
PHYSICAL REVIEW D, VOLUME 64, 026002
Locally localized gravity models in higher dimensions

Ichiro Oda*
Edogawa University, 474 Komaki, Nagareyama City, Chiba 270-0198, Japan

~Received 22 February 2001; published 6 June 2001!

We explore the possibility of generalizing the locally localized gravity model in five space-time dimensions
to arbitrary higher dimensions. In a space-time with a negative cosmological constant, there are essentially two
kinds of higher-dimensional cousins which not only take an analytic form but also are free from the naked
curvature singularity in a whole bulk space-time. One cousin is a trivial extension of five-dimensional model,
while the other one is in essence in higher dimensions. One interesting observation is that in the latter model,
only the anti–de Sitter (AdSp) brane is physically meaningful, whereas de Sitter (dSp) and Minkowski (Mp)
branes are dismissed. Moreover, for the AdSp brane in the latter model, we study the property of localization
of various bulk fields on a single brane. In particular, it is shown that the presence of the brane cosmological
constant enables a bulk gauge field and massless fermions to confine to the brane only by a gravitational
interaction. We find a novel relation between the mass of the brane gauge field and the brane cosmological
constant.
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I. INTRODUCTION

In recent years, an idea that our world is a 3-brane e
bedded in a higher-dimensional space-time, with some of
extra dimensions being macroscopically large, has attract
lot of attention as a resolution of the hierarchy problem,
persymmetry breaking, the cosmological constant probl
and so on. In particular, Randall and Sundrum have foun
solution to the five-dimensional Einstein equations with
Minkowski flat 3-brane in AdS5 and have shown that th
effects of four-dimensional gravity on the brane are rep
duced without the need to compactify the fifth dimensi
@1,2#. ~This model was generalized to the case of ma
branes in Refs.@3,4#.!

One disadvantage of the Randall-Sundrum model@1# is
the presence of a brane with negative tension. Although
brane is located at a fixed point ofS1/Z2 orbifold in such a
way that the fluctuation modes associated with the bra
which are necessarily physical ghost modes, do not app
the existence of the negative tension brane violates the w
energy theorem in the bulk@5#.

Another disadvantage in the Randall-Sundrum mode
related to the localization of bulk fields on a brane@6#. In the
conventional brane world scenario, the standard model ga
and matter fields are assumed to be localized on our br
whereas gravity freely propagates in a bulk space-time.
this assumption is quite unnatural since we tacitly discrim
nate gravity from the other fields. Since the graviton cor
sponds to the fluctuation mode of the space-time geometr
automatically sees the whole structure of the space-time
consequently lives in the bulk space-time. The physica
plausible setup is then to treat the standard model gauge
matter fields on an equal footing with gravity and consid
all the local fields as the fields living in the bulk space-tim
From this context, we can regard the Randall-Sundr
model@2# as a successful model for the localization of gra
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ity on a brane. However, it is well known that in the origin
Randall-Sundrum model it is very difficult to localize th
gauge fields@7–10# and the massless fermions, those a
spin-1/2 massless Dirac spinor@11–14# and spin-3/2 mass
less gravitino@15#, on a brane by a gravitational interactio

Recently, there has been an interesting developm
which circumvents simultaneously the two disadvanta
mentioned above@16–21#. The models deal with a single o
two positive tension anti–de Sitter AdS4 brane~s! in a five-
dimensional anti–de Sitter space-time AdS5, where four-
dimensional gravity is induced on the AdS4 brane owing to
the localization of a massive and normalizable bound s
@17#. Moreover, it was shown that all the standard mod
particles are localized on the AdS4 brane only through the
gravitational interaction@20#. For instance, the appearance
zero-mode with dependence of a fifth dimension supplies
with a novel mechanism for the localization of the bu
gauge field on the brane. Even if nature seems to favo
Minkowski brane M4 with zero cosmological constant rathe
than an AdS4 with negative cosmological constant, it is im
possible to rule out the possibility that our world might ha
a very tiny negative cosmological constant which is cons
tent with the present observations. Interestingly enough
the AdS4 brane model the existence of amassless‘‘photon’’
on a brane demands that the brane cosmological cons
must be small in Planck units enough not to violate expe
ment @20#.

The aim of this paper is to generalize this interesti
model to higher dimensions. Such a generalization is
course of importance from the viewpoint of an underlyi
fundamental theory in higher dimensions such as t
dimensional superstring theory.

We will regard the branes asglobal defects with the num-
ber p of longitudinal dimensions in a higher-dimension
space-time withD bulk dimensions andn extra transverse
ones~so the equalityD5p1n holds!. A set ofn scalar fields
with the Higgs potential, thereby breaking theglobal SO(n)
symmetry to SO(n21) symmetry, are utilized to generat
the global defects @22,23#. A topological argument
©2001 The American Physical Society02-1
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ICHIRO ODA PHYSICAL REVIEW D 64 026002
Pn21@SO(n21)#5Z, which expresses the fact that a ma
ping of configuration space at spatial infinity to a vacuu
manifold is topologically nontrivial, guarantees the stabil
of the defects under deformations.

The plan of the paper is as follows. In the next section
review the model setup and then in Sec. III we look f
solutions to Einstein’s equations. In Sec. IV we study
metric fluctuations and derive a Schro¨dinger-like equation.
Because of a complicated form of the solution and the l
of the knowledge inside the core, it is difficult to understa
an exact formula of Newton’s potential so we shall be co
tented with some qualitative understanding of the solution
Sec. V, we show that the zero-mode of bulk gauge field
normalizable owing to the presence of the cosmological c
stant, thereby leading to the localization of gauge field o
brane. But it is shown that the localization is not so sharp
the brane and spreads rather widely in a bulk. Section V
devoted to the treatment of fermionic fields. Discussions
future works are summarized in Sec. VII.

