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We show the existence of a global anomaly in the one-loop graph&=d string theory, defined by sewing
tree amplitudes, unless spacetime supersymmetry is imposed. The anomaly is responsible for the non-
vanishing maximally helicity violating amplitudes. The supersymmetric completion ofMhe string spec-
trum is formulated by extending the previous cohomological analysis with an external spin factor; the target
space-time spin-statistics of these individual fields in a self-dual background are compatible with previous
cohomological analysis as fields of arbitrary spin may be bosonized into one another. We further analyze
duality relations between the open and closed string amplitudes and demonstrate this in the supersymmetric
extension of the target space-time theory through the insertion of zero-momentum operators.

DOI: 10.1103/PhysRevD.64.026001 PACS nuniderll.25.Mj

. INTRODUCTION higher-derivative versiof = p*#/\R, 4 in terms of the self-
dual curvature and Lagrange multiplier two-forrRg s(e)

The N=2 string is unique among string theories, as itsand p*? [5,6]. Either has the light-cone gauge-fixed form
critical dimension is four and it contains only massless stategontaining two fields:
in its spectrum. It has two local supersymmetries on the
world sheet, and its local world-sheet action consists of the _7 B. qa. S
N'=2 gravitational multiplet coupled to two complex chiral L= (OP+ 007 0% bl dui §)- (12
supermultiplets, and was originally proposed and examined Siegel[7,4] demonstrated how both Lorentz invariance
in [1]. This string theory has topological space-time proper-nq gimensional analysis could be restored in the target
ties intrinsic to the world sheet, linked to a vector in the space-time description by incorporating space-time super-

gravitational multiplet. symmetry, although the bosonic truncation of this proposal is
also Lorentz invariant and possesses the dimensional analy-
A. Classical V=2 strings sis to be conformal. This action was quantizedldf and the

Smatrix shown to agree with one-loop maximal helicity vio-
lating (MHV) amplitudes in gauge theory and gravity at one
éqop. The fact that vertices in self-dual field theories are
independent of helicity allows spin to be introduced as an
internal symmetry. This is implemented through superselec-
tion sectors analogous to Chan-Paton factors, 49JinThe
helicity independence in the target space-time is due to spec-
tral flow in the N=2 string description; additional states
L=¢(Op+golf; %, bIgidaid), 1.2 may be incorporated in th&=2 string that carry fermionic
statistics. The latter are distinguished from the naive coho-
and the action they proposed, related by gauge fixing th&0l0gy analysis by only a line factor. In fact, a simple dou-
self-duality equations differently to contain the mixed de-bling of fields tq heI|_C|t|es of both signs is sufficient Fo re-
rivatives d,; dg-, produce vanishing tree-level amplitudes store Lorentz invariance and dimensional analysis, but
in accord with those of tha/=2 string; however, they lack maximal sgpersymmetry puts all fields of both signs in the
Lorentz invariance and require a dimensionful coupling conS@me multiplet.
stant. The quantization is problematic for these reasons. Dif-
ferent self-dual gravity and self-dual YM actions have been B. Loops

propos_ed and quanUzqu Wh'ch agree .W'th this Previous - rpase target space-time actions force all diagrams at more
analysis at the tree I.evel. Covariant Yersmps for gravity arg, -1 one loop to vanishg], in agreement with the\’=2
L=e""\e’,/\dw,z in terms of the vierbein and selfdual string theory higher-genus scattering amplitudes: The
Lagrange multiplier one-forme** and w,z [4], and a negative-helicity field appears linearly in the two-field self-
dual action(1.2), and thus it counts loops. It appears as an
external field once in each connected tree graph, never in
*Email address: chalmers@pcl9.hep.anl.gov one-loop graphs, and no higher-loop diagrams diktFur-
TEmail address: siegel@insti.physics.sunysb.edu thermore, in any supersymmetric extension the one-loop

Ooguri and Vafd 2] (see also Marcuk3]), in the correct
critical dimension of four(space-time 40 or 2+2) found
the classical theory to describe in the target space-time cla
sical self-dual gravity in the closeti=2 string and classical
self-dual Yang-Mills(YM) theory in the open formulation.
The target space-time light-cone actie Trfd*x£ for the
closed string is given by
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field theory graphs also vanish, because helicity indepenods: The bosonicV=2 string hasnonvanishingone-loop
dence of the couplings implies exact cancelation betweeamplitudes through this approach, while the supés2
fermions and bosons in the loop. string has vanishing ones. Since modular invariance requires
Turning to /=2 string calculations, cancelations of scat- vanishing amplitudes at all loopgor n=4 n-point ampli-
tering amplitudes at all genera have been shown through amdes, this implies that the bosoni&/=2 string has a con-
N=4 reformulation[10] as well as through Ward identities formal anomaly. In other words, supersymmetry is required
[11], modulo subtleties associated with contact term ambiguto cancel the anomaly, just as 80) is required to cancel
ities, if modular invariance is assumédThe three-point anomalies in the operV=1 superstring[Also, a trivial
function does not vanish due to kinematicslin 2+2 and is  gauge group choice 8((2) cancels the interactions in the
infrared divergenf14]. (The ambiguity in defining the three- target space-time theory in the open string case and thus also
point function due to regularizatiof6] necessitates higher- the anomalyl Thus, in this case world-sheet conformal in-
point genus calculations to identify the quantum targetvariance requires space-time supersymmetry. Hidden super-
space-time theory.Furthermore, the genus-one four-point SYmmetry has previously been analyzed 1] in the con-
function in the closedV=2 string has been examined in text. of two—d|men3|o_nal models. Global anomalies were
detail in[6] together with a mapping atpoint to this genus  Originally considered irj18].
order and an implementation of line factors for covariance of
the scattering; agreement with the vanishing theorems of C. Self-duality in field theory

