverse
model[2] as a successful model for the localization of grav-ones(so the equalityp = p+n holds. A set ofn scalar fields
with the Higgs potential, thereby breaking thbal SO(n)
symmetry to SOf—1) symmetry, are utilized to generate
*Email address: ioda@edogawa-u.ac.jp the global defects [22,23. A topological argument
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I1,_,[SO(n—1)]=Z, which expresses the fact that a map-whereM,N, . .., denoteD-dimensional space-time indices,
ping of configuration space at spatial infinity to a vacuumg,v, ..., p-dimensional brane ones, andn,n, ...,
manifold is topologically nontrivial, guarantees the stability (n—1)-dimensional extra spatial ones, so the equalbty
of the defects under deformations. =p+n holds. (We assumep=4. We sometimes denote
The plan of the paper is as follows. In the next section wey,, =e B(g. (x'). Note that the reason why we take ac-
review the model setup and then in Sec. Ill we look forcount of this metric ansatz comes from the holographic prin-
solutions to Einstein’s equations. In Sec. IV we study theciple where the “radial” coordinate plays the role of scale
metric fluctuations and derive a Schinger-like equation. of the AdS renormalization group, so it is straightforward to
Because of a complicated form of the solution and the lackextend various results of AdS conformal field thed¢BFT)
of the knowledge inside the core, it is difficult to understandcorrespondence such as “c-theorem” to the present case.
an exact formula of Newton’s potential so we shall be con-Moreover, we shall take an ansatz for the energy-momentum
tented with some qualitative understanding of the solution. Inensor respecting the spherical symmetry:
Sec. V, we show that the zero-mode of bulk gauge field is
normalizable owing to the presence of the cosmological con-
stant, thereby leading to the localization of gauge field on a

Ty = 6,to(r),

brane. But it is shown that the localization is not so sharp on T =t,(r),

the brane and spreads rather widely in a bulk. Section VI is

devoted to the treatment of fermionic fields. Discussions and Tloo Tl .. =Tl=t ) )
future works are summarized in Sec. VII. 0, 03 by O

wheret;(i=0,r,0) are functions of only the radial coordi-

Il. MODEL SETUP

In this section, we shall review the construction of “glo-
bal” topological defect model in higher dimensiofz2,23.

nater.
Under these ansatz, after a straightforward calculation,
Einstein’s equations reduce to the forms

The solutions to Einstein’s equations which we shall derive

below can be found in essence in the article of Olasagasti,~ P(n—1)
and Vilenkin[22,23], but we shall not only derive the solu- &=

o, P(P—1)
A'B R

(A")?

tions in a more unified metric ansatz but also examine their

physical properties in detail from a different viewpoint. In

this paper, we shall follow the notations and the conventions

in our previous paper4].

B (n—=1)(n—-2)

2 (B")2+(n—1)(n—2)eB—2A

The action with which we start is that of gravity in gen-  +2xpt =0, (6)
eral D dimensions, with the conventional Einstein-Hilbert
action and some matter action which will be specified later , . p(n—2) (n—1)(n—2) 5
e*R+(n-2)B"- ——A'B'———(B’)
2 4
1
S=—| d°xy—g(R—2A +dex\/— L. (1 +1
2k3 o ) tm- @ +(n—2)(n—3)eB+pA”——p(p4 )(A')Z
Taking the variation of the actiofll) with respect to the —2A+2k3t,=0, (7)
D-dimensional metric tensay, we obtain Einstein’s equa-
tions in D dimensions
-2 .. n—1 -1
p—eAR+(p—1)(A”— —A’B’) - M(A’)2
1 , p 2 4
RMN_EgMNR:_AgMN+KDTMNv 2 n
+(n—1){B”— Z(B’)2+(n—2)e5 —2A+2k3ty=0,
where the energy-momentum tensor is defined as ®
Tun=— i ‘;Nf dPxy/—gL,. (3)  where the prime denotes the differentiation with respect to
V=9 49 andR is the scalar curvature associated with the brane metric

éw. Here we define the cosmological constant on the (

To find the spherically symmetric solutions in the bulk, ~1)-braneA, by the equation

we shall adopt the following metric ansatz

dszngNdXMdXN
=9,,dx“dx"+dr?+ g, dy™dy"

N 1. . -
R/.LV_ EgMVR:_Apg,u,V' (9)

In addition, the conservation law for the energy-momentum

e AMNA 2, o 2
=e (g, dxdx"+dr?+e ?dOy_,, tensorVMT,,y=0 takes the form

(4)
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P n
=5 A (t—to)+ ——

B'(t,—t,). (10) t0=tr=—%(n—1)n2e3(’), t9=—%(n—3)772€8(r),
(15
The formulation reviewed thus fa24] is rather general in
that we have assumed only the metric angdtzHere let us  which obviously satisfy the conservation Igw0).
specify the model by fixing the matter action. Following  Next, to find analytic solutions we need to set up a more
Refs.[22,23, we shall take a multiplet af scalar fieldsb®  specific metric ansatz, for which we shall take the form

with the Higgs potential
B(r)=cA(r)+d, R3=e ¢ (16)