II. MODEL SETUP

In this section, we shall review the construction of ‘‘glo
bal’’ topological defect model in higher dimensions@22,23#.
The solutions to Einstein’s equations which we shall der
below can be found in essence in the article of Olasag
and Vilenkin @22,23#, but we shall not only derive the solu
tions in a more unified metric ansatz but also examine th
physical properties in detail from a different viewpoint.
this paper, we shall follow the notations and the conventi
in our previous papers@24#.

The action with which we start is that of gravity in ge
eral D dimensions, with the conventional Einstein-Hilbe
action and some matter action which will be specified lat

S5
1

2kD
2 E dDxA2g~R22L!1E dDxA2gLm . ~1!

Taking the variation of the action~1! with respect to the
D-dimensional metric tensorgMN we obtain Einstein’s equa
tions in D dimensions

RMN2
1

2
gMNR52LgMN1kD

2 TMN , ~2!

where the energy-momentum tensor is defined as

TMN52
2

A2g

d

dgMNE dDxA2gLm . ~3!

To find the spherically symmetric solutions in the bu
we shall adopt the following metric ansatz

ds25gMNdxMdxN

5gmndxmdxn1dr21gmndymdyn

5e2A(r )ĝmndxmdxn1dr21e2B(r )dVn21
2 , ~4!
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whereM ,N, . . . , denoteD-dimensional space-time indices
m,n, . . . , p-dimensional brane ones, andm,n, . . . ,
(n21)-dimensional extra spatial ones, so the equalityD
5p1n holds. ~We assumep>4.! We sometimes denote
gmn5e2B(r )g̃mn(x

l). Note that the reason why we take a
count of this metric ansatz comes from the holographic p
ciple where the ‘‘radial’’ coordinater plays the role of scale
of the AdS renormalization group, so it is straightforward
extend various results of AdS conformal field theory~CFT!
correspondence such as ‘‘c-theorem’’ to the present c
Moreover, we shall take an ansatz for the energy-momen
tensor respecting the spherical symmetry:

Tn
m5dn

mt0~r !,

Tr
r5t r~r !,

Tu2

u25Tu3

u35•••5Tun

un5tu~r !, ~5!

where t i( i 50,r ,u) are functions of only the radial coordi
nater.

Under these ansatz, after a straightforward calculat
Einstein’s equations reduce to the forms

eAR̂2
p~n21!

2
A8B82

p~p21!

4
~A8!2

2
~n21!~n22!

4
~B8!21~n21!~n22!eB22L

12kD
2 t r50, ~6!

eAR̂1~n22!B92
p~n22!

2
A8B82

~n21!~n22!

4
~B8!2

1~n22!~n23!eB1pA92
p~p11!

4
~A8!2

22L12kD
2 tu50, ~7!

p22

p
eAR̂1~p21!S A92

n21

2
A8B8D2

p~p21!

4
~A8!2

1~n21!FB92
n

4
~B8!21~n22!eBG22L12kD

2 t050,

~8!

where the prime denotes the differentiation with respect tr,
andR̂ is the scalar curvature associated with the brane me
ĝmn . Here we define the cosmological constant on thep
21)-braneLp by the equation

R̂mn2
1

2
ĝmnR̂52Lpĝmn . ~9!

In addition, the conservation law for the energy-moment
tensor¹MTMN50 takes the form
2-2
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t r85
p

2
A8~ t r2t0!1

n21

2
B8~ t r2tu!. ~10!

The formulation reviewed thus far@24# is rather general in
that we have assumed only the metric ansatz~4!. Here let us
specify the model by fixing the matter action. Followin
Refs.@22,23#, we shall take a multiplet ofn scalar fieldsFa

with the Higgs potential

Lm52
1

2
gMN]MFa]NFa1

l

4
~FaFa2h2!2, ~11!

from which the energy-momentum tensor takes the form

TMN5]MFa]NFa2
1

2
gMN]PFa]PFa

1gMN

l

4
~FaFa2h2!2. ~12!

Then, the familiar ‘‘hedgehog’’ ansatz leads to a glob
defect

Fa5 f ~r ! r̂ a, ~13!

where r̂ a is the unit vector on the (n21)-sphere and the
function f (r ) takes the form

f ~0!50, lim
r→`

f ~r !5h. ~14!

Namely, it is considered that the defect hasFa50 at the
center of the core and approaches the radial ‘‘hedgeh
configurationFa5h r̂ a outside the core. In this paper, w
limit ourselves to the exterior solutions, where the config
ration is given byFa5h r̂ a. Note that this configuration be
comes an accurate approximation as the coupling constal
gets large. A big question about ‘‘global’’ defects is wheth
there could be a stable localized core or not.1 This problem is
closely connected with physics inside the core so now
cannot answer this important problem.

III. SOLUTIONS

In this section, we solve a set of Einstein’s equations~6!–
~8! derived in the previous section. In this paper, we p
attention to only the case of the bulk cosmological const
being negative,L,0 in order to search higher dimension
analogs corresponding to an AdS4 brane solution in AdS5
@17#.