[10] is found, again assuming modular invariance. This can- geveral exact sequences of one-loop gauge theory ampli-
c_ellation is most naturally _explained in terms of a fou_r- tudes, for example the MHV ond49] (constructed recur-
dimensional supersymmetric self-dual target space-timgjyely through analyticity requirements and then derived for
theory. At genus one the vanishing of thé=2 string am- 4 internal quark if20]) and the gravity analof21] have
plitudes was demonstrated directly by a calculation of they|iowed for explicit comparisons between thé=2 string
amplitudes in the RN®/=2 formulation[6] (including only  theory quantum amplitudes and those in field theory. Fur-
a single massless scalar degree of freedom in the spectrumhermore, self-duality poses an interesting structure and re-
which demonstrated at the integrand level that the reasofyrmulation of gauge theory as a perturbative construction
was an additional factor of, associated with the ghost sys- around the self-dual poifi22]; this translates, as opposed to
tem of the world-sheet gauge fiel#,6].> The quantum four-  an expansion in loops, to an expansion in helicity around the
point amplitude has been examined at the level of orderingnaximal helicity configuration(Both can be formulated as
of limits (" small and spin structure summatjaas well as  coupling constant expansiongdmplitudes in non-self-dual
contact term interactions on the world sheef6hand inter- Yang-Mills theory and gravity simplify as the number of
pretations of the quantum target theory in thé=2 string  helicities with the same sign increases. Supersymmetry iden-
are given, the one-loop amplitudes being identical to the ditities at the tree level enforce the vanishing of the non-
mensionally reduced MHV amplitudédn this work we re-  supersymmetric MHV amplitudes to this order, and the next
examine the quantum scattering and its consistency in differsimplest tree amplitude, next-to-MHV, was conjectured and
ent orders of perturbation theory via the inclusion of aproven |n[23] Supersymmetry also forces the one_|oop am-
supersymmetric multiplet of states in the massless spectrugiiitudes with differing internal virtual states to be the same
through the construction of the superselection sect@s. yp to a sign.
previous attempt towards a supersymmetric extension based Self-duality of the field equations implies vanishing of the
on aZ, twisting is presented ifi16].) tree-level amplitudes through a construction of conserved
On the other hand, loop amplitudes can be calculated dicurrents in the case of gravifg4], and through a direct map
rectly, without any assumption of modular invariance. Theof the classical scattering to vanishing amplitudes in gauge
genus one amplitudes are conveniently evaluésétte the  theory[8]: Bardeen demonstrated a relationship of off-shell
days of lightcone path integrals, and even earlier with operagauge fields(at the tree levelbetween self-dual and non-
tor methods by sewing, and this procedure is equivalent toself-dual theorie§25]. The amplitudes at the tree level in
the field theory one. The result is known from field theory self-dual theories all vanish. To one loop the MHV
methods, and will be re-derived here by string theory methSmatrices are found to describe the quantum scattering of
self-dual field theorief8,26]. (The relation of these different
self-dual actions at the quantum level is analyzefBih and
IThe Weyl-Petersson integration measdfe/73 on the torus is ~ the Lorentz covariant versions may be found through a trun-
analyzed in many works, for example in Sec. IVA [df2]. The  cation of non-self-dual gauge theory to the self-dual limit.
integration measure for the criticAl=2 string has been examined

in [13]. D. Outline
The path integral quantization at arbitrary genus is analyzed in |n Sec. Il we analyze the spectrum of this string, after
[15]. including internal degrees of freedom for the single massless

3An explicit relation between thé/=2 string amplitude at genus State, as the supersymmetric gauged extension of self-dual
one and the ultra-violet portion of the type IIB supergravity non- gravity, and analyze its corresponding Becchi-Rouet-Stora-
MHV amplitude in d=10 was also found through a dimension Tyutin (BRST) cohomology. We show that there is a super-
shifting relation. symmetric completion of théV=2 string through the addi-
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tion of the factors labeling spin of external states. In Sec. llI B. Supersymmetric self-dual gauged supergravity

we analyze duality in the context @f=2 string scattering.  The supersymmetric extension of self-dual systems in the
In Sec. IV we review earlier resylts for genus-one ampli-context of N-extended self-dual supergravity thed] is
tudes. In Sec. V we perform sewing and unitarity Construcyegcriped in the following. The target space-time supersym-
tions of the genus-one amplitude and compare with knownnetric extension of thev=2 string has the particle content
result_s, obtalmng the conformal anomaly. The last sectionys his supersymmetric system. This theory is described by
contains concluding remarks. the local OS(N|2) algebra tensored with th®L(2)" half

of the Lorentz algebra:
Il. SPECTRUM

- o : 1
The minimal characterization of the spectrum contains a [Vax Vest=5CusFapcoMP. (2.9
single massless degree of freedom. However, as is the case in 2
open string theories, superselection sectors and the line fac-

tors of the external legs may be incorporated which represe
gs may P PreSeB S N|2) superindexA=(a,a) contains theSL(2) index

the internal symmetries of the string. In thé=2 stringa 7 °! e . .
graded internal Lorentz symmetry may be introduced with ¢ and a vectorSQ(N) one “a.” The covariant deriva-
representatives labeling the spin states of fields with selflives are defined by

dual couplings. In a background field formalism, at quadratic _ 1

order in the quantum fields, for only maximum-helicity back- Vau=Ena i+ 5Qa0ecME, (2.5
ground fields and lower-helicity quantum fields, the action 2
has the form of a non-self-dual action in a self-dual back-

ground. It is known that half-integral spin fields may be \fhere letters from the beginning of the alphabet denote flat

“h ed” in the t ¢ i d h if-d ocal tangent space indices and those from the middle the
osonizeéd™in the target Space-time around such a Sel-auay, ., jinates. The coupling constants are defined as part of the

field c?_nﬂguratmn. In tht|ss_ S(Ectlonftv;/wzczxa{mne the targetosm\”z) metric: nabzgﬁab, 7°P=KC, p*B=0. The
space-time supersymmetrization o sting. gravitational coupling constant has dimensions of inverse
mass.

A. Bosonization and second-order formulation The light-cone gaug® ;. = da. solves the &,B)=(+,

In this subsection we summarize briefly the spin statisticst) constraint. The §,~) and (~,+) constraints may be
of particles in a self-dual background. The acti@ solved through the introduction of a scalar superfikltead-
=Trfd*xL for a minimally coupled fermiony® and its ing to the covariant derivativ€ - given by
gauge conjugaté,, is

e supercoordinate iszM“=(x““’,0m“), and the

_ . EaM“n,=da-+ (It dpi @) n°Pics (2.6
L=YV pof* et m(PE,+ P EL), (2.)
Qalpc=da+dpidci @, 2.7
with V _z=id,3+A,5, the covariant derivative. Function- R
af afl af o
ally integrating out the dotted fields gives rise to a second—and the non-vanishing field strength
order form for the fermionic coupling7], Fagcp=—da:dgidcidpi®. (2.9

1 . 1 The remaining constrairftV,- ,Vg-}=0 gives rise to the
L=— g (VY m?) &, + Ez,/;“gﬂFaﬁ, (220 field equation

I, ® + 7PC(p - 90 D) (Ip: dgi ®)=0. (2.9
whereF .z is the self-dual projection of the field strength. In AoE ArTer o
an anti-self-dual background the fermionic coupling be-As further noted in[4], within the field equation(2.9) we
comes that of a scalar. In the massless lifafter appropri- - may solve for all of theg®~ dependence explicitly by exam-

ately scaling the fields with the masshe fermionic cou- ining the A=a andB=b components: In the superfielti
pling in such backgrounds is we may takeh® =0