1 N
Lm=— EEJ'\/ll\laM(I)a@N(I>a+ 7 (@207 7% (1) wherec andd (or Ry) are constants, which will be later fixed
by Einstein’s equations. Then it is straightforward to solve

from which the energy-momentum tensor takes the form Einstein’s equation$6)—(8) whose solutions can be divided
into two kinds of cousins. One cousin, being a trivial exten-
sion of branes in Ad$ belongs to a class havirg=0. Ac-
cording to the signature of the brane cosmological constant,
let us separate this class of solutions to three branes’ solu-

1
TMN: &M(I)ao"N(I)a_ z gMNO"pq)aﬁpq)a

+9MNA(¢a¢a— 7). (12) tiohs, de .Sitter branedS,, Minkowski brane M, and
4 anti—de Sitter brane A¢S’
Then, the familiar “hedgehog” ansatz leads to a global (i) dS; brane:
defect d2=sintfwrds? +dr2+R2d02_,,
P2=1f(r)ra, 13
o - p-1 (p-1)(p-2)

L ) R=—2A——%>0, Ays=—A———F—-—>0.
wherer? is the unit vector on then—1)-sphere and the n+p-2 p(n+p—2)
function f(r) takes the form (17

f(0)=0, limf(r)=7. (14) (ii) My, brane:

r—o

o , ds?=e"2"d2+dr?+R3d02_,,
Namely, it is considered that the defect Hh§=0 at the
center of the core and approaches the radial “hedgehog” R=A =0 (18)
configuration®?= 5r? outside the core. In this paper, we M
limit ourselves to the exterior solutions, where the configu- i) AdS, brane:
ration is given byd2= »r2. Note that this configuration be-
comes an accurate approximation as the coupling constant ds®=cosfwrds? +dr+R2dQ2_,
gets large. A big question about “global” defects is whether

there could be a stable localized core or hdhis problem is . p—1 (p—1)(p—2)
closely connected with physics inside the core so now we R=2Am<0, AAds=Ap(n+—p_2)< .
cannot answer this important problem. (19)
IIl. SOLUTIONS Herew, R3 are, respectively, given by
In this section, we solve a set of Einstein’s equati(@)s —2A , 1 2 5
(8) derived in the previous section. In this paper, we pay “~ N p(n+p—2)’ Ro=5x (N+p—=2)(n=2—kp7°),
attention to only the case of the bulk cosmological constant (20)

being negative A <0 in order to search higher dimensional

analogs corresponding to an Ad®rane solution in AdS  where R§>O requiresn—2—;<2D 7?<0. This class of solu-

[17]. tions has been first derived in Rg22]. The common feature

First of all, let us notice that with the ansadz®= nFa in this class is that then(~1) sphere has a constant radius

which holds only outside the defect core, the energy-Ro, because of which we have called itrevial extension of

momentum tensor takes the forms branes in Ad$ in the above. Indeed, it is easy to show that
this class of solutions shares the same properties such as the
corrections to Newton’s law as for corresponding

In the absence of gravity, in other words, in Minkowski space,
Virial theorem tells us that fob =3 there are no such static solu-
tions. This theorem is circumvented when gravity switches on and 2In this paper, we consider only the maximally symmetric solu-
there is a negative cosmological constant as in the case at hand.tions on a brane.
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five-dimensional cases. Thus we shall not consider this clasR=g“\R,,

of solutions anymore in this paper.
A different class of solutions are provided wher1.

Again we shall present the solutions below by following the

signature of the brane cosmological constant.
(i) dS, brane:

ds?=sinkf wrds? +dr?+R3sint? rdQ2_,,

5 _on P
R=—2A = >0,
Apee A P72 20 o2 k2250 (21)
ds— n+p_1 ’ Kp7 .
(i) My, brane:

ds?=e"2"ds2+dr?+R3e"2"d02_,
R=Ay=0, n—2-«37?=0. (22)
(i) AdS, brane:

ds?=coslf wrds? +dr?+R3 costf wrdQ?2_,,

A p
R—2An+—p_1<0,
-2
AAdS:ArH_p—p_l<o, n_Z_K%ﬂ2<O. (23)

Here w, RS are, respectively, given by

—2A
= \/(n+ p—2)(n+p—1)’

1
R§=— 5y (n+p-2)n—2-«j77,
(24

but in the case of the Minkowski brane MR, is a free

p(p+2)
4

=e’R+pA’+(n—1)B"— (A")?

3 p(n—l)A,B,_ n(n—1)

> i (B")2+(n—1)(n—2)eB.

(29

In particular, the last term iR reveals that the cases of
=1,2 are qualitatively different from higher-dimensional
casesn=3. The reason is that far=1 (domain wal) the
extra space is flat and far=2 (stringlike defect the extra
space is still conformally flat, while fan=3 the extra space

is essentially curvedl25]. The presence of this term makes
many solutions to Einstein’s equations in higher dimensions
physically uninteresting owing to the appearance of the na-
ked curvature singularity in the bulk space-time. Some
people do not regard the appearance of the naked curvature
singularity as a sick property of solutions by taking the op-
timistic attitude that such a singularity would be smoothed
by quantum effects or string theory corrections. In contrast,
we consider the naked curvature singularity to be a serious
problem of solutions and impose a strict criterion that clas-
sical solutions to Einstein’s equations should be free from
the naked curvature singularity.