First of all, let us notice that with the ansatzFa5h r̂ a

which holds only outside the defect core, the ener
momentum tensor takes the forms

1In the absence of gravity, in other words, in Minkowski spa
Virial theorem tells us that forD>3 there are no such static solu
tions. This theorem is circumvented when gravity switches on
there is a negative cosmological constant as in the case at han
02600
l
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1

2
~n21!h2eB(r ), tu52

1

2
~n23!h2eB(r ),

~15!

which obviously satisfy the conservation law~10!.
Next, to find analytic solutions we need to set up a mo

specific metric ansatz, for which we shall take the form

B~r !5cA~r !1d, R0
2[e2d, ~16!

wherec andd ~or R0) are constants, which will be later fixe
by Einstein’s equations. Then it is straightforward to sol
Einstein’s equations~6!–~8! whose solutions can be divide
into two kinds of cousins. One cousin, being a trivial exte
sion of branes in AdS5, belongs to a class havingc50. Ac-
cording to the signature of the brane cosmological const
let us separate this class of solutions to three branes’ s
tions, de Sitter branedSp , Minkowski brane Mp , and
anti–de Sitter brane AdSp.2

~i! dSp brane:

ds25sinh2vrdŝ1
2 1dr21R0

2dVn21
2 ,

R̂522L
p21

n1p22
.0, LdS52L

~p21!~p22!

p~n1p22!
.0.

~17!

~ii ! Mp brane:

ds25e72vrdŝ0
21dr21R0

2dVn21
2 ,

R̂5LM50. ~18!

~iii ! AdSp brane:

ds25cosh2vrdŝ2
2 1dr21R0

2dVn21
2

R̂52L
p21

n1p22
,0, LAdS5L

~p21!~p22!

p~n1p22!
,0.

~19!

Herev, R0
2 are, respectively, given by

v5A 22L

p~n1p22!
, R0

25
1

2L
~n1p22!~n222kD

2 h2!,

~20!

whereR0
2.0 requiresn222kD

2 h2,0. This class of solu-
tions has been first derived in Ref.@22#. The common feature
in this class is that the (n21) sphere has a constant radi
R0, because of which we have called it atrivial extension of
branes in AdS5 in the above. Indeed, it is easy to show th
this class of solutions shares the same properties such a
corrections to Newton’s law as for correspondin

,

d
.

2In this paper, we consider only the maximally symmetric so
tions on a brane.
2-3
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ICHIRO ODA PHYSICAL REVIEW D 64 026002
five-dimensional cases. Thus we shall not consider this c
of solutions anymore in this paper.

A different class of solutions are provided whenc51.
Again we shall present the solutions below by following t
signature of the brane cosmological constant.

~i! dSp brane:

ds25sinh2 vrdŝ1
2 1dr21R0

2 sinh2 vrdVn21
2 ,

R̂522L
p

n1p21
.0,

LdS52L
p22

n1p21
.0, n222kD

2 h2.0. ~21!

~ii ! Mp brane:

ds25e72vrdŝ0
21dr21R0

2e72vrdVn21
2

R̂5LM50, n222kD
2 h250. ~22!

~iii ! AdSp brane:

ds25cosh2 vrdŝ2
2 1dr21R0

2 cosh2 vrdVn21
2 ,

R̂52L
p

n1p21
,0,

LAdS5L
p22

n1p21
,0, n222kD

2 h2,0. ~23!

Herev, R0
2 are, respectively, given by

v5A 22L

~n1p22!~n1p21!
,

R0
252

1

2L
~n1p22!un222kD

2 h2u,

~24!

but in the case of the Minkowski brane Mp , R0 is a free
parameter. This class of solutions has been also in ess
derived in Ref.@22# but with a different metric ansatz from
ours. Note that one advantage of our metric ansatz~16! over
the ones in Ref.@22# is that we have derived two classes
solutions in a unified way, while the authors in Ref.~16!
have set up different metric ansatze and needed the chan
variables to reach the forms listed in the above.

Now let us attempt to understand the solutions~21!–~23!
in more detail. To do so, let us calculate theD-dimensional
scalar curvature under the ansatz~4! whose result is given by
02600
ss

ce

of

R5gMNRMN

5eAR̂1pA91~n21!B92
p~p12!

4
~A8!2

2
p~n21!

2
A8B82

n~n21!

4
~B8!21~n21!~n22!eB.

~25!

In particular, the last term inR reveals that the cases ofn
51,2 are qualitatively different from higher-dimension
casesn>3. The reason is that forn51 ~domain wall! the
extra space is flat and forn52 ~stringlike defect! the extra
space is still conformally flat, while forn>3 the extra space
is essentially curved@25#. The presence of this term make
many solutions to Einstein’s equations in higher dimensio
physically uninteresting owing to the appearance of the
ked curvature singularity in the bulk space-time. Som
people do not regard the appearance of the naked curva
singularity as a sick property of solutions by taking the o
timistic attitude that such a singularity would be smooth
by quantum effects or string theory corrections. In contra
we consider the naked curvature singularity to be a seri
problem of solutions and impose a strict criterion that cl
sical solutions to Einstein’s equations should be free fr
the naked curvature singularity.3

Imposing the singularity-free condition as the physical
quirement, forn>3 the dSp brane in Eq.~21! must be dis-
missed from physical solutions. Note that in this case,
real problem is that the line element is singular atr 50 even
in the absence of a defect (h50) @22#. For n52, dSp brane
is not the solution owing to the relationn222kD

2 h2.0
when there is no defect (h50), so we also dismiss this cas
Of course, forn51, dSp brane is physical and correspond
to the dS domain wall solution.

Next, in Mp brane Eq.~22!, for n>3, the solution with
the upper sign has the naked curvature singularity at the
tial infinity, so we dismiss this solution. On the other han
the solution with the lower sign is free from the curvatu
singularity, but it turns out that the solution cannot locali
gravity on a defect, so we also dismiss this case. The rem
ing possibilities are whenn51,2. For n52, the solution
corresponds to Gregory’s solution@27,28,24# and as seen
from the relationn222kD

2 h250 this solution describes a
local stringlike defect so we also dismiss this solution fro
our present consideration. The solution in the case ofn51 is
nothing but the Randall-Sundrum solution@1,2# ~when p
54).