The scalar superfiel® expanded in components is then
L=y¢0E,, (2.3
D=+ P+ 2P hapt+ - -. (2.10

and the index on the field only enters into amplitude calcu- s ) . i
lations through an external line factor. In this formulation theBecause onlyy®" appears in the explicit theta expansion we
fermion can be said to be “bosonized,” and there is a direcwill drop the index+ in the paper from the supercoordinate
analog in the\V=2 string. In the supersymmetric theory, the and have it implied. The lowest component in the theta ex-
single spinor index may be represented as an internal synpansion of Eq(2.10, ¢, is the —2 helicity graviton state,
metry factor(i.e., a line factor associated with the Lorentz which is a singlet under the gaug8@(N). The components
group representationgsittached to the single creation opera- ¢, are the—1 helicity SOQ(N) gluons in the adjoint repre-
tor arising in the cohomology analysis. sentation (,p= — ¢pa). The remaining states in the super-

026001-3



GORDON CHALMERS AND WARREN SIEGEL PHYSICAL REVIEW 54 026001

field expansion(2.10 are in representations labeled by anti- contour deformation, leads to a branch cut of monodromy

symmetric products o8Q(N) fundamental indices. There e?>™? between two chosen points andz, on the Riemann

are a total of 2~ bosonic and B! fermionic degrees of surface® The spectral flow operator in E¢2.15 at §=1/2

freedom contained in the superfidl@.10). connects the Neveu-Schwarz vacuum to the Ramond vacuum
The two-field light-cone superspace action is found fromand generates target space-time fermionic statistics when

the field equation(2.9) by incorporating a Lagrange multi- placed at the point of emission of a bosonic state. Further-

plier field @ conjugate tob and contracting the components More, an automorphism of the superconformal algebra

A=a andB=g with C*# the holomorphic currents is generated through
B B 0 c 6?
SZTFJ' d?x ng[(DDCI)‘f'ﬂBACD(aa_}_&A_}_(D)((?B_}_&a_}_(D)], E(G)T(Z)E(—Q)ZT(Z)-F EJ(Z)‘FE? (216)
(2.11 . .
3(0)G*S(—0)=2"G*(2) (2.1

with the superspace meaSLn@e:HjN:ldej (or an action

related by exchanging®; with 9.). For N=8 the two and

superfields are identified. The interactions in Ej11) have co

two typAeg of derivativeb structures for the types of couplings S(0) I3 (—0)=d(2)+ = —. (2.18
from 7"B=(xC% g&%°). All of the interactions propor- 3z

tional separately tg in Eq. (2.11) are of the same form and L _ _ _

are distinguished only by their respective group theory facM criticality 9_Cm+cgh_6_6_o and we see théJ(l)
tors, and similarly for those proportional fa Via spectral current to be |n\iar|e_1nt and that the revolution dwists the
flow and the field theory bosonization described previoustSUp(;argur“:.mts.GI:j with the same monodromy due to &
the interactions of the different spin fields may be incorpo-mo ﬁ r?plm fie h h d sh
rated in the\/=2 supersymmetric string through the addition -I(—j € phoTorp 'Ch.BRSIT current on E) € super world sheet
of line factors attached to the insertion of local vertex opera-(an anti-holomorphic relatiyes given by

tors. Jgrs=CT+y "G +9 G +c'J+cdcb+cac’b’
C. Supersymmetry and spectrum —4y "y b+2dy y'b' =24y yb’

We next analyze the superconformal algebra of Me +20c(ytB +y BT)—2c(ayTB +ay BT)
=2 system and demonstrate the supersymmetric spectrum. e L .
The generators of the algebra are spanned’b@~ and a +ac(y dp +ty dpT)+c (v B —dy B),
U(1) current] that may be constructed by the usual Noether (2.19

method on the gauge-fixed=2 world-sheet action, includ-
ing the ghost systemsb(c), (8~,y"), and (',c’). The together with ghost number current
bosonized form of the ghost systems are

Jth—bC—b'C'+17+§7+777§+, (2.20
c=e’, b=e“ (2.12
and a conserved BRST charge of
c'=e’, b'=e” (2.13 _§ dzJ .,
for the reparametrizations andi(1) gauge invariance, and Q= P 5 JersT: (2.2
Bi(z)z&zxie*‘/ﬁ, Yy = ,]iesbi (2.14 ~ We shall not list all of the various transformations due to

BRST of the currents but point out the relations
for the doubled holomorphic supersymmetries. Further
bosonization of the fermionig™ and ™~ are possible, but [Q2(0)]=0, 3d,2(0)=—6{Q,b"(2)2(6)},
unnecessary for this work. (2.2
Also, the system possesses a gaude@l) symmetry. Its

holomorphic representative is generated by the operator which illustrates thak. () is BRST-closed and that,2.(2)

is exact.
dz . Together from the ghost system and the BRST charge we
E(G)ZGXF{Zwﬁ 3€ mln(z)J(z) =g2m0%(2) define the picture changing operators

(2.19

where&(z) =¢p"— ¢+t — ¢ +cb’, the bosonized form 4Such a branch may be resolved by & tévering of the Riemann

of the completeU(1) currentJZ&gAb. The operator in Eq. surface, which is itself a higher genus surface found via a multiple
(2.15 is essentially a continuous modification of a spin field covering of the original punctured surface. Thus spectral flow also
in the usual\/=1 string. It possesses an invers|,— 6) is compatible with the triviality of the S-matrix in th&=2 theory.
The insertion in a string amplitude & (0)>(—0)=1, by SWe denote currents in the critical case with a hat, &3.
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PCO"={Q,¢" 2.2
Q.67 2.239 V(k)=J d’z\g e, - (Ox“+iyrK- i)
required at higher-genus for modular invariaf28é], which o o
are also represented on the world sheet by insertions of the X (X" +iy'k- ek (2.30

rebosonized operators
and that for a holomorphic space-time fermion in thg (

PCO™(2)=48(8"(2)G"(2). (224 pictures,
The spectral flow operatd (#) commutes withPCO~ and i ox
shifts the picture number via VF(k):f dz L,| ox"+ zk-yy”|e
(m* 7 )= (7" + 6,7 —0). (2.29