Imposing the singularity-free condition as the physical re-
quirement, fom=3 the d§ brane in Eq.(21) must be dis-
missed from physical solutions. Note that in this case, the
real problem is that the line element is singular at0 even
in the absence of a defecy&0) [22]. Forn=2, dS, brane
is not the solution owing to the relation—2— kg 7*>0
when there is no defect(=0), so we also dismiss this case.
Of course, fom=1, dS, brane is physical and corresponds
to the dS domain wall solution.

Next, in M, brane Eq.(22), for n=3, the solution with
the upper sign has the naked curvature singularity at the spa-
tial infinity, so we dismiss this solution. On the other hand,
the solution with the lower sign is free from the curvature
singularity, but it turns out that the solution cannot localize
gravity on a defect, so we also dismiss this case. The remain-
ing possibilities are whem=1,2. Forn=2, the solution
corresponds to Gregory’s solutid27,28,24 and as seen
from the relationn—2— «37?=0 this solution describes a
local stringlike defect so we also dismiss this solution from
our present consideration. The solution in the case-ol is
nothing but the Randall-Sundrum soluti¢th,2] (when p
=4).

parameter. This class of solutions has been also in essence We are ready to analyze Ag®rane Eq(23) in a similar
derived in Ref[22] but with a different metric ansatz from Manner. Fon=1, the solution obviously corresponds to an

ours. Note that one advantage of our metric an&kéy over

AdS; brane in Ad$.; [17]. Note that forn=2 the solution

the ones in Ref[22] is that we have derived two classes of IS completely free from the curvature singularity and consti-

solutions in a unified way, while the authors in RéL6)

tutes a higher-dimensional nontrivial extension of an

have set up different metric ansatze and needed the change of

variables to reach the forms listed in the above.
Now let us attempt to understand the solutiga$)—(23)

in more detail. To do so, let us calculate thedimensional
scalar curvature under the ansétzwhose result is given by

3The existence of the curvature singularity at the origin0
might be admissible since in some cases this singularity could be
identified with the core of the brarj@6].
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AdS, brane in Ad$.;. Remarkably, as shown later, this where Y (Q) are the spherical harmonics for the

solution localizes all local bulk fields on a defect only (n—1)-sphere with eigenvalueA,;=I(I+n—2). And

through the grgvitatipnal in.teraction. . L(x*) satisfy the equations of motion (- 2Ae4) b
Before closing this section, let us summarize the results_ m2e with the definition of e

obtained. We have derived two classes of classical solutions = 0" A2 —.

to Einstein’s equations in higher dimensions. One class of (1/ —9)3M(\/—_99“V5V)- Equations(29) then reduce to

solutions is a trivial extension of the domain wall solutions. . .

The other class of solutions is a nontrivial extension, but el(P=2)2A (elP=2V2Rg 7, ) +m?Z,,=0,  (31)

almost all solutions except AdSrane are unphysical be- . 5 ) )

cause of the existence of the naked curvature singularity angherem“=mg+A,/R5. After changing to a new function

the nonlocalization of gravity on a defect. It is rather surpris- .

ing that in higher dimensionsn&2) only the Ad$ brane 2, =el(P-2MAZ, (32

solution is selected as a physical solution, while in the case o _ _

of n=1 domain wall three types of brane, gSM,, and ~ we find a Schrdinger-like equation foZ

AdS,, are permissible.

p il
[— I3+ V(2)]Zin(2) =M°Zin(2), (33
IV. GRAVITATIONAL FLUCTUATIONS where the potential is of the form
In the following sections, we shall turn our attention to (D-2)? I
the properties of an Aq,Sbran(_a solut|c_)n(23) in h|gher- V(z)= (A")2— A" (34)
dimensional space-time. The aim of this section is to study 16 4
the gravitational fluctuations around the backgro(2®).
First, let us rewrite the metri23) in terms of the confor-  with the prime denoting the differentiation with respectzto

mal coordinates If we introduce a new variablev=wz, taking the range
A ml2=w= 1, instead ofz and make use of the concrete ex-
ds?=cosif wrg,,,dx“dx"+dr?+R§ cosif rdQ7_, pression ofA(z) in Eq. (27), we finally arrive at the equation
—e A@(g, dx“dx’+dZ2+R3dQ2 ), (26) [— a2+ U(w)]Z(w)=EZ(w), (35
wheree A and the relation between two coordinate sys-where we have omitted to write the indicesn on Z(w)
tems are, respectively, given by explicitly, andU(w) andE are, respectively, defined as
1 D-2)2 D(D-2) 1
e D= , U(W)=—( ) N ( ) ,
Sir wz 4 4 sirtw
Wl _ 1 m2
e —tanin. (27 E=—2. (36)

Since the “radial” coordinate runs from 0O tow, this rela-
tion yields the range of, which is ml2o<z< 7/ w.