We are ready to analyze AdSp brane Eq.~23! in a similar
manner. Forn51, the solution obviously corresponds to a
AdSp brane in AdSp11 @17#. Note that forn>2 the solution
is completely free from the curvature singularity and cons
tutes a higher-dimensional nontrivial extension of

3The existence of the curvature singularity at the originr 50
might be admissible since in some cases this singularity could
identified with the core of the brane@26#.
2-4
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AdSp brane in AdSp11. Remarkably, as shown later, th
solution localizes all local bulk fields on a defect on
through the gravitational interaction.

Before closing this section, let us summarize the res
obtained. We have derived two classes of classical solut
to Einstein’s equations in higher dimensions. One class
solutions is a trivial extension of the domain wall solution
The other class of solutions is a nontrivial extension,
almost all solutions except AdSp brane are unphysical be
cause of the existence of the naked curvature singularity
the nonlocalization of gravity on a defect. It is rather surpr
ing that in higher dimensions (n>2) only the AdSp brane
solution is selected as a physical solution, while in the c
of n51 domain wall three types of brane, dSp , Mp , and
AdSp, are permissible.

IV. GRAVITATIONAL FLUCTUATIONS

In the following sections, we shall turn our attention
the properties of an AdSp brane solution~23! in higher-
dimensional space-time. The aim of this section is to stu
the gravitational fluctuations around the background~23!.

First, let us rewrite the metric~23! in terms of the confor-
mal coordinates

ds25cosh2 vrĝmndxmdxn1dr21R0
2 cosh2 vrdVn21

2

5e2A(z)~ ĝmndxmdxn1dz21R0
2dVn21

2 !, ~26!

wheree2A(z) and the relation between two coordinate sy
tems are, respectively, given by

e2A(z)5
1

sin2 vz
,

evr5tan
1

2
vz. ~27!

Since the ‘‘radial’’ coordinater runs from 0 to`, this rela-
tion yields the range ofz, which isp/2v<z<p/v.

We will only consider the transverse, traceless fluct
tions around the background metric~26! in the conformalz
coordinates

ds25e2A(z)$@ ĝmn1hmn~xM !#dxmdxn1dz21R0
2dVn21

2 %,
~28!

where ¹mhmn5gmnhmn50. Then, it is straightforward to
show that Einstein’s equations reduce to the form of the
earized equations

1

A2g
]M~A2ggMN]Nhmn!22Lhmn50. ~29!

Given the symmetries of the background metric, we sepa
variables as

hmn~xM !5fmn~xm!Žlm~z!Ylmi
~V!, ~30!
02600
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where Ylmi
(V) are the spherical harmonics for th

(n21)-sphere with eigenvalueD l5 l ( l 1n22). And
fmn(xm) satisfy the equations of motion (ĥ22Le2A)fmn

5m0
2fmn with the definition of ĥ

[(1/A2ĝ)]m(A2ĝĝmn]n). Equations~29! then reduce to

e[(D22)/2]A]z~e[(D22)/2]A]zŽlm!1m2Žlm50, ~31!

wherem25m0
21D l /R0

2. After changing to a new function

Žlm5e[(D22)/4]AZlm , ~32!

we find a Schro¨dinger-like equation forZlm :

@2]z
21V~z!#Zlm~z!5m2Zlm~z!, ~33!

where the potential is of the form

V~z!5
~D22!2

16
~A8!22

D22

4
A9, ~34!

with the prime denoting the differentiation with respect toz.
If we introduce a new variablew[vz, taking the range
p/2<w<p, instead ofz and make use of the concrete e
pression ofA(z) in Eq. ~27!, we finally arrive at the equation

@2]w
2 1U~w!#Z~w!5EZ~w!, ~35!

where we have omitted to write the indicesl ,m on Z(w)
explicitly, andU(w) andE are, respectively, defined as

U~w!52
~D22!2

4
1

D~D22!

4

1

sin2w
,

E5
m2

v2
. ~36!

To have the second-rank linear differential equation w
defined, we need to impose boundary conditions atw
5p/2,p. The boundary condition atw5p is the Dirichlet
condition, Z(p)50, since the potentialU(w) becomes an
infinity there. The delicate problem is what boundary con
tion we have to impose atw5p/2 where there is the core o
a topological defect. We have only solved Einstein’s eq
tions in the exterior region outside the core so that in pr
ciple we have no knowledge about physics inside the co
which makes it difficult to set up the boundary condition
w5p/2. However, the condition that the differential operat
should be self-adjoint, which is necessary forZ to have a
complete basis, requires us to choose a homogeneous bo
ary condition atw5p/2:

j1Z8S p

2 D1j2ZS p

2 D50, ~37!

where j1 ,j2 are constants and the prime now denotes
differentiation with respect tow. Thus physics inside the
2-5



t
co
re

lu-

’s

ICHIRO ODA PHYSICAL REVIEW D 64 026002
core of a defect should satisfy this boundary condition
have a smooth continuity between inside and outside the
of a defect.~Here for simplicity we have neglected the co
size.!
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With these results in hand, we are ready to study a so
tion to Eq. ~35!. After some elementary manipulation@16–
19#, a solution is given by a linear combination of Gauss
hypergeometric functionF:
Z5
A1

~sinw!(D22)/2
FS 2

D22

4
1

A4E1~D22!2

4
,2

D22

4
2

A4E1~D22!2

4
,
1

2
;cos2 wD

1
A2 cosw

~sinw!(D22)/2
FS 2

D24

4
1

A4E1~D22!2

4
,2

D24

4
2

A4E1~D22!2

4
,
3

2
;cos2 wD , ~38!

whereA1 ,A2 are integration constants. At this stage, given the boundary conditionZ(p)50, we find an equation

A252A1

GS D12

4
2

A4E1~D22!2

4
D GS D12

4
1

A4E1~D22!2

4
D

GS D

4
2

A4E1~D22!2

4
D GS D

4
1

A4E1~D22!2

4
D . ~39!
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The remaining work is to impose the boundary conditi
~37! to fix the integration constantsA1 ,A2, but it is a very
delicate problem because of a complicated structure
Gauss’s hypergeometric function and in consequence
the numerical analysis is available. We leave this numer
analysis for a future work. Here we shall investigate only
set of massive excited states which are supported byU(w).
Then the natural choice of the boundary condition atw
5p/2 is the Neumann boundary conditionZ8(p/2)50. To-
gether with this boundary condition and Eq.~39!, we obtain
A250 and eigenvalues of Eq.~35!