1 :
+ Eu“es‘/”zb 7S,k (2.31)
We next re-examine the states of thé=2 string in the
“NS-sector” and the “R-sector,” related to each other by \yith L a spin operator that connects the Neveu-Schy{i&

spectrol flow operations df(3). to the RamondR) vacua(the latter term is not relevant for
In the canonical formulation we denote ground states othe calculations but necessary for BRST invariante the
picture numberof two supercurrenjswith N=1 superstring this line factor is composed, after the

bosonization, as
|7, 77 K), (2.26
L,=u,l 8PS 1S, (2.32
which are related to each other through actionsPGfO*,
shifting 7" — 7~ + 1, respectively. The single state, without with spin fields
internal line factors attached, is found[i29] as S ,=e 0@ g=gyelo  y=peTiv (2.33

c—1,—1:k 2.2 .
il ) (2.29 (note also that{Qa,QB}zFfjﬁP/‘) and the spin operator
with the on-shell conditiork?=0, which is the unique state from the internal bosonized world-sheet fermions,

at ghost number equal to one. Tti®lomorphig vertex op- S —etid2rigyl2t - (2.34
erator constructing this state is a ' '
- Furthermore, on the world-sheet supersymmetry generators
VY =ce ¢ mdelkx, (228 are found by PerY 7
and may be transformed into a graviton vertex operator of dz dz
polarization + + found in the following after normalizing Q.= ﬁgﬁva: fﬁﬁzfl/zsa, (2.39

the line factor{6].

The vertex operators produce from thfgst-quantizedl  at zero momentum. The index denotes the different:
vacuum state the asymptotic string states in the scatteringigns in the exponential ¢£ for d even and the world-sheet
amplitude under consideration. They correspond to th(?ermions bosonized into/,a:eii¢a after complexifying
physical states of theV=2 closed string and carry their . f th into U2 — ia+. d2ta o h 3
quantum numbers. Being representatives of (8emi-chiral pairs o Gem Into ¢ ."/I o - Lurrents areJ,
and semi-relativeBRST cohomology, they are unique up to — . |9z%a-" The gauge-fixedV=1 string has a globalV
BRST-trivial terms and normalization due to internal sym—:2 supersymmetry that ‘T’l”OV.VS a direct connegnon with the
metry factors. The physical subspace of the=2 string vertex operator construction in th€=2 superstring.

Fock space through the covariant quantization scheme co%— There It?w an add|tt|0r_1:;ﬂ%y ghost sylsten|1 in the/=2 Strgg
tains the ground stafé), a scalar on the massless level, i.e., ecause there are twice as many local supersymmethies

for center-of-mass momentuki-2 with k-k=0_ This is not noted byB~y~). The fact that fermions can be bosonized in

including internal symmetry factors and states related to thihe self-dual background means that the square-root mono-

ground state through spectral flow. The canonical massleé%romies inserted into the string world sheet transfer into nor-
scalar field is denoted by ' malizations after doing the same for the vertex operator in

the A=1 string. This can be made manifest in thé=2
L supersymmetric string due to spectral flow, i.e., the presence
<I>(X)=f d*k e ' *d(k), (2.29  of an additional gauge current on the world sheet at critical-
ity.

which allows for a supersymmetric completion. We may re- N the /=2 superstring the vertex operator for the emis-
late the higher states in the supermultiplet to the ground stat@lon of a space-time fermion may be found by taking every
through spectral flow and the isospin labeling of the Lorentz
group through Eq(2.10.

The field representative of the vertex operator for a self- én the (—1/2) picture the fermionic vertex operator has the form
dual graviton, with polarizatiow,,,, is in the (0,0) pictures ~Vg=3,,u°S,e**,
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component of the previous bosonized form of the world- X
sheet fermionic contributions and gauging the spin operator X
via the U (1) current. The four-component spin operator in > X
d=2+2 target space-time is
. . . ‘ X
S+ =gl ¢1/2+I(f>2/2, S =¢ b112—ipyl2 (23@ X
X
S+ e~ ipq/2—i q§2/2, S =g ip/2+i ¢2/2. (237)

Gauging the expanded component form of the above fermi-
onic vertex operator with & (1) current allows a twist of
the vertex operator

FIG. 1. Contour deformation of the insertion®{8)3(— 6).

fermionic vertex operators. This is the world-sheet derivation
of the bosonization of the fermions in a self-dual back-
ground.

In the supersymmetric target space-time theory the quan-
m amplitudes are zero to all orders in the field theory limit
due to a supersymmetric identity of MHV amplitud@sigi-
nally found in[31]) in both the closed supersymmetii¢

S (12U (KTSPS 1 Se=e, (K), (2.39

which amounts to a momentum dependent twist of the singl(—gu
vertex operator into that of a space-time boson. TWe2
string carries this in a straightforward way at the level of the

cohomology through spectral flow and allows internal quan-_, string as well as the opeN’=2 supersymmetric string.

tum numbers to be assigned to states mtpriori indepen- The V'=2 superstring, found by multiplying the Fock space

dent sectors reIa_tgd by the spectral .ﬂOW' The translation ing ith internal factors labeling spin, agrees to all orders with
troduces an additional redundancy into the components e vanishing theorems of th&/=2 string that assumed

thee, = 6:‘-1 and allows this twisted line factor to be reduced y,gqular invariance.

further to a two-component spinar,. The physical polar-
ization in Eq.(2.38 has the explicit bi-spinor form L. DUALITY IMPLIES VANISHING
N a.k; In the early days of string theory many properties of am-
€,.(Ka)= P (239 plitudes were shown to follow frontDolen-Horn-Schmi
q"Ks duality [32] (via “stretching the world sheet’and without
identification as any particular string theory. For example,
duality alone shows that all loop diagrams can be expressed
as insertions of tadpoles into tre€33]. We analyze this
duality within the gauge theory MHV amplitudes in the fol-
+ + lowing.
€Ki = €,,(KiQ2) +f(KiA1,02)Kae,  (2.40 For a theory with a finite number of particles of generic
mass, duality is a much more stringent constraint: Since a
and are the same on shell due to transversality for on-shefinite sum of poles in one channel cannot equal such a sum in
amplitudes. An analogous spinor reference momentum is inanother channel, the tree amplitudes must all vatésicept
corporated into the line factor for the spinor in B8.3) [27].  for the three-point function, which does not have any chan-
The two vertex operators are similar, except that in thenelg. This analysis can be extended to one-loop diagrams:
N=1 string the factorL” introduces a branch cut on the For example, a planar one-loop open-string graph is related
world sheet and™ * a Lorentz covariant line factdiintro-  py duality to such a tree graph with the insertion of a closed-
duced into theN'=2 string following spinor helicity tech- string tadpole. The MHV one-loop YM amplitudd.9,20,
niques in[6]). In a self-dual background the two are the samewhich coincides with the one-loop self-du&matrix, has the
up to a line factor, as required by known field theory resultsform
of bosonization.