We will only consider the transverse, traceless fluctua
tions around the background met(6) in the conformalz

To have the second-rank linear differential equation well
defined, we need to impose boundary conditionswat
=/2,7w. The boundary condition at/= 7 is the Dirichlet

coordinates condition, Z(7)=0, since the potentidl (w) becomes an
infinity there. The delicate problem is what boundary condi-

—e ATy 4 M Lo x4 d 22+ R2d 02 tion we have to impose av= /2 where there is the core of
ds’=e "{[g,,+h,,(x")]dx"dx"+dZ’ ROdQ“‘l(}Z'S) a topological defect. We have only solved Einstein’s equa-

tions in the exterior region outside the core so that in prin-
where V#h,,=g*"h,,=0. Then, it is straightforward to ciple we have no knowledge about physics inside the core,

show that Einstein’s equations reduce to the form of the linWhich makes it difficult to set up the boundary condition at
earized equations w= 7r/2. However, the condition that the differential operator

should be self-adjoint, which is necessary iito have a
1 complete basis, requires us to choose a homogeneous bound-
—du(v—gg"Noyh,,)—2Ah,,=0. (290  ary condition atw= 7/2:

v—4g
a a
Given the symmetries of the background metric, we separate &z’ 5) + §ZZ(§> =0, (37)
variables as
My - where ¢,,£, are constants and the prime now denotes the
R (X) = B0 (X) Zin(2) Yim, (1), (30 ifferentiation with respect tav. Thus physics inside the
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core of a defect should satisfy this boundary condition to With these results in hand, we are ready to study a solu-
have a smooth continuity between inside and outside the coition to Eq. (35). After some elementary manipulati¢th6—

of a defect.(Here for simplicity we have neglected the core 19], a solution is given by a linear combination of Gauss'’s
size) hypergeometric functioff:

B A, D-2 \AE+(D-2)> D-2 V4E+(D-2)%1 2

T snw© 22 |4 " Z T 4 g1 COSW
A, cosw - D-4 J4E+(D-2)* D-4 J4E+(D-2)*3 B -
(sinw)(©—2)2 2 4 s 4 2 oS W]s 8

whereA; ,A, are integration constants. At this stage, given the boundary condifiefh=0, we find an equation

- D+2 \/4E+(D—2)2)F D+2 \/4E+(D—2)2>
- +

4 4 4 4
A2: 2Al (39)
D V4E+(D-2)?\ (D VA4E+(D-2)?
-t
4 4 4 4
|
The remaining work is to impose the boundary condition V. LOCALIZATION OF GAUGE FIELDS

(37) to fix the integration constants, A, but it is a very In this section we are willing to consider the localization
delicate problem because of a complicated structure O(f)fs in-1 U1) vector field on a% AdSbrane(23). Inciden-
Gauss’s hypergeometric function and in consequence onl P P ’

the numerical analysis is available. We leave this numericasat‘:gi trr:t?o?\/?/gfdra,l&zsartrg;mtfgng];ir?%r:e_??eiltl?g v\?;rgso\fl'ﬂ(:ﬁ;f
analysis for a future work. Here we shall investigate only a; 9 ' o

set of massive excited states which are supportet o). In the original _RandaII-Sundrur_n model the gauge f_|elds
: o cannot be localized on a domain wall by the gravitational
Then the natural choice of the boundary conditionwat

— /2 is the Neumann boundary conditidi(m/2)=0. To- interaction[7—10]. Since we have various gauge fields in our

. . > . world, the impossibility of confining gauge fields to a brane
%eTgr ;\:gh ;gznt:/c;ﬂsggf chgng:)'uon and Hg9), we obtain imposes a serious drawback on the scenario of brane world.
)=

Of course, there might be some ingenious mechanism for the
localization of gauge fields by invoking additional interac-
tions except the gravitational orn&], but we believe that
) ) ) such a mechanism is artificial and the universal interaction,
where k=1,2,... . This equation then gives the natural yha is; the gravitational interaction should provide us with
higher dimensional generalization of mass formula ofihe ocalization mechanism for the whole local fields includ-
Kaluza-Klein (KK) states in the AdSbrane[17]: ing gauge fields. From this context, it is of interest to ask
whether or not Adg brane (23) presents the localization
mechanism for the gauge fields.