Ek5k~k1D22!, ~40!

where k51,2, . . . . This equation then gives the natur
higher dimensional generalization of mass formula
Kaluza-Klein ~KK ! states in the AdS4 brane@17#:

mk
252

2

~p22!~n1p22!
k~k1D22!LAdS, ~41!

where we have used Eqs.~23!, ~24!, and~36!. Hence, in the
LAdS→0 limit, these states become massless degene
states, thereby giving rise to corrections to Newton’s l
whose size is of the orderO(ALAdS).

On the other hand, a massive bound state, which
trapped and generates gravity on an AdS brane, is suppo
by the attractive potential around the core. In the mode
hand, the information about this attractive potential is impl
itly included in the boundary condition~37!. Recall that the
boundary condition of AdS4 brane in AdS5 certainly satisfies
this equation. Anyway in order to understand this probl
completely, it would be necessary to construct a physic
plausible core model.
of
ly
al
a

f

te

is
ted
t

-

ly

V. LOCALIZATION OF GAUGE FIELDS

In this section we are willing to consider the localizatio
of spin-1 U~1! vector field on an AdSp brane~23!. Inciden-
tally the generalization to the non-Abelian gauge fields
straightforward. As mentioned in Sec. I, it is well known th
in the original Randall-Sundrum model the gauge fie
cannot be localized on a domain wall by the gravitation
interaction@7–10#. Since we have various gauge fields in o
world, the impossibility of confining gauge fields to a bra
imposes a serious drawback on the scenario of brane wo
Of course, there might be some ingenious mechanism for
localization of gauge fields by invoking additional intera
tions except the gravitational one@7#, but we believe that
such a mechanism is artificial and the universal interacti
that is, the gravitational interaction should provide us w
the localization mechanism for the whole local fields inclu
ing gauge fields. From this context, it is of interest to a
whether or not AdSp brane ~23! presents the localization
mechanism for the gauge fields.

Let us start with the familiar action of U~1! gauge field

S152
1

4E dDxA2ggMNgRSFMRFNS, ~42!

where FMN5]MAN2]NAM . The equations of motion be
come]M(A2ggMNgRSFNS)50. To study the localization of
the gauge field, it is convenient to use the conformalz coor-
dinates~26!. In the coordinates, for simplicity, we shall focu
on only the brane gauge fieldAm(xM) and setAz5Au i

50.

Then, we look for a solution with the form ofAm(xM)
5am(xl)u(z)x(ym), where ym denote the angular coordi
nates. Here we assume the following equations of mot

¹̂mam5]m f mn5]m(Ag̃g̃mn]nx)50 where f mn5]man
2-6
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2]nam . With these ansatze, the equations of motion red
to a single differential equation

]z@e(2D/212)A(z)]zu~z!#50. ~43!

In the case of a Minkowski brane, we have selecte
constant zero-mode solutionu(z)5const, which leads to
nonlocalization of the vector fields@10#. On the other hand
in the case of an AdS brane, a new solution is availa
which is given bye(2D/212)A(z)]zu(z)5constÞ0. ~Note that
this solution is not localized on a Minkowski brane, eithe!
As a result, we obtain the following solution to Eq.~43!. For
D52k13 (k51,2,3, . . . ),

u~z!5
a

v

~21!k

22(k21) (
l 50

k21

~21! l S 2k21
l D cos@~2k22l 21!vz#

2k22l 21

1b, ~44!

and forD52k14 (k51,2,3, . . . ),

u~z!5
a

v

~21!k

22k H (
l 50

k21

~21! l S 2k
l D sin@2~k2 l !vz#

k2 l

1~21!kS 2k
k DvzJ 1b, ~45!

wherea,b are integration constants.
We would like to investigate whether this solution is l

calized on an AdSp brane or not. The substitution of thi
solution into the action leads to

S1
(0)52

1

4E dDxA2ggMNgRSFMR
(0) FNS

(0)

52
1

4E dpxdzdn21yA2ĝAg̃e(2D/212)A(z)

3@u2x2ĝmnĝrs f mr f ns12~]zu!2x2ĝmnaman

12u2g̃mn]mx]nxĝmnaman#. ~46!

Here we have carefully kept the KK mass term since
wish to examine later whether this solution leads tomassless
‘‘photon’’ on a brane. The localization condition of thi
mode on a brane requires the integral overz in front of the
kinetic term to be finite since the integral over the angu

variables*dn21yAg̃x(y)2 is in general finite. Thus let us
consider this integral first:

I 15E dze(2D/212)A(z)u2~z!

5E
p/2v

p/v

dz
1

~sinvz!D24
u2~z!. ~47!

The expressions~44!, ~45! for u(z) become more compli-
cated as the number of space-time dimensions gets large
below we shall present explicitly only the results of the tw
02600
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simplest casesD55,6, belonging to each branch of solution
although we have examined some remaining low
dimensional cases and found similar results and repeated
tern depending onD52k13 or D52k14.