with q,, arbitrary (the reference momen{&0]) ande* - ¢*
=—1 ande™ - e~ =0. Different choices of); generate axial
forms,

A spectral flow operation in a scattering process allows A )= i G KK
the identification n1(Ki) =~ 75— 1ot Br=n (120(23) - --(n1)
31
(.. Ve(k)Ve(ky) .. .) 3.1
=(...Ve(k)Z(— 0)Z(0)Ve(ky) ...) in a color-ordered form. Relations between this amplitude in
d dimensions and a supersymmetric amplitudedin4 di-
=( .. Vp(K)Vp(Ka) .. Moo, (2.41 Mensions relates scattering between el and V=2

strings[6]. The inner products are written in terms of twistor

where in the latter a contour deformation of the spin operatovariables(ij ) =k{k;, and[ij]=k{k;,, with s;;=(k;+k;)?

is taken around the two vertex operators to convert them te=(ij)[ji]. In d=2+2 the amplitude becomes real and the
bosonized statistic&ee Fig. 1 A similar procedure may be inner productgij) and[ij] are not complex conjugates. A

performed for all correlators involving an even number ofsimilar result holds for the MHV gravitational amplitudes
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[21]. The form in Eq.(3.1) is manifestly crossing symmetric We denote the product of two fields as

(i—]) after including the color factor

C,=TrToiTo2. .. T% (3.2

AmBAgp—m:<12><23>. ~(n1)" oo .

with group generator$; and summing over all permutations, and consider the general contraction with two local deriva-

as all the outgoing helicities are the same.
The analytic structuréin momentum spageof a closed

tree diagram with zero-momentum inserted states, and an
open loop diagram containing a finite number of particle

tives with momentuny,

A:qﬂlﬁ’lqazﬁzH asﬁava4B4T (3.6

1By, @By, azBz,aBy

types, in general do not agree. We next analyze the insertiofith T a general tensor. As the momentprflowing into the

of a single operator in a field theory tree diagram. Téwor
ordered gauge field corresponding to a tree diagram waith
out-going helicities the samabeled from legs 1 ton) and
one leg unamputated and off-shell is

product of two fields is taken to zero, the field is evaluated
with momentumq and —q. The unamputated and off-shell
field is conserved via]“BAal;:O, and the most general ten-
sor contractions are obtained from the tensors,

AD(B )= kaqﬂ;ky 33 ?f)ﬁl,azﬁz,asﬁs,a4ﬁ4: 6&’10(3611/20146,31[.336‘32/.34, 3.7
m (0K = ey 12y (mky : S o
1By, @B, a3B3,a4B4 _ 601:[01460120136[31,846[32,83, (38)
with k the reference momentufi30] chosen in the off-shell @
extension of the leg with momentum (=—={2 k) [23]. Te1Br.a2B2.a3B3 @aBa_ gy caras Bobs cPrBa (3.9
The insertion of a zero-momentum state interacting with a (3) ! )
vertex associated with lines requires products of up fo

: . . 1By, a2B @3By @B _ 3185 _Bok
fields. The overall constart,, is suppressed in the subse- Tigy 1eere e tabi= enaaearnsefrfaehobs, (3.10

guent analysis. These composite operator insertions mod

. ) . %gether with those that trivially contribute zero due to mo-
local anomaly mechanisms; as an example we list PR

mentum conservation, such as1%e, , e’1#2€P2f4 and

permutations. The contractions with the various tensors after

(3.4 summing over all possiblen andn—m point fields generates

S=Tr f d*x ¢FF.

(ka) (kb ia][jb](ik)(jk)(m.m+1)(n1)

=1 =M1 a=1 b=met (k1)(mKy(k,m+ 1)(nk) 7 (3.11)
N e w w {kay(kb)[ib][ja)(ik){jk)(m,m+1)(n1)
A= 2 ,-:%1 22 (k1){mKy(k,m+1){nk) ' (312
oS &S (kaxkby[ib][jal(ij)(jk)(m,m+1)(n1)
Ag_zl j:%+l azl b=m+1 (k1){mk)(k,m+ 1)(nk) ' (3.13
and
A,=0. (3.14

In deriving Eqs(3.11) and(3.12 the null vectorg has been written aqs“ﬁ:E}“:lkj“kf together with momentum conservation.
The first sum in Eq(3.1)) is separately odd under both-a andj+« b, and the second is odd under b andj«a. Both A,
and A, are equal to zero. The series id; is odd underi<b and j«<a separatelyfand even under simultaneous
(i.j)=(a,b)].

We next consider the zero-momentum insertion associated with a three-point vertex. Summing over all possible products of
gauge fields associated with a general tensor gives

m P .

n . .
B1,coBo aaBs_ B1 B2 B3
A @1Pr.azBy a3 3_2 E k#1k k’3‘2kj k“i*‘ka1 X

i=1j=m+1a=p+1 :

(k) (k) (ak)
(s p.p+ Dt (mRm HPREP G
A

Any contraction of the indiceg; associated witlk, or a e*? generategkk) and is identically equal to zero.
The last possibility contains a four-point vertex,
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m p q n . . . .
B1 2B, a3B3,@aBs — By ) B2y as) B3y as) Ba
A @1P1 a2B2 a3f3.ay 4_2 E E 2 ko‘ll(i k“zkj k"‘i"‘ka ka“kb

i=1 j=m+1a=p+1 b=q+1

(ik)(ik)(ak)(bk)(m,m+1)(p,p+1)(q,q+1)(nl)

(KLY (mR){k,m+ L){pk)(k.p+ 1){aky(k,a+ 1)(nk)’ (3.16
|
the form of which also generates zero for any tensor contrac- _
tion. f ddxfg~f dKNw N\ . ..=f_ dKAo o . .. .
The above analysis shows that the non-supersymmetric ”M M 4.3

gauge theory MHV amplitudes cannot be generated by a
single zero-momentum operator insertion into a tree ampliThe fact that the cosmological term in Egt.2) is a total
tude. We conclude that the string duality between open angerivative (locally) means that it does not contribute to the
closed (in the N=2 system requires that the amplitudes fie|d equations. The absence is in agreement with the vanish-

vanish. Self-duasuperYang-Mills and self-duabupegrav-  ing of the cosmological term in the self-dual gravity theory
ity are examples of such theories, but the corresponding nomgng in the supersymmetric extension.

supersymmetric theories are not. The four-point one-loop MHV gravitational amplitude in
four-dimensiongin d=3+1 dimensions has the form