Let us start with the familiar action of () gauge field

E,=k(k+D—2), (40)

mZ= k(k+D—2)Apgs, (41)

~(p—2)(n+p-2)

where we have used Eq3), (24), and(36). Hence, in the 1 o MNAR
Apgs— 0 limit, these states become massless degenerate 51:_1 d°x\/—gg"Ng*F yrF s, (42
states, thereby giving rise to corrections to Newton’s law

whose size is of the ordeP(A aqgs)- _ B . . )
On the other hand, a massive bound state, which i%VhereFMN IuAn—InAw - The equations of motion be

: . medy(V—gg"NgRSF 9 =0. To study the localization of
trapped and generates gravity on an AdS brane, is supportié’e gang(e fiegljg it igs cog\s/)enient to useythe conformedbor-
by the attractive potential around the core. In the model ai !

hand, the information about this attractive potential is implic-dmates(%)' In the coordinates, for simplicity, we shall focus

- M A —
tly included in the boundary conditiof87). Recall that the O ONY the brane gauge fiekl, (x) and setA,=A,,=0.
boundary condition of AdSbrane in Ad§ certainly satisfies  Then, e look for a solution with the form oh,(x")
this equation. Anyway in order to understand this problem=2,(X")u(2)x(y™), wherey™ denote the angular coordi-
completely, it would be necessary to construct a physicall)f]ates- Here we assume the following equations of motion
plausible core model. V“aﬂ=&“fw=&m(\/§gm”anx)=0 where f,,=d,a,
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—d,a,. With these ansatze, the equations of motion reducsimplest caseB = 5,6, belonging to each branch of solutions

to a single differential equation although we have examined some remaining lower-
CoiioA dimensional cases and found similar results and repeated pat-
d [ el W2 9,u(z)]=0. (43 tern depending o =2k+3 or D=2k+4.

. , In the case oD=5p=4n=1, that is, an Adgbrane in

In the case of a Minkowski brane, we have selected %d&, [17], from Eq.(47) the integrall =° reads
constant zero-mode solution(z)=const, which leads to ’ ' !
nonlocalization of the vector field4.0]. On the other hand, fw/w 1 2

. (48

in the case of an AdS brane, a new solution is available, I?=5=
which is given bye(~P2+2A@ ;5 y(z) = const~ 0. (Note that

this solution is not localized on a Minkowski brane, either.
As a result, we obtain the following solution to E¢.3). For
D=2k+3 (k=1,2,3...),

k—1

o
dz— — —COSwz+ B
20 SINwZ w

which is in general divergent, but only when the equapty

= —alw holds, does it become finite. Henceforth, we shall
consider this specific case. Then, it is straightforward to cal-
culate the above integral as well as the second integralover

_ 1)k _ _9|—
u(z)= « ﬂ > (_1)I(2k 1| cog(2k—2I~1)w?] in Eq. (46) associated with the KK mass terfiiNote that in
w 22k-1) o | 2k=21-1 D=5 there does not exist the third term in the right-hand
B, (44 side in Eq.(46).] The result is given by
1 =
and forD=2k+4 (k=1,2,3...), S=— ZJ d*xV—g
_e (VS - 1y ) 20 Doz) o . 202,
u2)= w 2% | = (=1 I k—1 X —3(—1+2Iog2)g“”gp"f#pfw+ Tg‘”aﬂay .
w
2k
+(—1)k( K wz] +8, (45) 49

The quantities in front of the kinetic and the mass terms are
wherea, 8 are integration constants. obviously finite, so the gauge field is localized on an AdS

We would like to investigate whether this solution is lo- Prane, which is to be contrasted with the case of a

calized on an Adg brane or not. The substitution of this Minkowski brane[6]. , ,
solution into the action leads to At this stage, it is worthwhile to examine the mass of the

brane gauge field. Provided that we redefine the brane gauge
field a, as

1
S0= -7 [ doxy=gg" g FRFR
o
——-V—1+2log2a,—a,, (50)
:_%j dedZd_ly /_é\/ge(—D/2+2)A(z) a)3/2 # m

b orn . Eq. (49) reads
X[U X glLVngfMprU+2(aZu) X g/“/a,u,av

A 1 — [~ .

+ ZUZémn’?mXanXg'uVaMay]- (46) Sg.O)z - Zf d4X _g g’b“/gp(rf,u,pf vo

Here we have carefully kept the KK mass term since we 202 .

wish to examine later whether this solution leadsiassless + mg””aﬂav

“photon” on a brane. The localization condition of this 9

rkr]ode_: on a brar;)e rfgquwe; the |rr]1te.gral ozlem fronthof the | From this equation, we can read off the mass of the brane
mgtlc term tol € |n|tezs!ncg the mtegr.a' over the angu Algauge field, which is expressed in terms of the brane cosmo-

variables [d"™ y\/SX(y) is in general finite. Thus let us |ogical constant by using Eqé23),(24) as

consider this integral first:

(51

w? 1 1

2: —_ — —
—1+2log2 3 —1+2log 7\ nas:

m (52

= J dzd D2+ 2A@2(z)

o 1 The physical condition that the () gauge.fielcbﬂ must be
_ J dz u(2). (47) masslesﬁphoton” on an AdS, brane requires that the t_>rar_1e
(sinwz)® 4 cosmological constant is small enough. It is very intriguing
that in the present brane model the smallness of the brane
The expression$44), (45) for u(z) become more compli- cosmological constant is directly connected with the small-
cated as the number of space-time dimensions gets larger, sess of mass of the brane gauge field, which, we think, is a
below we shall present explicitly only the results of the two miracle in the brane world scenario. From the current experi-

20
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mental data, the bound on the photon mass4s2x 10 1% which is finite since the last integral is known to be finite.
eV so our relation(52) yields a weaker constraint on the Thus, the gauge field is also localized on an At#&ne in a
four-dimensional cosmological constant although it does nosix-dimensional space-time with negative cosmological con-

conflict with the current experimental data. stant.