In the case ofD55,p54,n51, that is, an AdS4 brane in
AdS5 @17#, from Eq. ~47! the integralI 1

D55 reads

I 1
D555E

p/2v

p/v

dz
1

sinvz S 2
a

v
cosvz1b D 2

, ~48!

which is in general divergent, but only when the equalityb
52a/v holds, does it become finite. Henceforth, we sh
consider this specific case. Then, it is straightforward to c
culate the above integral as well as the second integral ovz
in Eq. ~46! associated with the KK mass term.@Note that in
D55 there does not exist the third term in the right-ha
side in Eq.~46!.# The result is given by

S1
(0)52

1

4 E d4xA2ĝ

3F a2

v3
~2112 log 2!ĝmnĝrs f mr f ns1

2a2

v
ĝmnamanG .

~49!

The quantities in front of the kinetic and the mass terms
obviously finite, so the gauge field is localized on an Ad4
brane, which is to be contrasted with the case of
Minkowski brane@6#.

At this stage, it is worthwhile to examine the mass of t
brane gauge field. Provided that we redefine the brane ga
field am as

a

v3/2
A2112 log 2am→am , ~50!

Eq. ~49! reads

S1
(0)52

1

4 E d4xA2ĝ F ĝmnĝrs f mr f ns

1
2v2

2112 log 2
ĝmnamanG . ~51!

From this equation, we can read off the mass of the br
gauge field, which is expressed in terms of the brane cos
logical constant by using Eqs.~23!,~24! as

m25
v2

2112 log 2
52

1

3

1

2112 log 2
LAdS. ~52!

The physical condition that the U~1! gauge fieldam must be
massless‘‘photon’’ on an AdS4 brane requires that the bran
cosmological constant is small enough. It is very intrigui
that in the present brane model the smallness of the b
cosmological constant is directly connected with the sm
ness of mass of the brane gauge field, which, we think,
miracle in the brane world scenario. From the current exp
2-7
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mental data, the bound on the photon mass ism,2310216

eV so our relation~52! yields a weaker constraint on th
four-dimensional cosmological constant although it does
conflict with the current experimental data.

As a remark, let us notice that when the equalityb5
2a/v holds, our solution reduces to the form

u~z!52
2a

v
cos2

vz

2
. ~53!

Similar to the graviton considered in the previous secti
this solution satisfies the Dirichlet condition atz5p/v,
whereu(z)50. It is quite of interest that the requirement
the localization for the gauge field naturally leads to t
same boundary condition as the other bosonic fields.~We
can show that scalar field also satisfies the same boun
conditionz5p/v.!

As another remark, let us check if the bulk gauge field
sharply localized on a brane or spreads rather widely i
bulk. For this, it is useful to change thez coordinates to the
radial coordinate whose relation can be found in Eq.~27! and
then examine the normalized zero mode in an AdS4. In the
radial coordinates, the normalized zero mode in an AdS4 has
the form

û~r !5
1

AI 1
D55

u~r !

522A v

2112 log 2

1

11e2vr
. ~54!

The present observations requirevAGN!1 whereGN is the
four-dimensional Newton’s constant, so it turns out that t
zero mode is not sharply localized but spreads rather wid
in a bulk.

Next, let us considerD56,p54,n52 case, that is, a
stringlike defect model in six space-time dimensions. In t
case, we also follow a similar path of arguments to the c
of D55 domain wall. The concrete expression foru(z) is
different betweenD52k13 andD52k14, so it is valuable
to investigate this simplest case in the branch ofD52k14.

In the case ofD56,p54,n52, from Eq.~45! the integral
I 1

D56 takes the form

I 1
D565E

p/2v

p/v

dz
1

sin2vz
S 2

a

4v
sin2vz1

1

2
az1b D 2

,

~55!

which is also generally divergent, but only when the equa
b52ap/2v holds, it also becomes strictly finite. Again
from now on we shall confine ourselves to this specific ca
Then, after a bit calculations the integralI 1

D56 reduces to

I 1
D565

a2

16v3 S 114p log 228E
0

p/2

dzz cotz D , ~56!
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which is finite since the last integral is known to be finit
Thus, the gauge field is also localized on an AdS4 brane in a
six-dimensional space-time with negative cosmological c
stant.

Evaluating the integrals overz, the classical action is o
form

S1
(0)52

1

4E d4xA2ĝE duR0H I 1x2ĝmnĝrs f mr f ns

1Fpa2

2v
x21

2I 1

R0
2 ~]ux!2G ĝmnamanJ . ~57!

With respect to integrations overu, as mentioned before
they are always finite, which fact can be shown as follow
As seen in the derivation from Eqs.~42! and ~43!, x(ym)

must satisfy the equation of motion]m(Ag̃g̃mn]nx)50,
which now reduces to]u

2x50, so a general solution to thi
equation is given byx(u)5x11ux2 wherex1 ,x2 are inte-
gration constants. Thus the integrals overu appearing in Eq.
~57!, *0

2pdux2,*0
2pdu(]ux)2 are finite quantities as long a

the integration constants are finite. We are now ready
examine the mass of the brane gauge field. To make
kinetic term take a canonical form, let us redefine the bra
gauge fieldam as follows:

AR0I 1E dux2~u! am→am . ~58!

As a result, it turns out that Eq.~57! becomes

S1
(0)52

1

4E d4xA2ĝF ĝmnĝrs f mr f ns

1

8pv2E dux21~2/R0
2!KE du~]ux!2

KE dux2

ĝmnamanG ,

~59!

where K[114p log 228*0
p/2dzz cotz. Since it is reason-

able to regard value of the integrals overu as being of the
order 1, the smallness of mass of the brane gauge field
quires v2'0,1/R0

2'0, both of which imply that the brane
cosmological constant is extremely tiny as desired.

As a final check, let us study the zero-modeu(z). When
the equalityb52ap/2v holds, our solution reduces to th
form

u~z!52
a

4v
sin 2vz1

a

2v
~vz2p!. ~60!