IV. MODULAR INVARIANCE VS FIELD THEORY

A2 ()= —i K\l S12523
_ The evaluati(_)n of scattering amplitudes for _the string, in g (kj)=—i 5 1204m)2 | (12)(23)(34)(41)
either the path integral or operator approach, involves sums
over the inequivalent geometries associated with the world X (Syt+ 55+ STy, (4.4

sheet topology. There are two steps to this procedure, finding
(1) the Green functions on that space &8ythe correspond- derived in[34]. Its n-point form is presented if21] and
ing measure. The second step is the hardest; in earlier evalgenerates th&smatrix for the self-dual gravitational field
ations of one-loop quantities V=2 string theory, it was theory[8]. The supersymmetric completigimtegrating out a
assumedhat the measure was modular invariant, to enforcevirtual supersymmetric multiplgis identically zero, and the
conformal invariance in the critical dimension of four. Cal- amplitude satisfies a relatiod 2= 41%= — AV for an
culations with this integration measure led directly to vanishinternal graviton, complex scalar and Wey! fermion respec-
ing genus-one diagrams. This result directly contradicted extively. The d-dimensional form, found by analytically con-
plicit evaluations of the corresponding graphs by fieldtinuing the internal momenta or by inserting factors of
theoretic methods. In this section we will review these re-r, “2*2 into the first quantized integral form, is equal to zero
sults; a more rigorous analysis in the following section,in d=2 [6].
based on sewing or unitarity constructions, will reveal an The all-genus amplitudes have been shown to be equal to
anomaly in conformal invariance in the non-supersymmetriczero through calculations in th&¥=4 topological reformu-
string. lation of the /=2 string (modulo contact term ambiguities
We first examine the consistency of the zero-point func-analyzed i 6]), based on the assumption of modular invari-
tion in the supersymmetric context. At genus one it is givenance. This has been verified directly at genus one in the RNS

by N=2 formulation, taking into account both contact terms as
well as the different ordering of limits in the zero-slope limit
d?r [6] (integrating spin structure first or evaluating— 0 first),
Z= J =3 (4.1)  generating the continued form of the result in E4.4) to
2

d=2. In the latter calculation it was shown that an additional
factor of 7, in the closed string calculation arising from the
and corresponds in the target space-time field th¢orya  p’c’ ghost system associated with the world-sheet gauge
2d-real dimensional Kaler manifold of signature (4,0) or field maps the integral representations of the amplitude into
(2,2)] to the zero-point functioh2] derived from two internal space-time dimensions, and the result for the
amplitude equals zero. However, this additional factor in the
§ 1 integration measure does not follow directly from sewing
JMd x\g= MJMCD/\CD AN, (4.2 trees or from unitarity consideratiorié the Wick-rotated
sense tal=3+1 dimensiony these latter techniques would

. ] generate the non-vanishing gravitational MHV amplitudes
with a product ofd/2 factors of the Khler form w. The (4.4) at n-point.

integrand in Eq.(4.2) is locally a total derivative, as The chiral V=2 matter multipletsX=(x,#) and ghost
=ddK (e.g.do=dw=0), and the integrand is totally anti- systems at genus one contributes the following determinant
symmetric, factors to the evaluation of the amplitude:
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al — _ al — _ @ quence of the path integral because of the locality of the

Zd{ﬁ (1,7)=2Z(7,7) ZV’[,B (7,7) Zpe(7,7) Zpg, ,3} world-sheet action: For example, the genus-one world sheet
can be “cut” into trees, and integration over variables at the

X(1,7) Zyror(7,7), (4.5  cutare performed after integration over those inside the tree.

(Similar remarks apply in the operator formalignThis is
with d=4 in the critical string and where the respective fac-equivalent to the Feynman tree theor¢B%], and is the
tors are original method for evaluating one-loop graphs in string

o theory(see, e.g9.[36,37)). The basic idea is that the one-loop
Z(7,7)=1, 9 n(7)| "%, graph is given by the trace of the string propagafteith
additional external statgs

al — e d —d For example, this method was applied to the type | super-
Z, B (r,7)=|9 B (0] [n(n)]°, (4.9 string to show the existence of anomaliesd divergencés
for groups other than S@2). Although the integration mea-
Zo( 71 =7 | ()| sure is determined directly from the Teichilen variations,
conformal invariance is not enough to fix the normalization
ol — a —4 of these one-loop diagrams: In fact, it gives an inconsistent
Zg, B (7, T)=‘19 B 00| |n(n]* (4.7 result, since the theories for groups other than®Dare

anomalous; assuming no anomaly would imply different
The ghost determinant associated with the Id¢él) sym-  relative normalizations to enforce cancelation. In particular,
metry is ignoring the possibility of Chan-Paton factors would give the
U(1) or SQ2) (if symmetrized superstring, which does vio-
Zb’c'(Ta?): | p(7)| 4.9 late conformal invariance at one loop. Of course, conformal
invariance does not fix overall normalization of loop dia-
The Dedekind eta and theta functions with continuous chargrams in any string theory, since any constant overall factor
acteristic[ 3] comprise the determinants, is invariant; rather unitarity determines the normalization
factor.
The simplest case to consider is the open string planar
loop, since the moduli space of the resulting integral is sim-
pler (at least for the part coming from the world sheet met-

n(n)=q"*]] (1-q),
n#0

a _ o ric). Specifically, the propagator for an open string in exter-
ﬂ[ﬁ (z, T):nEz gmirnta)ramnta)ztf) (4.9  nal fields is simply
whereq=e?"" and r denoting the modular parameter of the A= 1 - i _ i i +..
torus. The product of these factors generates LotV Lo Lo Lo
al  —  _geayz| o @ d-4 —3(d-4) where L, is the free kinetic operator and is the vertex
Zy B (1,7) =7 ¥ B (0,7) | 7(7)] ’ operato(s). The loop amplitude, for some fixed number of