As a remark, let us notice that when the equality Evaluating the integrals ovez, the classical action is of
— al/w holds, our solution reduces to the form form

2a wZ 1 [ = AR oo
u(z)=— ?C0§7. (53 Sg_O)Z - Zf d*x _gf d0RO| |1X29,u g” f,u,pfmr
2

Similar to the graviton considered in the previous section i o 24 2l 2| Auw

. . o . . ’ - — (9 “ra,a,p . 5
this solution satisfies the Dirichlet condition at 7/ w, 20 X R(Z)( X798, 67

whereu(z)=0. It is quite of interest that the requirement of

the localization for the gauge field naturally leads to theWith respect to integrations ovef, as mentioned before,
same boundary condition as the other bosonic fiefdée they are always finite, which fact can be shown as follows.
can show that scalar field also satisfies the same boundads seen in the derivation from Eq§42) and (43), x(y™)

conditionz=7/w.) . ~_must satisfy the equation of motioam(\/‘aﬁm”anxho,
As another remark, let us check if the bulk gauge field isyhich now reduces t62y=0, so a general solution to this
sharply localized on a brane or spreads rather widely in %quation is given by (6) = x,+ 6x, Where y1, x, are inte-

bulk. For this, it is useful to change tizecoordinates to the o a4ion constants. Thus the integrals oveappearing in Eq.
radial coordinate whose relation can be found in ) and (57) fgﬁd 0> fgﬂd 0(d,x)? are finite quantities as long as

trgz?ale();(:(;?(lj?r?attgi r,:ﬁg?%“rﬁglé:‘rjozr;%dr?“;gea?n‘{;ﬂs the the integration constants are finite. We are now ready to
the form ' NS examine the mass of the brane gauge field. To make the
kinetic term take a canonical form, let us redefine the brane

gauge fielda,, as follows:
1

U(r)= —====u(r)
N Rollj dox(0) a,—a,. (58)
w 1
=2\ A It, it t t that E
2 —1+2log2q + 2o (59 s a result, it turns out that E457) becomes

The present observations requise/Gy<1 whereGy, is the 1 = nn
four-dimensional Newton’s constant, so it turns out that this 8(10): - Zf d4X\/—_g 9“" 9"t ot oo
zero mode is not sharply localized but spreads rather widely
in a bulk.
Next, let us consideD=6,p=4n=2 case, that is, a
stringlike defect model in six space-time dimensions. In this 87”"2J d0X2+(2/Rf2’)KJ da(aHX)ZA
case, we also follow a similar path of arguments to the case + g“’a,a, |,
of D=5 domain wall. The concrete expression fqfz) is Kf doy?
different betwee = 2k+3 andD =2k +4, so it is valuable
to investigate this simplest case in the branctDef 2k + 4. (59

In the case 0D =6,p=4,n=2, from Eq.(45) the integral 2 ) o
|?=6 takes the form where K=1+4log2—-8f7“d{{ cot{. Since it is reason-

able to regard value of the integrals owras being of the
, ) order 1, the smallness of mass of the brane gauge field re-
|D=6_ f” dz 1 ( Y Sin2wz+ Eaz+ﬁ quires 0?>~0,1R3~0, both of which imply that the brane
w20 Sifwz ’

4o 2 cosmological constant is extremely tiny as desired.
(55 As a final check, let us study the zero-madg). When
the equalityB= — am/2w holds, our solution reduces to the
which is also generally divergent, but only when the equalityform
B=—am/2w holds, it also becomes strictly finite. Again,
from now on we shall confine ourselves to this specific case.

o a
. - - = —si + — ).
Then, after a bit calculations the integt§l=° reduces to Sin 2z (0z=m) (60

u(z)=- 4w 2w

o This solution also satisfies the Dirichlet boundary condition
1+47log 2_8j dee cotg), (560 atz=m/w, whereu(z)=0. For the investigation of the lo-

0 calization of this mode on a brane, we also use the radial

2
p=6__¢
1
1603
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coordinates instead of ttecoordinates. In the radial coordi- P n—1 R
nates, after some calculations, the normalized zero-mode in o — ZA'— TB' +I'*(d,tw,)
an AdS is proportional to
+T™(9py+ w) +me(r) [ ¥ =0. (65)

u(r)e o

. (6D

mT— tanh wr) —tan (e™*")

Let us find the massless zero-mode solution with the form of
T (xM) = y(x*)u(r) x(y™ such thatT'*D ,y=T"D x=0

and the chirality conditiod™" = ¢ is imposed on the brane
fermion. Then, Eq(65) is reduced to a first-order differential
equation foru(r) and is easily solved to be

Again, for wGyn<<1, it turns out that the brane gauge field
is not sharply localized on an Ad%rane.