This solution also satisfies the Dirichlet boundary conditi
at z5p/v, whereu(z)50. For the investigation of the lo
calization of this mode on a brane, we also use the ra
2-8
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coordinates instead of thez coordinates. In the radial coord
nates, after some calculations, the normalized zero-mod
an AdS4 is proportional to

û~r !}AvF 1

evr1e2vr
tanh~vr !2tan21~e2vr !G . ~61!

Again, for vAGN!1, it turns out that the brane gauge fie
is not sharply localized on an AdS4 brane.

VI. LOCALIZATION OF FERMIONIC FIELDS

Next let us turn to fermionic fields, those are, spin-1
spinor field and spin-3/2 gravitino field. First, let us consid
spin-1/2 spinor field. The starting action is the conventio
Dirac action with a mass term inD dimensions:

S1/25E dDxA2gC̄ i @GMDM1m«~z!#C, ~62!

where the covariant derivative is defined asDMC5(]M

1 1
4 vM

ABgAB)C with the definition ofgAB5 1
2 @gA ,gB#, and

«(z) is «(z)[z/uzu and«(0)[0. Here the indicesA,B are
the ones of the local Lorentz frame and the gamma matr
GM andgA are related by the vielbeinseA

M through the usua
relationsGM5eA

MgA, where$GM,GN%52gMN and $gA,gB%
52hAB. A feature of the action is the existence of a ma
term with a ‘‘kink’’ profile. We have just introduced this
type of mass term in the action since the existence has pla
a critical role in the localization of fermionic fields on
Minkowski brane in an arbitrary dimension@6#.

In this section, we shall consider a more general me
ansatz than Eq.~4! in the ‘‘radial’’ coordinates. The metric
ansatz we take into consideration is the following one:

ds25gMNdxMdxN

5e2A(r )ĝmn~xl!dxmdxn1dr21e2B(r )g̃mn~yl !dymdyn,

~63!

where we have replaced a metric onSn21 in Eq. ~4! with a
general curved metricg̃mn(yl) depending only on extra di
mensionsyl exceptr. In this background metric, the torsion
free conditions yield an explicit expression of the spin co
nections

vm5
1

4
A8~r !G rGm1v̂m~ ê!, v r50,

vm5
1

4
B8~r !G rGm1ṽm~ ẽ!, ~64!

where we have definedvM[ 1
4 vM

ABgAB . And v̂m(ê) and

ṽm(ẽ) are the spin connections constructed out ofêm and
ẽm , respectively. Using Eq.~64!, the Dirac equation
@GMDM1m«(r )#C50 can be cast in the form
02600
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FG r S ] r2
p

4
A82

n21

4
B8D1Gm~]m1v̂m!

1Gm~]m1ṽm!1m«~r !GC50. ~65!

Let us find the massless zero-mode solution with the form
C(xM)5c(xm)u(r )x(ym) such thatGmD̂mc5GmD̃mx50
and the chirality conditionG rc5c is imposed on the brane
fermion. Then, Eq.~65! is reduced to a first-order differentia
equation foru(r ) and is easily solved to be

u~r !5u0e(p/4)A(r )1[(n21)/4]B(r )2m«(r )r , ~66!

with an integration constantu0.
In order to check the localization of this mode, let us pl

this solution into the Dirac action~62!. Then the action re-
duces to the form

S1/2
(0)5E dDxA2gC̄ (0)i @GMDM1m«~z!#C (0)

5u0
2E dn21yAg̃x†~y!x~y!E

0

`

dre(1/2)A(r )22m«(r )r

3E dpxA2ĝc̄ igmD̂mc1•••. ~67!

The condition of the trapping of the bulk spinor on an Adp
brane requires that an integral overr has a finite value since
an integral overy is finite. The integral is easily evaluated a
follows:

I 1/25E
0

`

dre(1/2)A(r )22m«(r )r

5E
0

`

dr
1

coshvr
e22m«(r )r . ~68!

This integral is obviously finite so the bulk spinor is confin
to a brane by the gravitational interaction. In particular,
the case of massless fermion, the above integral can be
grated to be

I 1/2
m505

p

2v
. ~69!

Namely, even in the massless spinor, the bulk spinor is
calized on a brane, whose fact should be contrasted with
case of a Minkowski brane, where only the massive b
fermion with a ‘‘kink’’ profile is localized on the brane
whereas the massless one is not. This fact can be trace
Eq. ~69! sinceI 1/2

m50 at v50 is divergent.@Note that in both
the Minkowski brane and the AdS brane, the form of t
zero-mode solution of fermion, Eq.~66!, is the same so this
consideration is legitimate.# In the case at hand, irrespectiv
of the presence of mass term, the bulk spinor can be lo
ized on the brane through the gravitational interaction
long as the brane cosmological constant is nonvanishing
2-9
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However, there is a caveat. As seen in the concrete f
of u(r ) in Eq. ~66!, the zero-modeu(r ) can be written to

u~r !5
u0

R0
(n21)/2~coshvr !2(D21)/2e2m«(r )r

'
u0

R0
(n21)/2

2(D21)/2e2@(D21)/2#vr 2m«(r )r . ~70!

The last expression was derived under the conditionvr @1.
This expression tells us that provided thatvAGN!1, the
zero mode spreads more widely in a bulk in the mass
limit. To avoid such a situation, we might also need t
presence of a mass term with ‘‘kink’’ profile. Incidentally
note that the results obtained so far are independent
concrete form ofB(r ), so only the warp factore2A(r ) in
front of thep-dimensional metric controls the results.