(4.10 external lines, is then given by sewing a term in this sum,

o . . _ which is represented in this operator language as a trace:
and equals unity in four real dimensions. The moduli asso-

ciated with the path integral quantization of thé=2 string 1

are(1) the parameter labeling the inequivalent tori, an@) A=Tr L—V(l)L—V(Z) cee

the parameters;] labeling the continuous spin structufes 0 0

the U(1) gauge bundle of the torisThe modular invariant At this starting point there are no moduli whatsoever,

integration measure i@ip to an arbitrary constant since the tree-level path integral has already been performed.
5 _ In general, moduli appear only as integration variables, and
d°r dUdU_d do not specify external states. However, it is convenient to
—, =dadp, (4.11 . .
75 Ty reintroduce one modulus for purpose of evaluating the sew-

ing: Exponentiating all the free propagatord dwith the
where u=(1/2— a)+(1/2— B) 7. (The volume integral is usual Schwinger parameters, this modulus appears as their
Jdudu=r,.) However, this is not the measure found from sum. _ _ _
path integra|(or Operato)’ quantization, as we show in the We will not review all the details here, just those that

following section. differ from the /=0 and/N=1 strings.(See, e.g.[38] for a
discussion for the bosonic open stringor simplicity, we
V. ANOMALY IN A = 2 STRING can consider Neveu-Schwarz or Ramond boundary condi-

tions for the world sheet spinors: This allows direct compari-
A rigorous alternative to invariance arguments is “sew- son to theA’/=1 case.(By spectral flow, also known in the
ing,” which unambiguouslydetermines loop amplitudes in- maximally helicity violating sector as spacetime supersym-
ductively in loop order. This property is an automatic conse-metry, we know the result is independent of this chgidée
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evaluation of the Green function part of the path integoal 1
operator evaluationis then the same as fdv=1, since the <X1,¢1|0J dre‘TL0|X2,¢2>9=(X1,¢1|,,L—|X2,¢2>9,
physical /=2 variables are the same as those &6+ 1 in 0 (5.2)
d=4. (However, unlike the\V'=1 case, spectral flow allows '
us to generalize to arbitrary boundary conditions: see bglowwith
The ghosts do not appear in the vertex operators, and thus
the Green functions, if we restrict the external states to be on 1 u _ 0aad
shell and gauge fixed. Lo=5 2 @ndnuity n;x (n+6):d=pdy
Of course, the evaluation of the Green functions is not (5.3
affected by the anomaly, as they are the classical part of the
JWKB expansion. The evaluation of the measure inAhe and
=2 case is actually simpler. As in th€=1 and 2 cases, it
depends on only the modulus™ related to the sum of the di=dn.p, d’ =d_,_4, n>0. (5.9
Schwinger parameters: Thus we can forget the external lines _ )
and look at just the partition function. We first examine theHere the oscillators are labeled by the twist anglehat
contribution of the nonzero mode®scillators. In d=4 mterp_olates between the Ramond and N_eveu—Schwarz sec-
these contributions cancel identically by counting: The worldtors, induced by the spectral flowThere is a zero mode
sheet variables of half-integral and integral worldsheet spigSsociated with the bosonic ghosts9at0 that requires spe-
(or conformal weight each satisfy the same boundary con-cial treatment, which we do not discuss hgrat every ¢
ditions, independent of statistic&This is true for arbitrary ~there is a complete set of states, and the sectors are related by
choice of boundary conditionsBut each of the two sets has the spectral flow automorphis(@.18; the spectral flow also
equal numbers of opposite statistics: fats vs (b,c,b’,c’), twists the boundary conditions at pairs qf points where ver-
and foury's vs (8,7,8',7'). Thus all the contributions of tex operators are located, as described in Sec. Il
the nonzero-modes cancel, leaving a partition function  The tree amplitudes are constructed via
=1. (For other dimensiond,is a d-independent function to 1
the powerd—4.) An(ki):<k1|0l(_
All these functional integration results so far agree with Lo
those found previously by invariance argume(sse previ-

ous sectioh The final step is the integration of the zero X e )
modes. The integration overzero modes is identical to that specify the boundary conditions of the worldspinors and thus

in ordinary field theory, so we leave it for last, and do notthe Spin- as described N previous septlofw.e ha_ve_ not
discuss it. That leaves only the integration over the zer$XPliCilly inserted the line factor labeling the spin in this
modes of the fermionic ghosts. Sintg has no dependence equation) Thg sewing relation found by inserting a complete
on these zero modes, these integrals are trivial:Llf Were set of states in the loop generates

the complete propagator, they would give zero, since, e.g., d’p 1 1

fdby1=0. This problem is fixed in the same way as for AlooP= f —4Tr{0_}(—vfl—v§2 .. .Vg“ . (5.6
=0: We include in the full propagator a numerator of these (2m) "\Lo * Lo

zero modes:

oo o]

Vo(ky) . . .

1 ) )
L_O |kn> " (5.9

with twist parameter®; at each vertex which are required to

We note that the factor inside the trace in this equation is
identical to theN=1 string amplitude evaluated in four-

bb! dimensions(for ¢'s =0 or 1/2), after normalizing the\’
1= 00 (5.1 =2 string vertex operators with covariant line fact2s30):
Lo The gauge-fixed action for the matter components ofthe
=1 string has a globa\'=2 supersymmetry on the world

. : . . sheet.
In fact, this numerator is z_ilready required for e_valuatlng tree  Tpe complete expression following from the above is
graphs, when ghosts are included. The result is that the mea-

sure is identical to that obtained by field theory methods. w
(Earlier evaluations based on invariance arguments did not An(kj)zf

directly address the problem of integration over these zero 0
modes). The fact that it disagrees with the result obtained

dr

7_3—n

f ,-Hl dzKJ\(zi 7). (5.7)

from modular invariance argumeritiiough only by a factor where the oscillators associated with the modes are inserted,
including the ghost terms but without the zero mode associ-

of 7) is the anomaly in this invariance. . . X .
To expand on the above we derive the scattering ampli‘-"‘ted with the latter. The integration generates in the zero-

tude for a specified set ¢finintegratedlspin structures of the SIOP€ limit the integrand for the maximally helicity violating
world sheet fermions that specify an arbitrary spin. This gen@MPlitudes in four dimensions; the kinematic factor in Eq.
eralizes the calculation above, although in a trivial way be{>:7) i

cause of the spin independenspectral flow. (Thus, in the n
supersymme_tric theory the va_rious _contributions cahdéle KijN(Zi ,Tz)=f H dZp eG (5.9
propagator discussed above is defined as j '
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1 Although the imaginary part of the amplitude in £§.9)
G=[—Eki'ijiﬁG[i'kj]Derij is equal to zero in four dimensions, upon continuingdto
=4—2¢e dimensions it picks up a non-vanishing redske,
for example,[39,21]). This unitarity construction leads to a
direct evaluation of the MHV amplitude in different dimen-
multi-inear sions, and the integration measure over the cut loop mo-
where D=3 + %9, and G;; the two-point function be- menta with the integratiomidl_. However, this result is in
] Z. LR . } contradiction to the assumption of conformal invariance in
tween the pointsZ,6;") and (z;,6;) for fermions of spin o hosonicv=2 string.
strgcturea..The gxpansion in_thi§ equation is _in products  The sewing relation in string theor§p.9) precludes the
WhICh are linear in egch polarization vectgr. This expan-  moduli associated with thel(1) gauge field and the ghost
sion may be found ir{6] for general +ch0|ces of reference geterminant, i.e., the integration over the boundary condi-
momenta of the polarization vectoes * . The complete in-  tions (a8) in Eq. (4.11). In the relation(5.9) we project onto
tegration over the modes in thg-expansion beyond the gz finite number of massless states, found by summing dis-
massless sector is non-trivial, but the fermionic pieces agretely over the spin structures. The target space-time imple-
Ieading orgler ing integrate to zero by a supersymmetric mentation in the sewing of integrating out these fielaisd
Ward identity[6]. the induced spectral flowrequires a summation over inter-
However, the contribution from the world sheet Greenmediate massless states with spin ranging continuously from
functions is not the same as from the field theory, althoughyero to two. In this construction of the loop the absence of
they agree in the zero-slope limit. This indicates that thispe 7, factor from the b’c’) ghost determinant in Eq4.8)