VI. LOCALIZATION OF FERMIONIC FIELDS

— (p/A)A(r)+[(n—12)/4]B(r) —me(r)r
Next let us turn to fermionic fields, those are, spin-1/2 u(r)=uoe ’ (66)

O o ot e i oo e cemparaihan neraton consan
P P ' 9 In order to check the localization of this mode, let us plug

Dirac action with a mass term i dimensions: this solution into the Dirac actiof62). Then the action re-
duces to the form

Sl,zzfdex/—g\I’i[I‘MDMers(z)]\If, (62)
sg‘,)g:f d®x\—gWOi[TMDy,+ms(z) ¥
where the covariant derivative is defined Bg,V = (dy
+ 7oy yas) ¥ with the definition of yag=3[ya.¥s], and _ zJ' n-1 + fw (12)A(r) - 2me(r)r
£(2) is e(z2)=2z/|z|] and(0)=0. Here the indice#\,B are =Ug | d y\fax Y)x(y) 0 dre
the ones of the local Lorentz frame and the gamma matrices
I'™ and y* are related by the vielbeirey through the usual J’ [ A

X Py~ — “D A+ .- -

relationsT'™= e} y*, where{T'M TN} =2gMN and {y*, y®} AN =gyiy"D,¥ (67
=27"B. A feature of the action is the existence of a mass - _ .
term with a “kink” profile. We have just introduced this The condition of the trapping of the bulk spinor on an AdS

type of mass term in the action since the existence has playdiane requires that an integral ovenas a finite value since
a critical role in the localization of fermionic fields on a @n integral ovey is finite. The integral is easily evaluated as

Minkowski brane in an arbitrary dimensig6]. ollows:
In this section, we shall consider a more general metric .
ansatz than Eq4) in the “radial” coordinates. The metric _ (L/2)A(r) —2me(r)r
. . K . . | 1/2 dre
ansatz we take into consideration is the following one: 0
dszngNdXMdXN :Jocdr 1 e—2ms(r)r_ (68)
o coshwr

=e AlNg,,,(x"dx#dx"+dr2+e Bg, (yhdymdy",
(63) This integral is obviously finite so the bulk spinor is confined
to a brane by the gravitational interaction. In particular, in
the case of massless fermion, the above integral can be inte-

where we have replaced a metric 8/ ! in Eqg. (4) with a
P a- (4 grated to be

general curved metriamn(y') depending only on extra di-
mensionsy' exceptr. In this background metric, the torsion- -
free conditions yield an explicit expression of the spin con- |’1“,;°=—. (69
nections 20

Namely, even in the massless spinor, the bulk spinor is lo-
wu=%A'(f)rrF,4+¢:’M(é)a w,=0, calized on a brane, vyhose fact should be contrasteq with the
case of a Minkowski brane, where only the massive bulk
fermion with a “kink” profile is localized on the brane
1 - whereas the massless one is not. This fact can be traced in
wn=7B" (NI I'nton(e), 64 Eq.(69 sincel);° at w=0 is divergent[Note that in both
the Minkowski brane and the AdS brane, the form of the
. 1 AB A a zero-mode solution of fermion, E¢66), is the same so this
!Vhe,fe we have definedy=zwy yas. And wﬂ(?) and consideration is legitimatgIn the case at hand, irrespective
wn(€) are the spin connections constructed outegfand  of the presence of mass term, the bulk spinor can be local-
en, respectively. Using Eq.(64), the Dirac equation ized on the brane through the gravitational interaction as
[TMDy+me(r)]¥=0 can be cast in the form long as the brane cosmological constant is nonvanishing.

026002-9
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However, there is a caveat. As seen in the concrete formgain the condition for the localization of the gravitino on a
of u(r) in Eq. (66), the zero-modei(r) can be written to brane requires the integral overto take a finite value.
Namely, the following integral over must be finite

Ug
—(D—=1)/124—me(r)r -
u(r)= (n 1),2(coshwr) S] |3/2:j dre(M/2Ar) ~2me(n)r
0
Ug
(D- 1)/ —[(D=1)/2Jor —me(r)r © 1
TR 1)/22 - (79 =f dr g~ 2me(n)r, (75)
o coshwr

The last expression was derived under the conditos- 1.
This expression tells us that provided that/Gy<1, the
zero mode spreads more widely in a bulk in the massles
limit. To avoid such a situation, we might also need the;
presence of a mass term with “kink” profile. InC|dentaIIy,
note that the results obtained so far are independent of
concrete form ofB(r), so only the warp factoe (") in
front of the p-dimensional metric controls the results.