Next, let us consider the gravitino field of spin-3/2. T
action for the spin-3/2 bulk gravitino is given by the Rarit
Schwinger action

S3/25E dDxA2gC̄MiG [ MGNGR]@DN1dN
r G rm«~r !#CR ,

~71!

where DMCN5]MCN2GMN
R CR1 1

4 vM
ABgABCN and the

square bracket denotes the anti-symmetrization with we
1. From the metric conditionDMeN

A5]MeN
A2GMN

R eR
A

1vM
ABeNB50, we obtain the concrete expression for the

fine connectionsGMN
R 5eA

R(]MeN
A1vM

ABeNB). With the gauge
condition C r50 and assumingCm50 for simplicity, the
equations of motionG [ MGNGR]@DN1dN

r G rm«(r )#CR50
can be cast to the form

gmnFG r S ] r2
p22

4
A8~r !2

n21

4
B8~r ! D1m«~r !GCn50,

~72!

where we have used equationsgmCm5D̂mCm

5g [mgngr]D̂nCr5GmD̃mCm50. Let us look for a solution
with the form Cm(xM)5cm(xl)u(r )x(ym). If the chirality
condition G rcm5cm is utilized in Eq. ~72!, we can get a
solution

u~r !5u0e@(p22)/4#A(r )1@(n21)/4#B(r )2m«(r )r , ~73!

with an integration constantu0.
Substituting this solution into the action~71!, we arrive at

the following expression:

S3/2
(0)5E dDxA2gC̄M

(0)iG [ MGNGR]@DN1dN
r G rm«~r !#CR

(0)

5u0
2E dn21yAg̃x2~y!E

0

`

dre~1/2!A(r )22m«(r )r

3E dpxA2ĝc̄mig [mgngr]D̂ncr1•••. ~74!
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Again the condition for the localization of the gravitino on
brane requires the integral overr to take a finite value.
Namely, the following integral overr must be finite

I 3/25E
0

`

dre~1/2!A(r )22m«(r )r

5E
0

`

dr
1

coshvr
e22m«(r )r . ~75!

Here let us notice that this condition has the same form a
spin-1/2 spinor field, Eq.~68!, so the spin-3/2 gravitino is
also localized on a brane. The form ofu(r ) in ~73!, however,
is similar to that of spin-1/2 spinor field~66!, so as in the
spinor field it might be necessary to include a mass term w
a ‘‘kink’’ profile in order to have a sharp localization on
brane.

VII. DISCUSSIONS

In this article we have discussed locally localized grav
models in higher dimensions. As a solution to Einstein
equations with a set of scalar fields withglobal SO(n) sym-
metry, we have found two types of AdSp brane solution in a
unified metric ansatz. Though these solutions have been
ready found in Ref.@22#, our derivation is more concise tha
their derivation and we furthermore spelled out the physi
properties of the solutions. An important issue that we ha
found in this paper is that in higher dimensions the solutio
which are free from the naked curvature singularity and p
sess the property of gravity localization are very few. Ap
from a type of trivial extension of the Randall-Sundrum s
lutions, in higher dimensions the physical solution cor
sponds to only an AdSp brane in a space-time with negativ
bulk cosmological constant. It is quite curious that there
no nontrivial solutions in higher dimensions which corr
spond to a dSp brane and a Mp brane solution with needed
physical properties. From this point of view, more stu
about an AdS brane seems to be warranted in the future
higher dimensions, intersection brane solutions with two d
ferent warp factors might be needed in order to satisfy
physical properties@29#.

Concerning the localization of various bulk fields on
AdS brane only by the gravitational interaction, we ha
explicitly considered spin-1/2 spinor, spin-1 vector, and sp
3/2 gravitino fields. We have also implicitly considere
spin-2 graviton where we have stressed that a complete
derstanding of the gravity localization requires us to find
reasonable core model. The local fields which we have
aside are spin-0 scalar and higher-rank antisymmetric te
fields. It is well known that a real scalar field satisfies t
same equation of motion as that of the transverse, trace
graviton modes, so a real scalar field shares the comm
localization properties with the graviton. The treatment
higher rank tensor fields is completely parallel to that of t
gauge fields, so we have skipped these cases.

It is worth stressing here that the localization mechani
that we have found in this paper, in particular, is new a
novel for spin-1 vector and fermionic fields. For the forme
2-10
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it is known that the gauge field is not localized on
Minkowski brane in the original Randall-Sundrum mod
On the other hand, in an anti–de Sitter brane, the gauge
is localized due to the presence of the brane cosmolog
constant. However, there is a caveat. Namely, although
gauge field is anyway localized near the brane, it is
sharply localized, by which we meet some phenomenolo
cal problems such as the violation of the charge conserva
law in our world. Moreover, we have found a new pheno
enon that the size of the brane cosmological constant is
termined by that of the mass of ‘‘photon’’ on a brane. Also
for the fermionic fields, the presence of the brane cosmolo
cal constant provides a novel localization mechanism wh
massless fermions are localized on an AdS brane whe
only massive fermion with a ‘‘kink’’ profile can be localize
on an M brane as in the Randall-Sundrum model. Howe
as in the gauge field, the zero-mode of massless ferm
on

gu
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also spreads rather widely in the bulk space-time, so
might need a mass term with a ‘‘kink’’ profile to have
sharply localized brane fermion.

Of course, if we wish to construct a fully successful bra
world model in higher dimensions on the basis of glob
defects, it is essential to understand physics inside the co
the defects. Without knowledge of it, we cannot fully answ
several questions such as stability of the defects. Ano
unsolved problem within the context of the present formu
tion is how to construct a model with two or more brane
which would be necessary to understand the mass hiera
problem between the Planck scale and the electroweak s
There are also future works of the construction of a sup
symmetric model corresponding to the present model an
deriving the model at hand from superstring theory. We w
to clarify these important problems in a future publication
. B
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