anomaly is more serious, since contributions from unphysiforces the amplitude to be evaluated in four dimensions, and
cal massive modes to the Green functions do not cancel, iy choice of the spin structure in the anti-periodic—anti-

spacetime supersymmetric case, contributions from spacganishing gravitational MHV amplitude$The periodic spin
time fields of opposite spacetime statistics cancel. Thus, jusftryctures generate a vanishing contribution holomorphically
as anomaly cancelation requires (39) for the open super- o the amplitude[6] point-wise in the integration over.)
string, anomaly cancelation for th&'=2 strings requires |ndeed, the Koba-Nielsen representation of the amplitude
spacetime supersymmetry. _ o from the A'=1 string is identical to that from theV=2
At one loop, sewing can be replaced with a unitarity Con-sring without this factor; the\'=1 string has a manifest
struction based on dimensional continuation. In the remaing|0ba|N=2 supersymmetry. The sum over the intermediate
der of this section we examine this construction on the treestates in Eq(5.9) with the appropriate supersymmetric spec-
amplitudes obtained through the field theory describing thg,,m makes agreement with the direct path integral quanti-
classical dynamicg.The self-dual Lagrangians reproduce the zation including the complete set of determinant factors in
classical scattering of th&/=2 string) Then two-particle gq (4.10.
unitarity cuts are sufficient to determine the complete ampli- ‘The tree amplitudes of the string theory agree with those
tudes through an integral reduction of one-loop integralsyf self.dual theories: nonvanishing three-point amplitudes
onto a finite set of integral functions together with their gng vanishing higher-point. Sewing these trees, in either a
unique cut structures. The unitarity cut in a two-particlefie|d theory or string description, straightforwardly produces
channel containing momenta, +- - - +ky (with 2,k vanishing one-loop amplitudes for the space-time supersym-
=0) is metric theories, but nonvanishing amplitudes in the bosonic
theories. Since the assumption of modular invariance of the
ImAR (k)= | dipdiqs@(p?)sD(g2)O(py)O(q,  One-loop amplitudes implies vanishing amplitudes, the one-
Aj==% loop amplitudes violate conformal invariance unless the
Y A* M K g2 theory is spacetime supersymmetric: The one-loop ampli-
m+2(P KL, - K, 72) tudes as derived by sewing are not modular invariant in the

X Ay meo(Q 22Ky, ...k, p M), (5.9  honsupersymmetric theories.

+6i' EJD|+D]+G|J

with helicity states denoted by for an internal state of spin
two. (The identical helicity configuration generates the one-
loop amplitude to the self-dual gravity theories, exact in the In this work we demonstrated the global conformal
two-field formulation) Scattering of external states of iden- anomaly within the N=2 closed string. This conformal
tical out-going helicity has tree amplitudes on either side ofanomaly is potentially related to an index in thé=2 string

the unitarity cut that equal zero: The tree amplitudes in fourtheory. Cancelation of the anomaly requires, through unitar-
dimensions with helicity configurationd(+,+, ... ,+) ity or sewing, that the theory be space-time supersymmetric.
equal zero ah-point. The absence of unitarity cuts is mani- The supersymmetric extension of thé=2 closed string is
fest in the functional form(3.1); continuation tod=2+2 accomplished via the attachment of line factors on the vertex
dimensions results in the reality of the inner produgis operators labeling spin on the scalar state in the spectrum.
and[ij ] and the amplitude is then purely real for all kine- The bosonization of states of different spin in the field
matic configurations. theory, or the spectral flow of th&=2 system, allows the

VI. CONCLUSIONS
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similar analysis may be performed in the open string.

We further analyzed duality between open and closed 0 0 (6.1)
string world sheets in the context of self-dual Yang-Mills '
theory and gravity and its supersymmetric completion. Duwhich is the same as inserting a zero-momentum state be-
ality in this context and in a theory containing only a finite tween the two propagators, i.e., a tadpole insertion.
number of fields requires supersymmetry and a vanishing Note addedThe integration measure containing the spin
Smatrix. This is analyzed directly in the field theory by structure summation that generates the following results is
showing that a general zero-momentum insertion into the

incorporation of supersymmetry through these factors. A % %
tr(K‘1)=tr(f dre‘TK), tr(K‘2)=tr(f drre‘TK>,

maximally helicity violating tree amplitude in Yang-Mills d’7  dudu dadg

theory generates zero, in accord with the supersymmetric r_g T: P 6.2
closed self-dual gravity at the quantum level to all orders in 2

the loop expansion. It may be found by inserting into thiorus amplitude(with

The fact that the nonvanishimgpoint maximally helicity — the Jacobian torus associated with the gauge fields, or
violating loop amplitudes are due to such a simple anomalyquivalently the spin structures, fibred ontlie ghost modes

suggests that an even simpler derivation of these amp"tUdeaSssociated with the Beltrami differentiats_;bﬁbccbaﬁ_' in this
might be possible, analogous to the way the effective aCtio'?nanner the zero modes of both tHecj and (b’c’),system
of the Schwinger model follows simply from its anomaly. are treated on an equal footiAg

K .

The Liouville multiplet offers an avenue to compensate th
factor of 7, in the closed string calculation to obtain these ACKNOWLEDGMENTS
amplitudes. Furthermore, the unintegrated zero momentum

operator insertion noted if6], i.e., @&Xugxw represent- The work of GC _is_support_ed in part by the_U.S. Depart-
ing the insertion of a tadpole would produce a factorrgf ~Ment of Energy, Division of High Energy Physics, Contract

necessary to obtain these amplitudes. A simple way to sed/-31-109-ENG-38, and that of W.S. by NSF Grant PHY
this is to note that the one-loop amplitude can be written in? /22101

terms of the trace of the Schwinger parametrizeg) fpropa-

gator, and an extra, corresponds to squaring the propaga-
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