Next, let us consider the gravitino field of spin-3/2. The
action for the spin-3/2 bulk gravitino is given by the Rarita- VII. DISCUSSIONS

Schwinger action In this article we have discussed locally localized gravity
models in higher dimensions. As a solution to Einstein’s
Syo= f dPx /= gW i TIMTNTRI D+ LT me(r) ¥R, equations with a set of scalar fields wigtobal SO(n) sym-
metry, we have found two types of AgBrane solution in a
(71 unified metric ansatz. Though these solutions have been al-
ready found in Ref{22], our derivation is more concise than
square bracket denotes the anti-symmetrization with weig heir dgrivation and we furthermore spelk_ad out the physical
. . A roperties of the solutions. An important issue that we have
1. Egom the metric conditionDyey=dmeN—TWneR  found in this paper is that in higher dimensions the solutions
+oy ens=0, WeRObta"; the concrete expression for the afyhich are free from the naked curvature singularity and pos-
fine connectiond’ iy =ex(dvey+ @iy eng). With the gauge  sess the property of gravity localization are very few. Apart
condition ¥, =0 and assumingV',,=0 for simplicity, the  from a type of trivial extension of the Randall-Sundrum so-
equations of motionI™I'NI'RI[Dy+ s I';me(r)]W&=0 |utions, in higher dimensions the physical solution corre-
can be cast to the form sponds to only an AdsSbrane in a space-time with negative
bulk cosmological constant. It is quite curious that there are
no nontrivial solutions in higher dimensions which corre-
spond to a dsbrane and a M brane solution with needed
(720 physical properties. From this point of view, more study
R about an AdS brane seems to be warranted in the future. In
where we have wused equationsy*¥ ,=D*¥ higher dimensions, intersection brane solutions with two dif-
= ylryryplD v, =T™D m¥,=0. Let us look for a solutlon ferent warp factors might be needed in order to satisfy the

with the form ¥ LMY= l/f’u(X)‘)U(l’))((ym) If the chirality ~ Physical propertie$29].

Here let us notice that this condition has the same form as in
spin-1/2 spinor field, Eq(68), so the spin-3/2 gravitino is
3lso localized on a brane. The formudf(fr) in (73), however,
is similar to that of spin-1/2 spinor fiel6), so as in the
inor field it might be necessary to include a mass term with
“kink” profile in order to have a sharp localization on a
brane.

where DM\I’N:aM\PN_F:\QANWR_’_%‘rwﬁ/lB’)/AB\I’N and the

g,uv Fr

p—2 n-1_.
(9r—TA (I’)—TB (r))+ms(r) v

condition T'" ¢, = % is utilized in Eq.(72), we can get a Concerning the localization of various bulk fields on an
solution AdS brane only by the gravitational interaction, we have
explicitly considered spin-1/2 spinor, spin-1 vector, and spin-
u(r) = upel (P~ 2/M4A(M) +1(n=1)/4IB(r) ~me(r)r (73)  3/2 gravitino fields. We have also implicitly considered
spin-2 graviton where we have stressed that a complete un-
with an integration constanty. derstanding of the gravity localization requires us to find a
Substituting this solution into the acti@i1), we arrive at  reasonable core model. The local fields which we have left
the following expression: aside are spin-0 scalar and higher-rank antisymmetric tensor

fields. It is well known that a real scalar field satisfies the

_ same equation of motion as that of the transverse, traceless
0)_ 0); 0 ; '

3(3/2)—f d®x = gWITMINTRD + ST me(N]PR)  graviton modes, so a real scalar field shares the common

localization properties with the graviton. The treatment of

_ * _ higher rank tensor fields is completely parallel to that of the

— 2 n—-1 2 (1/2)A(r)—2me(r)r ‘ ’
UOJ d Y\/EX () fo dre gauge fields, so we have skipped these cases.

It is worth stressing here that the localization mechanism

that we have found in this paper, in particular, is new and

novel for spin-1 vector and fermionic fields. For the former,

X f de\/—ézﬂi y["‘y”y”]lﬁ,,gbp-l- - (74)
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it is known that the gauge field is not localized on aalso spreads rather widely in the bulk space-time, so we
Minkowski brane in the original Randall-Sundrum model. might need a mass term with a “kink” profile to have a
On the other hand, in an anti—de Sitter brane, the gauge fielsharply localized brane fermion.

is localized due to the presence of the brane cosmological Of course, if we wish to construct a fully successful brane
constant. However, there is a caveat. Namely, although thgorld model in higher dimensions on the basis of global
gauge field is anyway localized near the brane, it is nofefects, it is essential to understand physics inside the core of
sharply localized, by which we meet some phenomenologithe defects. Without knowledge of it, we cannot fully answer
cal problems such as the violation of the charge conservatiogeyerg questions such as stability of the defects. Another
law in our world. Moreover, we have found a new phenom- nqq|ved problem within the context of the present formula-
enon that the size of the brane cosmological constant is d&r, is how to construct a model with two or more branes,
termined by that of the mass ofphotori’ on a brane. Also which would be necessary to understand the mass hierarchy

for the fermionic fields, the presence of the brane cosmologi; roblem between the Planck scale and the electroweak scale.

cal constant provides a novel localization mechanism wher$ ere are also future works of the construction of a super
massless fermions are localized on an AdS brane wherea P

only massive fermion with a “kink” profile can be localized symmetric model corresponding to the present model and of

on an M brane as in the Randall-Sundrum model. However‘,jerivmg the model at hand from superstring theory. We wish

as in the gauge field, the zero-mode of massless fermior® clarify these important problems in a future publication.
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